JPS6161713B2 - - Google Patents

Info

Publication number
JPS6161713B2
JPS6161713B2 JP5859981A JP5859981A JPS6161713B2 JP S6161713 B2 JPS6161713 B2 JP S6161713B2 JP 5859981 A JP5859981 A JP 5859981A JP 5859981 A JP5859981 A JP 5859981A JP S6161713 B2 JPS6161713 B2 JP S6161713B2
Authority
JP
Japan
Prior art keywords
superconducting
power lead
inner tank
outer tube
temperature side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5859981A
Other languages
Japanese (ja)
Other versions
JPS57173986A (en
Inventor
Hideki Nakagome
Keiji Ookuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP5859981A priority Critical patent/JPS57173986A/en
Publication of JPS57173986A publication Critical patent/JPS57173986A/en
Publication of JPS6161713B2 publication Critical patent/JPS6161713B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • H01F6/065Feed-through bushings, terminals and joints

Description

【発明の詳細な説明】 本発明は、クライオスタツトに収納された超電
導マグネツト等の超電導機器に電流を供給する電
流供給装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a current supply device for supplying current to superconducting equipment such as a superconducting magnet housed in a cryostat.

従来の超電導機器用電流供給装置はパワーリー
ドが銅パイプで形成され、超電導マグネツトの励
消磁時にクライオスタツトの冷媒として使用する
ヘリウムのガス等の冷媒ガスをこの銅パイプ内に
流すように構成されていた。このような構成であ
ると、超電導マグネツトの励消磁時の銅パイプの
発熱をクライオスタツト内へ侵入させることを防
止することができるが、クライオスタツト内の超
電導マグネツトの運転時においてはパワーリード
から外部の熱がクライオスタツト内に侵入してク
ライオスタツト内の冷媒を無駄に蒸発させる原因
となつていた。この熱侵入を防止する手段とし
て、(1)常時パワーリードの銅パイプに冷媒を流通
させる、(2)パワーリードの銅パイプを細くする、
ことが考えられる。しかしながら銅パイプに常時
ヘリウム等の高価な冷媒を流通させることはコス
トの面で問題となる。又、パワーリードの銅パイ
プを細くすると、超電導マグネツトの励消磁時に
発熱が増大し、かつ焼損する恐れが生じる。
Conventional current supply devices for superconducting equipment have power leads made of copper pipes, and are configured to flow refrigerant gas such as helium gas, which is used as a cryostat refrigerant, into the copper pipes during excitation and demagnetization of the superconducting magnet. Ta. With such a configuration, it is possible to prevent the heat generated by the copper pipe from entering the cryostat during excitation and demagnetization of the superconducting magnet, but when the superconducting magnet inside the cryostat is in operation, The heat from the cryostat entered the cryostat and caused the refrigerant inside the cryostat to evaporate unnecessarily. As a means to prevent this heat intrusion, (1) constantly circulating refrigerant through the copper pipe of the power lead, (2) making the copper pipe of the power lead thinner,
It is possible that However, constantly circulating an expensive refrigerant such as helium through the copper pipes poses a cost problem. Furthermore, if the copper pipe of the power lead is made thinner, heat generation increases during excitation and demagnetization of the superconducting magnet, and there is a risk of burnout.

本発明の目的は上記の欠点を除去し、クライオ
スタツト内の熱侵入量がきわめて少ない超電導機
器用電流供給装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks and to provide a current supply device for superconducting equipment in which the amount of heat intrusion into a cryostat is extremely small.

本発明は、超電導機器用電流供給装置を熱伝導
率の小さい材料で形成した外管と励磁電流を供給
するパワーリードで構成し、パワーリードの低温
側を電気伝導率の小さい材料に超電導線を巻装し
た超電導部で構成し、超電導機器を励消磁すると
き予め外管内にクライオスタツト内の冷媒を流通
させて前記パワーリードの超電導部が臨界温度に
なるまで冷却するごとく構成することにより、ク
ライオスタツト内への外部からの熱侵入を減らす
ようにしたものである。
In the present invention, a current supply device for superconducting equipment is composed of an outer tube made of a material with low thermal conductivity and a power lead for supplying excitation current, and the low temperature side of the power lead is made of a material with low electrical conductivity and is made of a superconducting wire. The cryostat is composed of a wrapped superconducting part, and when the superconducting equipment is excited and demagnetized, the refrigerant in the cryostat is circulated in the outer tube in advance to cool the superconducting part of the power lead until it reaches a critical temperature. This is designed to reduce heat intrusion into the tattoo from the outside.

以下、本発明の代表的実施例を図面を参照して
説明する。
Hereinafter, typical embodiments of the present invention will be described with reference to the drawings.

図は、本発明に係る超電導機器用電流供給装置
1をクライオスタツト2に使用した状態を示す。
クライオスタツト2は内槽3と外槽4から構成さ
れ、内槽3内に超電導マグネツト等の超電導機器
5が液体ヘリウム6によつて冷却されて収納され
ている。内槽3と外槽4との間の空間7は断熱の
ために真空となつておりこの空間7にシールド板
8を配置し、かつ液体窒素を流通させるシールド
配管9をシールド板8にはわせて熱シールド効果
を高めている。シールド配管9に流通させる液体
窒素を供給するシールド供給管10と、シールド
配管9を循環した液体窒素を排出するシールド排
出管11とをシールド配管9に接続して外槽4を
貫通させて設ける。又、内槽3に液体ヘリウムを
供給する供給管12を内槽3から外槽4に貫通さ
せて設置する。超電導機器5の励消磁中に電流の
通流を行わせる超電導機器用電流供給装置1は、
超電導機器5への熱侵入量を極力減らす目的で、
超電導機器用電流供給装置1を内槽3のまわりに
迂回させて超電導機器5へ接続してクライオスタ
ツト2の外部からの距離をかせいでいる。超電導
機器用電流供給装置1はステンレス等の熱伝導率
の小さい材料で形成した外管12とこの中に挿入
されるパワーリード13とから構成されている。
外管12はクライオスタツト2の外槽4と内槽3
とを結ぶように配置されている。銅パイプで形成
されるパワーリード13は4分割されており、パ
ワーリード13の内槽3側から電気伝導率の大き
い銅(OFHC等)で構成されるリード部14、銅
(OFHC等)に比べて熱伝導率の小さいキユプロ
ニツケル等の材料15に超電導線16を巻装した
超電導部17と常温側を常電導部材で形成した常
電導部18で構成されている。この常電導部18
は2分割され、超電導部側リード19を他方側で
ある常温側リード20に使用されるリン脱酸銅等
の一般の電流供給用の材料より電気伝導率の大き
い銅(OFHC等)の材料で形成されている。以上
のように構成されたパワーリード13はクライオ
スタツト2の外部に引き出されている。このパワ
ーリード13の常電導部18のクライオスタツト
2の外部に引き出された箇所と外管12とを繊維
強化プラスチツク(FRP)材等の電気絶縁材2
1で電気的に絶縁しかつ気密が保たれるように密
封する。又、内槽3内にはヒーター21が外管1
2の設置された近辺に設けられ、ヒーター22の
発熱によつて内槽3内の液体ヘリウム6が気化
し、このヘリウムガスが外管12内を流れてパワ
ーリード13を冷却する。このヘリウムガスを外
部に逃がすための排出口23が外管13の外槽4
の外部に設けられている。ヒーター22のリード
線24及びパワーリード13の超電導部17と常
電導部18の接続箇所近辺にゲルマニウム温度計
25を設け、このリード線26は図示していない
が、内槽3、外槽4を貫通して直接クライオスタ
ツト2の外部に引き出されている。又、パワーリ
ード13の常電導部18の常温側リード20の一
部に貫通27を有するアルミ等の熱伝導率の大き
い良熱伝導体28を外管12と接するように設
け、外管12の前記良熱伝導体28を設けた箇所
に液体窒素溜29を設けてサーマルアンカー30
を構成し、この液体窒素はシールド配管9から導
いている。尚、パワーリード13のリード部14
と超電導機器5とはブスバー31を介して接続さ
れている。
The figure shows a state in which a current supply device 1 for superconducting equipment according to the present invention is used in a cryostat 2.
The cryostat 2 is composed of an inner tank 3 and an outer tank 4, and a superconducting device 5 such as a superconducting magnet is cooled by liquid helium 6 and housed in the inner tank 3. A space 7 between the inner tank 3 and the outer tank 4 is made into a vacuum for heat insulation, and a shield plate 8 is placed in this space 7, and a shield pipe 9 through which liquid nitrogen flows is attached to the shield plate 8. This increases the heat shielding effect. A shield supply pipe 10 for supplying liquid nitrogen to be circulated through the shield pipe 9 and a shield discharge pipe 11 for discharging the liquid nitrogen circulated through the shield pipe 9 are connected to the shield pipe 9 and provided to penetrate the outer tank 4. Further, a supply pipe 12 for supplying liquid helium to the inner tank 3 is installed so as to penetrate from the inner tank 3 to the outer tank 4. A current supply device 1 for superconducting equipment that allows current to flow during excitation and demagnetization of superconducting equipment 5 includes:
In order to reduce the amount of heat intrusion into the superconducting equipment 5 as much as possible,
The current supply device 1 for superconducting equipment is connected to the superconducting equipment 5 by making a detour around the inner tank 3 to increase the distance from the outside of the cryostat 2. The current supply device 1 for superconducting equipment is comprised of an outer tube 12 made of a material with low thermal conductivity, such as stainless steel, and a power lead 13 inserted into the outer tube 12.
The outer tube 12 is the outer tank 4 and inner tank 3 of the cryostat 2.
It is arranged to connect the The power lead 13 formed of a copper pipe is divided into four parts, and from the inner tank 3 side of the power lead 13 there is a lead part 14 made of copper (OFHC etc.) with high electrical conductivity, compared to copper (OFHC etc.). It consists of a superconducting part 17 in which a superconducting wire 16 is wound around a material 15 such as Cypronickel, which has a low thermal conductivity, and a normal-conducting part 18 in which the room temperature side is made of a normal-conducting material. This normal conducting part 18
is divided into two parts, and the superconducting part side lead 19 is made of a material such as copper (OFHC etc.) which has a higher electrical conductivity than the general current supply material such as phosphorus deoxidized copper used for the other side, the normal temperature side lead 20. It is formed. The power lead 13 configured as described above is led out of the cryostat 2. The part of the normal conducting part 18 of the power lead 13 drawn out to the outside of the cryostat 2 and the outer tube 12 are connected to an electrically insulating material 2 such as fiber reinforced plastic (FRP) material.
Step 1: electrically insulate and seal to maintain airtightness. In addition, a heater 21 is installed in the inner tank 3 and the outer pipe 1
Liquid helium 6 in the inner tank 3 is vaporized by the heat generated by the heater 22, and this helium gas flows through the outer tube 12 to cool the power lead 13. The outlet 23 for releasing this helium gas to the outside is the outer tank 4 of the outer tube 13.
It is located outside of the A germanium thermometer 25 is provided near the connection point between the lead wire 24 of the heater 22 and the superconducting portion 17 and the normal conductive portion 18 of the power lead 13. Although this lead wire 26 is not shown, it connects the inner tank 3 and the outer tank 4. It penetrates and is directly drawn out to the outside of the cryostat 2. In addition, a good thermal conductor 28 having a penetration 27 and having a high thermal conductivity such as aluminum is provided in a part of the normal temperature side lead 20 of the normal conductive part 18 of the power lead 13 so as to be in contact with the outer tube 12. A liquid nitrogen reservoir 29 is provided at the location where the good thermal conductor 28 is provided, and the thermal anchor 30 is installed.
This liquid nitrogen is led from shield piping 9. Note that the lead portion 14 of the power lead 13
and superconducting equipment 5 are connected via a bus bar 31.

次に動作について説明する。 Next, the operation will be explained.

超電導機器5を励磁する場合について説明す
る。まず、電流供給装置1の外管12に設けたヘ
リウムガスの排出口23を閉じ、内槽3内に設け
たヒーター22を発熱させる。このヒーター22
の発熱によつて内槽3内の液体ヘリウム6が気化
してヘリウムガスが外管12内に流れて充満し、
これによつてパワーリード13は冷却される。パ
ワーリード13の超電導部17の近辺に設置した
ゲルマニウム温度計25により、超電導部17が
超電導線16の超電導状態となる温度(通常6K
〜7K以下)になつたことを確認した後、パワー
リード13に電流を流す。常電導部18の常温側
リード20は、リン脱酸銅等の一般の電流供給用
の材料を用いているので発熱するがサーマルアン
カー30を設置しているのでこの発熱の一部が吸
収される。更に常電導部18の超電導部側リード
19は電気伝導率の大きい材料で形成されている
ので、常電導部18の常温側リード20で発生し
た熱の他の一部は常電導部18の超電導部側リー
ド19に伝導されるが、超電導部側リード19で
はほとんど発熱しないので外管12内に充満して
いるヘリウムガスによつて熱が吸収される。従つ
て、常電導部18で発生した熱は超電導部17に
伝導されるのを防止することができるので超電導
部17の超電導線16は安定した超電導状態を維
持でき、超電導機器5の収納されている内槽3内
に熱を侵入させることなく超電導機器5に安定し
てパワーリード13を通して電流を供給できる。
A case in which the superconducting device 5 is excited will be explained. First, the helium gas outlet 23 provided in the outer tube 12 of the current supply device 1 is closed, and the heater 22 provided in the inner tank 3 is caused to generate heat. This heater 22
Due to the heat generated, the liquid helium 6 in the inner tank 3 is vaporized, and helium gas flows into the outer pipe 12 and fills it.
The power lead 13 is thereby cooled. A germanium thermometer 25 installed near the superconducting part 17 of the power lead 13 measures the temperature at which the superconducting part 17 becomes superconducting like the superconducting wire 16 (usually 6K).
~7K or less), then apply current to the power lead 13. The normal temperature side lead 20 of the normal conductive part 18 uses a general current supply material such as phosphorus-deoxidized copper, so it generates heat, but since the thermal anchor 30 is installed, part of this heat generation is absorbed. . Furthermore, since the superconducting part side lead 19 of the normal conducting part 18 is formed of a material with high electrical conductivity, the other part of the heat generated in the normal temperature side lead 20 of the normal conducting part 18 is transferred to the superconducting part of the normal conducting part 18. The heat is conducted to the superconducting lead 19, but the superconducting lead 19 generates almost no heat, so the heat is absorbed by the helium gas filling the outer tube 12. Therefore, the heat generated in the normal conducting part 18 can be prevented from being conducted to the superconducting part 17, so the superconducting wire 16 of the superconducting part 17 can maintain a stable superconducting state, and the superconducting wire 16 in the superconducting device 5 can be kept in a stable state. Current can be stably supplied to the superconducting equipment 5 through the power lead 13 without allowing heat to enter the inner tank 3.

次に、超電導機器5が超電導モードでの運転状
態に入つた場合について説明する。
Next, a case will be described in which the superconducting device 5 enters the operating state in the superconducting mode.

内槽3内のヒーター22をオフにして発熱を止
め、外管12のヘリウムガス排出口23を開とす
る。クライオスタツト2の外部の熱は外管12及
びパワーリード13を伝導してクライオスタツト
2内に侵入しようとする。外管12はステンレス
等の熱伝導率の小さい材料で形成されており、か
つ、途中にサーマルアンカー30が設置されてい
るので外管12を伝導して内槽3内に侵入する熱
はなくなる。パワーリード13に関しては、常電
導部18の常温側リード20によつて相当の熱量
が侵入するが、サーマルアンカー30によつてか
なりの熱量が吸収される。実際の温度測定ではパ
ワーリード13の入口の温度が300Kのとき、サ
ーマルアンカー30によつて80Kまで温度が低下
している。この様にして外部から侵入した熱は超
電導部17に伝導する。この超電導部17は電気
伝導率の小さいキユプロニツケル等の材料15に
超電導線16を巻装した構成となつている。超電
導材料は一般に熱伝導率が小さい。従つて超電導
部17まで侵入してきた熱は内槽3内の液体ヘリ
ウム6の自然蒸発によるヘリウムガスの流出によ
り外管12内に流れるヘリウムガスによつて吸収
されるので内槽3まで外部の熱が侵入することが
できない。
The heater 22 in the inner tank 3 is turned off to stop generating heat, and the helium gas outlet 23 of the outer tube 12 is opened. Heat outside the cryostat 2 attempts to enter the cryostat 2 through the outer tube 12 and the power lead 13. The outer tube 12 is made of a material with low thermal conductivity such as stainless steel, and a thermal anchor 30 is installed in the middle, so that no heat is conducted through the outer tube 12 and enters the inner tank 3. Regarding the power lead 13, a considerable amount of heat enters through the normal temperature side lead 20 of the normal conductive portion 18, but a considerable amount of heat is absorbed by the thermal anchor 30. In actual temperature measurements, when the temperature at the inlet of the power lead 13 was 300K, the temperature was reduced to 80K by the thermal anchor 30. In this way, heat entering from the outside is conducted to the superconducting portion 17. This superconducting portion 17 has a structure in which a superconducting wire 16 is wound around a material 15 such as Cypronickel having low electrical conductivity. Superconducting materials generally have low thermal conductivity. Therefore, the heat that has penetrated to the superconducting part 17 is absorbed by the helium gas flowing into the outer tube 12 due to the outflow of helium gas due to natural evaporation of the liquid helium 6 in the inner tank 3, so that the heat from the outside reaches up to the inner tank 3. cannot be invaded.

尚、超電導機器5の励磁中のみに説明したが、
消磁中についても同様である。
It should be noted that although the explanation was made only during the excitation of the superconducting device 5,
The same applies during demagnetization.

以上の説明で明らかなように本発明に係る電流
供給装置を用いれば、超電導機器の励消磁中にお
いて、パワーリードの発熱が少なく、超電導機器
の超電導モードでの運転中においては外部からの
熱侵入が非常に少なくなり、効率良くクライオス
タツトを作動させることができる。
As is clear from the above explanation, when the current supply device according to the present invention is used, there is less heat generated in the power lead during excitation and demagnetization of superconducting equipment, and heat intrusion from the outside occurs while the superconducting equipment is operating in superconducting mode. The cryostat can be operated efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係る超電導機器用電流供給装置
をクライオスタツトに備えた様子を示す断面図で
ある。 1……超電導機器用電流供給装置、2……クラ
イオスタツト、5……超電導機器、6……液体ヘ
リウム(冷媒)、12……外管、13……パワー
リード、15……熱伝導率の小さい材料、16…
…超電導線、17……超電導部、18……常電導
部、19……常電導部の超電導部側リード、20
……常電導部の常温側リード。
The drawing is a sectional view showing a cryostat equipped with a current supply device for superconducting equipment according to the present invention. 1... Current supply device for superconducting equipment, 2... Cryostat, 5... Superconducting equipment, 6... Liquid helium (refrigerant), 12... Outer tube, 13... Power lead, 15... Thermal conductivity Small materials, 16...
...Superconducting wire, 17...Superconducting part, 18...Normal conducting part, 19...Superconducting part side lead of normal conducting part, 20
...The normal temperature side lead of the normal conductive part.

Claims (1)

【特許請求の範囲】[Claims] 1 クライオスタツトにおける冷媒を収納した内
槽に浸漬される超電導機器に常温側から励磁電流
を供給するパワーリードを具備した超電導機器用
電流供給装置において、前記パワーリードの低温
側を超電導体で構成した超電導部で形成し、前記
パワーリードの常温側を常電導体で構成した常電
導部で形成し、熱伝導率の小さい材料で形成した
外管で前記パワーリードを覆つて前記内槽から常
温側に導き、前記超電導機器の励消磁時に予め前
記内槽内の冷媒を前記内槽内に設けたヒーターに
よつて蒸発させて前記外管内に強制的に流通させ
て前記パワーリードの超電導部を臨界温度まで冷
却し、前記超電導機器の運転時には前記内槽内の
自然蒸発した冷媒を前記外管内に流通させて冷却
するごとく構成したことを特徴とする超電導機器
用電流供給装置。
1. In a current supply device for superconducting equipment that is equipped with a power lead that supplies excitation current from the room temperature side to the superconducting equipment immersed in an inner tank containing a refrigerant in a cryostat, the low temperature side of the power lead is made of a superconductor. The normal temperature side of the power lead is formed of a superconducting part, and the normal temperature side of the power lead is formed of a normal conducting part made of a normal conductor, and the power lead is covered with an outer tube made of a material with low thermal conductivity, and the power lead is connected to the normal temperature side from the inner tank. During excitation and demagnetization of the superconducting equipment, the refrigerant in the inner tank is evaporated in advance by a heater provided in the inner tank and forced to flow into the outer tube to make the superconducting part of the power lead critical. A current supply device for a superconducting device, characterized in that the superconducting device is cooled to a certain temperature, and when the superconducting device is in operation, the naturally evaporated refrigerant in the inner tank is circulated through the outer tube to cool the superconducting device.
JP5859981A 1981-04-20 1981-04-20 Current supply device for super conductive apparatus Granted JPS57173986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5859981A JPS57173986A (en) 1981-04-20 1981-04-20 Current supply device for super conductive apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5859981A JPS57173986A (en) 1981-04-20 1981-04-20 Current supply device for super conductive apparatus

Publications (2)

Publication Number Publication Date
JPS57173986A JPS57173986A (en) 1982-10-26
JPS6161713B2 true JPS6161713B2 (en) 1986-12-26

Family

ID=13088965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5859981A Granted JPS57173986A (en) 1981-04-20 1981-04-20 Current supply device for super conductive apparatus

Country Status (1)

Country Link
JP (1) JPS57173986A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6213009A (en) * 1985-07-11 1987-01-21 Mitsubishi Electric Corp Cryogenic electric device
JPS6218010A (en) * 1985-07-17 1987-01-27 Mitsubishi Electric Corp Superconductive magnet device
JP2563391B2 (en) * 1987-11-18 1996-12-11 株式会社東芝 Superconducting power lead
JPH01133307A (en) * 1987-11-18 1989-05-25 Fujikura Ltd Low temperature apparatus

Also Published As

Publication number Publication date
JPS57173986A (en) 1982-10-26

Similar Documents

Publication Publication Date Title
US4369636A (en) Methods and apparatus for reducing heat introduced into superconducting systems by electrical leads
JP3278446B2 (en) Cryostat steam cooling power leads
EP0209134A1 (en) Forced flow cooling-type superconducting coil apparatus
US4655045A (en) Cryogenic vessel for a superconducting apparatus
US3522361A (en) Electrical installation for parallel-connected superconductors
KR20060022282A (en) Method and apparatus of cryogenic cooling for high temperature superconductor devices
JPH10335137A (en) Cooling method and conducting method for superconductor
US4394634A (en) Vapor cooled current lead for cryogenic electrical equipment
JPS6161713B2 (en)
JPH01143310A (en) Superconducting magnet device
JP2952552B2 (en) Current leads for superconducting equipment
JPH11112043A (en) Current lead for super conducting device
US8406833B2 (en) Cryostat having a magnet coil system, which comprises an LTS section and a heatable HTS section
JP2515813B2 (en) Current lead for superconducting equipment
JPH0511647B2 (en)
JPS6161715B2 (en)
US3436926A (en) Refrigerating structure for cryostats
JP2581283B2 (en) Current lead for superconducting coil
JPH0416028B2 (en)
JP2929773B2 (en) Current lead of superconducting magnet device
JP3316986B2 (en) Current leads for superconducting devices
JPH0955545A (en) Current lead for superconductive apparatus
JPS622446B2 (en)
JPS59151479A (en) Superconductive magnet device
JP3127705B2 (en) Current lead using oxide superconductor