JP2929773B2 - Current lead of superconducting magnet device - Google Patents

Current lead of superconducting magnet device

Info

Publication number
JP2929773B2
JP2929773B2 JP3157224A JP15722491A JP2929773B2 JP 2929773 B2 JP2929773 B2 JP 2929773B2 JP 3157224 A JP3157224 A JP 3157224A JP 15722491 A JP15722491 A JP 15722491A JP 2929773 B2 JP2929773 B2 JP 2929773B2
Authority
JP
Japan
Prior art keywords
temperature side
side lead
temperature
nitrogen
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3157224A
Other languages
Japanese (ja)
Other versions
JPH057022A (en
Inventor
俊夫 上出
和雄 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3157224A priority Critical patent/JP2929773B2/en
Publication of JPH057022A publication Critical patent/JPH057022A/en
Application granted granted Critical
Publication of JP2929773B2 publication Critical patent/JP2929773B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、真空断熱容器に収納
された超電導コイルに外部電源からの直流励磁電流を供
給する電流リード、ことに低温側リードに酸化物系超電
導導体を用いた電流リードの冷却構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current lead for supplying a DC exciting current from an external power supply to a superconducting coil housed in a vacuum insulated container, and more particularly to a current lead using an oxide superconducting conductor for a low-temperature side lead. Cooling structure.

【0002】[0002]

【従来の技術】超電導磁石装置の超電導コイルは液体ヘ
リウム等の極低温冷媒により冷却されて超電導状態を保
持するので、液体窒素を用いた輻射シールドや多層断熱
層を有する真空断熱容器に液体ヘリウムに浸漬した状態
で収納される。また、電流リードはその低温側への侵入
熱により液体ヘリウムが気化した低温のヘリウムガスに
より冷却され、常温側からの侵入熱および電流リードで
発生するジュール熱が極低温部に侵入するのを阻止する
よう構成される。従来電流リードには導体として銅等の
電気良導体を用いていたが、銅は良導電体であると同時
に良熱伝導体でもあるため極低温部への侵入熱が増し、
高価な液体ヘリウムの気化損失が大きくなる。そこで、
電流リードの低温側に高温超電導体である酸化物系超電
導導体を用い、ジュール熱を零にすると同時に、その低
熱伝導性を利用して極低温部への侵入熱を大幅に低減し
た電流リードが本願出願人等により既に提案されている
(例えば、特願平2−84252号)。また、酸化物系
超電導導体は液体窒素温度以下に冷却することにより超
電導現象を示すので、液体窒素で冷却するよう構成した
電流リードも知られている。
2. Description of the Related Art Since a superconducting coil of a superconducting magnet device is cooled by a cryogenic refrigerant such as liquid helium to maintain a superconducting state, a liquid shield is provided in a vacuum shielded container having a radiation shield using liquid nitrogen or a multilayer heat insulating layer. It is stored in a immersed state. In addition, the current leads are cooled by the low-temperature helium gas, which vaporizes liquid helium due to the heat entering the low-temperature side, preventing the heat entering from the room temperature and the Joule heat generated by the current leads from entering the cryogenic part. It is configured to Conventionally, electric current conductors such as copper have been used as conductors for current leads.However, since copper is a good conductor at the same time as a good conductor, the heat that penetrates into the cryogenic part increases,
The vaporization loss of expensive liquid helium increases. Therefore,
A current lead that uses an oxide-based superconductor, which is a high-temperature superconductor, on the low-temperature side of the current lead to reduce the Joule heat to zero and at the same time significantly reduce the heat that penetrates into the cryogenic part by utilizing its low thermal conductivity. It has already been proposed by the present applicant (for example, Japanese Patent Application No. 2-84252). Further, since an oxide-based superconducting conductor exhibits a superconducting phenomenon when cooled to a temperature of liquid nitrogen or lower, a current lead configured to be cooled by liquid nitrogen is also known.

【0003】図4は超電導磁石装置の従来の超電導形電
流リードを模式化して示す断面図である。図において、
超電導コイル1は真空断熱容器2内に液体ヘリウムHe
に浸漬した状態で収納され、リード線により電流リード
3の低温端子5Aに導電接続される。電流リード3は上
部に常温端子4Aを有する良導電体からなる高温側リー
ド4と、酸化物系超電導導体からなる低温側リード5の
直列接続体として構成され、酸化物系超電導導体の温度
を液体窒素温度(約77K)以下に冷却することによ
り、酸化物系超電導導体は超電導状態となり、電流を通
流した場合のジュ−ル熱が零になる。また、熱絶縁体で
ある酸化物系超電導導体により高温側リードからの侵入
熱が低温側リードにより阻止されるので、低温端子5A
側への侵入熱が少なく、したがって液体ヘリウムの消費
量が少ない超電導装置の電流リードが得られる。また、
電流リード3は高温側リード4と低温側リード5の接続
部を包囲する液体窒素容器6を備え、調節弁7を介して
液体窒素が供給されるとともに、その液面をレベルセン
サ8で検知した液面調節器9が調節弁7の開度を制御す
ることにより、液体窒素容器6内の液体窒素の液面を常
時一定レベルに保持するよう構成され、高温側リード4
の侵入熱により気化した窒素ガスは図示しない排出管を
介して外部に放出される。
FIG. 4 is a sectional view schematically showing a conventional superconducting current lead of a superconducting magnet device. In the figure,
The superconducting coil 1 contains liquid helium He in a vacuum heat insulating container 2.
And is conductively connected to the low-temperature terminal 5A of the current lead 3 by a lead wire. The current lead 3 is configured as a series connection of a high-temperature side lead 4 having a normal temperature terminal 4A on the upper portion and made of a good conductor and a low-temperature side lead 5 made of an oxide superconductor and controlling the temperature of the oxide superconductor by a liquid. By cooling below the nitrogen temperature (about 77K), the oxide-based superconducting conductor enters a superconducting state, and the Joule heat when current flows is reduced to zero. In addition, since the oxide-based superconducting conductor, which is a thermal insulator, blocks heat entering from the high-temperature side lead by the low-temperature side lead, the low-temperature terminal 5A
This results in a current lead of the superconducting device that has less heat penetrating into the side and thus consumes less liquid helium. Also,
The current lead 3 includes a liquid nitrogen container 6 surrounding the connection between the high-temperature side lead 4 and the low-temperature side lead 5. Liquid nitrogen is supplied through a control valve 7, and the liquid level is detected by a level sensor 8. The liquid level controller 9 controls the opening of the control valve 7 so that the liquid level of the liquid nitrogen in the liquid nitrogen container 6 is always maintained at a constant level.
The nitrogen gas vaporized by the heat of intrusion is discharged outside through a discharge pipe (not shown).

【0004】[0004]

【発明が解決しようとする課題】上述のように構成され
た電流リードにおいて、高温側リードと低温側リードの
接続部は液体窒素の気化熱により液体窒素温度近くに冷
却され、低温側リード側への侵入熱が低減されるととも
に、低温側リードが低温のヘリウムガスにより液体窒素
温度以下に冷却されて超電導状態となり、そのジュ−ル
熱が零になるので、液体ヘリウムの気化損失の少ない電
流リードを得ることができる。しかしながら、液面が一
定になるよう液体ヘリウムの供給量を制御しているた
め、通流電流の少ない状態では過冷却状態となり、液体
窒素が無駄に消費されること、液体窒素容器6の設置ス
ペ−スを要するために、これを収納するサ−ビスポ−ト
が大型化すること、また定挌電流通流時に液体窒素が沸
騰しレベルセンサ8による液面の検出および一定レベル
の保持が困難になること、さらには液面の検出精度を上
げるために高価なレベルセンサ8および液面調節器9を
必要とし、経済的不利益を招くことなどの問題点があ
る。
In the current lead constructed as described above, the connection between the high-temperature side lead and the low-temperature side lead is cooled to near the temperature of the liquid nitrogen by the heat of vaporization of the liquid nitrogen, and moves toward the low-temperature side lead. And the low-temperature side lead is cooled to a temperature lower than the liquid nitrogen temperature by the low-temperature helium gas to be in a superconducting state, and its Joule heat is reduced to zero. Can be obtained. However, since the supply amount of the liquid helium is controlled so that the liquid level is constant, the liquid nitrogen is supercooled in a state where the flowing current is small, so that the liquid nitrogen is wasted and wasted. Since the service port is required, the service port for accommodating the battery becomes large, and the liquid nitrogen boils when the rated current flows, making it difficult to detect the liquid level by the level sensor 8 and to maintain a constant level. In addition, there is a problem that an expensive level sensor 8 and a liquid level controller 9 are required in order to improve the detection accuracy of the liquid level, which leads to an economic disadvantage.

【0005】この発明の目的は、電流リードの通流電流
に対応して通流窒素量を精度よく制御でき、液体窒素の
消費に無駄がなく、小型かつ安価な電流リードの冷却構
造を得ることにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a small and inexpensive current lead cooling structure capable of accurately controlling the amount of flowing nitrogen in accordance with the flowing current of a current lead, not wasting liquid nitrogen. It is in.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、この発明によれば、真空断熱容器内に収納され液体
ヘリウムに浸漬された超電導コイルに外部電源からの励
磁電流を通流する電流リードであって、良導電性金属か
らなる高温側リードと、酸化物系超電導導体からなる低
温側リードとの直列接続体からなるものにおいて、前記
高温側リードと低温側リードの接続部近傍から高温側リ
ード内に液体窒素を供給し,前記高温側リードの常温端
子側から気化した窒素ガスを排出する窒素冷却通路と、
前記高温側リードの冷却状態を監視して前記窒素冷却通
路の通流窒素量を制御する制御手段とを備えてなるもの
とする。
According to the present invention, there is provided, in accordance with the present invention, a method of passing an exciting current from an external power supply through a superconducting coil housed in a vacuum insulated container and immersed in liquid helium. A lead comprising a series connection of a high-temperature side lead made of a good conductive metal and a low-temperature side lead made of an oxide-based superconducting conductor. A nitrogen cooling passage for supplying liquid nitrogen into the side lead and discharging vaporized nitrogen gas from the room temperature terminal side of the high temperature side lead;
And a control means for monitoring the cooling state of the high-temperature side lead and controlling the amount of nitrogen flowing through the nitrogen cooling passage.

【0007】また、制御手段が、高温側リードの冷却状
態を高温側リードの温度により監視して窒素冷却通路の
通流窒素量を制御するよう形成されてなるものとする。
Further, the control means is formed so as to monitor the cooling state of the high-temperature side lead based on the temperature of the high-temperature side lead and to control the amount of nitrogen flowing through the nitrogen cooling passage.

【0008】さらに、制御手段が、高温側リードの冷却
状態を高温側リードの電位降下により監視して窒素冷却
通路の通流窒素量を制御するよう形成されたものとす
る。
Further, it is assumed that the control means is configured to monitor the cooling state of the high-temperature side lead based on the potential drop of the high-temperature side lead and control the amount of nitrogen flowing through the nitrogen cooling passage.

【0009】[0009]

【作用】この発明の構成において、高温側リードと低温
側リードの接続部近傍から高温側リード内に液体窒素を
供給し高温側リードの常温端子側から気化した窒素ガス
を排出する窒素冷却通路を設け、制御手段により高温側
リードの冷却状態を監視して窒素冷却通路の通流窒素量
を制御するよう構成したことにより、例えば主に通流電
流によるジュ−ル熱により変化する高温側リードの温度
を、常温端子側で検出することにより高温側リードの冷
却状態を監視でき、検出温度と基準温度との差に対応し
て液体窒素またはその気化ガスの流量を制御できるの
で、高温側リードの温度を一定に保持して低温側リード
への侵入熱を低減できるとともに、液体窒素の沸騰など
に煩わされることなく安定して負荷追従性の良い通流窒
素量制御を行うことができ、これにより液体窒素の無駄
な消費をも排除することができる。また、高温側リード
の内部を液体窒素容器および熱交換器に兼用して電流リ
ードの冷却を行えるので、液体窒素容器やレベルセンサ
が不要になり、装置の構成を簡素化できる。
In the structure of the present invention, a nitrogen cooling passage for supplying liquid nitrogen into the high-temperature side lead from near the connecting portion between the high-temperature side lead and the low-temperature side lead and discharging the vaporized nitrogen gas from the room temperature terminal side of the high-temperature side lead. And the control means monitors the cooling state of the high-temperature side lead and controls the amount of nitrogen flowing through the nitrogen cooling passage. For example, the high-temperature side lead changes mainly due to the Joule heat caused by the flowing current. By detecting the temperature at the normal temperature terminal side, the cooling state of the high-temperature side lead can be monitored, and the flow rate of liquid nitrogen or its vaporized gas can be controlled according to the difference between the detected temperature and the reference temperature. To maintain a constant temperature to reduce the heat entering the low-temperature side lead, and to control the flow-through nitrogen amount stably with good load following ability without being bothered by boiling of liquid nitrogen. It can, thereby also eliminating wasteful consumption of liquid nitrogen. Further, since the current lead can be cooled by using the inside of the high-temperature side lead as a liquid nitrogen container and a heat exchanger, a liquid nitrogen container and a level sensor are not required, and the configuration of the apparatus can be simplified.

【0010】また、高温側リードの冷却状態を、高温側
リードの電位降下により監視して窒素冷却通路の通流窒
素量を制御するよう制御手段を構成すれば、通流電流の
増減による電位降下の変化を検出し、液体窒素またはそ
の気化ガスの流量をジュ−ル熱の変化に対応して制御で
きるので、高温側リードの温度を一定に保持して低温側
リードへの侵入熱を低減できるとともに、液体窒素の沸
騰などに煩わされることなく安定して負荷追従性の良い
通流窒素量制御を行うことができ、これにより液体窒素
の無駄な消費をも排除することができる。また、高温側
リードの内部を液体窒素容器および熱交換器に兼用して
電流リードの冷却を行えるので、液体窒素容器やレベル
センサが不要になり、装置の構成を簡素化できる。
Further, if the control means is configured to monitor the cooling state of the high-temperature side lead by the potential drop of the high-temperature side lead and control the amount of nitrogen flowing through the nitrogen cooling passage, the potential drop due to the increase and decrease of the flowing current can be achieved. , And the flow rate of liquid nitrogen or its vaporized gas can be controlled in accordance with the change in Joule heat, so that the temperature of the high-temperature side lead can be kept constant and the heat entering the low-temperature side lead can be reduced. At the same time, it is possible to stably control the flowing nitrogen amount with good load following ability without being bothered by boiling of the liquid nitrogen, thereby eliminating wasteful consumption of the liquid nitrogen. Further, since the current lead can be cooled by using the inside of the high-temperature side lead as a liquid nitrogen container and a heat exchanger, a liquid nitrogen container and a level sensor are not required, and the configuration of the apparatus can be simplified.

【0011】[0011]

【実施例】以下、この発明を実施例に基づいて説明す
る。図1はこの発明の実施例になる超電導装置の電流リ
ードを模式化して示す構成図であり、従来技術と同じ構
成部分には同一参照符号を付すことにより、重複した説
明を省略する。図において、電流リード3には、高温側
リード4の低温側リード5との接続部近くに絶縁継手1
2Aを介して連結された液体窒素の供給配管12と、高
温側リードの内部で気化した窒素ガスの出口配管13
と、液体窒素の調節弁12Bで構成される窒素冷却通路
11が設けられる。また、制御手段15は高温側リード
4の常温端子4Aの温度を検出する温度センサ16と、
検出温度を基準値と比較してその差に対応して調節弁の
開度を制御する制御回路17とで構成される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments. FIG. 1 is a configuration diagram schematically showing a current lead of a superconducting device according to an embodiment of the present invention. The same components as those in the prior art are denoted by the same reference numerals, and redundant description will be omitted. In the figure, a current lead 3 has an insulative joint 1 near a connection between a high-temperature side lead 4 and a low-temperature side lead 5.
2A, a supply pipe 12 for liquid nitrogen, and an outlet pipe 13 for nitrogen gas vaporized inside the high-temperature side lead.
And a nitrogen cooling passage 11 composed of a liquid nitrogen control valve 12B. Further, the control means 15 includes a temperature sensor 16 for detecting the temperature of the normal temperature terminal 4A of the high temperature side lead 4,
The control circuit 17 is configured to compare the detected temperature with a reference value and control the opening of the control valve in accordance with the difference.

【0012】このように構成された電流リードにおい
て、電流リードの冷却状態は制御手段15で常時監視さ
れ、検出温度と基準値との差に対応して調節弁12Bの
開度が制御されることにより、高温側リード内に供給さ
れた液体窒素と電流リードの熱交換が高温側リード内部
を熱交換室として行われる。また、低温側リード5は高
温側リードの窒素冷却と、液体ヘリウムが気化した低温
のヘリウムガスとにより液体窒素温度以下に冷却されて
超電導状態となり、低温端子5A側への侵入熱が低減さ
れる。なお、基準温度は、低温側リードとの接続部の温
度が液体窒素温度近くに冷却されたときの常温端子温度
をあらがじめ測定することにより決められる。したがっ
て、常温端子の温度が基準温度に低下すれば液体窒素の
供給は遮断され、液体窒素の無駄な消費が回避される。
In the current lead constructed as described above, the cooling state of the current lead is constantly monitored by the control means 15, and the opening of the control valve 12B is controlled in accordance with the difference between the detected temperature and the reference value. Thus, the heat exchange between the liquid nitrogen supplied into the high-temperature side lead and the current lead is performed using the inside of the high-temperature side lead as a heat exchange chamber. Further, the low-temperature side lead 5 is cooled to the liquid nitrogen temperature or lower by the nitrogen cooling of the high-temperature side lead and the low-temperature helium gas in which the liquid helium is vaporized to be in a superconducting state, so that heat entering the low-temperature terminal 5A side is reduced. . The reference temperature is determined by previously measuring the normal terminal temperature when the temperature of the connection with the low-temperature side lead is cooled to near the liquid nitrogen temperature. Therefore, when the temperature of the room temperature terminal falls to the reference temperature, the supply of liquid nitrogen is shut off, and wasteful consumption of liquid nitrogen is avoided.

【0013】一方、超電導ケ−ブル1への供給電流の増
減に伴うジュ−ル熱の変化は、常温端子温度の変化とし
て制御手段15により検出され、調節弁の開度により窒
素冷却通路11への液体窒素の供給量が通流電流の変化
に対応して制御されるので、高温側リード4の冷却状態
は通流電流の変化に追従して変化し、高温側リードの温
度はほぼ一定温度に制御される。その結果、低温側リー
ド5は、その高温側リードとの接続部の温度が通流電流
の増減に関係なく一定温度に保持されることにより、そ
の侵入熱も常に低い値に保持され、酸化物系超電導導体
を用いた効果を活用し、高価な液体ヘリウムの消費量が
少なく、ランニングコストの低い超電導磁石装置を提供
することができる。
On the other hand, a change in Joule heat due to an increase or decrease in the supply current to the superconducting cable 1 is detected by the control means 15 as a change in the room temperature terminal temperature, and is sent to the nitrogen cooling passage 11 by opening the control valve. Is controlled according to the change in the flowing current, the cooling state of the high-temperature side lead 4 changes following the change in the flowing current, and the temperature of the high-temperature side lead is substantially constant. Is controlled. As a result, the low-temperature side lead 5 is maintained at a constant temperature regardless of the increase or decrease of the flowing current, so that the invasion heat of the low-temperature side lead 5 is always kept at a low value regardless of the increase or decrease of the flowing current. A superconducting magnet device with low consumption of expensive liquid helium and low running cost can be provided by utilizing the effect of using the system superconducting conductor.

【0014】また、高温側リードが液体窒素容器と熱交
換器の機能を兼ねるので液体窒素容器が不要になり、装
置を小型かつ簡素に形成できる。さらに、電流リードの
冷却状態を温度セイサで監視したことにより、液体窒素
の沸騰に煩わされることなく液体窒素の供給を通流電流
の変化に対応して安定に制御できるとともに、制御手段
を簡単な温度スイッチを用いて構成できるので、液面調
節器に比べて制御手段を小型且つ安価に形成できる利点
が得られる。
Further, since the high-temperature side lead also functions as a liquid nitrogen container and a heat exchanger, a liquid nitrogen container is not required, and the apparatus can be made compact and simple. Furthermore, by monitoring the cooling state of the current lead with a temperature sensor, the supply of liquid nitrogen can be controlled stably in response to changes in the flowing current without being bothered by the boiling of liquid nitrogen, and the control means can be simplified. Since it can be configured using a temperature switch, there is an advantage that the control means can be formed small and inexpensively as compared with the liquid level controller.

【0015】図2は前述の実施例の変形例を示す構成図
であり、調節弁12Bを窒素冷却通路11の窒素ガスの
出口配管13側に設け、高温側リード内で熱交換を終わ
った窒素ガスの放出量を通流電流に対応して制御するよ
う構成した点が前述の実施例と異なっており、調節弁1
2Bの開度により高温側リード内での液体窒素の気化量
を制御できるので、前述の実施例と同様な作用効果が得
られる。
FIG. 2 is a structural view showing a modification of the above-described embodiment. A control valve 12B is provided on the nitrogen gas outlet pipe 13 side of the nitrogen cooling passage 11 so that the nitrogen exchanged in the high-temperature side lead is completed. This embodiment differs from the above-described embodiment in that the amount of released gas is controlled in accordance with the flowing current.
Since the amount of liquid nitrogen vaporized in the high-temperature side lead can be controlled by the opening degree of 2B, the same operation and effect as in the above-described embodiment can be obtained.

【0016】図3はこの発明の異なる実施例を示す構成
図であり、制御手段21を高温側リード4の電位降下を
検出する電圧検出器22と、この検出電圧を基準電圧値
と比較し,その差に対応して調節弁12Bの開度を制御
する制御回路23とで構成した点が前述の実施例と異な
っている。このように構成した制御手段21において
は、高温側リードを構成する銅などの良導電体の電気抵
抗が、その温度により変化するとともに、通流電流の増
減に対応してその電位降下が変化するので、高温側リー
ドの冷却状態を電位降下に置き換えて検出し、液体窒素
の供給量または窒素ガスの放出量を前述の実施例と同様
に制御することができ、従って前述の実施例におけると
同様の効果が得られる。
FIG. 3 is a block diagram showing another embodiment of the present invention. The control means 21 compares a voltage detector 22 for detecting a potential drop of the high-temperature side lead 4 with a reference voltage value. The difference from the above-described embodiment is that the control circuit 23 controls the opening of the control valve 12B in accordance with the difference. In the control means 21 configured as described above, the electric resistance of the good conductor such as copper constituting the high-temperature side lead changes according to the temperature, and the potential drop changes in accordance with the increase and decrease of the flowing current. Therefore, the cooling state of the high-temperature side lead is detected by replacing it with a potential drop, and the supply amount of liquid nitrogen or the release amount of nitrogen gas can be controlled in the same manner as in the above-described embodiment. The effect of is obtained.

【0017】[0017]

【発明の効果】この発明は前述のように、高温側リード
と低温側リードの接続部近傍から高温側リード内に液体
窒素を供給し高温側リードの常温端子側から気化した窒
素ガスを排出する窒素冷却通路を設け、制御手段により
高温側リードの冷却状態を監視して窒素冷却通路の通流
窒素量を制御するよう構成した。その結果、高温側リー
ドの冷却状態を、例えば通流電流による高温側リードの
温度変化,または高温側リードの電位降下の変化により
監視し、液体窒素またはその気化ガスの流量を通流電流
の大きさに対応して制御できるので、液体窒素容器の液
面を一定レベルに保持する従来技術とは異なり、低温側
リードとの連結部の温度を通流電流の増減に関わりなく
液体窒素温度に近い一定温度に保持し、酸化物系超電導
導体を用いた低温側リードの侵入熱を大幅に低減できる
超電導磁石装置の電流リードを提供することができる。
As described above, according to the present invention, liquid nitrogen is supplied into the high-temperature side lead from the vicinity of the connection between the high-temperature side lead and the low-temperature side lead, and the vaporized nitrogen gas is discharged from the room temperature terminal side of the high-temperature side lead. A nitrogen cooling passage is provided, and the control means monitors the cooling state of the high-temperature side lead to control the amount of nitrogen flowing through the nitrogen cooling passage. As a result, the cooling state of the high-temperature side lead is monitored by, for example, a change in the temperature of the high-temperature side lead due to a flowing current or a change in the potential drop of the high-temperature side lead. Unlike the conventional technology that maintains the liquid level of the liquid nitrogen container at a constant level, the temperature of the connection with the low-temperature lead is close to the liquid nitrogen temperature regardless of the increase or decrease of the flowing current. It is possible to provide a current lead of a superconducting magnet device which can be maintained at a constant temperature and can greatly reduce heat entering a low-temperature side lead using an oxide superconducting conductor.

【0018】また、通電電流が小さい領域で液体窒素が
無駄に消費されるという従来技術の問題点は、通流窒素
量が電流値に対応して制御されることにより回避され、
液体窒素の消費量が少なく運転コストの低い電流リード
を提供できる。さらに、液体窒素の沸騰により液面レベ
ルの検出が困難になるという従来技術の問題点は、高温
側リードの温度または電位降下を監視することにより回
避され、電流リードの冷却状態を精度良く安定に検出し
て通流窒素量を適正に制御できる電流リードを提供する
ことができる。さらにまた、装置の大型化や経済的不利
益は、高温側リードが液体窒素容器および熱交換室を兼
ね、従来技術で問題となった液体窒素容器が不要になる
とともに、高価な液面調節器を安価な温度スイッチ,過
不足電圧スイッチ等の制御手段に置き換えられることに
より回避される。したがって、従来技術の問題点の殆ど
全てが改善され、通流電流に対応して通流窒素量を精度
よく制御でき、液体窒素の消費に無駄がなく、小型かつ
安価で液体窒素の消費量も少ない電流リードを備えた超
電導磁石装置を提供することができる。
Further, the problem of the prior art that liquid nitrogen is wasted in an area where the current is small is avoided by controlling the amount of flowing nitrogen in accordance with the current value.
A current lead with low consumption of liquid nitrogen and low operating cost can be provided. Furthermore, the problem of the prior art that the liquid level is difficult to detect due to the boiling of liquid nitrogen is avoided by monitoring the temperature or potential drop of the high-temperature side lead, and the cooling state of the current lead can be accurately and stably determined. It is possible to provide a current lead that can detect and appropriately control the amount of flowing nitrogen. Furthermore, the large size and economic disadvantage of the apparatus are that the high-temperature side lead also serves as a liquid nitrogen container and a heat exchange chamber, which eliminates the need for a liquid nitrogen container, which has been a problem in the prior art, and an expensive liquid level controller. Can be avoided by replacing the control means with inexpensive temperature switches and over / under voltage switches. Therefore, almost all of the problems of the prior art are improved, the amount of flowing nitrogen can be controlled accurately in accordance with the flowing current, and the consumption of liquid nitrogen is small, inexpensive, and the consumption of liquid nitrogen is small. A superconducting magnet device having a small number of current leads can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例になる超電導装置の電流リー
ドを模式化して示す構成図
FIG. 1 is a configuration diagram schematically showing a current lead of a superconducting device according to an embodiment of the present invention.

【図2】前述の実施例の変形例を模式化して示す構成図FIG. 2 is a configuration diagram schematically illustrating a modification of the above-described embodiment.

【図3】この発明の異なる実施例を模式化して示す構成
FIG. 3 is a block diagram schematically showing a different embodiment of the present invention.

【図4】超電導磁石装置の従来の超電導形電流リードを
模式化して示す断面図
FIG. 4 is a cross-sectional view schematically showing a conventional superconducting current lead of a superconducting magnet device.

【符号の説明】[Explanation of symbols]

1 超電導コイル 2 真空断熱容器 3 電流リード 4 高温側リード 5 低温側リード(酸化物系超電導導体使用) 6 液体窒素容器 7 調節弁 8 レベルセンサ 9 液面調節器 11 窒素冷却通路 12 液体窒素の供給配管 12B 調節弁 13 気化した窒素ガスの出口配管 15 制御手段 16 温度センサ 17 制御回路 21 制御手段 22 電圧検出器 23 制御回路 DESCRIPTION OF SYMBOLS 1 Superconducting coil 2 Vacuum insulated container 3 Current lead 4 High temperature side lead 5 Low temperature side lead (using oxide superconducting conductor) 6 Liquid nitrogen container 7 Control valve 8 Level sensor 9 Liquid level controller 11 Nitrogen cooling passage 12 Supply of liquid nitrogen Piping 12B Control valve 13 Outlet piping for vaporized nitrogen gas 15 Control means 16 Temperature sensor 17 Control circuit 21 Control means 22 Voltage detector 23 Control circuit

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01L 39/04 ZAA H01F 6/00 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 6 , DB name) H01L 39/04 ZAA H01F 6/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】真空断熱容器内に収納され液体ヘリウムに
浸漬された超電導コイルに外部電源からの励磁電流を通
流する電流リードであって、良導電性金属からなる高温
側リードと、酸化物系超電導導体からなる低温側リード
との直列接続体からなるものにおいて、前記高温側リー
ドと低温側リードの接続部近傍から高温側リード内に液
体窒素を供給し,前記高温側リードの常温端子側から気
化した窒素ガスを排出する窒素冷却通路と、前記高温側
リードの冷却状態を監視して前記窒素冷却通路の通流窒
素量を制御する制御手段とを備えてなることを特徴とす
る超電導磁石装置の電流リード。
1. A current lead for passing an exciting current from an external power supply to a superconducting coil housed in a vacuum insulated container and immersed in liquid helium, wherein the high-temperature side lead is made of a highly conductive metal; Liquid nitrogen is supplied into the high-temperature side lead from the vicinity of the connection portion between the high-temperature side lead and the low-temperature side lead, and the low-temperature side lead is connected to the normal-temperature terminal side of the high-temperature side lead. A superconducting magnet, comprising: a nitrogen cooling passage for discharging nitrogen gas vaporized from the fuel cell; and control means for monitoring a cooling state of the high-temperature side lead and controlling an amount of nitrogen flowing through the nitrogen cooling passage. Equipment current leads.
【請求項2】制御手段が、高温側リードの冷却状態を高
温側リードの温度により監視して窒素冷却通路の通流窒
素量を制御するよう形成されてなることを特徴とする請
求項1記載の超電導磁石装置の電流リード。
2. The control device according to claim 1, wherein the control means monitors the cooling state of the high-temperature side lead based on the temperature of the high-temperature side lead to control the amount of nitrogen flowing through the nitrogen cooling passage. Current lead of superconducting magnet device.
【請求項3】制御手段が、高温側リードの冷却状態を高
温側リードの電位降下により監視して窒素冷却通路の通
流窒素量を制御するよう形成されてなることを特徴とす
る請求項1記載の超電導磁石装置の電流リード。
3. The control device according to claim 1, wherein the control means monitors a cooling state of the high-temperature side lead based on a potential drop of the high-temperature side lead to control the amount of nitrogen flowing through the nitrogen cooling passage. The current lead of the superconducting magnet device as described.
JP3157224A 1991-06-28 1991-06-28 Current lead of superconducting magnet device Expired - Lifetime JP2929773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3157224A JP2929773B2 (en) 1991-06-28 1991-06-28 Current lead of superconducting magnet device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3157224A JP2929773B2 (en) 1991-06-28 1991-06-28 Current lead of superconducting magnet device

Publications (2)

Publication Number Publication Date
JPH057022A JPH057022A (en) 1993-01-14
JP2929773B2 true JP2929773B2 (en) 1999-08-03

Family

ID=15644939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3157224A Expired - Lifetime JP2929773B2 (en) 1991-06-28 1991-06-28 Current lead of superconducting magnet device

Country Status (1)

Country Link
JP (1) JP2929773B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012050205A1 (en) * 2010-10-14 2012-04-19 学校法人中部大学 Current lead device
JP6104007B2 (en) * 2013-03-22 2017-03-29 株式会社神戸製鋼所 Current supply device

Also Published As

Publication number Publication date
JPH057022A (en) 1993-01-14

Similar Documents

Publication Publication Date Title
EP0596249B1 (en) Compact superconducting magnet system free from liquid helium
US8989828B2 (en) Superconducting magnet apparatus
JP3032610B2 (en) Superconducting device current leads
JP2929773B2 (en) Current lead of superconducting magnet device
US4486800A (en) Thermal method for making a fast transition of a superconducting winding from the superconducting into the normal-conducting state, and apparatus for carrying out the method
JPH10285792A (en) Current limiter
JP3450318B2 (en) Thermoelectric cooling type power lead
JPH11112043A (en) Current lead for super conducting device
JP3125474B2 (en) Current lead using oxide superconductor
KR101720752B1 (en) Recovery system for superconducting fault current limiter
KR19990037314A (en) Operation control method of superconducting coil
JP3120482B2 (en) Current lead of superconducting magnet device
JPH11297524A (en) Current lead for superconducting device
JPH08107010A (en) Current lead for superconductive device
JP3284656B2 (en) Current lead using oxide superconductor
JP2883697B2 (en) Current lead for superconducting coil
JP3339118B2 (en) Superconducting device current leads
JPH1012058A (en) Superconductive electrical energy transmission cable
JPH06231951A (en) Current lead of superconducting magnet
Xie et al. Development of 4kA Current Leads Using Stacked REBCO Tapes for BESIII Detector Magnet
JP3127705B2 (en) Current lead using oxide superconductor
JPH10326915A (en) Connection structure of superconductive wire
JPH04332105A (en) Superconducting magnet device
JPS63133507A (en) Overheating monitoring device for current lead
JPH0774018A (en) Current lead of superconducting apparatus