JPS6043410A - Method for operating blast furnace by powder blowing - Google Patents

Method for operating blast furnace by powder blowing

Info

Publication number
JPS6043410A
JPS6043410A JP14797883A JP14797883A JPS6043410A JP S6043410 A JPS6043410 A JP S6043410A JP 14797883 A JP14797883 A JP 14797883A JP 14797883 A JP14797883 A JP 14797883A JP S6043410 A JPS6043410 A JP S6043410A
Authority
JP
Japan
Prior art keywords
furnace
deviation
deadman
hearth
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14797883A
Other languages
Japanese (ja)
Inventor
Toshinori Minagawa
皆川 俊則
Yasuhiko Sakaguchi
泰彦 阪口
Haruo Kato
治雄 加藤
Nobuhiro Takashima
暢宏 高島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP14797883A priority Critical patent/JPS6043410A/en
Publication of JPS6043410A publication Critical patent/JPS6043410A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/02Making special pig-iron, e.g. by applying additives, e.g. oxides of other metals
    • C21B5/023Injection of the additives into the melting part

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To correct the deviation of the deadman formed in the inside bottom of a blast furnace and to maintain a stable blast condition by blowing required exothermic powder together with blast gas into the furnace through the tuyere thereof according to the deviation of the deadman. CONSTITUTION:A deadman 6 having an approximately circular conical shape is formed in the central part of the hearth in a blast furnace 1 under operation by forming a charge build-up zone 2, a fusion zone 3, a melt dripping zone 4, a hearth well 5, etc. If the nonuniform flow of the molten iron and slag through tap holes 7, 8 and the unstability of the above-mentioned build-up zone are resulted from the deviation in the position and shape of the above-mentioned deadman 6 generated by the effect of the deposit, etc. in the furnace during operation of the furnace 1, such deviation is detected with a thermometer embedded in the outside circumferential furnace wall in the hearth part. Required exothermic powder is blown together with blast gas into the furnace through the tuyere according to such deviation to adjust the temp. in the hearth part, by which the deviation of the deadman 6 is corrected. Metallic powders such as pulverized coal, coke powder, ferrosilicon, Al, Mg, Ca, etc. are properly used as the above- mentioned exothermic powder.

Description

【発明の詳細な説明】 技術分野 本発明は粉体吹込み高炉操業方法に関し、特に炉内炉床
部に滞留するデツトマンを調節(位置。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a method of operating a powder injection blast furnace, and in particular to adjusting (positioning) the dead man staying in the hearth of the furnace.

形状)することで安定した炉況の維持を図る方法につい
ての提案である。
This is a proposal for a method to maintain stable furnace conditions by changing the shape of the furnace.

従来技術 1円は、鉱石とコークスからなる層状の装入物堆積帯2
、融着帯3、溶融滴下帯4および炉床湯溜9部5と区別
されていることが知られている。そして、該炉床湯溜り
部(以下単に炉床部という)5の略炉芯部には略円錐形
のデツトマン6と呼ばれているコー′クスおよび銑鉄の
凝固塊が不定状態で存在していると考えられている。と
ころが、このデツトマン6は、炉内付着物lO等の影響
によシその滞留せる位置、形状が変わり、時には第2図
に示すように炉芯から太きく偏倚した11しかも長期間
その状態が続くことがある。
Conventional technology 1 yen is a layered charge accumulation zone consisting of ore and coke 2
, a cohesive zone 3, a melt dripping zone 4, and a hearth sump 9 section 5. A solidified mass of coke and pig iron, called a substantially conical det man 6, exists in an indefinite state in the approximate hearth portion of the hearth sump portion (hereinafter simply referred to as the hearth portion) 5. It is believed that there are. However, the position and shape of this dead man 6 change due to the influence of deposits lO in the furnace, etc., and sometimes it deviates sharply from the furnace core 11 as shown in Figure 2, and this state continues for a long time. Sometimes.

このようなデツトマン6の位置の偏りは、第3図に示す
ように、溶銑、溶滓の流れの不均一を招くようになる。
Such deviation in the position of the dead man 6 causes non-uniformity in the flow of hot metal and molten slag, as shown in FIG.

即ち、X側出銑ロアではデッドマン6があるために、単
位時間当りの溶銑、浮流が小さくなり、従って出銑時間
も短くなり、x、y両出銑ロア、8からの出銑、滓が著
しくバランスを欠く。その結果、羽口レベル上での炉況
と9わけ装入物降下状況が不安?となり円滑な高炉操業
が害される。
In other words, since there is a dead man 6 on the X-side tapping lower, the amount of hot metal and floating flow per unit time is reduced, and therefore the tapping time is also shortened, and the tapping and slag from both the x and y tapping lowers and 8 are reduced. Significantly unbalanced. As a result, are you worried about the furnace condition above the tuyere level and the nine-part charge descending situation? This impairs the smooth operation of the blast furnace.

従来は、上述したデツトマンの偏りによる高炉操業阻害
を回避するために、炉頂から多量のコークスを装入し、
炉熱を上昇させることにより炉−付着物10が炉周で均
一になるような操業を行っていた。しかしこの方法では
、上記f1N物lOの均一除去までには少なくとも2週
間位は必要であり、燃料原単位も大幅に上昇するなど効
果的でないという欠点があった。
Conventionally, in order to avoid inhibiting blast furnace operation due to the above-mentioned unbalanced detonation, a large amount of coke was charged from the top of the furnace.
The furnace was operated so that the deposits 10 on the furnace were made uniform around the furnace by increasing the furnace heat. However, this method has disadvantages in that it takes at least two weeks to uniformly remove the f1N and IO, and that it is not effective, as the fuel consumption rate also increases significantly.

発明の目的 不発明は、高炉の炉況を悪化きせる因子の1つと考えら
れている炉内デツトマンの偏りを修正する従来技術の上
述した欠点を、羽口から主として発熱性の粉体を吹込む
技術を使うことにより克服することを目的とする。この
発明は、他に上記発熱性の粉体にT1含有鉄粉を混合し
て炉壁保膜を図ることを目的とする。
Purpose of the Invention The object of the invention is to correct the above-mentioned drawbacks of the prior art, which is considered to be one of the factors that worsen the furnace condition of a blast furnace. The aim is to overcome this by using technology. Another object of the present invention is to mix T1-containing iron powder with the exothermic powder to maintain film retention on the furnace wall.

発明の構成 本発明は、高炉内炉床部に観察されるデツドマ該デツト
マンが適正な状態になるように基筒する炉操秦を行うこ
とを特徴とする・ デツトマン6は、通常炉内の炉芯近傍内に位置している
のが好ましい態様であり、安定した炉況を維持するのに
好都合である。炉熱が炉周方向で安定していれば該デツ
トマン6は適正位置にrj+>留する0ところが、炉熱
状況が炉周方向で偏ジを生ずると・デツトマン6の位置
は炉熱の低い側に次第に変−位していく。
Structure of the Invention The present invention is characterized in that the basic furnace operation is performed so that the dead man observed in the hearth of the blast furnace is in an appropriate state. It is a preferable embodiment to locate it within the vicinity of the core, which is convenient for maintaining a stable furnace condition. If the furnace heat is stable in the direction of the furnace circumference, the det man 6 will stay at the appropriate position rj+>0, but if the furnace heat situation becomes uneven in the direction of the furnace circumference, the position of the det man 6 will be on the side with lower furnace heat. It gradually displaces.

そこで、炉熱の低い側に集中的に熱の供給が行われれば
上記デツトマン6の偏りを修正することが可能となる。
Therefore, if heat is supplied intensively to the side where the furnace heat is low, it becomes possible to correct the deviation of the dead man 6.

上記の炉熱不足となっている側への熱供給の万その吹込
みによって次のように反応し発熱するO例えば、微粉炭
吹込みの例だと、送風ガスと共に羽口から吹込むとレー
スウェイ部分で、O(石炭)+3AOtb(ガス)=C
O↑+2200 KcaL4y−0のように反応し発熱
して炉熱を上げる。
When the heat is injected into the side where the furnace heat is insufficient, the following reaction occurs and heat is generated. In the way part, O (coal) + 3AOtb (gas) = C
O↑+2200 Reacts like KcaL4y-0 and generates heat, increasing the furnace heat.

マタ、フェロシリコンの例だと、 Fe−Si十%0.(ガス) −(Fe)+(SiOg
)+8490 KOalt4.、。
For example, in the case of ferrosilicon, Fe-Si is 10% 0. (Gas) −(Fe)+(SiOg
)+8490 KOalt4. ,.

の発熱反応により、吹込み羽口周辺の炉熱を上げ、その
部分に面した上記デツトマンを溶解し、結果的にデツト
マン6の位置修正と同一の効果を発揮・にその位置が偏
ると、X側出銑口部分への溶湯の流速が速くなり炉壁を
傷める。その補修のために、上記発熱性粉体に加えT1
粉末(砂鉄他)を合わせて吹込み、炉内で’FiO+T
iN等のチタンベアを形成させて損耗壁を補修するので
ある。
Due to the exothermic reaction of The flow rate of molten metal to the side tap hole increases and damages the furnace wall. In order to repair this, in addition to the above exothermic powder, T1
Powder (iron sand, etc.) is combined and blown into 'FiO+T' in the furnace.
The worn walls are repaired by forming titanium bears such as iN.

一方、デツトマン6が遠く離れたY側出銑口8には、酸
化鉄系粉体を吹込む。
On the other hand, iron oxide-based powder is blown into the Y-side tap hole 8, which is far away from the drain man 6.

次に、デツトマンの位置の偏りを修正する具体例につい
て説明する。第5図の(イ)、(ロ)は、炉芯デツトマ
ンの中心からの偏りの程度を知るために炉壁に埋設した
温度計9配置のもようを示すもので、炉床部の炉周方向
の温度差が40”C以上になったときをデツトマンの偏
りが生じたものとして、以下に述べるような粉体吹込み
調整を行う。なお、デツトマンの偏りはX−Y出銑口か
らの出銑状況の差(例えば、出銑時間、出滓量など)に
よっても知り得る。
Next, a specific example of correcting the bias in the position of the dead man will be described. Figure 5 (a) and (b) show the arrangement of thermometers 9 buried in the furnace wall to determine the degree of deviation from the center of the hearth det man. When the temperature difference in the direction is 40"C or more, it is assumed that the det man is biased, and the powder injection adjustment as described below is carried out. Furthermore, the det man bias is caused by the deviation from the X-Y taphole. It can also be determined by differences in the tapping conditions (for example, tapping time, amount of slag tapped, etc.).

さて、第6図は上記温度計の指示値にもとづく伝熱計算
によりめた計算デツトマン位置である(但し、デツトマ
ン凝固温度は1150℃と仮定した)。このような推定
のもとに、デツトマンが近傍にあると推定される42羽
口〜A8羽口から、微粉炭とre−si、 (si%≧
90%ンの混合粉をb o kg/l−p相当吹込み、
これに対しその残るA9羽1」〜I(x80羽口および
A1羽口からは5 o kg//1J−pの酸化鉄系粉
体を吹込んだ。上記混合割合は、X側出銑ロア付近の炉
壁損傷程度をも考慮するときは、T1粉末を混ぜるが、
基本的には粉体の発熱量、滓化性を考慮して、微粉炭5
5重量部、Fe−5i、ao重量部+Ti粉15重量部
のものとした。
Now, FIG. 6 shows the calculated Dettman position determined by heat transfer calculation based on the indicated value of the thermometer (provided that the Dettmann solidification temperature is assumed to be 1150° C.). Based on this estimation, pulverized coal and re-si, (si%≧
Blow in 90% mixed powder equivalent to bo kg/l-p,
In contrast, 5 kg//1 J-p of iron oxide powder was injected from the remaining A9 tuyere 1 to I (x80 tuyere and A1 tuyere.The above mixing ratio was When considering the degree of damage to the nearby furnace wall, mix T1 powder,
Basically, considering the calorific value and slag-forming property of the powder, pulverized coal
5 parts by weight, Fe-5i, ao parts by weight + 15 parts by weight of Ti powder.

第7図は、該混合粉をA2〜A8羽口から吹込んだ前後
の時期における炉周方向の温度差を示したものであるが
、吹込みを開始してから約半日で効果が現われ、4日後
には該温度差は10℃になり、デツトマン位置の修正が
行なわれたことが推定できた。
Figure 7 shows the temperature difference in the circumferential direction of the furnace before and after the mixed powder was injected from the A2 to A8 tuyeres. After 4 days, the temperature difference was 10°C, indicating that the dead man position had been corrected.

実施例 内容積2500m8、送風羽目30本の高炉で、第6図
の状態になった時に、前記した混合粉(微粉炭55 、
 Fe−5i 8o 、 Ti粉15 ) k 5. 
o Icg/l−pを扁2〜8羽口から、また酸化鉄系
粉体を他の羽口から吹込んだときの高炉操業例を表−1
に示ち観光に示すところから明らかなよう−に、溶銑温
度および出銑量の出銑口による差はなくなり、スリップ
および送風圧の変動が減少した。
In a blast furnace with an internal volume of 2,500 m8 and 30 blowers, when the condition shown in Fig. 6 was reached, the above-mentioned mixed powder (pulverized coal 55,
Fe-5i 8o, Ti powder 15)k 5.
Table 1 shows examples of blast furnace operation when o Icg/l-p is injected from 2 to 8 tuyeres and iron oxide powder is injected from other tuyeres.
As is clear from the results shown in Figure 2, the differences in hot metal temperature and tap volume between tapholes disappeared, and fluctuations in slip and blast pressure decreased.

発明の効果 以上説明したように本発明によれば、炉内のデツトマン
の位置の偏りが速やかに修正できるから、装入物の炉周
方向における不拘−降下等に代表される操業阻害要因を
短期間に解消して円滑な高炉操業を達成する。しかも、
かような円滑操業維持に対して低燃料比操業で対処でき
る効果がある。
Effects of the Invention As explained above, according to the present invention, the deviation in the position of the dead man in the furnace can be quickly corrected, so that the operational impediments, such as the unrestrained dropping of the charge in the circumferential direction of the furnace, can be fixed in a short period of time. This can be resolved in time to achieve smooth blast furnace operation. Moreover,
Low fuel ratio operation has the effect of maintaining such smooth operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、高炉内のもようを示す概念図、第2図は、炉
壁付着物の影響を考慮してデツトマン位@を推定したそ
の説明図、 第、8図および第4図は、デツトマンの11II!りの
状態を示す高炉炉床部の平面、ならびに側面から見た断
面図、 M5図(イ)、(ロ)は、炉熱状況を測足するための温
度計配置のもようを示す路線図、 第6図は、低炉熱域とデッドマントの位置関係と示す説
明図、 第7図は、粉体吹込み前後での炉周方向温度差の推移を
示すグラフである。 1・・・高炉 2・・・装入物堆積帯 8・・・融着帯 4・・・溶融滴下帯 5・・・炉床湯溜9部 6・・デツトマン7.8・・・
出銑口 9・・・温度計 10・・・付着物。 特許出願人 川崎製鉄株式会社 第4図
Figure 1 is a conceptual diagram showing the conditions inside the blast furnace, Figure 2 is an explanatory diagram of the estimation of the dead man level taking into consideration the influence of deposits on the furnace wall, Figures 8 and 4 are: Detsutoman's 11II! Figures M5 (a) and (b) are route maps showing the arrangement of thermometers to measure the furnace heat status. , FIG. 6 is an explanatory diagram showing the positional relationship between the low furnace heat area and the dead mantle, and FIG. 7 is a graph showing the change in temperature difference in the furnace circumferential direction before and after powder injection. 1... Blast furnace 2... Charge deposition zone 8... Cohesive zone 4... Melt dripping zone 5... Hearth sump 9 parts 6... Dettman 7.8...
Taphole 9... Thermometer 10... Adherence. Patent applicant: Kawasaki Steel Corporation Figure 4

Claims (1)

【特許請求の範囲】 L 炉況に応じ炉内に羽目から送風ガスと共に各種の粉
体を吹込んで炉況調節を行う高炉の操業において、高炉
内炉床部に観察されるデツトマンを、その偏シに応じて
上記羽口から所要の発熱性誌を吹込むことによシ、適正
なものとなるように調節することを特徴とする粉体吹込
み高炉操業法。 区 上記発熱性粉体として、微粉炭、コークス粉、フェ
ロシリコンの粉、金属アルミニウム。 金屑マグネシウム、金属カルシウム等を用いることを特
徴とする特許請求の範囲1記載の方法。
[Scope of Claims] L: In the operation of a blast furnace, in which various powders are injected into the furnace along with blowing gas from the siding to adjust the furnace condition, the detonation observed in the hearth of the blast furnace is A powder injection blast furnace operating method characterized in that the powder injection blast furnace is adjusted so as to be appropriate by injecting a required exothermic fluid from the tuyeres according to the conditions. The above exothermic powders include pulverized coal, coke powder, ferrosilicon powder, and metal aluminum. 2. The method according to claim 1, characterized in that magnesium scrap, calcium metal, etc. are used.
JP14797883A 1983-08-15 1983-08-15 Method for operating blast furnace by powder blowing Pending JPS6043410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14797883A JPS6043410A (en) 1983-08-15 1983-08-15 Method for operating blast furnace by powder blowing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14797883A JPS6043410A (en) 1983-08-15 1983-08-15 Method for operating blast furnace by powder blowing

Publications (1)

Publication Number Publication Date
JPS6043410A true JPS6043410A (en) 1985-03-08

Family

ID=15442396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14797883A Pending JPS6043410A (en) 1983-08-15 1983-08-15 Method for operating blast furnace by powder blowing

Country Status (1)

Country Link
JP (1) JPS6043410A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6465211A (en) * 1987-09-03 1989-03-10 Kobe Steel Ltd Method for estimating deviation in packing state of furnace core solid reducing agent
JPH0841623A (en) * 1994-07-26 1996-02-13 Rihito Seiko Kk Composite diffusion nitriding method, device therefor and production of nitride

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57181305A (en) * 1981-05-02 1982-11-08 Nippon Steel Corp Controlling method for heat of hearth of blast furnace

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57181305A (en) * 1981-05-02 1982-11-08 Nippon Steel Corp Controlling method for heat of hearth of blast furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6465211A (en) * 1987-09-03 1989-03-10 Kobe Steel Ltd Method for estimating deviation in packing state of furnace core solid reducing agent
JPH0841623A (en) * 1994-07-26 1996-02-13 Rihito Seiko Kk Composite diffusion nitriding method, device therefor and production of nitride

Similar Documents

Publication Publication Date Title
US20210214812A1 (en) Method and apparatus for the production of cast iron, cast iron produced according to said method
CN108359766B (en) A kind of oxygen bottom blowing converter smelting process control method based on continuous measurement of molten steel temperature
US4329171A (en) Steel making method
JPS6043410A (en) Method for operating blast furnace by powder blowing
CN111876549A (en) Converter high-iron ratio smelting process
JP2933808B2 (en) Raw material charging method for moving bed type scrap melting furnace
JP4353817B2 (en) Converter operation method
JP3298942B2 (en) Operation method of two-stage tuyere type smelting reduction furnace
JP4497942B2 (en) Converter operation method
JP2612162B2 (en) Blast furnace operation method
JP2897362B2 (en) Hot metal production method
JPH01263211A (en) Smelting reduction method
JPH07278634A (en) Operation of scrap melting furnace
JP2836192B2 (en) Method for producing low sulfur hot metal
JP2584891B2 (en) Operating method of bottom blown converter
JPH08269525A (en) Method for controlling height of lance in converter
JP2921392B2 (en) Blast furnace operation method
JPH075940B2 (en) Blast furnace raw material charging method
JPH01252710A (en) Method for operating iron bath type smelting reduction furnace
JP2541200B2 (en) Converter for preventing melting of furnace wall due to high temperature gas
JP2897363B2 (en) Hot metal production method
JP2533815B2 (en) Operating method of bottom blown converter
JP3536509B2 (en) Blast furnace operation method for producing low Si pig
TW202231878A (en) Top blowing lance for converter, method for adding auxiliary raw material, and method for refining of molten iron
JPH02236213A (en) Method for melting iron scrap