JPS604252A - Semiconductor integrated circuit memory device - Google Patents

Semiconductor integrated circuit memory device

Info

Publication number
JPS604252A
JPS604252A JP58112038A JP11203883A JPS604252A JP S604252 A JPS604252 A JP S604252A JP 58112038 A JP58112038 A JP 58112038A JP 11203883 A JP11203883 A JP 11203883A JP S604252 A JPS604252 A JP S604252A
Authority
JP
Japan
Prior art keywords
wiring
word line
film
metal
contact hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58112038A
Other languages
Japanese (ja)
Inventor
Katsuzo Tsuchida
土田 勝三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58112038A priority Critical patent/JPS604252A/en
Publication of JPS604252A publication Critical patent/JPS604252A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

PURPOSE:To offer the title device of high performance and high capacitance, being sped up and has high reliability, by reducing the wiring resistance of a word line formed of a polycrystalline Si film. CONSTITUTION:The polycrystalline Si film 4 as the word line of an MOS-FET is connected to the first metallic mutual wiring 10 via contact hole C3. It is sufficient that the mutual wiring 10 has a small film thickness of approx. 0.5mum for the use only of reducing the wiring resistance of the word line. The second interlayer insulation film 8 can be made thinner than by the conventional method because of the small film thickness of the mutual wiring 10, and therefore has no possibility of disconnection at the opening of the stepwise part even when the second metallic mutual wiring 11 crosses the first one 10. The second wiring 11 is connected to a polycrystalline Si wiring 3 via contact hole C4 opened through the first interlayer insulation film 5 and the second one 8. Since the word line 4 is backed with the first wiring 10, the propagation speed of the word line is high, and the connection thereof can be performed at any points in arbitrary places according to the length of the line.

Description

【発明の詳細な説明】 本発明は、半導体集積回路装置に係り、特にMO8iO
8電界効果トランジスタされた半導体集積回路記憶装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor integrated circuit device, and particularly to a MO8iO
The present invention relates to a semiconductor integrated circuit memory device using eight field effect transistors.

MO8電界効果トランジスタを用いた半導体集積回路記
憶装置けに於いて、近年大容鷺化が目覚ましく、装置の
性能向上が著しい。特に記憶装置の動作速度の高速化は
、著しいものがある。しかしながら、高速化を促進する
際に、新たな問題が生じてきた。すなわち、装置の大容
量化に伴って、メモリーセル内のアドレスを選択するた
めの信号線(ワードH)の幅が微細化され、またデコー
ダからのメモリーセルの遠端までの距耶が長くなって、
ワード線での信号の伝播速度の遅れが大きくなってきた
。このため、ワード線での遅延時間の装置の動作速度に
占める割合が大きくなり、装置の高速化の大きな妨げに
なってきた。
In recent years, semiconductor integrated circuit memory devices using MO8 field effect transistors have become larger in size, and the performance of the devices has improved significantly. In particular, the speed of operation of storage devices has increased significantly. However, new problems have arisen in promoting speed increases. In other words, as the capacity of devices increases, the width of the signal line (word H) for selecting an address within a memory cell becomes smaller, and the distance from the decoder to the far end of the memory cell becomes longer. hand,
The delay in signal propagation speed on word lines has become large. For this reason, the delay time in the word line accounts for a large proportion of the operating speed of the device, which has become a major hindrance to increasing the speed of the device.

第1図に示すフリップフロップ形メモリーセルを例に、
説明すると、トランジスタT1及びT2のゲート1極に
つながるワード線Wには、多結晶シリコンを配線として
使用し、ワード線と交叉するディジンl−線(D、D)
には、アルミニウム配線?使用していた。しかしながら
1通常、多結晶シリコンは層抵抗が約20Ω/[j(膜
厚的0.5μm)とアルミニウム(層抵抗約0.03Ω
/[l、膜厚1.2μm)に比べて2桁も大きいため、
64にや256にビットメモリーのように大容量化され
ると、多結晶シリコンを用いたワード線での信号の伝播
遅延が大きく、装置の動作速度が遅くなり装置の高速化
が内棒である。
Taking the flip-flop memory cell shown in Figure 1 as an example,
To explain, polycrystalline silicon is used as the wiring for the word line W connected to one gate pole of the transistors T1 and T2, and digin l-lines (D, D) intersect with the word line.
Is there aluminum wiring? I was using it. However, 1 Normally, polycrystalline silicon has a layer resistance of about 20 Ω/[j (film thickness: 0.5 μm) and aluminum (layer resistance of about 0.03 Ω
/ [l, film thickness 1.2 μm), which is two orders of magnitude larger than
When the capacity is increased like 64 or 256 bit memory, the signal propagation delay in the word line using polycrystalline silicon is large, and the operating speed of the device becomes slow, making it difficult to increase the speed of the device. .

このワード線での遅延時間を小さくする方法の1つとし
て、従来、第2図に示すような、二j−金属相互配線4
1η造が採用されている。すなわぢ、相互配、1.i用
のml−の金属相互配線6(g厚1.0〜12μm)を
形成する時、ワード線としての多結晶シリコン4に接続
された第一の金属相互配線7も同時に形成する。次に、
第二の層間絶縁膜8として、気相成長酸化膜(CVD8
i02)(膜厚1.0μ)を成長した後、前記多結晶シ
リコン膜4に接続された第一の金属相互配線7と第二の
金属相互配線9とを接続するためのスルーホール2)を
開孔し、第二の金属相互配線9()膜厚1.0〜1、2
μm)を形成する。このようにして、ワード線としての
多結晶シリコン膜4を必要に応じて(iiJ箇所か、第
二の金属相互配線9と接続させて.ワード線での信号の
伝播遅延を小さく抑えることができる。
As one method of reducing the delay time in the word line, conventionally, a two-metal interconnection 4 as shown in FIG.
1η construction is adopted. In other words, mutual arrangement, 1. When forming the ml- metal interconnection 6 (g thickness 1.0 to 12 μm) for i, the first metal interconnection 7 connected to the polycrystalline silicon 4 as a word line is also formed at the same time. next,
As the second interlayer insulating film 8, a vapor grown oxide film (CVD8
i02) (film thickness 1.0μ), a through hole 2) for connecting the first metal interconnect 7 and the second metal interconnect 9 connected to the polycrystalline silicon film 4 is formed. Open the second metal interconnection 9 () film thickness 1.0-1,2
μm). In this way, the polycrystalline silicon film 4 serving as the word line is connected to the second metal interconnection 9 at (iiJ locations) as necessary, and the signal propagation delay in the word line can be suppressed to a small level. .

しかしながら、従来のこの構造では、相互1綜としての
第一の金属相互配線は.1.0〜1.2μ程度の厚い膜
厚が必要なため,層間絶縁)罠としてのCVD Sin
2膜7の,第一の金属相互配線6.7の段部げ)におけ
るステップカバレ・ソジが悪く,前記段部げ)で第二の
金属相互配線9が断線もしくは断線寸前の状態になり,
歩留り低下,信頼性低下の原因になっていた。
However, in this conventional structure, the first metal interconnect as a mutual helix. Since a thick film thickness of about 1.0 to 1.2μ is required, CVD Sin can be used as an interlayer insulation trap.
The step coverage and alignment of the first metal interconnection 6 and 7 of the two films 7 is poor, and the second metal interconnection 9 is disconnected or on the verge of disconnection at the step. ,
This caused a decrease in yield and reliability.

本発明は,上記欠点を解消し、信頼性の高い高速化され
た、高性能大容量半導体集積回路記憶装置を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks and provide a highly reliable, high-speed, high-performance, large-capacity semiconductor integrated circuit storage device.

本発明の特徴は、所定の回路素子を搭載した半導体基板
の一生面上に形成された二層金属相互配録を有する半導
体集積回路記憶装置においてメモリーセル内のアドレス
を選択するための信号線としての多結晶シリコン膜が.
第一の層間絶縁膜を通して開孔された第一のコンタクト
孔を介して。
A feature of the present invention is that it is used as a signal line for selecting an address in a memory cell in a semiconductor integrated circuit storage device having a two-layer metal interconnection formed on the entire surface of a semiconductor substrate on which a predetermined circuit element is mounted. The polycrystalline silicon film of .
Through a first contact hole opened through a first interlayer insulating film.

第一の金属相互配線と,少なくとも2箇所以上で直接接
続されており、主相互配線としての第二の金属相互配線
が.該第−の1M間絶縁膜かつ,該第−の金属相互配線
を絶縁するための第二の層間絶縁膜を通して一1孔され
た第二のコンタクト孔を介して,内部素子に接続されて
おり,該第−の金属相互配−の膜厚が、該第二の金属相
互配線よりも薄くなっている半導体集積回路記憶装置に
ある。
The second metal interconnect is directly connected to the first metal interconnect at at least two places, and serves as the main interconnect. The contact hole is connected to the internal element through a second contact hole formed through the second interlayer insulating film and the second interlayer insulating film for insulating the second metal interconnection. , in the semiconductor integrated circuit memory device, the film thickness of the first metal interconnection is thinner than that of the second metal interconnection.

本発明による半導体集積回路装置の一実施例を図面を用
いて説明する。第3図において、ワード線としての多結
晶シリコン膜4は,コンタクト孔(C3)を介して第一
の金属相互配線10(膜厚0、5μm)と接続されてい
る。弗−の金属相互配線10は,ワード線の配線抵抗を
下げる目的のみに使用するため,0.5μm程度(場合
によっては。
An embodiment of a semiconductor integrated circuit device according to the present invention will be described with reference to the drawings. In FIG. 3, a polycrystalline silicon film 4 serving as a word line is connected to a first metal interconnection 10 (film thickness 0.5 μm) via a contact hole (C3). The second metal interconnection 10 is used only for the purpose of lowering the wiring resistance of the word line, so it has a thickness of about 0.5 μm (depending on the case).

それ以下でもよい)の薄いJ膜厚でよい。第二〇層間絶
縁膜8は、上述のように川−の金属相互配線10の膜厚
が薄いため、第2図の従来法における第二の眉間絶縁膜
8の膜厚(1μm)より薄くすることができる。すなわ
ち0.5μm程度でも、第一の金属相互配線100段部
(口lにおけるステ・ンブカバレッジは、問題ない形状
を呈する。従って第二の金属相互配線11が,B−の金
属相互配線8ヶ横切っても,上記段部(0)にどいて、
断線する恐れはない。第二の金属相互配線11は,第一
の層間絶縁膜5及び第二の層間絶縁膜8を通して開孔さ
れたコンタクト孔(C4)を介して、内部素子(例えば
、多結晶シリコン配線3)に接続される。
A thin J film thickness may be used (it may be less than that). The interlayer insulating film 8 is made thinner than the second glabellar insulating film 8 (1 μm) in the conventional method shown in FIG. be able to. In other words, even with a thickness of about 0.5 μm, the step coverage at the first metal interconnection 100 step portion (opening l) presents a shape with no problem. Even if it crosses, it returns to the step part (0),
There is no risk of disconnection. The second metal interconnect 11 is connected to an internal element (for example, a polycrystalline silicon interconnect 3) through a contact hole (C4) formed through the first interlayer insulating film 5 and the second interlayer insulating film 8. Connected.

上述した構造によれば、メモリーセルの多結晶シリコン
膜で形成したワード線が第一の金属配線で裏打ちされて
いるため,ワード線の伝播速度が速い。接続は、ワード
線の長さに応じて,任意の場所に,何箇所でも行うこと
ができる。このようにすれば、装置が大容量化されても
ワード線での信号の伝播遅延を小さく抑えることができ
、装置の高速化が計れる。
According to the above-described structure, the word line formed of the polycrystalline silicon film of the memory cell is backed by the first metal wiring, so that the word line propagation speed is high. Connections can be made at any number of locations depending on the length of the word line. In this way, even if the capacity of the device is increased, the signal propagation delay on the word line can be kept small, and the speed of the device can be increased.

また、i番−の金属配線は、P、二の金属配線の膜厚よ
りも、薄く形成しているため、従来法に見られたような
第二の金属相互配線の第一の金属相互配線の段部におけ
る断線の心配もない。従って装置の歩留り低下や信頼性
低下の問題も解決される。
In addition, since the metal wiring number i is formed thinner than the film thickness of the metal wirings P and 2, the thickness of the first metal interconnection of the second metal interconnection as seen in the conventional method is There is no need to worry about wire breakage at the stepped portion. Therefore, the problems of lower yield and lower reliability of the device are also solved.

以上、詳細に説明したように本発明によれば、動作速度
の優れた信頼性の篩い、高性能大容量記憶装置を実現で
き、その効果は大である。
As described in detail above, according to the present invention, it is possible to realize a highly reliable, high-performance mass storage device with excellent operating speed, and its effects are significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はフリップフロップ形メモリーセルの回路図、第
2図は、従来の二層金属相互配線構造のl断面図、第3
図は1本発明実施例による二層金属相互配置1J4イ6
造の断面図である。 なお図において、1・・・・・・半導体基板、2・・・
・・・フィールド酸化膜、3・・・・・・多結晶シリコ
ン配線、4・・・・・・多結晶シリコン配線(ワード線
)、5・・・・・・第一層間絶縁膜、6. 7.10・
・・・・・第一金属相互配線、8・・・・・・第二層間
絶縁膜、9.11・・・・・・第二金属相互配?f、1
.(CI)、(C3)・・・・・・第一のコンタクト孔
。 (C2)・・・・・・スルーホール、(C4)・・・・
・・第二のコンタクト孔、(イ)、(ロ)・・・・・・
第−金属相互配線の段部。 である。 免1 個 蒙Z@ 一 一 )3回 1口)
Figure 1 is a circuit diagram of a flip-flop memory cell, Figure 2 is a cross-sectional view of a conventional two-layer metal interconnection structure, and Figure 3 is a cross-sectional view of a conventional two-layer metal interconnection structure.
Figure 1 shows two-layer metal mutual arrangement according to an embodiment of the present invention 1J4-6
FIG. In the figure, 1... semiconductor substrate, 2...
... Field oxide film, 3 ... Polycrystalline silicon wiring, 4 ... Polycrystalline silicon wiring (word line), 5 ... First interlayer insulating film, 6 .. 7.10・
...First metal interconnection, 8...Second interlayer insulating film, 9.11...Second metal interconnection? f, 1
.. (CI), (C3)...First contact hole. (C2)...Through hole, (C4)...
...Second contact hole, (a), (b)...
- step of metal interconnection; It is. Menu 1 individual menu Z @ 11) 3 times 1 bite)

Claims (1)

【特許請求の範囲】[Claims] 所定の回路素子ケ搭載した半導体基板の一生面上に形成
された二層金属相互配線を有する半導体集積回路記憶装
置においてメモリーセル内のアドレスを選択するための
信号線としての多結晶シリコン膜が、纂−の層間絶縁膜
を辿して開孔された第一のコンタクト孔を介して、第一
の金属相互配線と、少なくとも、2箇所以上で、直接接
続されて石り、主相互配線としての第二の金属相互配線
が、該第−の層間絶縁膜かっ、該第−の金属相互配線を
絶縁するための第二の層間絶#:膜を通して開孔された
第二のコンタクト孔を介して、内部素子に接続されてお
り、該第−の金属相互配線の膜/lが、該第二の金属相
互配線よりも薄くなっていることを特徴とする半導体集
積回路記憶装置。
A polycrystalline silicon film is used as a signal line for selecting an address in a memory cell in a semiconductor integrated circuit memory device having two-layer metal interconnections formed on the entire surface of a semiconductor substrate on which predetermined circuit elements are mounted. The first metal interconnect is directly connected to the first metal interconnect at at least two or more locations through the first contact hole formed by tracing the interlayer insulating film of the thread. A second metal interconnect is connected to the second interlayer insulating film through a second contact hole drilled through the second interlayer insulating film for insulating the second metal interconnect. , connected to an internal element, and wherein the film/l of the first metal interconnection is thinner than the second metal interconnection.
JP58112038A 1983-06-22 1983-06-22 Semiconductor integrated circuit memory device Pending JPS604252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58112038A JPS604252A (en) 1983-06-22 1983-06-22 Semiconductor integrated circuit memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58112038A JPS604252A (en) 1983-06-22 1983-06-22 Semiconductor integrated circuit memory device

Publications (1)

Publication Number Publication Date
JPS604252A true JPS604252A (en) 1985-01-10

Family

ID=14576451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58112038A Pending JPS604252A (en) 1983-06-22 1983-06-22 Semiconductor integrated circuit memory device

Country Status (1)

Country Link
JP (1) JPS604252A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57123927A (en) * 1981-01-27 1982-08-02 Kawasaki Steel Corp Production of high tensile steel plate of superior low temperature toughness
JP2006087487A (en) * 2004-09-21 2006-04-06 Fuji Electric Retail Systems Co Ltd Showcase

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5570060A (en) * 1978-11-20 1980-05-27 Mitsubishi Electric Corp Semiconductor device
JPS56161668A (en) * 1980-05-16 1981-12-12 Hitachi Ltd Semiconductor device
JPS5756958A (en) * 1980-09-22 1982-04-05 Toshiba Corp Semiconductor device
JPS583252A (en) * 1981-06-29 1983-01-10 Seiko Epson Corp Semiconductor integrated circuit device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5570060A (en) * 1978-11-20 1980-05-27 Mitsubishi Electric Corp Semiconductor device
JPS56161668A (en) * 1980-05-16 1981-12-12 Hitachi Ltd Semiconductor device
JPS5756958A (en) * 1980-09-22 1982-04-05 Toshiba Corp Semiconductor device
JPS583252A (en) * 1981-06-29 1983-01-10 Seiko Epson Corp Semiconductor integrated circuit device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57123927A (en) * 1981-01-27 1982-08-02 Kawasaki Steel Corp Production of high tensile steel plate of superior low temperature toughness
JPS6143411B2 (en) * 1981-01-27 1986-09-27 Kawasaki Steel Co
JP2006087487A (en) * 2004-09-21 2006-04-06 Fuji Electric Retail Systems Co Ltd Showcase

Similar Documents

Publication Publication Date Title
US5117276A (en) High performance interconnect system for an integrated circuit
US4933743A (en) High performance interconnect system for an integrated circuit
US6696746B1 (en) Buried conductors
JPS60192359A (en) Semiconductor memory
US4163246A (en) Semiconductor integrated circuit device employing a polycrystalline silicon as a wiring layer
US4920403A (en) Selective tungsten interconnection for yield enhancement
JPS604253A (en) Semiconductor integrated circuit memory
US5245210A (en) MOS type semiconductor device
JP3063338B2 (en) Semiconductor device and manufacturing method thereof
JPS604252A (en) Semiconductor integrated circuit memory device
JPS583379B2 (en) semiconductor equipment
JPH01258457A (en) Semiconductor integrated circuit package structure and manufacture thereof
US5072282A (en) Multi-layer wirings on a semiconductor device and fabrication method
EP0574097B1 (en) Semiconductor device having multilayer wiring and the method of making it
JP2757780B2 (en) Semiconductor device
JP2503849B2 (en) Wiring structure and manufacturing method thereof
JP2720657B2 (en) Semiconductor device and manufacturing method thereof
JPH0719778B2 (en) Semiconductor integrated circuit device
JPS60128655A (en) Semiconductor device
JP3533022B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JP2947800B2 (en) Semiconductor device
JPS61218144A (en) Electrode wiring structure
JPS60170966A (en) Semiconductor memory
JPH04115554A (en) Semiconductor device
JPH0797572B2 (en) Method for forming through hole in semiconductor integrated circuit board