JPS6034556B2 - Antibiotic C-15003 - Google Patents

Antibiotic C-15003

Info

Publication number
JPS6034556B2
JPS6034556B2 JP52037166A JP3716677A JPS6034556B2 JP S6034556 B2 JPS6034556 B2 JP S6034556B2 JP 52037166 A JP52037166 A JP 52037166A JP 3716677 A JP3716677 A JP 3716677A JP S6034556 B2 JPS6034556 B2 JP S6034556B2
Authority
JP
Japan
Prior art keywords
antibiotic
ethyl acetate
culture
medium
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52037166A
Other languages
Japanese (ja)
Other versions
JPS53130693A (en
Inventor
栄治 東出
満子 浅井
清一 谷田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takeda Pharmaceutical Co Ltd
Original Assignee
Takeda Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takeda Chemical Industries Ltd filed Critical Takeda Chemical Industries Ltd
Priority to JP52037166A priority Critical patent/JPS6034556B2/en
Priority to US05/811,448 priority patent/US4162940A/en
Priority to AU29074/77A priority patent/AU510499B2/en
Priority to AU29072/77A priority patent/AU506415B2/en
Priority to PH20297A priority patent/PH13381A/en
Priority to FR7730339A priority patent/FR2385714A1/en
Priority to SU772529301A priority patent/SU741804A3/en
Priority to GR54548A priority patent/GR66051B/el
Priority to YU02453/77A priority patent/YU245377A/en
Priority to HU77TA1459A priority patent/HU178359B/en
Priority to CS776678A priority patent/CS214749B2/en
Priority to SE7711542A priority patent/SE442873B/en
Priority to HU802440A priority patent/HU187372B/en
Priority to NLAANVRAGE7711274,A priority patent/NL188102C/en
Priority to NL7711272A priority patent/NL7711272A/en
Priority to CA288,731A priority patent/CA1107212A/en
Priority to ES463207A priority patent/ES463207A1/en
Priority to AT0736277A priority patent/AT364081B/en
Priority to GB42822/77A priority patent/GB1586688A/en
Priority to GB42823/77A priority patent/GB1592264A/en
Priority to DE19772746209 priority patent/DE2746209A1/en
Priority to DK458877A priority patent/DK458877A/en
Priority to IE2101/77A priority patent/IE46064B1/en
Priority to DE19772746252 priority patent/DE2746252A1/en
Priority to PL1977201541A priority patent/PL122289B1/en
Priority to PL1977221358A priority patent/PL124349B1/en
Priority to CH1260577A priority patent/CH637137A5/en
Priority to IT21817/78A priority patent/IT1094020B/en
Priority to IT21818/78A priority patent/IT1094308B/en
Priority to PT67854A priority patent/PT67854B/en
Priority to BE186487A priority patent/BE865590A/en
Priority to ZA00781863A priority patent/ZA781863B/en
Priority to ZA00781862A priority patent/ZA781862B/en
Priority to BE186486A priority patent/BE865589A/en
Priority to SU782627804A priority patent/SU890978A3/en
Priority to ES472230A priority patent/ES472230A1/en
Publication of JPS53130693A publication Critical patent/JPS53130693A/en
Priority to AT822678A priority patent/AT362061B/en
Priority to US05/972,492 priority patent/US4225494A/en
Priority to PH22216A priority patent/PH15985A/en
Priority to US06/131,787 priority patent/US4320200A/en
Priority to DK338880A priority patent/DK148180B/en
Priority to CA000373582A priority patent/CA1121814A/en
Priority to US06/313,974 priority patent/US4360462A/en
Priority to YU01785/82A priority patent/YU178582A/en
Priority to SE8302517A priority patent/SE446004B/en
Publication of JPS6034556B2 publication Critical patent/JPS6034556B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D498/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D498/12Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains three hetero rings
    • C07D498/18Bridged systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/18Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms containing at least two hetero rings condensed among themselves or condensed with a common carbocyclic ring system, e.g. rifamycin
    • C12P17/188Heterocyclic compound containing in the condensed system at least one hetero ring having nitrogen atoms and oxygen atoms as the only ring heteroatoms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Oncology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Communicable Diseases (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Compounds Of Unknown Constitution (AREA)

Description

【発明の詳細な説明】 本発明は新規抗生物質C−15003その製造法および
該抗生物質からの誘導体の製造法に関する。 本発明者らは多種類の土壌などの試料を採取して、それ
らから分離される微生物について、その生産する抗生物
質を検索し、ある種の微生物が新規な抗生物質を生産す
ること、該微生物はノカルディア属に属すること、該微
生物を適宜な栄養塔地で培養することにより該抗生物質
を培養物中に蓄積させ得ることを知り、また得られた該
抗生物質から譲導体を得ることを知り、さらに研究した
*結果、本発明を完成した。すなわち本発明は、‘11
一般式(1) 〔式中、Rは 又は を表わ す。 〕で表わされる抗生物質C−15003 および■ノカ
ルディア属に属する抗生物質C−15003生産菌を借
地に培養し、培養物中に抗生物質C−15003を生成
蓄積せしめ、これを採取することを特徴とする抗生物質
C−15003の製造法である。本発明においては「抗
生物質C−15003Jとは、上記一般式(1)におい
て示される三つの化合物の総称、二つ又は三つの混合物
、又はそれぞれの単一化合物をいうものとする。また、
一般式(1)におし、てR−CO−CHく旨葺き化合物
を「抗生物質C−1500犯−3」あるいは単にc−1
500蛇−3」と、Rが−CO−CH2−CH2CH3
の化合物を「抗生物質C−1500が−3」あるいは単
に{C−1500犯−3′」と、Rが−CO−CH2−
CHくS韓室の化合物を「抗生物質C−1500館−4
」あるいは単に「C−1500犯−4」と、Rが日の化
合物〔一般式(0)〕を〔抗生物質C−1500が−C
Jあるいは単に「C−1500が−C」と、それぞれ称
するものとする。本発明の抗生物質C−15003を生
産する菌としては、たとえば本発明者らが抗生物質生産
菌の探索中に土壌などから分離した放線菌NnC−15
003株などが挙げられる。 NoC−15003株の菌学的諸性質をシヤーリングお
よびゴツトリープの方法〔インターナショナル.ジヤー
ナル・オブ・システマテイツク・バクテリオ ロ ジー
{lntematioMI JomM1 ofS$t
matic母cteriolo鋤)、第16巻、313
頁〜340頁、1966王〕に準じて検討し、2がo、
21日間にわたって観察した結果は下記の通りである。 1 形態的特徴基生菌糸は寒天培地上および液体培地中
ともによく伸長し、分枝する。 その直径の多くは0.8〜1.2ムmであり、時には樺
菌状または分枝した短い菌糸状に分断することがある。
種々の分類用培地上でよく生育し、気菌体は基生菌糸上
に発育するが、束状体(50〜200ムm×200×1
000仏m)を形成し、それらの上に発育することが多
い。気菌糸の形状の多くは屈曲状または直線状を示し、
まれにゆるい螺旋状を示すものも見られる。成熟した培
養を検鏡すると胞子が連鎖状になっていると考えられる
ものは少なく、それらの培養表面から採取した菌懸濁液
について検鏡した所、長楕円形(0.8〜1.2山m×
4.8〜6.8山m)および楕円形(0.8〜1.2×
1.0〜2.0rm)の分節胞子様のものが多く観察さ
れ、電子顕微鏡による観察ではその表面は平滑であった
。2 菌体組成 本菌株をISP舷.1の改変塔地中で28℃、8.66
〜90時間振顔培養して、菌体を集め、洗糠した。 上記菌体をビー.べッカ−らの方法(アプライド、マイ
ロバイオロジ−(AppliedMicrobjolo
gy)、12萱、421頁、196山王〕およびェム・
ビー・レェヒバリェーの方法〔ジャーナル・オプ・ラボ
ラトリー・アンド・クリニカル・メデイシン(Jom雌
l ofいbotoひ、andClinical Me
dicine)71巻、984頁、19路年〕に従って
菌体細胞中のジアミノピメリン酸および糖組成を検した
結果、前者はメソ体であること、後者はガラクトースお
よびアラビノースに相当するスポットの存在が認められ
た。3 分類用塔地上の諸一性質本菌株は各種培地上で
、いずれも比較的よく発育し、その基生菌糸は培養初期
無色ないし淡黄色で、その淡黄褐色または叢褐色を示す
。 また種々の分類用培地中に黄色ないし黄褐色の可溶性色
素を生成する。気菌糸は粉状で、一般には中程度に発育
し、白色ないし黄色または淡黄褐色を示す。本菌株の各
種分類用培地上における諸性状は第1表に示した通りで
ある。第1表 No.C−15003朱の分類用培地上
の諸性質
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel antibiotic C-15003, a method for producing the same, and a method for producing derivatives from the antibiotic. The present inventors collected various types of soil samples, searched for the antibiotics produced by microorganisms isolated from them, and found that certain microorganisms produce novel antibiotics. We have learned that the microorganism belongs to the genus Nocardia, that the antibiotic can be accumulated in the culture by culturing the microorganism in a suitable nutrient tower, and that we can obtain a donor from the resulting antibiotic. As a result of this knowledge and further research, we have completed the present invention. That is, the present invention
General formula (1) [wherein R represents or]. ] and ■Antibiotic C-15003-producing bacteria belonging to the genus Nocardia are cultured on rented land, and antibiotic C-15003 is produced and accumulated in the culture, which is then collected. This is a method for producing antibiotic C-15003. In the present invention, "antibiotic C-15003J" refers to a generic term for the three compounds represented by the above general formula (1), a mixture of two or three, or a single compound of each.
In the general formula (1), the R-CO-CH compound is called "antibiotic C-1500-3" or simply c-1.
500 Snake-3", R is -CO-CH2-CH2CH3
The compound is referred to as "antibiotic C-1500-3" or simply {C-1500-3', where R is -CO-CH2-
The compound of CHKUS Hanji is called “Antibiotic C-1500-4”
” or simply “C-1500 crime-4” and R is the compound [general formula (0)] [antibiotic C-1500 is -C
J or simply "C-1500 is -C", respectively. Examples of bacteria that produce the antibiotic C-15003 of the present invention include actinomycetes NnC-15, which the present inventors isolated from soil during the search for antibiotic-producing bacteria.
Examples include the 003 stock. The mycological properties of NoC-15003 strain were determined by the methods of Shearing and Gottlieb [International. Journal of Systematic Bacteriology {lntematioMI JomM1 ofS$t
matic mother cteriolo plow), Volume 16, 313
Pages 340 to 340, 1966 King], 2 is o,
The results observed over 21 days are as follows. 1 Morphological characteristics The basal hyphae elongate and branch well both on agar and liquid media. Most of them are 0.8 to 1.2 mm in diameter, and sometimes they are divided into birch-like or branched short hyphae.
It grows well on various classification media, and aerial fungi grow on the substrate mycelia, but fascicles (50-200 mm x 200 x 1
000 m) and often grows on them. Most of the shapes of aerial hyphae are curved or straight;
In rare cases, a loose spiral can be seen. When a mature culture is examined under a microscope, there are few cases where the spores are thought to be chained, and when a bacterial suspension taken from the culture surface is examined under a microscope, it is found that the spores are oblong (0.8 to 1.2 Mountain m×
4.8 to 6.8 m) and oval (0.8 to 1.2
Many segmented spore-like particles (1.0 to 2.0 rm) were observed, and their surfaces were smooth when observed using an electron microscope. 2. Bacterial composition This bacterial strain was added to the ISP port. 28℃ in the underground modified tower of No. 1, 8.66
The cells were cultured by shaking for ~90 hours, and the bacterial cells were collected and washed with rice bran. Bee the above bacteria. Becker et al.'s method (Applied Microbiology)
gy), 12 萱, 421 pages, 196 Sanno] and M.
The method of bi-lechvale (Journal of Laboratory and Clinical Medicine)
As a result of examining the diaminopimelic acid and sugar composition in the bacterial cells according to ``Dicine'' Vol. 71, p. 984, 1999], it was found that the former was meso-form, and the latter had spots corresponding to galactose and arabinose. Ta. 3. Characteristics of the classification tower This strain grows relatively well on various media, and its basal hyphae are colorless to pale yellow at the initial stage of cultivation, and exhibit pale yellow-brown or clump-brown color. It also produces a yellow to yellow-brown soluble pigment in various sorting media. Aerial mycelium is powdery, generally of medium growth, and white to yellow or tan in color. The properties of this strain on various classification media are shown in Table 1. Table 1 No. C-15003 Various properties on the vermilion classification medium

【ィ} 庶糖・硝酸塩寒天培地 生育(G):豊富,黄色(3ia)※ないし淡黄褐色4
31c)、東状体形成気菌糸(AM):貧弱、白色可溶
性色素(SP):なしまたは徴黄褐色‘o’グリセロー
ル・硝酸塩寒天培地 G:中程度、淡黄色(次a)※東状体形成AM:中程度
、白色 SP:なし し一 ブドウ糖・アスパラギン寒天塔地 G:中程度、淡明黄色(3pa)※なしい明黄色(本a
)※AM:貧弱、白色 SP:明黄色(沙a)※ 0 グリセロール・アスパラギン寒天培地G:中程度、
淡黄色(沈a)※束状体形成AM:貧弱、白色 P:なし ■ でん粉寒天培地 G:中程度、淡黄色(松a)※ないし淡黄褐色(衣a)
※東状体形成AM:豊富、淡黄色(次a)※ Sp:なし N 栄養寒天培地 G:中程度、淡黄色(沙a)※ないし黄色(ZP)※
東状体形成AM:貧弱、白色SP:なし 【ト’リンゴ酸カルシウム寒天培地 G:中程度。 淡黄色(沙a)※ないし淡黄褐色(畿a)※ 東状体形
成AN:中程度、白色ないし淡黄色(沙a)※SP:な
し併 酵母エキス・麦芽エキス寒天渚地G:中程度、淡
黄褐色(3ic)※ないし明褐色(3ia)※東状体形
成AM:中程度、白色ないし淡黄色(次a)※SP:な
し肌 オートミル寒天塔地G:中程度、淡黄色(Xa)
※ないし黄色(23)※ 東状体形成AM:貧弱、白色
ないし淡黄色SP:なし(ヌ) べプトン・酵母エキス
・鉄寒天培地G:中程度、黄色(Z3)※AM:なし SP:黄色(なめ)※ (ル) チロジン寒天培地 G:中程度、淡黄色(Xa)※なしい黄色(珠a)※束
状体形成AM:中程度、白色ないし淡黄色(次a)※S
P:黄褐色(3ie)※ ※:カラー・ハーモニー・マニュアル、第4版、(コン
テエイナ−・コーポレーション・オブ.アメリカ、19
班年発行)による色名記号4 生理学性質 本菌株の生理学性質は第2表に示した通りである。 すなわち生育温度範囲は1〆○ないし38℃、また寒天
培地(ISPM.2)上で気菌糸をよく着生する温度範
囲は20午○ないし35q0である。第2表 M.C−
15003朱の生理的性状生育温度範囲:120〜38
q0気菌糸着生温度20oo〜35q0ゼラチン液化:
陽性 でん粉加水分解:陽性 硝酸塩還元館:陽性 ミルク・ベプトン化:陽性 ミルク・凝固:陰性 カゼイン分解能:陽性 メラニン様色素形成(ベプトン・酵母エキス鉄寒天培地
):陰性、(チロジン寒天培地):腸性チロジン分解館
:陽・性 キサンチン分解熊:陰性 ヒポキサンチン分解能:陰性 リゾチーム耐性:陽一性 食塩耐性:2% 5 各種炭素源の利用性 プリーダムおよびゴットリーブの方法〔ジャーナル・オ
ブ・バクテリオ。 ジー(Joumalof母cteriolo期)5琵琶
、107頁、1948年〕に記載されている培地および
それに酵母エキス(バクト)を0.1%添加した基礎培
地を用いて、各種炭素源の利用性を検し、それらの結果
を第3表に示した。第3表 No.C−15003朱の
炭素源利用性炭素源 生育※
D−キシロース 十日 Dーアラビノース ++ Dーグルコース 日日○ーガラク
トース ++D−フラクトース
州什 Lーラムノース ++ Dーマンノース 川什シユークロー
ス 什日ラクトースマルトース
士+トレハロース
十日 ラフイノース ±士 メリピオース ++ i−イノシトール Dーソルビトール D−マンニトール しMグリセロー
ル −±可溶性澱粉
+十対 照 −− ※:酵母エキス0.1%添加基礎培地 注;川:豊富な発育 汁:比較的良好な発育 十:発育を認める ±:僅かに発育する −:発育しない 6 その他の諸性質 前述2)に示した方法で菌体を集め、これらとジェー・
マーマーらの方法〔ジャーナル・オブ・モレキユラー・
バイオロジー(JoumalofMolecularB
iolo期)、208頁、1961年〕に準じてDNA
を調製し、DNAのG−C含量を検すると約71モル%
であった。 本菌株の栄養菌糸をグラム染色すると陽・性であつた。 以上述べた船.C−1500株の諸性質をェス・ェー・
ワックスマン著、ジ・アクチノミセテス(meActi
nomycetes)、第2巻、ザ・ウィリアムス・ア
ンド・ウィルキンス・カンパニー発行、1961年、ア
ール・ィー.ブッフアナン・アンド・ェヌ・イー・ギボ
ンス編、パージース・マニュアル・オブ・デターミネー
テイブ・バクテリオロジ− ( BergeyS Ma
nual of Detenni岬tiVe母cter
iolo鋤)、第8版、1974王およびその他の文献
に従って検索した。本菌株はノカルディア(Nocar
dia)属のグループmに属すると考えられるが、既知
菌株の中には上記諸性質を有する種は見出されず、新菌
種と同定された。本菌株No.C−15003群ま、工
業技術院微生物工業技術研究所にFERM−PNo.3
992として、財団法人発酵研究所にIFO−1372
6として、それぞれ寄託されている。 タ 以上に述べた様に船.C−15003%まノカルデ
ィア属の新種であるが、微生物の一般的性質として自然
的にまたは変異剤によって変異を起し得る。 たとえばX線、ガンマ一線、紫外線等の放射線の照射単
胞子分離、種々の薬剤を含有する培地上で0の培養、そ
の他の手段で変異させて得られる多くの変異株、あるい
は自然的に得られる突然変異株等であっても、上記した
菌学的性状または下記に示した様な菌学的性状との比較
において実質的に別種とするに足らず、しかもC−】5
00犯−3,タP,3および(または)P−4を生産す
る性質を有するものはすべて本発明の方法に利用し得る
。たとえばNo.C−15003朱を種々の変異処理す
ることにより、可溶性色素をほとんど生成しないもの、
基生菌糸が無色のもの、黄緑色のもの、赤褐0色ないし
燈赤色を示すもの、菌糸が樟菌状または分枝した短い菌
糸に分断し易いものおよび気菌糸が多く白色または気菌
糸をほとんど着‘性しない変異株が得られている。抗生
物質C−15003主産菌の培養に用いられる培地は該
菌株が利用し得る栄養源を含むものなら、液状でも固状
でもよいが、大量を処理するときには液体塔地を用いる
のがより適当である。 培地にはM.C−15003珠が同化し得る炭素源、消
化し得る窒素源、無機物質、徴量栄養素等が適宜配合さ
れる。炭素源としては、たとえばブドウ糖、乳糖、ショ
糖、麦芽糖、デキストリン、でん粉、グリセリン、マン
ニトール、ソルビトール等油脂類(例、大豆油、ラード
油、チキン油等)その他が窒素源としては、たとえば肉
エキス、酵母エキス、乾燥酵母、大豆粉、コーン・スチ
ーブ・リカー、ベプトン、棉実粉、溌糖蜜、尿素、アン
モニウム塩類(例、硫酸アンモニウム、塩化アンモニウ
ム、硝酸アンモニウム、酢酸アンモニウム等)その他が
用いられる。さらにナトリウム、カリウム、ウルシウム
、マグネシウムなどを含む塩類、鉄、マンガン、亜鉛、
コバルト、ニッケルなどの金属塩類、リン酸、ホゥ酸な
どの塩類や酢酸、ブロピオンなどの有機酸の塩類が適宜
用いらる。その他、アミノ酸(例、グルタミン酸、アス
パラギィン酸、アラニン、グリシン、リジン、メチニン
、プロリン等)、ベプチド、トリベプチド等)、ビタミ
ン類(例、B,、&、ニコチン酸、B,2、VC、E等
)、核酸類(例、プリン、ピリジンおよびその誘導体等
)等を含有させてもよい。もちろん培地のpHを調節す
る目的で無機または有機の酸、アルカリ類、緩衝剤等を
加え、あるし、は消泡の目的で油脂類、表面活性剤等の
適量を添加してもよい。培養の手段は静置培養でも、振
麹培養あるいは通気損梓培養法等の手段を用いてもよい
。 大量の処理には、いわゆる深部通気蝿梓培養によるのが
望ましいことはいうまでもない。培養の条件は培地の状
態、組成、菌株の種類、培養の手段等によって一定しな
いのは当然であるが、それらは通常2000〜35o0
の温度で初発pHを中性附近に選択するのがよい。とり
わけ、培養中期の温度は23℃〜30℃、また初発pH
‘ま6.5〜7.5の条件が望ましい。培養期間も前記
の諸条件により一定しないが、所望の抗生物質濃度が最
大となるまで培養するのがよい。これに要する時間は液
体培地を用いる振遼培養または通気樫梓培養の場合は通
常2〜6日間程度である。これら抗生物質の力価測定は
テトラヒメナ・ピリホルミスW株(Tetraphのm
ona、pのifo肌leW)を試験微生物として検定
培地〔トリプトーズ・ベプトン(ディフコ社製)20夕
、酵母エキス(ディフコ社製)1夕、ブドウ糖2夕、蒸
留水l0o0泌およ1モル燐酸緩衝液pH7.010奴
‘〕を用い、28qo、4岬時間ないし4報時間培養し
、その生育を濁度で測定する液体希釈検定法および後に
示す薄層クロマトグラフィー法(以下、TLCと略す)
により測定した。 このようにして培養された培養物中に新規抗生物質C−
1500*−3、P−3′および(または)P−4が生
産蓄積され、これらは炉液および菌体抽出液のいずれに
も含有される。 またこれらの物質はTLC法により検索された。 すなわち、培養物を炉過または遠心分離で菌体と炉液と
に分け、炉液はそのま)炉液と同量の酢酸エチルで抽出
する。菌体には炉液と同量の70%アセトン水を加えて
20午0で1時間損拝し炉過する。炉液中のァセトンを
留去し得られた水、炉液を酢酸エチルで抽出する。そぜ
ぞれの抽出液の10M音濃縮した液をシリカゲルガラス
プレート(西独メルク社、キーゼルゲン6価捌0.25
柵20×20)を担体とした薄層クロマトグラフィー(
TLC)に付し(溶媒:クロロホルム・メタノール=9
:1)、紫外線2537人を照射して検出される吸収像
の強さから測定される。培養物中に産生されたC−15
00兜−3、P−3および(または)F−4を取するに
は本物質群が中性脂溶性であるため、か)る微生物代謝
物を採取するために通常用いられる分離精製の方法が適
宜利用される。 たとえば不純物との溶解度の差を利用する手段、活性炭
、マクロポーラス非イオン系樹脂、シリカゲル、アルミ
ナ等各種の吸着剤の吸着親和力の差を利用する手段、イ
オン交換樹脂による不純物の除去手段のいずれもがそれ
ぞれ単独で、また組合せて、あるいは反覆して利用され
る。前記のようにC−1500犯−3、P−3′および
P−4は培養炉液と菌体の双方に含まれているので、こ
れら吸着剤を用いる場合培養了戸液では直接あるいは溶
媒抽出後、菌体では溶媒抽出後吸着剤に吸着させ分離精
製する。溶媒で抽出する場合には、
[I] Growth on sucrose/nitrate agar medium (G): Abundant, yellow (3ia) * or pale yellowish brown 4
31c), Eastoid formation Aerial hyphae (AM): Poor, white Soluble pigment (SP): None or yellowish brown 'o' Glycerol/nitrate agar medium G: Moderate, pale yellow (Next a) * Eastoid formation Formation AM: Moderate, white SP: None Glucose/asparagine agar tower ground G: Moderate, light yellow (3pa) *None bright yellow (book a)
) *AM: poor, white SP: light yellow (Sa) * 0 Glycerol/asparagine agar medium G: moderate,
Pale yellow (Sediment a) * Floccule formation AM: poor, white P: none ■ Starch agar medium G: moderate, pale yellow (pine a) * or pale yellowish brown (cloth a)
* East formation AM: Abundant, pale yellow (next a) * Sp: None N Nutrient agar medium G: Moderate, pale yellow (SA) * or yellow (ZP) *
East body formation AM: Poor, white SP: None [Calcium malate agar medium G: Moderate. Pale yellow (Sa)* or pale yellowish brown (Ki-a)* East formation AN: Medium, white or pale yellow (Sa)*SP: None Yeast extract/malt extract agar Nagisaji G: Medium , pale yellowish brown (3ic) * to light brown (3ia) * East formation AM: medium, white to pale yellow (next a) *SP: no skin Oatmilk agar toji G: medium, pale yellow (Xa) )
*or yellow (23) * East body formation AM: poor, white or pale yellow SP: none (nu) Beptone/yeast extract/iron agar medium G: moderate, yellow (Z3) *AM: none SP: yellow (Name) * (Le) Tyrosine agar medium G: medium, pale yellow (Xa) *no yellow (bead a) *fascicle formation AM: moderate, white to pale yellow (next a) *S
P: Tan (3ie)* *: Color Harmony Manual, 4th edition, (Container Corporation of America, 19
Physiological properties The physiological properties of this strain are shown in Table 2. That is, the growth temperature range is 1〆○ to 38°C, and the temperature range in which aerial mycelium is well established on an agar medium (ISPM.2) is 20pm to 35q0. Table 2 M. C-
Physiological properties of 15003 Vermilion Growth temperature range: 120-38
q0 Aerial mycelial growth temperature 20oo~35q0 Gelatin liquefaction:
Positive Starch hydrolysis: Positive Nitrate reduction: Positive Milk/veptonization: Positive Milk/coagulation: Negative Casein resolution: Positive Melanin-like pigment formation (Beptone/yeast extract iron agar medium): Negative, (Tyrosine agar medium): Enteric Tyrosine degradation: Positive xanthine degradation Bear: Negative Hypoxanthine degradation ability: Negative Lysozyme resistance: Positive Salt tolerance: 2% 5 Utilization of various carbon sources Priedham and Gottlieb method [Journal of Bacteriology. The usability of various carbon sources was examined using the medium described in J. (Joumalof Mother Actiolo Stage) 5 Biwa, p. 107, 1948] and a basal medium to which 0.1% yeast extract (Bacto) was added. The results are shown in Table 3. Table 3 No. C-15003 Vermillion carbon source Usable carbon source Growth *
D-xylose 10-day D-arabinose ++ D-glucose 1-day ○-galactose ++ D-fructose
State L-Rhamnose ++ D-Mannose Kawano Seuucrose Yokohama Lactose Maltose
Master + Trehalose
Toka Raffinose ±Melipiose ++ i-inositol D-sorbitol D-mannitol M glycerol −± soluble starch
+ 10 vs. control − − *: Basal medium supplemented with 0.1% yeast extract Note; River: Abundant growth juice: Relatively good growth 10: Growth observed ±: Slight growth −: No growth 6 Other miscellaneous Properties Collect bacterial cells using the method shown in 2) above, and mix them with J.
Marmer et al.'s method [Journal of Molecular
Biology (JoumalofMolecularB
iolo period), p. 208, 1961].
When prepared and tested for the GC content of DNA, it was approximately 71 mol%.
Met. Gram staining of the vegetative hyphae of this strain was positive. The ship mentioned above. Various properties of C-1500 strain
The Actinomycetes (meActi) by Waxman
nomycetes), Volume 2, The Williams & Wilkins Company, 1961, R.I. BergeyS Ma
nual of Detenni Misaki tiVe mother cter
iolo plow), 8th edition, 1974 King and other literature. This strain is Nocardia (Nocar).
Although it is thought to belong to group m of the genus Dia), no species with the above-mentioned properties was found among the known strains, and it was identified as a new bacterial species. This strain No. C-15003 group, FERM-P No. to the Institute of Microbial Technology, Agency of Industrial Science and Technology. 3
IFO-1372 to Fermentation Research Institute as 992
6, respectively. T As mentioned above, a ship. C-15003% is a new species of the genus Manocardia, but as a general property of microorganisms, it can mutate naturally or by mutagens. For example, there are many mutant strains obtained by irradiating single spores with X-rays, gamma rays, ultraviolet rays, etc., culturing 0 on media containing various drugs, mutating them by other means, or naturally occurring strains. Even if it is a mutant strain, etc., it is not enough to make it a substantially different species when compared with the mycological properties described above or the mycological properties shown below, and furthermore, it is not sufficient to classify it as a different species.
Anything that has the property of producing P-3, P,3 and/or P-4 can be used in the method of the present invention. For example, No. By subjecting C-15003 vermilion to various mutation treatments, almost no soluble pigment is produced;
Base hyphae are colorless, yellow-green, reddish-brown to light red, hyphae easily split into short, camphor-like or branched hyphae, and many aerial hyphae are white or aerial. Mutant strains with almost no adhesion have been obtained. The medium used for culturing the bacteria that primarily produces antibiotic C-15003 may be liquid or solid as long as it contains nutrients that can be used by the strain, but it is more appropriate to use a liquid medium when processing large quantities. It is. The medium contains M. Carbon sources that can be assimilated by C-15003 beads, nitrogen sources that can be digested, inorganic substances, collected nutrients, etc. are appropriately blended. Carbon sources include, for example, glucose, lactose, sucrose, maltose, dextrin, starch, glycerin, mannitol, sorbitol, and other fats and oils (eg, soybean oil, lard oil, chicken oil, etc.), and nitrogen sources, such as meat extract. , yeast extract, dried yeast, soybean flour, corn stave liquor, veptone, cottonseed flour, hot molasses, urea, ammonium salts (eg, ammonium sulfate, ammonium chloride, ammonium nitrate, ammonium acetate, etc.), and others are used. In addition, salts containing sodium, potassium, ursium, magnesium, etc., iron, manganese, zinc,
Metal salts such as cobalt and nickel, salts such as phosphoric acid and boric acid, and salts of organic acids such as acetic acid and propion are used as appropriate. Other amino acids (e.g., glutamic acid, aspartic acid, alanine, glycine, lysine, metinine, proline, etc.), peptides, tribeptide, etc.), vitamins (e.g., B, &, nicotinic acid, B,2, VC, E, etc.) ), nucleic acids (eg, purine, pyridine, derivatives thereof, etc.), etc. may be included. Of course, inorganic or organic acids, alkalis, buffers, etc. may be added for the purpose of adjusting the pH of the medium, or appropriate amounts of oils and fats, surfactants, etc. may be added for the purpose of defoaming. The culturing method may be static culture, shaking koji culture, aerated strain culture, or the like. Needless to say, for large-scale treatment, it is desirable to use so-called deep aeration fly culture. It goes without saying that the culture conditions vary depending on the state and composition of the medium, the type of strain, the culture method, etc., but they are usually 2000~35o0.
It is best to select the initial pH to be around neutral at a temperature of . In particular, the temperature during the middle stage of culture is 23°C to 30°C, and the initial pH is
A condition of 6.5 to 7.5 is desirable. The culture period also varies depending on the conditions described above, but it is preferable to culture until the desired antibiotic concentration is maximized. The time required for this is usually about 2 to 6 days in the case of shake culture or aerated oak culture using a liquid medium. The titers of these antibiotics were measured using Tetrahymena pyriformis W strain (Tetraph m).
ona, p.ifo skin leW) as test microorganisms in a test medium [tryptose-beptone (manufactured by Difco) for 20 hours, yeast extract (manufactured by Difco) for 1 night, glucose for 2 hours, distilled water 1000 and 1 molar phosphate buffer. A liquid dilution assay method in which the growth is measured by turbidity after culturing at 28 qo for 4 to 4 hours using a solution with a pH of 7.010, and a thin layer chromatography method (hereinafter abbreviated as TLC) described later.
It was measured by The novel antibiotic C-
1500*-3, P-3' and/or P-4 are produced and accumulated, and these are contained in both the furnace liquid and the bacterial cell extract. These substances were also searched by TLC method. That is, the culture is separated into microbial cells and sap by filtration or centrifugation, and the sap is directly extracted with the same amount of ethyl acetate as the sap. The same amount of 70% acetone water as the furnace solution was added to the bacterial cells, and the mixture was incubated for 1 hour at 20:00 and then filtered. Acetone in the furnace solution is distilled off, and the resulting water and furnace solution are extracted with ethyl acetate. A 10M concentrated solution of each extract was placed on a silica gel glass plate (West German Merck & Co., Kiesergen hexavalent 0.25
Thin layer chromatography (20 x 20) as a carrier
TLC) (solvent: chloroform/methanol = 9
:1), measured from the intensity of the absorption image detected by irradiating 2,537 people with ultraviolet rays. C-15 produced in culture
In order to obtain 00 Kabuto-3, P-3 and/or F-4, since this group of substances is neutral fat-soluble, separation and purification methods commonly used to collect such microbial metabolites are required. will be used as appropriate. For example, there are methods that utilize differences in solubility with impurities, methods that utilize differences in adsorption affinity of various adsorbents such as activated carbon, macroporous nonionic resins, silica gel, and alumina, and methods that use ion exchange resins to remove impurities. may be used alone, in combination, or repeatedly. As mentioned above, C-1500-3, P-3', and P-4 are contained in both the culture furnace solution and the bacterial cells, so when using these adsorbents, they can be used directly in the culture solution or by solvent extraction. Afterwards, the bacterial cells are extracted with a solvent and adsorbed onto an adsorbent for separation and purification. When extracting with a solvent,

【11菌体を分離し
ない全培養物から溶媒抽出するか、あるいは{21炉過
または遠心分離などで分離した菌体および培養炉液のそ
れぞれから溶媒抽出する等いずれの方法でも使用しうる
。炉液と菌体とを個別に抽出する場合には、以下の方法
で実施するのが有利である。炉液からの抽出に適当な溶
媒としては水と混じらない有機溶媒、たとえば酢酸エチ
ル、酢酸アミルなどの脂肪酸ェステル、ブタノールなど
のアルコール類、クロロホルムなどのハロゲン化炭化水
素、メチルィソブチルケトンなどのケトン類が用いられ
る。 抽出は中性附近で行なわれ、好ましくはpH7に調整さ
れた培養炉液から酢酸エチルを用いて行なわれる。抽出
液を水洗後減圧下に濃縮し、石油エーテル、n−へキサ
ンのような非頓挫溶媒を加えて有効成分を含む粗物質1
を採取する。この中にはTLC上で抗生物質C−150
03以外の多数のスポットが認められるため、段階的に
つぎの精製工程が利用される。すなわち、通常用いられ
る精製法として種々の吸着クロマトグラフイ−が有効で
あり、吸着剤としては、一般に使用される担体、たとえ
ばシリカゲル、アルミナ、マクロポーラス非イオン系吸
着樹脂等が使用できるが、粗物質1よりの精製にはシリ
カゲルが最も有効に利用され、非極・性溶媒、たとえば
石油ェーナル・n−へキサンから展開をはじめ、酢酸エ
チル、アセトン、エタノール、メタノールのような極性
溶媒を添加することにより抗生物質C−15003の熔
出を行う。その1例を示すとシリカゲル(西独メルク
0.05〜0.2側)を担体とし、n−へキサン、酢酸
エチルの混合比を順次増加しながらカラムクロマトグラ
フイーを行い、溶出液をTLCでしらべてC−1500
3を含有するフラクションを集め、減圧濃縮して石油エ
ーテルまたはn−へキサンを加え粗物質0を得る。この
中にはまだ、他の不純物を含むため、つぎの精製を行う
。たとえば溶媒系をかえた第2のシリカゲルカラムによ
り精製する。この場合の展開溶媒には、ジクロルメタン
、クロロホルムのような含ハロゲン炭化水素類から展開
をはじめ、エタノール、メタノールのようなアルコール
類、アセトン、メチルエチルケトンのようなケトン類等
極性溶媒を添加することにより抗生物質C−15003
を分離採取する。第1、第2のシリカゲルカラムの溶媒
の組み合わせは、前後を逆にしても可能であって、その
他通常用いられる有機機溶媒が適宜組み合わされる。粗
物質0の精製手段として、マクロポーラス吸着性樹脂を
用いるとき、抗生物質C−15003を溶出するには、
低級アルコール類、あるいは低級ケトン類、ェステル類
と水との混合物を使用する。 低級アルコール類としては、たとえばメタノール、エタ
ノール、プロパノール、ブタノールなど、低級ケトン類
としては、たとえばアセトン、メチルエチルケトン、ェ
ステル類としては、酢酸エチルなどが利用できる。その
一例を示すと60%メタノール水に粗物質0をとかし、
ダイヤイオンHP−10(三菱化成)カラムに通過させ
て吸着せしめ、70%メタノール水で洗浄後90%メタ
ノール水で溶出すると目的物抗生物質C−15003が
溶出される。いずれの方法でも、得られた抗生物質C−
15003の画分を減圧濃縮し、乾燥物に対して5〜8
倍量の酢酸エチルを加え放置すると抗生物質C−150
03の結晶が析出する。 この結晶中にはC−1500斑−3、P−3およびP−
4が含有され、つぎにこれらはさらに上記の吸着剤を利
用して分離される。すなわち、シリカゲルまたはマクロ
ポーラス非イオン性吸着樹脂を用いて、それぞれ前述の
溶媒により分離溶出することが可能であり、たとえばシ
リカゲルを用いるときは、n−へキサン、酢酸エチル系
またはクロロホルム・メタノ−ル系の溶媒で展開し、C
−1500が−4、P−3、P−3の順序で溶出される
ので、それぞれTLCにより検出後、C−1500が−
4、P−3′、P−3区分を減圧濃縮し、酢酸エチルを
加えてそれぞれの結晶を得ることが出来る。またマクロ
ポーラス非イオン系吸着樹脂を用いるときは、アルコー
ル類、ケトン類、ヱステル類と水との混合比を変える額
斜溶出法、たとえば5%食塩を含む60%メタノール水
と95%メタノール水とを用いた煩斜溶出法を用いると
、C−1500が−3、P−3、P−4の順序で溶出さ
れ、各区分をそれぞれTLCにより検出後減圧濃縮し、
酢酸エチルより結晶として単離採取される。これらの結
晶は酢酸エチルを結晶溶媒として含有するため、70o
o減圧下に五酸化リン上で8時間乾燥後測定される物理
化学的性状はつぎの通りである(第4表)。第4表 上述のように分子式、後述の抗微生物活性および抗腫煽
情性などから既知抗生物質群と比較したが、本抗生物質
C−15003のようなグループは認められなかった。 しかし植物成分その他天然有機化合物群で、同様な紫外
部吸収を示す物質を検索したところ、メイタナシングル
ープがあげられ、特に分子式から窒素2個を含有するメ
ィタナシン(mayねcine)グループであることが
推定される。メィタナシンは植物成分として得られ、そ
の構造は第1図に示され、ジャーナル・オブ・アメリカ
ン・ケミカル・ソサイテイー(JoumalofAme
rican ChemicalSocieツ)、g7巻
、5297頁(1975)に報告されている。またメイ
タナシンのマススベクトルのデータはつぎに示される。 M十一{a】 メイタナシン 545 {a)=KO十日NC0, M+−(a+b)、485−CH3 メイタナシン 485 47
0メイタナシン 485一CI450 C−1500班−3,P−3,P−4でも同様にm/e
48ふ470450が認められることから基本骨格はメ
ィタナシンと同じであるが、3位のアシ−ル基の異なる
ものであることが容易に推定され、抗生物質C−150
03は新規化合物であることが分かる。 C−15003F−3、P−3、P−4をそれぞれアル
カリ分解に付し、生成するカルボン酸をガスクロマトグ
ラフイ一でしらべるとC−1500蛇−3からはィソ酪
酸、C−1500が−3′からはノルマ酪酸、C−15
00犯−4からはィソ青草酸が得られた。 以上のデータからC−1500班−3、P−3、P−4
の推定構造は第1図に示される。 第1図 生物活性 A 抗微生物活性 トリプティカーゼ・ソィ寒天培地(BBL製)を検定培
地として、以下に示す微生物に対する発育阻止能をペー
パー・ディスク法で検した。 すなわち、下記微生物含菌平板培也上でC−1500斑
−3、P−3′およびP−4の300山夕/叫の溶液の
0.02叫をペーパー・ディスク(東洋製作所、薄型、
直径8豚)に含ませたものにより生育阻止能を検した。
その結果、下記微生物に対しては活性を示さなかった。
エシエリヒア・コリ・プロテウス・プルガリス、プロテ
ウス・ミラピリス,シユウドモナス・アエルギノサ、ス
タフイロコツクス・アウレウス、パチルス。 ズブチリス、バチルス・セレウス、クレブジエラ・ニユ
ウモニエ、セラチア・マルセスセンス、ミコバクテリウ
ム・アビウム一方、検定培地〔燐酸二ナトリウム3.5
夕、燐酸ーカリウム0.5夕、酵母エキス(ディフコ)
5夕、グルコース10夕、寒天15夕、蒸留水loo0
の上、pH7.0)の寒天平板を用い、タラロマイセス
・アベラ ネ ウ ス(Talaromycesave
llane雌)を試験菌としてその生育能を検するとC
−1500班−3およびP−3′‘ま、30ムタ/似、
C−1500班−4は1.50山夕/地で生育阻止力を
示した。 また、テトラヒメナ・ピリホルミス (Tetraphymenapyriformjs)W
株を試験微生物とし、検定塔地〔トリプトース・ベプト
ン(ティフコ)20夕、酵母エキス1夕、グルコース2
夕、蒸留水1000肌、1モル燐酸緩衝液pH7.0、
10の‘〕を用い、2が0、4独特間ないし48時間培
養して、液体稀釈検定法により該抗生物質の該微生物発
育阻止能を検した。 その結果、C−1500が−3およびP−3′は10ム
タ/の【またC−1500が−4は0.50ムタ/の‘
で該微生物の発育を阻止することを認めた。B 抗腫場
活性 腰湯細砲P斑8(1×1ぴ 細胞/匹、マウス、腹腔移
植)に対するC−1500*−3、P−3′およびP−
4の治療効果(9日間連続腹腔内投与)を調べた。 その結果、これらの物質によるマウスの延命率は対称に
比し、0.0062の9/k9/日没与で200%を示
す抗腫場作用が認められた。C毒性 マウスを供試験物とした急性毒性試験で、C−1500
が−3、P−3およびP−4を腹腔注射した場合、該抗
生物質はすべてLD,oo値が0.6250M夕/k9
、またLDo値は0.313雌/k9であつた。 上記したように本抗生物質C−15003は糸状菌およ
び原虫に対し、強い発育阻止能を有するので、防徴剤ま
たは抗原虫剤としても有用なものである。 また、抗生物質C−15003は、櫨傷をもつ0甫乳動
物(例、マウスなど)に対し延命効果を示すので、抗腫
凝剤としても有用であると期待される。本抗生物質C−
15003を防徴剤および抗原虫剤して使用するには、
たとえば土壌、活性汚泥または動物体液などの細菌生態
を検する際に有利に使用し得る。 すなわち、土壌から有用な細菌類を分離する場合、また
は溌水処理に用いられている活性汚泥法の運転、解析に
原虫または轍以外の細菌類の作用を検する場合、試料中
に生存する徴または原虫を発育させず、細菌生態を選択
的に発育させることが出来る。具体的には被検試料を液
体または固体培地に添加し、その培地1の‘当りに本抗
生物質10ないし100仏夕/肌‘の1%メタノール含
有水容液を0.1の【添加し、培養する。以上C−15
00班−3、P−3、P−4は新規化合物であり、これ
らはいずれも同一骨格をもっており、さらに有用な医薬
用化合物の中間原料としても利用される。 すなわち脱アシール化反応により、3位が水酸基である
C−100が−0〔メィタンシノール(maれansi
nol)〕を得ることが出来る。この場合アシル基の位
置がカルボニール位のベータ−位にあるため、通常用い
られる還元的水簾反応が有利に利用される。すなわち低
温時(例、一20〜0℃)に錯金属水素化合物〔例、リ
チウムアルミニウムハイドライド(LiAIH4〕を用
い、他の官能基、例えばカルボニール基、ェポオキシ基
、炭素−炭素間二重結合等に影響を与えず、3位のC−
ェステル結合を加水分解することによりメィタンシール
を得ることが出来る。ここに得られたメィタンシノール
の物理化学的性状Kupchanらの記載とよく一致す
る〔ジャーナル・オブ・アメリカン・ケミカル・ソサイ
テイ−97巻、5294〜5295頁(1973王)参
照。〕。実施例 1イーストエキストラクトーマルトエ
キストラクト斜面寒天塔地に培養したノカルディアNo
.C−15003(m013720FERM−P 地.
3992を、200の‘客三角フラスコ内の、グルコー
ス2%、可溶性デンプン3%、生大豆粉1%、コーンス
テイープリカ−1%、ポリベプトン0.5%、NaCI
O.3%、CaC030.5%、pH7.0を含む40
叫の種培地に接種し、4錨時間回転振盤機上で培養し、
種培養液を得た。 得られた種培養液の0.軌(を200の【客三角フラス
コ内の、デキストリン5%、コーンステープリカー3%
、ポリベプトン0.1%、CaC030.5%、PH7
.0を含む4帆【の主塔地に移植し、28oo、90時
間、回転振麹機上で培養した。 この培養液はテトラヒメナ・ピリホルミスWを検定菌と
し、抗生物質C−1500班−3を標準品として液体希
釈法で検定すると25r夕/奴の生産力価を示した。実
施例 2実施例1で得た種培養液の10の‘を種培地5
00心を含む2そ客坂口フラスコに移植し、2800、
4錨時間往復振濠機上で培養した。 この培養液500の【を種塔地30そを含む50そ客ス
テンレス・スチールタンクに移植し、2800、通気3
0そ/分、櫨梓280回転/分(1/幻T)、内圧lk
9夕/洲の条件で48時間培養して種培養液を得た。得
られた種培養液を移植率10%で実施例1に示したもの
と同様の主培地100そを含む200〆容ステンレス・
スチールタンクに移植し、2800、通気100夕/分
、蝿梓200回転/分(1′2DT)、内圧lk9夕/
均の条件で90時間培養した。得られた培養液は実施例
1と同様の検定法で25ムタ/地の生産力価を示した。
実施例 3実施例2で得られた培養液95のこハイフロ
スーパーセル(米国、ジョンズマンヴイル・プロダクト
社)2k9を加えよくかきまぜる。 混合物を加圧式炉過機で炉過し炉液85クおよび湿菌体
32k9を得る。炉液85夕に酢酸エチル30そを加え
縄梓抽出し、この操作を2回くり返す。酢酸エチル層を
合せて水30そ宛で2回水洗し無水硫酸ナトリウム50
0夕を加えて乾燥後200地まで減圧濃縮し石油エーテ
ルを加え、析出する沈澱を炉取する(53夕)。得られ
た粗物質1に酢酸エチル100叫を加えかきまぜ、不溶
物を炉去し、炉液にシリカゲル(西独 メルク社 0.
05〜0.2側)10夕を加えてかきまぜた後、酢酸エ
チルを減圧下に留去しあらかじめ用意したシリカゲルカ
ラム(400の‘)の上端におきnーヘキサン500の
と、nーヘキサン・酢酸エチル(3:1)500私、n
−へキサン・酢酸エチル(1:1)500の‘、n−へ
キサン・酢酸エチル(1:3)500の‘、酢酸エチル
500の‘、酢酸エチル・メタノール(50:1)1夕
を流し溶出液を100M宛分画する。各フランクション
の1の‘宛を濃縮乾固し、0.1の‘の酢酸エチルを加
え、シリカゲルガラスプレート(西独 メルク社 キー
ゼルゲン6価2弦0.25側 20×20)の下端から
2.5肌の位置にスポットし、展開溶媒、酢酸エチル・
メタノール(19:1)で約17cの展開する。展開後
紫外線(2537A)下で吸収像をしらべ、Rfo.6
〜0.6部付近に吸収のあるフアラクション■23〜2
8までを集め約20の‘まで減圧濃縮する。濃縮液に石
油エーテル150地を加え粗物質015夕を得る。実施
例 4 実施例3で得た菌体32kgに70%アセトソ水50そ
を加え3時間燈洋抽出後、加圧式炉過機で炉遇する。 再度70%アセトン水50そで抽出をくり返し、同様病
過して得られた炉液を合せ、減圧濃縮によりァセトンを
轡去する。得られた水性液と、ダイヤイオンHP−10
(三菱化成)5そのカラムに流し20その水と50%メ
タノール水で洗縦後15その90%メタノール水で港出
する。溶出液ご3夕まで減圧濃縮し、水3そ、酢酸エチ
ル3夕を加えふりまぜ、この操作を2回くり返す。酢酸
エチル層を合せ水洗後無水硫酸ナトリウムを加え乾燥後
、200Mまで減圧濃縮し、石油エーテルを加えて析出
する沈澱を炉取する(28夕)。得られた粗物質は実施
例3と同様の方法でシリカゲルカラムにより精製し、粗
物質08.0夕を得る。実施例 5 実施例 3で得た粗物質ロ1.5夕を酢酸エチル10の
‘に溶解し、シリカゲル(西独、メルク社0.05〜0
.2帆)4夕を加えよくかきまぜたのち、酢酸エチルを
減圧で留去する。 あらかじめ用意したシリカゲルカラム300の‘の上端
におき、クロロホルム500のとで洗糠後、クロロホル
ム・メタノール(50:1)500の‘、クロロホルム
・メタール(20:1)500の【、クロロホルム・メ
タノール(10:1)500の‘で溶出する。溶出液は
25私宛分画し、各フラクションの0.5叫を減圧濃縮
して、0.05の上の酢酸エチルを加え、これをサンプ
ルとして、シリカゲルの薄層クロマトグラフィーに付す
(展開溶媒 クロロホルム・メタノール9:1)。Rf
o.50〜0.60に2537Aで吸収像を示すフラク
ション柚.3940を減圧濃縮乾固して酢酸エチル2泌
を加え放置すると抗生物質C−15003の結晶150
柵が得られる。上記で得られた抗生物質C−1500孫
吉晶150の9をメタノール15の上にとかし、これに
食塩300の9、水15のとを加えて溶解する。 ダイヤイオンHP−10(三菱化成)200柵を直径1
.8肌のカラムにつめ5%食塩を含む50%メタノール
水600の‘を流して調整する。先に用意したサンプル
溶液を流した後5%食塩を含む60%メタノール水30
0の‘を流し、5%食塩を含む60%メタノール水1.
5夕と95%メタノール水1.5夕との間で懐斜溶出を
行う。溶出後液は15の‘宛分画し各フランクションを
シリカゲルの薄層ク。マトグラフィーに付して検出する
。フラクシヨン145〜153でC−15003P−3
、フラクシヨン167〜18000でC−15003P
−3とP一4、フラクション185〜19ぴCでC−1
5〜〜が−4が港出される。各々を集めて濃縮し水50
叫、酢酸エチル100の‘を加え溶解し分液ロートに入
れ、ふりまぜたのち水層を分離し、水50叫宛で2回水
洗後、酢酸エチル層を苧硝で乾燥、濃縮して放置すると
それぞれの結晶が析出する。結晶を炉取、乾燥する。C
−1500が‐3 70m9 C−15003P・3、P−4 18のタC−1500
が−4 15m9 C−1500*−3 P−4混合結晶1&9を
酢酸エチル0.3の‘に溶解し、シリカゲルガラスプレ
ート(西独 メルク社、キーゼルゲル6岬2弦0.25
肋 20×20)3板の下端より2.5弧の位置に直線
状に塗布し酢酸エチル・メタノール(19:1)で展開
する。 約18伽展開後、Rfo.68(P−4)、Rfo.6
5(P−3)の吸収像をそれぞれかきとり、少量の水を
含む酢酸エチルで2回別々に抽出し、得られた抽出酢酸
エチルを水洗後無水硫酸ナトリウムで乾燥減圧濃縮して
放電する。Rf値が0.68からC−1500斑−4
10の9、Rf値0.68からC−1500斑−4 1
0のp、Rf値0.65力)らC−15500犯−3
3の9の結晶が得られる。実施例 6実施例2で示した
坂口フラスコ培養液の1そを種借地100そを含む20
0そステンレス・スチールタンクに接種し28qo、通
気100そ/分、縄梓200回転/分で4雛時間培養し
、種培養液を得た。 得られた種培養液を、移植率10%で実施例1に示した
主培地1000〆を含む2000そ客ステンレス・スチ
ールタンクに移植し、28qo、通気1000夕/分、
蝿梓120回転/分(1/釦T)、内圧lk9夕/地の
の条件で9鼠時間培養した。得られた培養液は、実施例
1の検定法で20り夕/泌の生産力価を示した。得られ
た培養液900そに900そのアセトンを加え1時間燈
梓後、ハィフロスーパーセル(米国、ジョンズ・マンヴ
ィル社製)20k9を加えてかきまぜ加圧式炉過機で炉
過する。得られた炉液1700のこ水500そを加え、
酢酸エチル1000そでポド・ヴイニャツク(米国Po
地ielniakINC)を使って抽出する。 得られた酢酸エチル層を水洗し、無水硫酸ナトリウムを
加えて乾燥後、減圧濃縮する。濃縮液に石油ェー7ルを
加え析出する沈澱を炉取し乾燥すると粗物質1 68夕
が得られ、以下実施例3、4、5と同様の方法で精製す
るとC−1500斑−3 9.5タ C−1500*−
3300の9、C−1500*−4 2.5夕がそれぞ
れ得られた。実施例 7 実施例5で得られた抗生物質C−1500球吉晶15脚
をテトラヒドロフラン1机に溶解し、一5℃に冷却する
。 リチウム アルミニウムハイドランド12倣を加え2時
間放置する。反応液に1%比S04水0.5の‘を加え
た後酢酸エチル2の‘を加え抽出する。酢酸エチル層を
水洗し無水硫酸ナトリウムを加えて乾燥後減圧濃縮し、
実施例5で示したと同様にシリカゲルカラムを用いるプ
レパラーティブTLC(溶媒;酢酸エチル:メタノール
=19:1)を行い0.25〜0.3付近の吸収像をか
きとり、少量の水を含む酢酸エチルで抽出、水洗、無水
硫酸ナトリウムで乾燥減圧濃縮すると結晶が析出する。
結晶を炉取乾燥するとC−1500駅−Cが10雌得ら
れる。融点174qo元素分析 C59.65、日6.
58、N5.02、CI6.51、C28日37CIN
208計算値C59.52、日6.60、N4.96、
CI6.27IR1715I670・1580(肌‐1
)UV(nm) 232(32750)、244(sh
30850)252(31650) 281(5750
) 288(5700)本品の性状はメィタンシノール
と一致する。
[11] Either method can be used, such as solvent extraction from the whole culture without separating the bacterial cells, or {21 solvent extraction from each of the bacterial cells and culture solution separated by filtration or centrifugation. When extracting the furnace liquid and the bacterial cells separately, it is advantageous to carry out the following method. Suitable solvents for extraction from furnace liquid include organic solvents that are immiscible with water, such as fatty acid esters such as ethyl acetate and amyl acetate, alcohols such as butanol, halogenated hydrocarbons such as chloroform, and methylisobutyl ketone. Ketones are used. Extraction is carried out at around neutrality, preferably from a culture solution adjusted to pH 7 using ethyl acetate. After washing the extract with water, it was concentrated under reduced pressure, and a non-disruptive solvent such as petroleum ether or n-hexane was added to obtain the crude substance 1 containing the active ingredients.
Collect. This includes antibiotic C-150 on TLC.
Since many spots other than 03 are observed, the following purification steps are used in stages. In other words, various types of adsorption chromatography are effective as commonly used purification methods, and commonly used carriers such as silica gel, alumina, and macroporous nonionic adsorption resins can be used as adsorbents, but crude Silica gel is most effectively used for purification of substance 1, starting with a non-polar solvent such as petroleum alcohol or n-hexane, and adding a polar solvent such as ethyl acetate, acetone, ethanol, or methanol. Antibiotic C-15003 is thereby dissolved. One example is silica gel (West German Merck
0.05 to 0.2 side) as a carrier, column chromatography was performed while increasing the mixing ratio of n-hexane and ethyl acetate sequentially, and the eluate was examined by TLC.
The fractions containing 3 are collected, concentrated under reduced pressure, and petroleum ether or n-hexane is added to obtain crude material 0. Since this still contains other impurities, the next purification is performed. For example, purification is performed using a second silica gel column using a different solvent system. In this case, developing solvents include halogen-containing hydrocarbons such as dichloromethane and chloroform, as well as polar solvents such as alcohols such as ethanol and methanol, and ketones such as acetone and methyl ethyl ketone. Substance C-15003
Separate and collect. The combination of solvents for the first and second silica gel columns may be reversed, and other commonly used organic organic solvents may be combined as appropriate. When using macroporous adsorption resin as a means of purifying crude substance 0, to elute antibiotic C-15003,
A mixture of lower alcohols, lower ketones, or esters and water is used. Examples of lower alcohols include methanol, ethanol, propanol, and butanol; examples of lower ketones include acetone and methyl ethyl ketone; and examples of esters include ethyl acetate. An example is to dissolve crude substance 0 in 60% methanol water,
It is passed through a Diaion HP-10 (Mitsubishi Kasei) column for adsorption, washed with 70% methanol water, and then eluted with 90% methanol water to elute the target antibiotic C-15003. In either method, the obtained antibiotic C-
The fraction of 15003 was concentrated under reduced pressure, and 5 to 8
When double the amount of ethyl acetate is added and left to stand, antibiotic C-150
03 crystals are precipitated. This crystal contains C-1500 spots-3, P-3 and P-
4, which are then further separated using the adsorbent described above. That is, using silica gel or macroporous nonionic adsorption resin, it is possible to separate and elute with the above-mentioned solvents. For example, when using silica gel, n-hexane, ethyl acetate, or chloroform/methanol can be used. Developed with a solvent of the system, C
-1500 is eluted in the order of -4, P-3, and P-3, so after detection by TLC, C-1500 is eluted in the order of -4, P-3, and P-3.
4, P-3', and P-3 fractions can be concentrated under reduced pressure and ethyl acetate can be added to obtain respective crystals. When using a macroporous nonionic adsorption resin, a diagonal elution method that changes the mixing ratio of alcohols, ketones, or esters with water, such as 60% methanol water containing 5% salt and 95% methanol water, is recommended. When using the oblique elution method using C-1500, C-1500 was eluted in the order of -3, P-3, and P-4, and each fraction was detected by TLC and concentrated under reduced pressure.
It is isolated and collected as crystals from ethyl acetate. These crystals contain ethyl acetate as a crystal solvent, so 70o
The physicochemical properties determined after drying over phosphorus pentoxide under reduced pressure for 8 hours are as follows (Table 4). As mentioned above in Table 4, comparisons were made with known antibiotic groups based on the molecular formula, antimicrobial activity and antitumor-stimulating properties described below, but no group such as the present antibiotic C-15003 was observed. However, when we searched for substances that show similar ultraviolet absorption among plant ingredients and other natural organic compounds, we found the maytanacin group, and in particular, the maytancine group, which contains two nitrogen atoms from its molecular formula, was identified. Presumed. Maytanacin is obtained as a plant component, and its structure is shown in Figure 1 and published in the Journal of the American Chemical Society.
rican Chemical Society), Vol. G7, p. 5297 (1975). The mass vector data for maytanacin is shown below. M 11 {a] Maytanasin 545 {a) = KO 10th NC0, M+-(a+b), 485-CH3 Maytanasin 485 47
0Meitanashin 485-CI450 C-1500 Group-3, P-3, P-4 also m/e
Since 48F470450 is observed, it can be easily inferred that the basic skeleton is the same as metanacin, but the acyl group at the 3-position is different, and the antibiotic C-150
It can be seen that 03 is a new compound. When C-15003F-3, P-3, and P-4 were subjected to alkaline decomposition and the resulting carboxylic acids were examined using gas chromatography, it was found that isobutyric acid and C-1500 were derived from C-1500 Snake-3. Normabutyric acid, C-15 from 3'
Isococyanic acid was obtained from 00-4. From the above data, C-1500 group-3, P-3, P-4
The estimated structure of is shown in FIG. Figure 1 Biological Activity A Antimicrobial Activity Trypticase Soy agar medium (manufactured by BBL) was used as a test medium, and the ability to inhibit the growth of the following microorganisms was tested by the paper disk method. That is, on the following microorganism-containing plate culture, 0.02 ml of a solution of 300 ml of C-1500 stain-3, P-3', and P-4 was added to a paper disk (Toyo Seisakusho, thin type,
The growth inhibiting ability was tested by adding it to a pig (diameter: 8 pigs).
As a result, it showed no activity against the following microorganisms.
Escherichia coli Proteus pulgaris, Proteus mirapilis, Pseudomonas aeruginosa, Staphylocotcus aureus, Pacillus. subtilis, Bacillus cereus, Klebsiella pneumoniae, Serratia marcescens, Mycobacterium avium, while assay medium [disodium phosphate 3.5
evening, phosphate-potassium 0.5 evening, yeast extract (Difco)
5 evenings, glucose 10 evenings, agar 15 evenings, distilled water loo0
Using an agar plate (pH 7.0), prepare Talaromyces avellaneus (Talaromycesave).
When the growth ability was examined using C.
-1500 group-3 and P-3'', 30 muta/similar,
C-1500 Group-4 showed growth inhibiting power at 1.50 mountains/ground. In addition, Tetraphymena pyriformis (Tetraphymena pyriformjs) W
The strain was used as the test microorganism, and the assay site [tryptose/beptone (Tifco) 20 days, yeast extract 1 day, glucose 2 hours]
Evening, distilled water 1000ml, 1M phosphate buffer pH 7.0,
10'] and cultured for 0,4 hours to 48 hours, and the ability of the antibiotic to inhibit the growth of the microorganism was examined by liquid dilution assay. As a result, C-1500 is -3 and P-3' is 10 muta/'; C-1500 is -4 is 0.50 muta/'
was found to inhibit the growth of the microorganism. B. C-1500*-3, P-3' and P- against anti-tumor active Koshito P plaque 8 (1 x 1 P cells/mouse, mouse, peritoneal transplant)
The therapeutic effect of No. 4 (continuous intraperitoneal administration for 9 days) was investigated. As a result, the survival rate of mice by these substances was symmetrical, and an anti-tumor effect of 200% was observed at 9/k9/sunset of 0.0062. In an acute toxicity test using C-1500 mice as test materials, C-1500
When P-3, P-3 and P-4 were injected intraperitoneally, all of the antibiotics had a LD,oo value of 0.6250M/k9.
, and the LDo value was 0.313 females/k9. As mentioned above, the present antibiotic C-15003 has a strong ability to inhibit the growth of filamentous fungi and protozoa, and is therefore useful as a preventive agent or an antiprotozoal agent. Furthermore, since antibiotic C-15003 exhibits a life-prolonging effect on mammals (eg, mice) with canker sores, it is expected to be useful as an antitumor agent. This antibiotic C-
To use 15003 as a preventive and antiprotozoal agent,
It can be advantageously used, for example, in examining the bacterial ecology of soil, activated sludge, or animal body fluids. In other words, when separating useful bacteria from soil, or when examining the effects of bacteria other than protozoa or ruts in the operation and analysis of the activated sludge method used for water replenishment treatment, signs of survival in the sample may be detected. Alternatively, it is possible to selectively develop bacterial ecology without allowing protozoa to develop. Specifically, a test sample is added to a liquid or solid medium, and 0.1 of a 1% methanol-containing aqueous solution containing 10 to 100 pieces of this antibiotic per 1 inch of the medium is added. , to culture. Above C-15
Group 00-3, P-3, and P-4 are new compounds, all of which have the same skeleton, and are also used as intermediate raw materials for more useful pharmaceutical compounds. That is, due to the deacylation reaction, C-100, which has a hydroxyl group at the 3-position, becomes -0 [maytansinol (manasi
nol)] can be obtained. In this case, since the acyl group is located at the beta-position of the carbonyl position, the commonly used reductive aqueous reaction can be advantageously used. That is, using a complex metal hydride compound [e.g., lithium aluminum hydride (LiAIH4]) at low temperatures (e.g., -20 to 0°C), other functional groups, such as carbonyl groups, epoxy groups, carbon-carbon double bonds, etc. No influence, 3rd place C-
Meitane seal can be obtained by hydrolyzing the ester bond. The physicochemical properties of maytansinol obtained here are in good agreement with those described by Kupchan et al. [see Journal of the American Chemical Society, Vol. 97, pp. 5294-5295 (King, 1973). ]. Example 1 Nocardia No. cultured on yeast extract malt extract slanted agar tower
.. C-15003 (m013720FERM-P ground.
3992, 2% glucose, 3% soluble starch, 1% raw soybean flour, 1% cornstarch liquor, 0.5% polybeptone, NaCI in a 200' Erlenmeyer flask.
O. 40 containing 3%, CaC030.5%, pH 7.0
The seeds were inoculated into a seed medium and cultured on a rotating shaker for 4 hours.
A seed culture solution was obtained. 0.0 of the obtained seed culture solution. 200 [in the Erlenmeyer flask, 5% dextrin, 3% corn staple liquor]
, polybeptone 0.1%, CaC030.5%, PH7
.. It was transplanted to the main pagoda of 4 tubes including 0 and cultured on a rotary shaking koji machine for 280 hours for 90 hours. This culture solution was assayed by broth dilution method using Tetrahymena pyriformis W as the test bacterium and Antibiotic C-1500 Group-3 as a standard product, and showed a production titer of 25 r/ml. Example 2 10' of the seed culture solution obtained in Example 1 was added to the seed medium 5
00 hearts were transplanted into two customer Sakaguchi flasks, 2800,
Culture was carried out on a reciprocating shaker for 4 hours. 500ml of this culture was transferred to a 50ml stainless steel tank containing 30ml of seed stock, 2800ml, and vented to 3.
0 so/min, Azusa 280 revolutions/min (1/phantom T), internal pressure lk
A seed culture solution was obtained by culturing for 48 hours under the condition of 9 evenings/day. The obtained seed culture solution was transferred to a 200-ml stainless steel plate containing 100 ml of the same main medium as shown in Example 1 with a transplantation rate of 10%.
Transplanted to a steel tank, 2800, ventilation 100 m/min, fly Azusa 200 revolutions/min (1'2 DT), internal pressure lk9 m/min.
The cells were cultured for 90 hours under uniform conditions. The obtained culture solution showed a production titer of 25 Muta/di using the same assay method as in Example 1.
Example 3 Culture solution 95 obtained in Example 2 was added with Hyflo Super Cell 2K9 (Johnsmanville Products, USA) and stirred well. The mixture was filtered using a pressurized filter to obtain 85 kg of furnace liquid and 32 kg of wet bacterial cells. Add 30 ml of ethyl acetate to 85 ml of furnace liquid to extract Nawa Azusa, and repeat this operation twice. Combine the ethyl acetate layers, wash twice with 30ml of water, and add 50ml of anhydrous sodium sulfate.
After drying for 30 minutes, the mixture was concentrated under reduced pressure to 200 degrees centigrade, petroleum ether was added, and the precipitate was collected in a furnace (53 days). To the obtained crude substance 1, 100% of ethyl acetate was added and stirred, the insoluble matter was removed in a furnace, and the furnace solution was mixed with silica gel (Merck & Co., West Germany).
05 to 0.2 side) After stirring for 10 minutes, ethyl acetate was distilled off under reduced pressure and placed on the upper end of a silica gel column (400 mm) prepared in advance. (3:1) 500 i, n
-Hexane/ethyl acetate (1:1) 500%, n-hexane/ethyl acetate (1:3) 500%, ethyl acetate 500%, ethyl acetate/methanol (50:1) for 1 night. Fractionate the eluate to 100M. 1' of each flank was concentrated to dryness, 0.1' of ethyl acetate was added, and 2. 5 Spot on the skin, add developing solvent, ethyl acetate,
Develop about 17c with methanol (19:1). After development, the absorption image was examined under ultraviolet light (2537A) and Rfo. 6
~Furaction with absorption around 0.6 part■23~2
Collect up to 8' and concentrate under reduced pressure to about 20'. Petroleum ether 150 is added to the concentrate to obtain a crude substance of 015. Example 4 To 32 kg of the bacterial cells obtained in Example 3, 50 g of 70% acetosome water was added, and after 3 hours of toyo extraction, the mixture was heated in a pressurized filter. Repeat the extraction with 50 mL of 70% acetone water, combine the filtrate obtained in the same manner, and remove the acetone by concentrating under reduced pressure. The obtained aqueous liquid and Diaion HP-10
(Mitsubishi Kasei) 5. Pour into the column, wash with 20. water and 50% methanol water, and then ship with 90% methanol water. The eluate was concentrated under reduced pressure for 3 days, then 3 portions of water and 3 portions of ethyl acetate were added and mixed, and this operation was repeated twice. The ethyl acetate layers were combined, washed with water, added anhydrous sodium sulfate, dried, concentrated under reduced pressure to 200M, added petroleum ether, and filtered out the precipitate (No. 28). The obtained crude material was purified using a silica gel column in the same manner as in Example 3 to obtain 08.0% of the crude material. Example 5 1.5 μl of the crude material obtained in Example 3 was dissolved in 10 μl of ethyl acetate, and silica gel (Merck & Co., West Germany, 0.05-0.0
.. 2) After adding 4 parts and stirring well, ethyl acetate was distilled off under reduced pressure. Place it on the upper end of a silica gel column 300 prepared in advance, wash it with 500 g of chloroform, add 500 g of chloroform/methanol (50:1), 500 g of chloroform/methanol (20:1), 500 g of chloroform/methanol ( 10:1) elutes at 500'. The eluate was fractionated into 25% fractions, 0.5% of each fraction was concentrated under reduced pressure, 0.05% of ethyl acetate was added, and this was used as a sample for silica gel thin layer chromatography (developing solvent Chloroform/methanol 9:1). Rf
o. Fraction Yuzu showing an absorption image at 2537A between 50 and 0.60. 3940 was concentrated to dryness under reduced pressure, and ethyl acetate was added to it and left to stand, giving 150 crystals of antibiotic C-15003.
You get a fence. Antibiotic C-1500 obtained above 150 parts 9 parts is dissolved on 15 parts methanol, and 300 parts salt and 15 parts water are added and dissolved. Diaion HP-10 (Mitsubishi Kasei) 200 fence with a diameter of 1
.. 8. Adjust by pouring 600ml of 50% methanol water containing 5% salt into the skin column. After pouring the previously prepared sample solution, add 30% methanol water containing 5% salt to 60% methanol water.
0' and 60% methanol water containing 5% salt 1.
Perform oblique elution between 5 hours and 95% methanol water for 1.5 hours. After elution, the solution was fractionated into 15 fractions and each fraction was covered with a thin layer of silica gel. Detection is done by subjecting it to matography. C-15003P-3 with fraction 145-153
, C-15003P with fraction 167-18000
-3 and P-4, fractions 185-19 P-C and C-1
5 - -4 is shipped. Collect each and concentrate to 50% water.
Add 100 parts of ethyl acetate to dissolve, put into a separatory funnel, stir, separate the aqueous layer, wash twice with 50 parts of water, dry the ethyl acetate layer with ramie, concentrate and leave it. Then, each crystal is precipitated. Take the crystals in a furnace and dry them. C
-1500 is -3 70m9 C-15003P・3, P-4 18 no Ta C-1500
-4 15m9 C-1500*-3 P-4 mixed crystals 1 & 9 were dissolved in 0.3' of ethyl acetate, and a silica gel glass plate (West German Merck & Co., Kieselgel 6 Misaki 2 string 0.25
Apply in a straight line at a position 2.5 arcs from the bottom edge of 3 ribs (20 x 20) and spread with ethyl acetate/methanol (19:1). After about 18 degrees of development, Rfo. 68 (P-4), Rfo. 6
The absorption images of 5(P-3) are each scraped off, extracted twice with ethyl acetate containing a small amount of water, and the extracted ethyl acetate obtained is washed with water, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and discharged. Rf value from 0.68 to C-1500 spot-4
9 out of 10, Rf value 0.68 to C-1500 spots-4 1
0 p, Rf value 0.65 force) et al. C-15500 crime-3
3/9 crystals are obtained. Example 6 One sample of the Sakaguchi flask culture solution shown in Example 2 was used.
The seeds were inoculated into a stainless steel tank and cultured for 4 hours at 28 qo, aeration at 100 rpm, and 200 rotations/min to obtain a seed culture. The obtained seed culture solution was transplanted at a transplant rate of 10% into a 2,000 ml stainless steel tank containing 1,000 liters of the main medium shown in Example 1, at 28 qo, with aeration of 1,000 m/min.
The culture was carried out for 9 hours under the conditions of 120 rotations/min (1/button T) and an internal pressure of 9 m/min. The obtained culture solution showed a production titer of 20 cells/secretion using the assay method of Example 1. Add 900 ml of acetone to the resulting culture solution and leave it for 1 hour, then add Hyflo Super Cell (manufactured by Johns Manville, USA) 20k9, stir, and filter through a pressurized filter. Add 1,700 ml of the obtained furnace liquid and 500 ml of distilled water,
Ethyl acetate 1000 sleeves P.O.
Extract using the local IELNIAK INC). The obtained ethyl acetate layer is washed with water, dried with anhydrous sodium sulfate, and concentrated under reduced pressure. When 7 liters of petroleum ale was added to the concentrated solution and the precipitate precipitated was filtered and dried, crude substance 168 was obtained, which was purified in the same manner as in Examples 3, 4, and 5 to obtain C-1500 speck-39. .5ta C-1500*-
9 of 3300 and 2.5 days of C-1500*-4 were obtained, respectively. Example 7 Fifteen legs of the antibiotic C-1500 Kyuyoshi crystal obtained in Example 5 were dissolved in one volume of tetrahydrofuran and cooled to -5°C. Add lithium aluminum hydrand 12 copy and leave for 2 hours. After adding 0.5 parts of 1% S04 water to the reaction solution, 2 parts of ethyl acetate was added for extraction. The ethyl acetate layer was washed with water, added with anhydrous sodium sulfate, dried, and concentrated under reduced pressure.
Preparative TLC using a silica gel column (solvent: ethyl acetate:methanol = 19:1) was performed in the same manner as shown in Example 5, and an absorption image around 0.25 to 0.3 was scraped off. Extract with ethyl, wash with water, dry over anhydrous sodium sulfate, and concentrate under reduced pressure to precipitate crystals.
When the crystals are dried in a furnace, 10 pieces of C-1500-C are obtained. Melting point 174qo Elemental analysis C59.65, day 6.
58, N5.02, CI6.51, C28th 37CIN
208 calculated value C59.52, day 6.60, N4.96,
CI6.27IR1715I670・1580 (skin-1
) UV (nm) 232 (32750), 244 (sh
30850) 252 (31650) 281 (5750
) 288 (5700) The properties of this product are consistent with maytansinol.

Claims (1)

【特許請求の範囲】 1 一般式 ▲数式、化学式、表等があります▼ 〔式中、Rは ▲数式、化学式、表等があります▼ 又は ▲数式、化学式、表等があります▼ で表わ す。 〕で表わされる抗生物質C−15003。 2 ノカルデイア属に属する抗生物質C−15003生
産菌を倍地に培養し、培養物中に抗生物質C−1500
3を生成蓄積せしめ、これを採取することを特徴とする
抗生物質C−15003の製造法。
[Claims] 1. General formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ [In the formula, R is represented by ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ or ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼. ] Antibiotic C-15003. 2 Antibiotic C-15003-producing bacteria belonging to the genus Nocardia were cultured in a medium, and antibiotic C-1500 was added to the culture medium.
A method for producing antibiotic C-15003, which comprises producing and accumulating C-3 and collecting the same.
JP52037166A 1977-03-31 1977-03-31 Antibiotic C-15003 Expired JPS6034556B2 (en)

Priority Applications (45)

Application Number Priority Date Filing Date Title
JP52037166A JPS6034556B2 (en) 1977-03-31 1977-03-31 Antibiotic C-15003
US05/811,448 US4162940A (en) 1977-03-31 1977-06-29 Method for producing Antibiotic C-15003 by culturing nocardia
AU29074/77A AU510499B2 (en) 1977-03-31 1977-09-23 Antibiotic 0-15003
AU29072/77A AU506415B2 (en) 1977-03-31 1977-09-23 Antibiotic c-15003
PH20297A PH13381A (en) 1977-03-31 1977-10-04 Antibiotic c-15003
FR7730339A FR2385714A1 (en) 1977-03-31 1977-10-07 NEW ANTIBIOTIC NAMED C-15003, ITS PREPARATION PROCESS AND ITS APPLICATION AS A MEDICINAL PRODUCT
SU772529301A SU741804A3 (en) 1977-03-31 1977-10-07 Method of preparing antibiotic
GR54548A GR66051B (en) 1977-03-31 1977-10-11
YU02453/77A YU245377A (en) 1977-03-31 1977-10-12 Process for producing antibiotics
HU77TA1459A HU178359B (en) 1977-03-31 1977-10-13 Process for preparing the antibiotic c-15003
CS776678A CS214749B2 (en) 1977-03-31 1977-10-13 Means for treating the diseased plants and method of preparation of active substance
SE7711542A SE442873B (en) 1977-03-31 1977-10-13 PROCEDURE FOR PREPARING A NEW ANTIBIOTICUM C-15003 WITH STATED FORM BY CULTIVATION OF NOCARDIA NO C-15003 (IFO 13726, FERM 3992, ATCC 31281)
HU802440A HU187372B (en) 1977-03-31 1977-10-13 Process for the preparation of c-15003 p-o antibiotic
NLAANVRAGE7711274,A NL188102C (en) 1977-03-31 1977-10-13 METHOD FOR PREPARING ANTIBIOTICS.
NL7711272A NL7711272A (en) 1977-03-31 1977-10-13 PROCESS FOR PREPARING PHARMACEUTICAL PREPARATIONS, AND FORMED PHARMACEUTICAL PREPARATIONS.
DE19772746252 DE2746252A1 (en) 1977-03-31 1977-10-14 ANTIBIOTIC C-15003 MEDICINAL PRODUCT FOR THE TREATMENT OF TUMOROUS WARM BLUETERS
ES463207A ES463207A1 (en) 1977-03-31 1977-10-14 Antibiotic c-15003
AT0736277A AT364081B (en) 1977-03-31 1977-10-14 METHOD FOR PRODUCING NEW ANTIBIOTICS
GB42822/77A GB1586688A (en) 1977-03-31 1977-10-14 Antibiotic c-15003
GB42823/77A GB1592264A (en) 1977-03-31 1977-10-14 Treatment of tumor-carrying animal with antibiotic c-15003
DE19772746209 DE2746209A1 (en) 1977-03-31 1977-10-14 NEW ANTIBIOTIC AND METHOD FOR MANUFACTURING IT
DK458877A DK458877A (en) 1977-03-31 1977-10-14 ANTIBIOTICS
IE2101/77A IE46064B1 (en) 1977-03-31 1977-10-14 Antibiotic c-15003
CA288,731A CA1107212A (en) 1977-03-31 1977-10-14 Antibiotic c-15003
PL1977201541A PL122289B1 (en) 1977-03-31 1977-10-15 Process for preparing novel antibiotic
PL1977221358A PL124349B1 (en) 1977-03-31 1977-10-15 Process for preparing maytansinol
CH1260577A CH637137A5 (en) 1977-03-31 1978-01-01 Antibiotic and process for its preparation
IT21817/78A IT1094020B (en) 1977-03-31 1978-03-30 ANTIBIOTICC C-15003 AND PROCEDURE FOR THE PRODUCTION OF IT AND ITS DERIVATIVES
IT21818/78A IT1094308B (en) 1977-03-31 1978-03-30 ANTIBIOTIC COMPOSITION AND RELATED PROCEDURE FOR TREATMENT OF ANIMALS AFFECTED BY TUMORS
PT67854A PT67854B (en) 1977-03-31 1978-03-30 Antibiotic c-15003
ZA00781863A ZA781863B (en) 1977-03-31 1978-03-31 Treatment of tumor-carrying animal with antibiotic c-15003
BE186486A BE865589A (en) 1977-03-31 1978-03-31 ANTIBIOTICS AND THEIR PREPARATION
BE186487A BE865590A (en) 1977-03-31 1978-03-31 ANTIBIOTIC COMPOSITIONS AND THEIR USE
ZA00781862A ZA781862B (en) 1977-03-31 1978-03-31 Antibiotic c-15003
SU782627804A SU890978A3 (en) 1977-03-31 1978-06-20 Method of preparing c-15003p-0 antibiotic
ES472230A ES472230A1 (en) 1977-03-31 1978-07-31 Antibiotic c-15003
AT822678A AT362061B (en) 1977-03-31 1978-11-17 METHOD FOR PRODUCING A NEW ANTIBIOTIC
US05/972,492 US4225494A (en) 1977-03-31 1978-12-22 Maytansinol esters
PH22216A PH15985A (en) 1977-03-31 1979-02-20 A method for producing maytansinol
US06/131,787 US4320200A (en) 1977-03-31 1980-03-19 Antibiotic
DK338880A DK148180B (en) 1977-03-31 1980-08-06 METHOD OF MANUFACTURING MAYTANSINOL
CA000373582A CA1121814A (en) 1977-03-31 1981-03-20 Antibiotic c-15003
US06/313,974 US4360462A (en) 1977-03-31 1981-10-22 Process for preparing maytansinol
YU01785/82A YU178582A (en) 1977-03-31 1982-08-17 Process for obtaining antibiotics
SE8302517A SE446004B (en) 1977-03-31 1983-05-03 PROCEDURE FOR THE PREPARATION OF ANTIBIOTIC C-15003 P-O (MAYTANSINOL)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52037166A JPS6034556B2 (en) 1977-03-31 1977-03-31 Antibiotic C-15003

Publications (2)

Publication Number Publication Date
JPS53130693A JPS53130693A (en) 1978-11-14
JPS6034556B2 true JPS6034556B2 (en) 1985-08-09

Family

ID=12490004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52037166A Expired JPS6034556B2 (en) 1977-03-31 1977-03-31 Antibiotic C-15003

Country Status (6)

Country Link
JP (1) JPS6034556B2 (en)
AT (1) AT364081B (en)
BE (2) BE865590A (en)
HU (1) HU187372B (en)
SU (2) SU741804A3 (en)
ZA (2) ZA781863B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7432088B2 (en) * 2003-05-08 2008-10-07 Immunogen Inc. Methods for the production of ansamitocins
DK3486248T3 (en) * 2012-09-26 2021-07-12 Immunogen Inc IMPROVED PROCEDURES FOR ACYLATION OF MAYTANSINOL
CN116421733B (en) * 2023-06-08 2023-09-12 金宇保灵生物药品有限公司 Vaccine heat-resistant protective agent for live vaccine of swine pasteurellosis

Also Published As

Publication number Publication date
ZA781862B (en) 1979-03-28
BE865589A (en) 1978-10-02
BE865590A (en) 1978-10-02
SU741804A3 (en) 1980-06-15
HU187372B (en) 1985-12-28
AT364081B (en) 1981-09-25
JPS53130693A (en) 1978-11-14
SU890978A3 (en) 1981-12-15
ZA781863B (en) 1979-03-28
ATA736277A (en) 1981-02-15

Similar Documents

Publication Publication Date Title
JPS6253158B2 (en)
JPS6016236B2 (en) Production method of antibiotic C-15003 P-3
KR960016874B1 (en) Microbial process for the production of trans-4-hydroxy-l-proline
JPS6010718B2 (en) Process for producing maytansinol, maytanacin and maytansinol propionate
US4764602A (en) Antibiotics, and their production
JPS6034556B2 (en) Antibiotic C-15003
JPH0366302B2 (en)
US4550021A (en) Antitumor antibiotic 81-484 and process for its production
JPS6010720B2 (en) Production method of antibiotic C-15003 P-4
US4332902A (en) Antibiotic substance
US4292309A (en) Antibiotics C-14482 B1, B2 and B3
KR810001056B1 (en) Process for preparing antibiotic c-15003
KR810000510B1 (en) Process for preparation of maytansinol derivatives
JPS6210048A (en) Novel physiologically active substance mh435
KR830001245B1 (en) Method of preparing antibiotic mycoplanesin
KR820001433B1 (en) Method for producing antibiotic c 15003 p 4
JP4235298B2 (en) Antibiotic pareic acid A and its production method
JPH0337559B2 (en)
JPS6016237B2 (en) Production method of antibiotic C-15003 P-2
JPH03240495A (en) New physiologically active substance cyclooctatin, production and use thereof
JPS62186787A (en) Novel microorganism
JPH0372618B2 (en)
JPS6348284A (en) Novel antibiotic yp-02908l-a and production thereof
JPS5918035B2 (en) Antibiotic AB-85
JPS5929237B2 (en) Antibiotics C-14919E-1 and E-2