JPS602641A - 耐孔食、耐隙間腐食、耐全面腐食用高耐食アモルフアスニツケル基合金 - Google Patents

耐孔食、耐隙間腐食、耐全面腐食用高耐食アモルフアスニツケル基合金

Info

Publication number
JPS602641A
JPS602641A JP10240684A JP10240684A JPS602641A JP S602641 A JPS602641 A JP S602641A JP 10240684 A JP10240684 A JP 10240684A JP 10240684 A JP10240684 A JP 10240684A JP S602641 A JPS602641 A JP S602641A
Authority
JP
Japan
Prior art keywords
corrosion
alloy
amorphous
atomic
pitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10240684A
Other languages
English (en)
Other versions
JPS6227145B2 (ja
Inventor
Koji Hashimoto
功二 橋本
Takeshi Masumoto
健 増本
Katsuhiko Asami
勝彦 浅見
Masashi Kasatani
笠合 昌史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute for Iron Steel and Other Metals of Tohoku University
Original Assignee
Research Institute for Iron Steel and Other Metals of Tohoku University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute for Iron Steel and Other Metals of Tohoku University filed Critical Research Institute for Iron Steel and Other Metals of Tohoku University
Priority to JP10240684A priority Critical patent/JPS602641A/ja
Publication of JPS602641A publication Critical patent/JPS602641A/ja
Publication of JPS6227145B2 publication Critical patent/JPS6227145B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 本発明は苛酷な腐食環境に耐え、製造の容易な耐孔食、
耐隙間腐食、耐全面腐食用高耐食アモルファスニッケル
基合金に関するものである。
通常の耐食性鉄基合金およびニッケル基合金、例えば、
SUS 804 、SUS 816 、カーペンタ−2
0(商標)、インコネル600(商標)、ハステロイC
(商標)などは、優れた耐食性を有し、化学工業用装置
をはじめ腐食性環境で広く使用されている。しかし、S
US 804 、SUS 816をはじめ、ニッケル含
量のさほど高くないステンレス鋼はモリブデンを添加し
ても、ハロゲンイオンを含む苛酷な環境において容易に
孔食、隙間腐食を発生し、比較的穏やかな腐食性環境で
のみ使用されている。
また、インコネル600をはじめとする高ニッケル合金
といえども苛酷な腐食性環境においては、孔食、隙間腐
食、および、全面腐食によって急速に肉厚が減少するな
ど、安全性および経済性から重大な問題となっている。
このような通常の結晶質合金の耐食性を改善する方法と
して酸化力の乏しい通常の腐食性環境でも均一な不働態
保護被膜の形成すなわち自己不働態化に極めて有効な多
量のPを添加することが考えられる。しかし多量のPの
添加はその材料の機械的性質、加工性などを著しく劣化
させ、脆性の問題を引起すので不可能であった。また、
結晶質合金には、多くの格子欠陥が含まれているため環
境の酸化力をあげて不働態化させても、均一な不働態被
膜を形成し得ないため、十分な耐食性が得られない。
これに対し、本発明者等は先にこれらの欠点を改善する
ため耐孔食、耐隙間腐食、耐応力腐食割れ、耐水素脆性
用アモルファス鉄合金を発明し、特許出願した(特開昭
51−4・017号、特開昭51−4019号)。
また特開昭51−12311号公報、特開昭51−12
812号公報にはそれぞれ下記の如き強度および耐食性
にすぐれた非晶質合金が開示されている。
すなわち[鉄、コバルトおよびニッケル等の周期律表第
8族遷移元素の一種または二種以上と、半金属元素の一
種または二種以上に、第6a族元素の一種または二種以
上を、その合金の融点が、合金を構成する第8属元素と
半金属元素のいずれかとの二元系の共晶温度のうち、も
つとも高い温度からプラス150°C以内になるように
含有させ、溶融状態から800°Cまでの温度範囲を毎
秒105°C以上の冷却速度で急冷凝固させることを特
徴とする強度および耐食性にすぐれた非晶質合金。」お
よび「鉄、コバルトおよびニッケル等の周期律表第8族
遷移元素の一種または二種以上と、窒素、アルミニウム
、いおうおよび錫の一種または二種以上および半金属元
素の一種または二種以上に第6a族元素の一種または二
種以上を、その合金の(8) ・融点が、合金を構成する第8族元素と、添加された窒
素、アルミニウム、いおう、錫および半金属元素のいず
れかとの二元系の共晶温度のうち、もつとも高い温度か
らプラス150°C以内になるように含有させ、溶融状
態から800°Cまでの温度範囲を毎秒105°C以上
の冷却速度で急冷凝固させることを特徴とする強度およ
び耐食性のすぐれた非晶質合金。」である。しかして前
記両公開公報によれば、発明の合金成分組成範囲は共に
明確でなく、かつ耐食性について「すなわちクロム、モ
リブデン、タングステンの添加は結晶化温度を高めて非
晶質としての使用温度の上限を高めるとともに強度も高
く、さらに耐食性でもすぐれることを見出した。」と記
載されており、耐食性については・実施例に1モルHa
t中自然浸漬による腐食減量がそれぞれ1例づつ記載さ
れているが、何れも鉄基非晶質合金についての実施例で
ある。
本発明者等は、本発明者等が先に特許出願した前記アモ
ルファス鉄合金以外のアモルファスニッケル基合金につ
いて研究し、アモルファスニッケ(4) ル基合金は、アモルファス鉄基合金より更に製造が容易
であり、かつ、46%7ツ酸溶液というような苛酷な腐
食環境においても、全く腐食されないなどきわめて高い
耐食性を有することを新規に知見した。
本発明は、耐孔食、耐隙間腐食、耐全面腐食性に優れる
高耐食アモルファスニッケル基合金を提供することを目
的とし、下記に述べるそれぞれの成分組成を有するアモ
ルファスニッケル基合金を提供することによってその目
的を達成することができる。
15〜40原子%Q?および5〜85原子%のPと、2
0原子呪以下のBをP、Bの合計で15〜85原子%含
み、残部実質的にNiよりなるアモルファスニッケル基
合金。
& 5〜40原子%のOrおよび5〜85原子%のPと
20原子%以下のBと、20%以下のSlをP 、 S
i 、 Bの合計で15〜85原子%を含み、かつ8原
子%以下のA4を含みOr 、 P 。
Si 、 B 、 )lの合計が60原子%未満で残部
実質的にNiよりなるアモルファスニッケル基合金。
& 5〜40原子%のcrおよび5〜85原子%のPを
含み、さらにそれぞれ20原子%以下のBと、5原子%
以下のSiとをP 、 Si 、 Bの合計で15〜3
5原子%含み、Or 、 P 、 Si、Bの合計が6
0原子%未満で残部実質的にNiからなり、苛酷な腐食
環境に耐える耐孔食、耐隙間腐食、耐全面腐食用高耐食
アモルファスニッケル基合金。
本発明のアモルファスニッケル合金は、アモルファス合
金の特徴である高い強さと靭さを更に向上させかつ高耐
食性を合金に付与するクロムと、クロムを主体とする高
耐食性不動態保護被膜が酸化力の乏しい苛酷な腐食性環
境においても自然に生成する自己不働態化にきわめて有
効なPとを多量に添加することができ、しかも、腐食の
起点となる欠陥を含まず、苛酷な腐食性環境における腐
食速度の小さな製造の容易な合金である。これが本発明
の合金が苛酷な腐食性環境においても孔食、値開腐食、
全面腐食をうけず、異常に高い耐食性を有する理由であ
る。
次に本発明を実験データに基いて説明する。
第1表に示す組成のアモルファス合金について各種腐食
試験を行なった。また比較のため市販の各種ステンレス
鋼および高ニッケル合金についても同様の試験を行なっ
た。
腐食試験は、80 ”C(7) I MH2So、 、
 I NNaC1j 。
I NHO7,10%H’F、46%HF、10%Fe
c/8−6H20および60℃の10%FeCl3・6
H20溶液にプラスティック線でつるして浸漬すること
によって行ない、浸漬前後の重量変化をマイクロバラン
スを用いて測定して耐全面腐食性、および耐孔食性を評
価した。また試料の一部にテフロン板を密着させた浸漬
試験の重量変化から耐隙間腐食性を調べた。
(7) 第1表 アモルファスニッケル合金の組成(原子%)(
8) I XI(,804およびI N Nap/中において
、3原子%Orを含訃本発明に属しないアモルファス合
金は、市販の5US804と同程度の腐食速度であった
が、本発明の第2表に示すように5原子%Qrを含む試
料A 21は画情液でわずかに腐食するのみである。試
料A22〜25 、/Fa 28〜31にあっては画情
液中、1週間の浸漬試験においては重量変化が全く検出
されない。即ちこの結果は腐食零を示す。
第2表 腐食試験結果 80°C(rruycm2/年
)一方、第3表でわかるように本発明試料A 21〜2
5、A 28〜31は、SUS [4に激しい全面腐食
、孔食、隙間腐食の発生するHCl溶、液中においても
完全な耐食性を示し、1週間の浸漬試験においては重量
変化が検出されない。
第3表 IN食試験結果 また、第4表に示すHF中という苛酷な環境においては
、現用高ニッケル合金中綴高級合金の一つであるハステ
ロイCにも全面腐食および隙間腐食が発生するが本発明
の試料A21〜25、A28〜81には腐食による重量
変化が検出されない。
第4表 7ツ酸中における腐食試験結果 30°Cステ
ンレス鋼の孔食試験に通常用いられる30°Cおよび6
0°C(7)10%F60/8−6H,0溶液中に浸治
し、試料の表面観察および重量変化の測定を行なった結
果を第5表に示す。Qr含量の少ない試料煮21におい
てもわずかな腐食が見られるだけであって、孔食という
危険な腐食形態はあられれない。また比較例のSUS 
804およびSUS 816Lに限らず、現用のステン
レス鋼の全鋼種に孔食および隙間腐食が発生する60°
Cの溶液においても、本発明合金煮21〜25 、A 
28〜81には孔食および隙間腐食が全く発生せ7ず重
量減少も検出されない。
(11) 本発明合金に孔食が発生しないことを一層明確にするた
め、I N Na0lおよび、I MH,So、+o、
IN’NaOl中におけるアノード分極曲線を測定し、
孔食電位の存在の有無を調べた。その結果を第6表に示
す。SUS 804、SUS 8161.+に限らず、
ステンレス鋼にはいずれも孔食発生電位があられれるが
、本発明合金には孔食発生電位があられれず、完全(1
2) に不働態化し、腐食減量も検出されない。
第4表 アノード分極曲線による孔食電位の測定以上第
1〜6表に明らかなようにcr 、 pを含むアモルフ
ァスニッケル合金は、孔食、隙間腐食、全面腐食をうけ
ず、現用ステンレス鋼および高ニッケル合金との比較を
絶する異常に高い耐食性を有する。
この優れた性質は、ニッケルを基としてQr 。
Pが共存すること、および本合金特有の構造、すなわち
アモルファス構造に由来するものである。
p 、 B 、 si 、 htの適量の添加はアモル
ファス構造を得るために必要かつ、有効である。
次に本発明における各成分組成を限定する理由を述べる
Orについては、これを5原子%未満にすると、耐孔食
性、耐隙間腐食性、耐全面腐食性が劣化し、40原子%
を越えるとアモルファス構造をうろことが困難になるの
で、5〜40原子%の範囲内にすることが必要であり、
なかでも7〜20原子%のとき良い結果が得られる。
Pはアモルファス構造を得るのに必要かつ有効な元素で
あり、同時に合金の自己不働態化を促進する元素である
。本発明の第1.2.8の発明においてPが5原子%未
満のときは自己不働態化を促進せず耐食性が低下し、8
5原子%より多いとアモルファス構造を得ることが困難
になるので、Pは5〜35原子%の範囲内にする必要が
ある。
第1発明において、Bはアモルファス構造を得るのに有
効な元素である。また第8発明においてB 、 siは
同じくアモルファス構造を有するのに有効でありB 、
 Siの合計が20原子%を越えるとアモルファス構造
を得るのが困難になる。なお、Si 、 BとPの合計
が15原子%未満あるいは35原子%を越えるとアモル
ファス構造を得ることが困難になる。
したがってSi 、 BとPとの合計は15〜85原子
%の範囲内にする必要があり、なかでも20〜25原子
%のとき最も良い結果が得られる。
第2の発明において、Alはアモルファス構造を得やす
くする元素であるが、0.5原子%以下が最適である。
また第2又は第3の発明において、必須成分であるOr
 、 P 、 Bと選択成分であるSi又はAIとの合
計が60原子%以上を含むと、本発明の目的とする異常
に高い耐食性がやや損なわれるので、前記合計は60原
子%未満にする必要がある。
次に本発明のアモルファス合金の製造方法を説明する。
本発明の成分組成を有する合金溶湯を溶融状態から10
4°C/秒以上の冷却速度で超急冷することにより非晶
質の合金を製造することができる。前(15) 部冷却速度が104℃/秒より遅いと結晶質化し、完全
に非晶質化することができないので、104℃/秒以上
の冷却速度で超急冷することが所要の物性を得るに必要
である。
前記本発明のアモルファス合金を製造するには、例えば
第1.2.8図に概略を示す装置の何れかを用いること
ができる。
第1図において、lは下方先端に垂直にノズル5を有す
る石英管で、この石英管1の上端に設ける送入口2より
原料4ならびに不活性ガスを送入することができる。石
英管1の下方にノズル8を設け、ノズル8の先端に原料
4を溶融状態で噴出するスパウト5を設ける。前記ノズ
ル8を加熱する加熱炉6をノズル8を取巻いて設ける。
スパウト5の垂直下方で外接あるいは僅かに離隔させる
ことのできるA、B2本の高速回転ロール8を設ける。
原料4をノズルa内で不活性ガス雰囲気下で加熱炉6に
よって加熱溶融させた溶湯をモーター7によって100
0〜e o o o r、p、mの高速回転されるA、
B2本のロール8間に連続的に落下性(16) 入させると、前記溶湯は凝固圧延されてアモルファス合
金を製造することができる。前記ロールの離間距離およ
び溶湯の落下注入量を調整することによって、通常部3
0〜40μ、1lf11〜5 tnm 、長さ数mのリ
ボン状アモルファス合金を有利に製造することができる
第2図に示す装置は、溶湯を溶出し落下させるまではそ
れぞれ第1図に示す装置と同一であるが(第1図の1,
2・・・・・・7はそれぞれ第2図の101゜102・
・・・・・107に対応する)、第2図の装置にあっ。
ては溶湯を高速回転する1枚の円板の外周面上に落下さ
せて遠心力でリボン状に成形させつつ超急冷するように
した装置である。
第3図に示す装置において、2o1は下方先端に水平方
向に噴出するノズル202を有する石英管で、その中に
は原料金属203が装入され、溶解される。204は原
料金属208を加熱するための加熱炉であり、205は
モーター206により高速度、例えば5000 r、p
、mで回転される回転ドラムで、これは、ドラムの回転
による遠心力負荷をできるだけ小さくするため、軽量で
熱伝導性の良い金属、例えばアルミニウム合金よりなり
、内面には更に熱伝導性の良い金属、例えば銅板207
で内張すされている。208は石英管201を支持して
上下に移動するためのエアピストンである。原料金属は
、先ず石英管201の送入口201aより流体搬送等に
より装入され加熱炉204の位置で加熱溶解され、次い
でエアピストン208により、ノズル202が回転ドラ
ム205の内面に対向する如く、石英管201が図に示
す位置に下降され、次いで上昇を開始するとほぼ同時に
溶融金属203にガス圧が加えられて、金属が回転ドラ
ムの内面に向かって噴流される。石英管内部へは金属2
08の酸化を防ぐため絶えず不活性ガス、例えばアルゴ
ンガス209を送入し不活性雰囲気としておくものとす
る。回転ドラム内面に噴流された金属は高速回転による
遠心力のため、回転ドラム内面に強く接触せしめられる
ことにより、超高速急冷却が与えられてアモルファス合
金とすることができる。
以上節1.2.8図にそれぞれ示す装置によれば繊維状
あるいはリボン状のアモルファス合金を製造することが
できる。
次に本発明を実施例について説明する。
実施例 1 クロム9原子%、リン15原子%、ホウ素5原子%、残
部ニッケルよりなる原料合金を前述の方法によって、加
熱溶解後、高速冷却してアモルファス合金を得た。この
アモルファス合金は、組成物にきわめて容易に製造でき
、かつ前記第2〜6表に示す諸試験においても何等の欠
点を示さなかった。とりわけ、第4表に示すように現用
最高級合金の1つであるハステロイCにすら腐食の発生
する苛酷な腐食環境である10%および46%HF溶液
中においても腐食による重量変化がマイクロバランスを
用いても検出されず、きわめて高い耐食性を示した。上
記第2〜6表の諸試験の結果苛酷な腐食環境における孔
食、隙間腐食、全面腐食に耐える合金であることが判明
した。
(19) 実施例 2 クロム9原子%、リン15原子%、ホウ素5原子%、’
rイ素5原子%、残部ニッケルからなる原料合金を前述
の方法で加熱溶解後、高速冷却してアモルファス合金を
得た。この合金も実施例1の合金と同様に製造が容易で
第2〜6表に示す諸試験においても実施例1の合金と変
わらない優れた諸性質を有していた。
実施例 8 り四ム9原子%、リン15原子%、ホウ素5原子%、ア
ルミニウム0.5原子%、残部ニッケルからなる合金を
前述の方法で加熱溶解後高速冷却してアモルファス合金
を得た。この合金も、実施例1および2と同様に製造が
容易であり、かつ、実施例1および2より、クロム含量
が同じにもかかわらず、アルミニウム添加の効果のため
に第2〜6表に示す諸試験において実施例1および2の
合金と変わらない優れた諸性質を有していた。
実施例 4 試料:スポンジニッケルお上り赤リンを原料としく 2
0 ) て、二段焼結法によりNi −P母合金を製造した。
これにNi 、 Or 、 B等を添加し、アルゴン雰
囲気中で溶解して非晶質合金製造用原料とし、この合金
を再溶解後、液体圧延急冷法により非晶質化した。試料
の形状は、圧延機のロールの回転数と液体の噴出圧によ
り異なるが、はぼ厚さ50〜30μ、幅2〜6酷のリボ
ン状となった。
自然浸漬試験: これを10%Fe、Ot8水溶液中で、液温を80℃に
保持して、168時間浸漬し、その重量変化をマイクロ
バランスで測定した。
分極測定: 試料をI M H2So4溶液およびINH(、!溶液
中において、自然浸漬電位に1時間浸漬後、各電位に8
0分間保持して、定電位アノード分極曲線を測定した。
不働態皮膜のE、S、O,Aによる解析;次に試料をI
 M H,So、およびI N He/中で定電位に1
時間保持した後、ただちに水洗し、アルコール乾燥後測
定に供した。これらの測定はMgKα0.。
線を励起源として行なった。
結 果: (1)非晶質合金の製造: 製造した非晶質合金の組成および結果を第7表にまとめ
て示す。一般に、非晶質化は、その冷却速度すなわち圧
延法においては、ロールの回転数と噴出圧および液体の
温度によって決定される。したがって、非晶質化しやす
い金属は、非晶質化の条件範囲が広くなり、液体の温度
が多少高くても良く、また冷却速度が低くても非晶質化
しうる。
第7表において、結果が○印で示されるものは非晶質化
の条件が広いものであり、Δ印のものは非晶質化するが
、製造条件を変えると非晶質化が困難な場合があるもの
で、×印のものは十分に非晶化する条件が見出されなか
ったものである。非晶質化に対するQr添加の影響は9
 atm(28) %以下では顕著に表われない。また、Si 、 A1等
を少量添加することは非晶質化の条件を広くする。また
杢糸の特長はFe −Or −P −0系に比べてはる
かに融点が低いことでありこのため非晶質合金の製造が
容易である。
(2)自然浸漬結果: 80℃の10%Fee18−6f(2o溶液中における
168時間浸漬による重量変化からめた腐食速度を第8
表に示す。
合金組成 腐食量(minA4) Ni(3r8P15B、 slx 10−’Nl0r 
gP 15 B52 X 10− ’Ni0r7P、、
B50 x 1O−4NiCr、P、、B、 OX 1
0−’腐食速度はOr量が増加するにつれて減少し70
r合金および90r合金ではマイクロバランス(24) で重量変化が検出できなかった。また孔食等の発生も全
くなく、7Cr合金および90r合金は優れた耐食性、
耐孔食性を示した。
(3)分極測定結果: 非晶質Ni−0r−P15−B5合金の定電位分極曲線
を第4図に示す。非晶質鉄基合金の場合と同様に自然電
極電位は純クロムの不働態域にあり1したがって活性能
は認められない。不働態域の電流密度はクロム量の増加
とともに減少している。また、I N HCl中の方が
I M H2SO,中よりも電流密度が小さく、孔食発
生電位は認められない。
添加元素による非晶質ニッケル基合金のアノード分極曲
線の変化を第5図に示す。添加元素として少量のSiの
添加は、非晶質化を極めて容易にするが、耐食性はSi
量の増加とともに減少することを示している。少量のA
/の添加はSi同様、非晶質化を容易にし、耐食性には
さほどの影響を与えないため、耐食性非晶質合金の製造
上有効である。
、(4) E、S、O,Aによる不働態皮膜の解析結果
高い耐食性、耐孔食性をもつ7 atm%以上のQrを
含訃非晶質合金を用い、I N HOI 、 I MH
2So、中種々の電位で生じた不働態皮膜の解析を行な
った。非晶質Ni基合金の不働態皮膜中には、酸化状態
のNiはほとんど存在せず、著しいQrの濃縮が認めら
れる。E、S、C,Aスペクトルの詳細な解析の結果、
クロムを含む非晶質ニッケル基合金の不働態皮膜は、ク
ロムを含む鉄基非晶質合金、各棹ステンレス鋼および高
ニッケル合金の不働態皮膜と同様、高耐食性皮膜がある
と想定されるオキシ水酸化クロムが主であると考えられ
る。
本発明のアモルファスニッケル基合金は、テープ状線ま
たは薄板として構造が容易であり、従来の実用金属材料
では実現しえない異常に高い耐食性と優れた機械的性質
を有し、各4sl+凸・、塩化物で安定に使用しうる。
したがって′、化学プラントなど苛酷な環境において、
耐孔食性、耐隙間腐食性あるいは耐全面jN食性を要求
される部分の材料としての用途に適するものである。
【図面の簡単な説明】
第1図は本発明の合金を溶融状態から圧延超急冷す・る
に用いられる装置の概略を示す説明図、第2図は同じく
円板による超急冷する装置の概略を示す説明図、 第3図は同じく遠心法によって超急冷する装置の概要を
示す説明図、 第4図は本発明非晶質(Nl −cr −PI s −
Bs )合金の定電位分極曲線に及ぼすCrの形層を示
す特性図、 第5図はI M H2SO4中における本発明非晶質N
i −Or −P□、−B5合金の定電位分極曲線に及
ぼす添加元素(Al、 Si )の影響を示す特性図で
ある。

Claims (1)

  1. 【特許請求の範囲】 15〜40原子%のQrおよび5〜35原子%のPと、
    20原子%以下のBを、P、Bの合計で15〜35原子
    %含み、残部実質的にN1からなり、苛酷な腐食環境に
    耐える耐孔食、耐隙間腐食、耐全面腐食用高耐食アモル
    ファスニッケル基合金。 25〜40原子%のOrおよび5〜35原子%のPと、
    20原子%以下のBをP 、 Si 。 Bの合計で15〜85原子%含み、がっ0.5原子%以
    下のAlを含み、Or 、 P 、 B 、 Alの合
    計が60原子%未満で残部実質的にNiからなり、苛酷
    な腐食環境に耐える耐孔食、耐隙間腐食、耐全面腐食用
    高耐食アモルファスニッケル基合金。 & 5〜40原子%のQrおよび5〜85原子%のPを
    含み、さらにそれぞれ20原子%以下のBと、5原子%
    以下のSiとをP 、 Si 。 Bの合計で15〜85原子%含み、Or、 p tSi
     、 Bの合計が60原子%未満で残部実質的にNiか
    らなり、苛酷な腐食環境に耐える耐孔食、耐隙間腐食、
    耐全面腐食用高耐食アモルファスニッケル基合金。
JP10240684A 1984-05-21 1984-05-21 耐孔食、耐隙間腐食、耐全面腐食用高耐食アモルフアスニツケル基合金 Granted JPS602641A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10240684A JPS602641A (ja) 1984-05-21 1984-05-21 耐孔食、耐隙間腐食、耐全面腐食用高耐食アモルフアスニツケル基合金

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10240684A JPS602641A (ja) 1984-05-21 1984-05-21 耐孔食、耐隙間腐食、耐全面腐食用高耐食アモルフアスニツケル基合金

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP13229076A Division JPS5950745B2 (ja) 1976-11-05 1976-11-05 耐孔食、耐隙間腐食、耐全面腐食用高耐食アモルフアスニツケル基合金

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP26899585A Division JPS61243142A (ja) 1985-11-29 1985-11-29 耐孔食、耐隙間腐食、耐全面腐食用高耐食アモルフアスニツケル基合金

Publications (2)

Publication Number Publication Date
JPS602641A true JPS602641A (ja) 1985-01-08
JPS6227145B2 JPS6227145B2 (ja) 1987-06-12

Family

ID=14326551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10240684A Granted JPS602641A (ja) 1984-05-21 1984-05-21 耐孔食、耐隙間腐食、耐全面腐食用高耐食アモルフアスニツケル基合金

Country Status (1)

Country Link
JP (1) JPS602641A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6379932A (ja) * 1986-09-24 1988-04-09 Mitsui Eng & Shipbuild Co Ltd 高耐食アモルファス合金
JPS6379931A (ja) * 1986-09-24 1988-04-09 Mitsubishi Metal Corp 高耐食アモルフアスニツケル合金
WO2012053570A1 (ja) 2010-10-20 2012-04-26 株式会社中山製鋼所 高延性、高耐食性で耐遅れ破壊性に優れたNi基アモルファス合金
US20140076467A1 (en) * 2012-09-17 2014-03-20 Glassimetal Technology Inc. Bulk nickel-silicon-boron glasses bearing chromium
JP2015183290A (ja) * 2014-03-26 2015-10-22 日本冶金工業株式会社 Ni基合金およびその製造方法
US11905582B2 (en) 2017-03-09 2024-02-20 Glassimetal Technology, Inc. Bulk nickel-niobium-phosphorus-boron glasses bearing low fractions of chromium and exhibiting high toughness

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6379932A (ja) * 1986-09-24 1988-04-09 Mitsui Eng & Shipbuild Co Ltd 高耐食アモルファス合金
JPS6379931A (ja) * 1986-09-24 1988-04-09 Mitsubishi Metal Corp 高耐食アモルフアスニツケル合金
JPH0465896B2 (ja) * 1986-09-24 1992-10-21 Mitsui Zosen Kk
WO2012053570A1 (ja) 2010-10-20 2012-04-26 株式会社中山製鋼所 高延性、高耐食性で耐遅れ破壊性に優れたNi基アモルファス合金
US20140076467A1 (en) * 2012-09-17 2014-03-20 Glassimetal Technology Inc. Bulk nickel-silicon-boron glasses bearing chromium
US11377720B2 (en) * 2012-09-17 2022-07-05 Glassimetal Technology Inc. Bulk nickel-silicon-boron glasses bearing chromium
JP2015183290A (ja) * 2014-03-26 2015-10-22 日本冶金工業株式会社 Ni基合金およびその製造方法
US11905582B2 (en) 2017-03-09 2024-02-20 Glassimetal Technology, Inc. Bulk nickel-niobium-phosphorus-boron glasses bearing low fractions of chromium and exhibiting high toughness

Also Published As

Publication number Publication date
JPS6227145B2 (ja) 1987-06-12

Similar Documents

Publication Publication Date Title
US4052201A (en) Amorphous alloys with improved resistance to embrittlement upon heat treatment
US5634989A (en) Amorphous nickel alloy having high corrosion resistance
JPS5940900B2 (ja) 高強度、耐疲労、耐全面腐食、耐孔食、耐隙間腐食、耐応力腐食割れ、耐水素脆性用アモルフアス鉄合金
EP0088599B1 (en) Ni-cr type alloy material
US3660082A (en) Corrosion and wear resistant nickel alloy
US4298382A (en) Method for producing large metallic glass bodies
CN110004392B (zh) 一种耐高温腐蚀耐磨损的非晶态热喷涂材料
JPS6379931A (ja) 高耐食アモルフアスニツケル合金
JPH11302801A (ja) 耐応力腐食割れ性に優れた高Cr−高Ni合金
JPS5929105B2 (ja) 耐溶融亜鉛侵食性にすぐれFe基合金
CN102027145A (zh) Ni-Cr合金材料
JPS602641A (ja) 耐孔食、耐隙間腐食、耐全面腐食用高耐食アモルフアスニツケル基合金
US3817747A (en) Carburization resistant high temperature alloy
US3787202A (en) High temperature chromium-nickel alloy
JPS61210143A (ja) 高耐食アモルフアス合金
JPS61243142A (ja) 耐孔食、耐隙間腐食、耐全面腐食用高耐食アモルフアスニツケル基合金
JPS5950745B2 (ja) 耐孔食、耐隙間腐食、耐全面腐食用高耐食アモルフアスニツケル基合金
EP0314805B1 (en) Highly corrosion-resistant amorphous nickel-based alloy
EP0491039B1 (en) Use of a nickel-based alloy for glass-contacting member used in unelectrified state
JP2547020B2 (ja) 高耐食アモルファスニッケル合金
JPS6116420B2 (ja)
KR100550284B1 (ko) 철기 비정질 합금 조성물
JPH03199337A (ja) 高温耐食材料及びその製造方法
JPS59193248A (ja) 高強度、耐疲労、耐全面腐食、耐孔食、耐隙間腐食、耐応力腐食割れ、耐水素脆性用アモルフアス鉄合金
JPS62280341A (ja) 高耐食性コバルト基ステンレス合金