JPS60253163A - Laminated electrolytic cell - Google Patents

Laminated electrolytic cell

Info

Publication number
JPS60253163A
JPS60253163A JP59109982A JP10998284A JPS60253163A JP S60253163 A JPS60253163 A JP S60253163A JP 59109982 A JP59109982 A JP 59109982A JP 10998284 A JP10998284 A JP 10998284A JP S60253163 A JPS60253163 A JP S60253163A
Authority
JP
Japan
Prior art keywords
electrode
electrolytic cell
carbon
carbon fiber
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59109982A
Other languages
Japanese (ja)
Other versions
JPH0690933B2 (en
Inventor
Shokei Shimada
島田 将慶
Tetsuo Fukatsu
鉄夫 深津
Yasuhiro Iizuka
飯塚 康広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP59109982A priority Critical patent/JPH0690933B2/en
Publication of JPS60253163A publication Critical patent/JPS60253163A/en
Publication of JPH0690933B2 publication Critical patent/JPH0690933B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To obtain a method for manufacturing an electrolytic cell which is resistive to industrial use and obtain an electrolytic cell having excellent characteristics by utilizing aggregated carbon fiber for electrode and integrating it with a bipolar plate. CONSTITUTION:A conductive bipolar plate and electrode which is an aggregation of carbon fiber are previously laminated physically and chemically. For example, conductive carbon black of 30wt% and polyethylene powder of 70wt% are uniformly mixed, it is laid within the metal molds and a carbon plastic plate 5 is formed by the hot-press method. Next, the upper cover of metal molds is opened, a falt carbon fiber cloth is laided on the plastic plate 5, it is pressed with a light force. Therefore, an electrode 8 is joined to conductive carbon black plate 5 and it is laminated through spacers 6 and ion exchange films 7.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は新規な電極材を用いた積層型電解槽に関連する
ものであり、さらに詳しくは、特定の結晶構造及び表面
酸素量金有してなる炭素繊維電極材音用いた工業生産的
に極めて有利な積層型電解槽に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a laminated electrolytic cell using a novel electrode material, and more specifically, a layered electrolytic cell having a specific crystal structure and surface oxygen content. This invention relates to a stacked electrolytic cell using carbon fiber electrode material which is extremely advantageous for industrial production.

従来技術との関連 1973年のエネルギー危機以来エネルギー問題が広く
各層で認識される様になって来几。新しいエネルギー源
の開発と同時に発生したエネルギー1−有効に利用する
エネルギーの変換、貯蔵、輸送、利用を含めたシステム
の開発も重要となって来ている。貯蔵を例にと几ば、将
来電源構成で大きな比重を占めると予想されている原子
力、石炭火力等の大型発電では一定の出力金保って定常
発電することが高い効率を保つ上で必要であり、夜間の
余剰電力を適切に貯蔵して昼間の需要増大時にこ几金放
出し、需要の変動に対応させる(ロードレベリングンこ
とのできる電力貯蔵技術への要求が強くなって来ている
。現在でも主要発電設備の年間稼動率は60%に切って
おり、低下が続いている。
Relationship with conventional technology Since the energy crisis of 1973, energy issues have become widely recognized by all walks of life. At the same time as the development of new energy sources, the development of systems that include energy conversion, storage, transportation, and utilization for effective use of generated energy is also becoming important. Taking storage as an example, in large-scale power generation such as nuclear power and coal-fired power generation, which are expected to account for a large proportion of the power source mix in the future, it is necessary to maintain a constant output and generate power at a constant rate in order to maintain high efficiency. There is a growing demand for power storage technology that can appropriately store surplus power at night and release it during the day when demand increases to respond to fluctuations in demand (load leveling). However, the annual operating rate of major power generation facilities is below 60% and continues to decline.

電力貯斌の方法には、実用化されてはいるが送電による
ロスがあり、立地に制約の加わって来ている揚水発電の
他に、新型2次電池、フライホイール、圧縮空気、超電
導等の各種の方法が検討されているが、新型電池による
電気化学操作が有力であり、ここ当分の間、輸送を含め
た解決システムとして、揚水発電に替る最も実現性の高
い方式と考えられている。又新盤2次電池は、太陽光、
風力、波力等の自然エネルギー?利用し九発電のバック
アップ装置、或かは電気自動車用電池としても期待が寄
せら几でいる。上記目的に適用できる2次電池として、
鉛蓄電池、ナトリウム−硫黄電池、リチウム−硫化鉄電
池、金属−ノ・ロゲン電池、レドックスフロー形電池等
が現在開発さ几ている。これら新型2次電池のうち金属
−ハロゲン2次電池(負極を除く)及びレドックスフロ
ー2次電池は、電池活物質?外部より供給して電池本体
で電気化学的なエネルギー変化全行なうシステムをとる
いわゆる再生型燃料電池に属するものである。中でもレ
ドックスフロー2次電池は、典を的な再生型燃料電池に
属するといえる。
In addition to pumped-storage power generation, which has been put into practical use but has losses due to power transmission and is subject to restrictions on location, there are other methods for storing power, such as new secondary batteries, flywheels, compressed air, and superconductivity. Various methods are being considered, but electrochemical operation using new batteries is the most promising, and for the time being it is considered the most viable alternative to pumped storage power generation as a solution system that includes transportation. In addition, the new secondary battery can be used with sunlight,
Natural energy such as wind and wave power? There are high expectations that it could be used as a backup device for power generation or as a battery for electric vehicles. As a secondary battery that can be applied to the above purpose,
Lead-acid batteries, sodium-sulfur batteries, lithium-iron sulfide batteries, metal-chloride batteries, redox flow batteries, etc. are currently being developed. Among these new types of secondary batteries, metal-halogen secondary batteries (excluding the negative electrode) and redox flow secondary batteries are battery active materials? It belongs to the so-called regenerative fuel cell, which uses a system in which energy is supplied from the outside and all electrochemical energy changes are performed within the cell itself. Among them, redox flow secondary batteries can be said to belong to the classic type of regenerative fuel cells.

この電池?含め一般に電気化学反応は、電極表面で起こ
る不均一相反応であるから、電解槽は本来2次元的であ
る。従って、電極槽単位体積当りの反応量が小さいとい
う難点がある。そこで体積当りの反応量、即ち電流密度
を増すために電気化学反応場の3′rK元化が行なわれ
、上記再生型燃料電池、廃水処理、有機化合物の電解製
造に対する応用例がみうけられる。再生型燃料電池にお
ける電気化学反応は、通常第1図値)、 (bl、 (
c)に示す単極性3次元電池を有する流通型電解槽で行
なうのが最もすぐれている。第1図(al、らl+(c
)において1は隔膜(セパレータ]、2は電解液流路、
3は集電体、4は単極性3次元電池全示す。特に(bl
型、+el型は単電池全積層する型で大電池を作る2次
電池から見几ば好捷しい構造といえる。
This battery? Since electrochemical reactions, including electrochemical reactions, are generally heterogeneous phase reactions that occur on the surface of electrodes, electrolytic cells are inherently two-dimensional. Therefore, there is a drawback that the amount of reaction per unit volume of the electrode tank is small. Therefore, in order to increase the reaction amount per volume, that is, the current density, the electrochemical reaction field is converted to a 3'rK element, and examples of its application can be found in the above-mentioned regenerative fuel cells, waste water treatment, and electrolytic production of organic compounds. The electrochemical reactions in regenerative fuel cells are usually shown in Figure 1), (bl, (
The best method is to use a flow-through type electrolytic cell having a unipolar three-dimensional battery as shown in c). Figure 1 (al, et al+(c
), 1 is a diaphragm (separator), 2 is an electrolyte flow path,
3 is a current collector, and 4 is a monopolar three-dimensional battery. Especially (bl
The +EL type is a type in which all cells are laminated, and can be said to have a favorable structure from the viewpoint of secondary batteries that make large batteries.

従来再生型燃料電池の3次元電極としては、導電性を有
すること、耐薬品性のめること、経済性のあること等の
理由から従来より通常の炭素線維から成る不織布、織布
、又は多孔質炭素板が使われて来た。多孔質炭素板は反
応場音大きくする几めに多孔度を増すと炭素板の強度が
落ち、積層時に破損しやすいこと、厚g I IImと
いった薄い板を精度よく加工するのが難かしいことから
使用し難い。炭素繊維の集合体が最も好ましい一第2図
はこのレドックスフロー2次電池の組立て直前の電池材
料の配置図である。電極用布帛等は、一定厚さのスペー
サー6の内側へ接着剤10で接F?1fJfl、ている
。 この接着は液の出入口の短絡を防ぐのと、いくつも
の電解槽28層する場合の1y、扱い易さ全目的として
行なわれるが、極めて細かい作業で時間を要し、又接着
剤の乾燥又は硬化に時間?要し、とうてい工業化に耐え
る製造工程とはいえない。特に電解槽全多数バイポーラ
板で直列積層した形で使わ几る実用電池の作製時に問題
となる。
Traditionally, three-dimensional electrodes in regenerative fuel cells have been made of nonwoven fabrics, woven fabrics, or porous carbon made of ordinary carbon fibers due to their electrical conductivity, chemical resistance, and economic efficiency. A board has been used. If the porosity of a porous carbon plate is increased to increase the reaction field noise, the strength of the carbon plate will decrease and it will be easily damaged during lamination, and it is difficult to accurately process thin plates with a thickness of g I II m. Difficult to use. An aggregate of carbon fibers is most preferable. FIG. 2 is a layout diagram of battery materials immediately before assembly of this redox flow secondary battery. The electrode fabric etc. is attached to the inside of the spacer 6 of a certain thickness using an adhesive 10. 1fJfl, there. This gluing is done to prevent short circuits at the inlet and outlet of the liquid, to make it easier to handle when there are 28 layers of electrolytic cells, but it is extremely detailed and takes time, and the adhesive dries or hardens. Time to? In short, it is not a manufacturing process that can withstand industrialization. This is especially a problem when producing a practical battery that is used in a series-stacked form in which all electrolytic cells are made of bipolar plates.

本発明においてはかかる従来の電解槽の組立てに付随す
る欠点全解消すべく3次元電極について検討し九結果、
集電体(又はバイポーラ板〕と一体化することでこれt
解決することを見い出した。
In the present invention, three-dimensional electrodes were studied in order to eliminate all the drawbacks associated with the conventional electrolytic cell assembly, and as a result,
This can be achieved by integrating with the current collector (or bipolar plate).
I found a solution.

又さらに電極を構成する炭素質単繊維の内部構造特に微
結晶構造並びに線維表面の結合酸素量が適切な範囲にな
ければ、有効な電極材とはブリ難いことも見い出して本
発明に到達した。即ち、従来の炭素繊維を用いたレドッ
クス70−2次電池(代表的なものは鉄−クロムレドッ
クスフロー2次電池ンではクロムイオンの酸化還元反応
が遅いこと、つ1り電池の電導度が低いこと、又充電時
に水素が発生し電池の電流効藁が下がり易いこと等が問
題点として挙げら几ていた。
Furthermore, the present inventors have also discovered that unless the internal structure, particularly the microcrystalline structure, and the amount of bound oxygen on the fiber surface of the carbonaceous single fibers constituting the electrode are within appropriate ranges, it is unlikely to be an effective electrode material, leading to the present invention. In other words, in conventional redox 70 secondary batteries using carbon fiber (typically iron-chromium redox flow secondary batteries), the oxidation-reduction reaction of chromium ions is slow, and the conductivity of the battery is low. In addition, problems such as the fact that hydrogen is generated during charging and the current efficiency of the battery tends to decrease have been cited as problems.

発明の目的 本発明は、流通型電解槽に用いる炭素繊維電極材の炭素
繊維の内部構造及び表面構造に関すると共に、電解槽の
組立ての工業的方法全提供することに関する。
OBJECTS OF THE INVENTION The present invention relates to the internal structure and surface structure of carbon fibers of carbon fiber electrode materials used in flow-through electrolytic cells, and to providing an entire industrial method for assembling electrolytic cells.

発明の構成 即ち、本発明は広角X線解析よりめた<002>面間隔
が平均3.70λ以下でめり、まfcC軸方向の結晶子
の大きさが平均9.ON以上の擬黒鉛微結晶構造金有し
、かつESCASC外析よ請求めfcHt#I表面の結
合酸素原子数が炭素原子数の少なくとも3%である炭素
質繊維を電極材に用い、これ全バイポーラ板と一体化す
ることにより、工業化に耐える電解槽の生産方式を提供
すると共に、極めて秀t1.7を特性をもつ電解槽を提
供せんとするものでめる。
In other words, the present invention has an average <002> plane spacing of 3.70λ or less determined by wide-angle X-ray analysis, and an average crystallite size of 9.70λ in the fcC axis direction. A carbonaceous fiber having a pseudographite microcrystalline structure of ON or higher and having a bonded oxygen atom number on the fcHt#I surface of at least 3% of the carbon atom number required for ESCASC external analysis is used as an electrode material, and is completely bipolar. By integrating it with the plate, we aim to provide an electrolytic cell production system that can withstand industrialization, as well as provide an electrolytic cell with extremely excellent characteristics of t1.7.

本発明者等は、流通型電解槽に用いる炭素質繊維から成
る3次元電極の繊維内部構造、表面構造について次のご
とき検討全行った。
The present inventors conducted the following studies on the fiber internal structure and surface structure of a three-dimensional electrode made of carbonaceous fiber used in a flow-through electrolytic cell.

本発明に係る流通型電解槽用電極の作裂け、例えば次の
様にして行なう。本発明で使用する原料繊維としては、
炭化可能なもので、目的組織製作上必要な繊維強度、伸
度等管もち、後述する特定の内部結晶構造、表面II!
素濃度?具備出来るもの全使用することが必須である。
The production and tearing of the electrode for a flow-through type electrolytic cell according to the present invention is carried out, for example, as follows. The raw material fibers used in the present invention include:
It is carbonizable and has the fiber strength, elongation, etc. necessary for producing the target tissue, a specific internal crystal structure described later, and surface II!
Elementary concentration? It is essential to use everything you have.

例えば、セルロース系、アクリル糸、フェノール系、芳
香族ポリアミド系等の原料繊維が使用できる。石炭、石
油全原料とするピッチ繊維は、適格原料線維であるが、
繊維強度が弱く各種集合形態上とらせるための工程にか
からないので、ある程度の炭化2行った後、目的組織を
もつ九めの工程を経させるのが好ましい。こ几らの単繊
維としては細いもの程外表面積が大きくとれ、強度の点
でも有利であって0.5〜15デニールのものが特に好
ましい。次に短い単繊維を使って不織布にすることが出
来、又、編地、織布、ひも、混成組織KlるKViこn
らの単繍維?集束し、て糸とするのであるが、紡績糸又
はマルチフィラメント糸の状態が好適で′める。次にこ
の糸を使って目的組織である紡績糸、織布、編地状布帛
等?作る。次いで各種線維集合体に必要に応じて適当な
耐炎剤処理を施し、通常400℃以下の不活性雰囲気又
は活性雰囲気下で耐炎化?行なう。
For example, raw material fibers such as cellulose, acrylic, phenol, and aromatic polyamide fibers can be used. Pitch fibers made entirely of coal and petroleum are eligible raw material fibers, but
Since the fiber strength is weak and it is not necessary to undergo a step to form various aggregated forms, it is preferable to carry out carbonization to a certain extent and then to undergo a ninth step to obtain the desired structure. As for these single fibers, the thinner they are, the larger the outer surface area can be obtained and the more advantageous they are in terms of strength, and those with a denier of 0.5 to 15 deniers are particularly preferred. Next, short single fibers can be used to make non-woven fabrics, and can also be used to create knitted fabrics, woven fabrics, strings, and hybrid fabrics.
A single embroidered fiber? The fibers are bundled and made into warp yarns, preferably in the form of spun yarn or multifilament yarn. Next, use this yarn to create the desired structure, such as spun yarn, woven fabric, knitted fabric, etc. make. Next, the various fiber aggregates are treated with an appropriate flame retardant as necessary to make them flame resistant, usually under an inert atmosphere or an active atmosphere at a temperature of 400°C or less. Let's do it.

次いで500℃以上、好1しくけ1100℃以上で炭化
2行なう。この様な操作で所定の内部結晶構造?もつ炭
素繊維集合体がえらiする。
Next, carbonization is carried out at 500°C or higher, preferably 1100°C or higher. Is it possible to create a predetermined internal crystal structure through such operations? The carbon fiber aggregate with which it has is a special feature.

本発明において重要な表面酵素原子の濃度を高めるには
前述した内部結晶構造全もつ炭素線維全乾式酸化処理す
ることにより得られる。こt′Lに例えば1 x i 
o”−’ torr以上の酸素分圧に!する醗素雰囲気
下で重量収率にして65〜99%の範囲になる様に実施
さnる。処理温度は通常400℃以上が好ましい。低温
(例えば200〜300′C)では処理する炭ネの反応
性が落ちるため酸化の効果が得らnない。酸化処理全湿
式で行なうと眉間化合物の生成、処理時の有害ガスの発
生等間通が多いのみでなくコストも100倍近くかかり
、工業的に有利とはいえない。
The concentration of surface enzyme atoms, which is important in the present invention, can be increased by subjecting the carbon fibers having all the internal crystal structures described above to a total dry oxidation treatment. For example, 1 x i
The treatment is carried out in a nitrogen atmosphere with an oxygen partial pressure of 0''-' torr or higher, so that the weight yield is in the range of 65 to 99%.The treatment temperature is usually preferably 400°C or higher.Low temperature ( For example, at 200 to 300'C), the reactivity of the carbon to be treated decreases, so the oxidation effect cannot be obtained.If the oxidation treatment is carried out in a fully wet manner, there will be problems such as the formation of glabellar compounds and the generation of harmful gases during treatment. Not only is there more, but the cost is nearly 100 times higher, and it cannot be said to be industrially advantageous.

上述の如く乾式酸化処理を行なうことにより擬黒鉛微結
晶のC軸に垂直な面のエツジtzv多く繊維表面に露出
させることができ、かつこのエツジに電気化学反応に有
効な′rI1.X原子全形成させることができる。この
酸素原子はカルボキシル基、フェノール性水酸基、カル
ボニル基、キノン基、ラクトン基、フリーラジカル的な
酸化物どして生成され、こnらの反応基が電極反応に大
きく寄与し、以て電導率(電圧効率)f:高め得るもの
となる。
By performing the dry oxidation treatment as described above, many of the edges of the plane perpendicular to the C axis of the pseudographite microcrystals can be exposed on the fiber surface, and 'rI1. All X atoms can be formed. This oxygen atom is generated as a carboxyl group, a phenolic hydroxyl group, a carbonyl group, a quinone group, a lactone group, a free radical oxide, etc., and these reactive groups greatly contribute to the electrode reaction, thereby increasing the electrical conductivity. (Voltage efficiency) f: It can be increased.

このように広角X線解析よりめた(002>面間隔が平
均3.70λ以下でめり、筐えC軸方向の結晶子の大き
さが平均9.0λ以上の擬黒鉛微結晶構造を有し、かつ
ESCASC外析よりめ几繊維表面の結合酸素原子数が
炭素原子数の少なくとも3チ、好1しくけ6〜16%で
ある炭素質繊維を電極材に用いることにより電池の特性
値である電流効率及び電導度が著しく改善されることに
なる。
As shown above, it was determined from wide-angle X-ray analysis that it has a pseudographite microcrystalline structure in which the (002> plane spacing is less than 3.70λ on average and the crystallite size in the C-axis direction of the housing is more than 9.0λ on average. Moreover, by using carbon fiber as an electrode material in which the number of bonded oxygen atoms on the surface of the ESCASC fiber is at least 3%, preferably 6 to 16% of the number of carbon atoms, the characteristic values of the battery can be improved. Certain current efficiency and conductivity will be significantly improved.

換言すれば、上述の如く広角X線解析(解析方法は後述
する2よりめた<002>面間隔が平均3.70A以下
であp、txc軸方向の結晶子の大きさが平均9.0Å
以上の擬黒鉛微結晶構造を有する炭素質繊維?電極材に
用いることにより、充電時負極における水素発生量が抑
止さ几、電流効率全署しく高め得ることができた。<0
02>面間隔が3.7OA’に超え、しかもC軸方向の
結晶子の大きさが平均9.0λ未満の結晶性の低い炭素
質ms’i用いる場合は充電時負極における水素発生量
が大きく、′σ。
In other words, as described above, wide-angle X-ray analysis (the analysis method is described below) is performed when the two-stranded <002> plane spacing is on average 3.70 A or less and the crystallite size in the p and txc axis directions is on average 9.0 Å.
A carbonaceous fiber with a pseudographite microcrystalline structure? By using it as an electrode material, the amount of hydrogen generated at the negative electrode during charging was suppressed, and the current efficiency was able to be enhanced overall. <0
02> When using carbonaceous material with low crystallinity in which the interplanar spacing exceeds 3.7 OA' and the crystallite size in the C-axis direction is less than 9.0 λ on average, the amount of hydrogen generated at the negative electrode during charging is large. ,′σ.

流動率金高めることはできない。このように結晶性の高
い特定の結晶構造を有する炭素質繊維を電極材として用
いることにより電流効率が高めら几る理由については明
らかでないが、結晶構造が発達するに従って水素過電圧
が上昇し、充電時にりロム錯イオンの還元が選択的に起
り、以て電流効率が上昇するものと考えら几る。
Liquidity cannot be increased. Although it is not clear why the current efficiency is increased or decreased by using carbon fibers with a specific crystal structure with high crystallinity as electrode materials, as the crystal structure develops, the hydrogen overvoltage increases and charging It is thought that reduction of ROM complex ions sometimes occurs selectively, thereby increasing current efficiency.

一方、齢述の如(ESCA表面分析(解析方法tユ後述
する)よりめたMR維表面の結合酸素原子数の炭素原子
数に対する割合(%以下0/C比という)が3%以上の
炭素質繊維をtIL杉材に用いることにより、電極反応
速度、つ1り亀導度を著しく高め得ることができた。E
S CA分析による繊維表面の0/C比が3%未満のW
1素濃度の低い炭素質繊維ヶ用いる場合は放電時の電極
反応速度が小式く、電導率孕高めることはできない。こ
のようVC素材繊維表面に酸素原子を多く結合でせた炭
素質lIt維?電極材として用いることにより電導率、
いいかえnは電圧効率が高められる理由については明ら
かでないが、宵、子の受授、錯イオンの炭素線維からの
脱離、錯交換反応等に表面のrR素原子が41効に拗い
てい、)ものと考えら!上る。
On the other hand, carbon atoms with a ratio of the number of bonded oxygen atoms to the number of carbon atoms (hereinafter referred to as 0/C ratio) of 3% or more on the MR fiber surface as determined by ESCA surface analysis (described later in the analysis method) as described above. By using quality fibers in the tIL cedar material, the electrode reaction rate and shear conductivity could be significantly increased.
S W with a fiber surface O/C ratio of less than 3% by CA analysis
When using carbonaceous fibers with a low concentration of 1 element, the electrode reaction rate during discharge is low and the conductivity cannot be increased. Like this carbonaceous lIt fiber with many oxygen atoms bonded to the surface of the VC material fiber? By using it as an electrode material, conductivity,
It is not clear why the voltage efficiency of the replacement n is increased, but the rR atoms on the surface are persistent in the 41 effect during childbirth, desorption of complex ions from carbon fibers, complex exchange reactions, etc. ) Things and thoughts! climb.

本発明考等は次に前述の特性にかかる炭素繊維集合体を
電池に組立−Cる工業的方法の検討を行った。従米成解
11を隔別し又積層するための集電板又はバイポーラ−
板は、炭素・黒鉛焼結体7切り出して作製していたが、
極めて高価なものについた。従って近年各所でとり上け
られている導電製グラスチックをこj、に代替するのが
好筐しい。
The inventors of the present invention then investigated an industrial method for assembling a carbon fiber aggregate having the above-mentioned characteristics into a battery. Current collector plate or bipolar plate for separating and stacking 11
The plate was made by cutting out 7 carbon/graphite sintered bodies.
It was extremely expensive. Therefore, it would be a good idea to replace the conductive glass, which has been popular in many places in recent years, with this case.

耐薬品性i!慮するとカーボンブラック、庚子繊維を混
入した塩化ビニル系樹脂やポリオレフィン系の樹脂が好
んで用いら几よう。我々はバイポーラ板、セパレーター
、電極材?別々にそろえWc2図に示すごとく組立てる
のではなく、第3図(a)、(b)にそのM様を示すご
とく、バイポーラ−板5(集電板)に電極材を直接接合
して後電解槽倉組立てる方法にとった。この方=Wとる
場合カーボンプラスチック爬バイポーラ−板は特に有効
でめった。即ちカーボンブラックと樹脂粉末を混合しプ
レスしてプレート状にした直後、又は後で接着可能温度
以上[6るプレー)K直接本発明Vこかかる炭素繊維集
合体を熱的に接合した。こ几によ几はセパレーターに電
極材全接着し几後組立てる第2図にくらべ、1根が極め
て簡略化さ几工業的に極めて有利である。使用できる炭
素庫維の集合形態は第3図−)、(b)に示すYli帛
、紡績糸が好ましいが、撚vをかけたトウ状物、フェル
ト等も問題なく使用でき几。導電性バイポーラープレー
トとi極材の接合方@は付加材料ケ用いず熱的に行うの
が最も瀾単であるが、その他にも、%硬化性、熱軟化性
導電性ペースト、粉末等音用いることができる。
Chemical resistance i! Considering this, vinyl chloride resin or polyolefin resin mixed with carbon black or Koji fiber is preferably used. Do we have bipolar plates, separators, electrode materials? Instead of arranging them separately and assembling them as shown in Figure 2, the electrode material is directly joined to the bipolar plate 5 (current collector plate) as shown in Figures 3 (a) and (b) for post-electrolysis. I decided to assemble a tank storage. In this case = W, the carbon plastic bipolar plate is particularly effective and rare. That is, immediately after carbon black and resin powder were mixed and pressed into a plate shape, or after that, the carbon fiber aggregates according to the present invention were thermally bonded directly at a bonding temperature or higher (6 degrees). Compared to the method shown in FIG. 2, in which the electrode material is completely bonded to the separator and then assembled after assembly, this method is much simpler and is industrially more advantageous. The aggregate form of carbon fibers that can be used is preferably Yli cloth or spun yarn as shown in Figure 3-) and (b), but twisted tow-like materials, felt, etc. can also be used without problems. The easiest way to join the conductive bipolar plate and the i-electrode material is to do it thermally without using any additional materials. Can be used.

第3(2)(a)、 (blでは単Nに枦ける組立て図
であるが、積層する場合も−y木的な−やり方は同じな
ので省略する。
3rd (2) (a), (bl is an assembly diagram that can be used as a single N, but since the y-tree-like method is the same when stacking, it will be omitted.

なお、本発明にしいて使用ぜる<002>面間隔(do
ox)、C@方向の結晶子の大@ @ (Lc )、電
流効率、電導度及びESCAによるO/C比は次の方法
で両足するものである。
Note that the <002> plane spacing (do
ox), crystallite size in the C@ direction (Lc), current efficiency, conductivity, and O/C ratio determined by ESCA are determined by the following method.

■<002>面間隔: doot 炭素繊維編地?メノウ乳鉢で粉末化し、試料に対して約
5〜10車t%のX線標準用高純度シリコン粉末を内部
標準物質として加え混合し、試料セルにつめ、CuKa
線を線源とし、透過型ディフラクトメーター法によって
広角X線回折曲線を計測する。
■<002> Plane spacing: doot carbon fiber knitted fabric? Powder it in an agate mortar, add about 5 to 10 tons of high-purity silicon powder for X-ray standards as an internal standard substance to the sample, mix it, fill it in a sample cell, and make CuKa.
A wide-angle X-ray diffraction curve is measured using a transmission diffractometer method using a radiation source.

曲線の補正には、いわゆるローレンツ、偏光因子、吸収
因子、原子散乱因子等に関する補正は行なわず次の簡便
法を用いろ。即ち<002>回折に相当するビークのベ
ースライン1引き、ベースラインからの実質強度をプロ
ットし直して<002>補正強度曲線?得る。この曲線
のビーク高さの3分の2の高さに引いた角度軸に平行な
線が強度曲線と交わる線分の中点をめ、中点の角度全内
部標準で補正し、こn’6同折角の2倍とし・CuKα
の波長ノとから次式のBragg式によって<002>
面間隔をめる。
To correct the curve, use the following simple method without making corrections for so-called Lorentz, polarization factors, absorption factors, atomic scattering factors, etc. In other words, the baseline of the peak corresponding to <002> diffraction is subtracted by 1, the real intensity from the baseline is plotted again, and the <002> corrected intensity curve is obtained. obtain. Find the midpoint of the line segment where a line parallel to the angular axis drawn at two-thirds of the beak height of this curve intersects the intensity curve, correct the angle at the midpoint using the total internal standard, and then 6 Double the angle of refraction ・CuKα
According to the following Bragg equation, <002>
Increase the distance between the surfaces.

λ doot−2癲θ λ : 1.5418λ 01回折角 ■C軸方向の結晶子の大きさくLc) 前項で得た補正回折強度曲線において、ビーク高さの半
分の位置におけるいわゆる半価巾β金用いてC軸方向の
結晶子の大きさ請求める。
λ dot−2 θ λ : 1.5418λ 01 Diffraction angle ■Crystallite size in C-axis direction Lc) In the corrected diffraction intensity curve obtained in the previous section, the so-called half-width β gold at the position half the peak height The size of crystallites in the C-axis direction can be determined using

形状因子Kについては、種々議論もあるが、K=0.9
0i採用した。λ、θについては前項と同じ意味である
There are various discussions about the shape factor K, but K=0.9
0i was adopted. λ and θ have the same meaning as in the previous section.

■セル電流効率 第2図に示す小型の流通型電解槽全作り、各種定電流密
度で充放電金繰り返し、電極性能のテス)ヲ行う。正極
には塩化第一鉄、塩化第二鉄濃度各1M/lの4N塩酸
酸性水浴液會用い、負極には塩化第ニクロム濃度IM/
lの4N塩酸酸性水溶液?用意した。
■Cell current efficiency Complete construction of the small flow-through type electrolytic cell shown in Figure 2, repeated charging and discharging at various constant current densities, and testing of electrode performance. For the positive electrode, a 4N hydrochloric acid acidic water bath solution with a concentration of ferrous chloride and ferric chloride of 1 M/l each was used, and for the negative electrode, a 4N hydrochloric acid acidic water bath solution with a concentration of 1 M/l of ferrous chloride and ferric chloride was used.
l of 4N hydrochloric acid acidic aqueous solution? Prepared.

正極液tけ負極液量に対して大過剰とし、負極特性を中
心に検討できるようにし友。電極面積は10d1液流量
は毎分的5mlである。電流密度16.40 mA/−
で行っ九が、充電時と放電時は同じ値でテストを行った
。充電に始まり放電で終る1サイクルのテストにおいて
、充電に要した電気量をQ1クーロン、0.2V−1で
の定電訛放電及びこれに続< O,S Vでの足電位放
電で取り出し九電気量を夫々Q!lQsクーロンとし、
次式で電流効率をめる。
The amount of catholyte and anode is in large excess compared to the amount of anode, so that we can focus on the characteristics of the anode. The electrode area is 10 d1, and the liquid flow rate is 5 ml per minute. Current density 16.40 mA/-
I conducted a test with the same value during charging and discharging. In a one-cycle test that begins with charging and ends with discharging, the amount of electricity required for charging is extracted by a constant current discharge at Q1 coulombs, 0.2 V-1, followed by a foot potential discharge at < O, S V. The amount of electricity is Q! Let lQs coulomb,
Calculate the current efficiency using the following formula.

充電時にCr からCr”+への還元以外の反応、例え
ばI(の還元等の副反応が起ると、取シ出せる電気業が
減り、電流効率は減少する。
If a reaction other than the reduction of Cr to Cr''+ occurs during charging, for example a side reaction such as reduction of I(), the amount of electricity that can be taken out will decrease and the current efficiency will decrease.

■セル電導度 負極液中のCr” t Cr”+に完全に還元するのに
必要な理論電気量Qthに対して、放電途中筐でに取り
出した電気量の比を充電率とし、充電率が50%のとき
の電流拳電圧曲線の傾きから、セル抵抗(Ω−〕、及び
その逆数であるセル電導度(5cIs−1) 請求める
。セル電導度が大きい程電極でのイオンの酸化還元反応
はすみやかに起り、高電流密度での放電電位は高く、セ
ルの電圧効率が高く、秀t″した電極であると判断でき
る。
■Cell conductivity The charging rate is the ratio of the amount of electricity taken out in the casing during discharging to the theoretical amount of electricity Qth required to completely reduce Cr"t Cr"+ in the negative electrode liquid. From the slope of the current-to-voltage curve at 50%, the cell resistance (Ω-) and its reciprocal, the cell conductivity (5cIs-1), can be determined.The greater the cell conductivity, the greater the redox reaction of ions at the electrode. The discharge occurs quickly, the discharge potential is high at high current density, and the voltage efficiency of the cell is high, making it an excellent electrode.

なお■、■でのテストしユ25℃・1しノで行った。The tests in ■ and ■ were carried out at 25°C and 1 hour.

■ESCAによるC10比の測定 ESCAあるいは、XPCと略称σ几ているX線元電子
分元法による0/C比の測定に用いた装置は高滓ESC
A 750で、解析にはESCAPAC760全用いた
■Measurement of C10 ratio by ESCA The device used to measure the 0/C ratio by ESCA or X-ray electron fractionation method, abbreviated as XPC, is Takashi ESC.
A 750, and all ESCAPAC 760 were used for analysis.

各試料ケ6闘径に打ち抜き、導電性ペースト(よりυ0
熱式試料台に貼り付は分析に供した。
Each specimen was punched into 6 diameters and conductive paste (from υ0
The samples attached to a thermal sample stand were used for analysis.

測定前に試料ヲ120℃に加熱し、3時間以上真空脱気
した。線源にはWifKα線(1253,6eV )金
用い、装置内真空度は10−’ torrとし7t・測
定はC1g 、 O1eピークに対して行ない、各ピー
クをESCAPAC760(J、H,5cofield
 による補正法に基づ<)t−用い補正解析し、各ピー
ク面積?求める。得ら1また面積はC1sについて#′
i1.00 、 Olgに対しては2.85の相対強度
を乗じたものであり、その面積から直接表面(酸素/炭
素ン原子数比に%で算出する。
Before measurement, the sample was heated to 120°C and vacuum degassed for 3 hours or more. WifKα radiation (1253,6eV) was used as the radiation source, and the vacuum level inside the device was 10-' torr at 7t.Measurements were made for the C1g and O1e peaks, and each peak was measured using an ESCAPAC760 (J, H, 5 cofield
Based on the correction method using <)t-correction analysis, each peak area? demand. Obtained 1 and the area is #' for C1s
i1.00, Olg is multiplied by the relative intensity of 2.85, and the area is directly calculated from the surface (oxygen/carbon atomic ratio in %).

以下不発明全比較例、実施例によって詳しく説明するが
、本発明はこ几らの例に限定さ几るものではない。
The present invention will be explained in detail below using comparative examples and examples, but the present invention is not limited to these examples.

発明の効果 本発明に係る或解槽け、充電時の水素ガスの発生量を抑
止し、電流効率及びセル電導度全着るしく高め得るもの
であり、かつ電池作製時の工程全簡略化し、工業的に多
大の実用性をもたらすものである。
Effects of the Invention The disassembly tank according to the present invention suppresses the amount of hydrogen gas generated during charging, can comfortably improve current efficiency and cell conductivity, and simplifies the entire battery manufacturing process, making it industrially viable. This provides a great deal of practical utility.

比較例1 充分に脱硫、漂白、水洗を行って得九単繊維2.0デニ
ールのB生セルロース稙維からなる20番手双糸を使っ
て]4ゲ一ジ両面九編機により両面編地を編成し!ヒ。
Comparative Example 1 A double-sided knitted fabric was produced using a 4-gauge double-sided knitting machine using a 20 count twin yarn made of 2.0 denier B raw cellulose fibers obtained by thoroughly desulfurizing, bleaching, and washing with water. Organize! Hi.

この編地は4249/−の目付、布帛の見掛は密度0.
37097cd、厚σ1.15絹を有し、この編地を精
練後、塩什アンモニウム水溶液に浸漬し、絞り後乾燥さ
せて布帛乾燥重量に対して塩化アンモニウムの添着量を
10重肴係とし7た後270℃不活性ガス気流中で60
分加熱して耐炎化処理4行ない、次いで毎時400度の
昇温速度で1600℃までもたらし、30分保持して炭
素化全行ない、冷却後炭素繊H1編地状ス5帛A?得た
。このものの目付は2709/、t、密度0.26 c
c /Iでろつ几。
This knitted fabric has a basis weight of 4249/- and an apparent density of 0.
37097 cd, thickness σ1.15 silk, this knitted fabric was scoured, dipped in an aqueous solution of ammonium chloride, squeezed and dried, and the amount of ammonium chloride impregnated was 10 times the dry weight of the fabric. After heating at 270℃ in an inert gas stream for 60 minutes.
After heating for 4 minutes, flame resistance treatment was performed for 4 times, then the temperature was raised to 1600°C at a temperature increase rate of 400 degrees per hour, and held for 30 minutes to complete carbonization. After cooling, 5 strands of carbon fiber H1 knitted fabric A? Obtained. The basis weight of this item is 2709/, t, density 0.26 c
c/I derotz 几.

さらにこのもの全酸素分圧200 torrの不活性ガ
ス中900℃で散化を行なって3次元流通型電解槽用電
極を作製した。かかる編地状布帛BについてのX M 
ys析結果はd6oz = 3−60A s Lc =
 ’lL8λ、’! 7t O/C比tl: 10.2
 %であった。この布帛からICHI X 10 cm
角の大きさのもの2枚全裁断し、第2図に示す2枚のス
ペーサーの枠内に1枚ずつシリコン樹脂に固定し几が、
接着剤の塗布はハン雑で固化には、−夜金用した。集電
板5に黒鉛板を用いて、前述のテスト法により鑞導度並
びに電流効率ケ求めたところ、0.42SCU−” 、
 93.8%であり電極特性は秀几でい友。
Further, this product was dispersed at 900° C. in an inert gas with a total oxygen partial pressure of 200 torr to prepare an electrode for a three-dimensional flow type electrolytic cell. X M for such knitted fabric B
The ys analysis result is d6oz = 3-60A s Lc =
'lL8λ,'! 7t O/C ratio tl: 10.2
%Met. ICHI x 10 cm from this fabric
Cut out two square pieces and fix them one by one in silicone resin within the frame of the two spacers shown in Figure 2.
The application of the adhesive was sloppy and hardening took a lot of effort. Using a graphite plate as the current collector plate 5, the solder conductivity and current efficiency were determined by the test method described above.
It is 93.8% and the electrode characteristics are excellent and excellent.

比較例2 比較例1で得た布帛At−1比較例1と同じようにして
電解槽全組み電池牲能を測ったところ、電流効率は90
%、電導度は0.15S備4と電極特性は悪るかった。
Comparative Example 2 The fabric At-1 obtained in Comparative Example 1 When the battery performance of the entire electrolytic cell assembly was measured in the same manner as in Comparative Example 1, the current efficiency was 90.
%, the conductivity was 0.15S, and the electrode properties were poor.

布帛Aのdoot + IJCは布帛Bに同じであった
が0/C比は2.8%であった。
The doot + IJC of Fabric A was the same as Fabric B, but the 0/C ratio was 2.8%.

実施例1 導電性カーボンブラック30重t%、粉末ポリエチレン
70Jl−%を均一に混合(1、金型内に敷き、ホット
プレス法でカーボンプラスチックプレートを作製しく第
3図(alの5〕、金をの上ブタを開け、比fR例1で
作製した布帛Bの1×10CMのもの會プラスチックプ
レートの上におき再び軽くプレス(−で、第3図(al
の8のどとく電極が導電性カーボンプラスチックプレー
トに摺合ぜれたものを作製した。導電付カーボンプラス
チックの比抵抗は0.280傷と黒鉛に比べて高かった
が、電極特性は電流効率93.4%、セル電導1i0.
40s備−1と比収渕IVC近い性能を示した。
Example 1 30% by weight of conductive carbon black and 70Jl-% of powdered polyethylene were uniformly mixed (1. Placed in a mold and used to prepare a carbon plastic plate using a hot press method. Open the top lid of the fabric, place it on a 1 x 10 CM plastic plate of Fabric B prepared in Ratio Example 1, and press it lightly again (-) in Figure 3 (al
An electrode of No. 8 was made by sliding it onto a conductive carbon plastic plate. The specific resistance of the conductive carbon plastic was 0.280 scratches, which was higher than that of graphite, but the electrode characteristics were a current efficiency of 93.4% and a cell conductivity of 1i0.
It showed performance close to that of the 40s Bei-1 and the Fuchi IVC.

実り例2 単繊維2.0デニールの再生セルロース鷹維全彷碩し、
5000デニールの紡績糸全作りこnf3本撚9合せて
15000デニールの撚糸(ヒモに近いンを作り、比較
例1の布帛B7得たと同じ処理?し、1800℃のe高
温度を経、空気酸化にして6050デニールの炭素繊維
紡績糸を傅友。この基金実施例1と同様のカーボンプラ
スチック板に1備の巾に5不平行にそろえ接合した。紡
績糸の太式に約1点敢闘あったので、1.3朋厚さのス
ペーサーを用い第3図(blのごとく電池vc−組みた
て、電池特性を測った。電流効率は94.5%、導電率
は0.51saw−’ と極めて秀nた電池特性の得ら
nることがわかった。用いた炭素jJ&雄のdootは
3.64人+Lcは10.8A 、O/C吋11.2%
であっt0
Fruiting example 2 A single fiber of 2.0 denier regenerated cellulose hawk fiber is fully grown,
The entire spun yarn of 5,000 denier was made with 3 twisted yarns of 9 strands of 15,000 denier (a yarn similar to a string was made and treated in the same manner as in obtaining fabric B7 of Comparative Example 1), passed through a high temperature of 1800°C, and was oxidized in air. A 6,050 denier carbon fiber spun yarn was bonded to the same carbon plastic plate as in Example 1 by aligning 5 non-parallel lines in the width of the yarn.About 1 point was found in the thickness of the spun yarn. Therefore, the battery was assembled using a spacer with a thickness of 1.3 mm as shown in Figure 3 (bl), and the battery characteristics were measured. It was found that excellent battery characteristics were obtained.The carbon jj & male doot used was 3.64 people + Lc was 10.8 A, and O/C was 11.2%.
Deat t0

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(ロ)l 、 fbl 、 (c)f′i3次元
這極材全用いる流通型電解槽を示す模式因であり、また
纂2図は本発明に係る′屯倦材の電流効率を両足する几
めの説明図である。更VC,第3図(al、(blは本
発明に係る電解槽の組立て口を示す。 1;隔 膜 2;電解液流路 3;集成体 4;3次元前極第 5:集[仮又はバイポーラ−仮 6;スペーサー 71イオン交換膜 8;炭素繊維電極 9;活物質水溶液流通路JO;接着
剤 特許出願人 東洋紡績株式会社 第1121 (a) (b) (C) 第2121 第3121 (CI) 第 (
Figure 1 (b) l, fbl, (c) f'i is a schematic diagram showing a flow-through type electrolytic cell using all three-dimensional electrode materials, and Fig. 2 shows the current efficiency of the three-dimensional electrode material according to the present invention. It is an explanatory diagram of a method that uses both feet. Further VC, Figure 3 (al, (bl) shows the assembly port of the electrolytic cell according to the present invention. 1; diaphragm 2; electrolyte flow path 3; assembly 4; or bipolar temporary 6; spacer 71 ion exchange membrane 8; carbon fiber electrode 9; active material aqueous solution flow path JO; adhesive patent applicant Toyobo Co., Ltd. No. 1121 (a) (b) (C) No. 2121 No. 3121 ( CI) No. (

Claims (1)

【特許請求の範囲】 (1)導電性バイポーラ−板と炭素繊維集合体である電
極とが物理的又は化学的にあらかじめ接合さft7’j
のち組立てらf″L7tことを特徴とする積層型電解槽
。 (2)電極材が、d60t≦3.7A、O/C≧3.0
%。 Lc≧9.OAの炭素繊維から成る特許請求の範囲第i
11項記載の電解槽。 (31電極材が織り、編み、ヒモ、フェルト、又はそ几
らの混成組wtをもつ炭素繊維集合体である特許請求の
範囲第tl+項記載の電解槽。 (4)導電性バイポーラ−板がカーボンブラック又は炭
素線維又はこnらの混合物と樹脂とから成る特許請求の
範囲第1項記載の電解槽。
[Claims] (1) The conductive bipolar plate and the electrode, which is an aggregate of carbon fibers, are physically or chemically bonded in advance.
A laminated electrolytic cell characterized in that f″L7t is assembled later. (2) The electrode material is d60t≦3.7A, O/C≧3.0
%. Lc≧9. Claim i consisting of OA carbon fiber
The electrolytic cell according to item 11. (31) The electrolytic cell according to claim TL+, wherein the electrode material is a carbon fiber aggregate having a hybrid composition wt of woven, knitted, string, felt, or the like. (4) The conductive bipolar plate is The electrolytic cell according to claim 1, comprising carbon black, carbon fiber, or a mixture thereof and a resin.
JP59109982A 1984-05-30 1984-05-30 Stacked electrolytic cell Expired - Fee Related JPH0690933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59109982A JPH0690933B2 (en) 1984-05-30 1984-05-30 Stacked electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59109982A JPH0690933B2 (en) 1984-05-30 1984-05-30 Stacked electrolytic cell

Publications (2)

Publication Number Publication Date
JPS60253163A true JPS60253163A (en) 1985-12-13
JPH0690933B2 JPH0690933B2 (en) 1994-11-14

Family

ID=14524078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59109982A Expired - Fee Related JPH0690933B2 (en) 1984-05-30 1984-05-30 Stacked electrolytic cell

Country Status (1)

Country Link
JP (1) JPH0690933B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6340261A (en) * 1986-08-02 1988-02-20 Toho Rayon Co Ltd Electrode member for redox flow type cell
JPH08138685A (en) * 1994-11-02 1996-05-31 Kashima Kita Kyodo Hatsuden Kk Whole vanadium redox battery
JP2000357520A (en) * 1999-06-11 2000-12-26 Toyobo Co Ltd Carbon electrode material for vanadium-based redox flow battery
JP2014530476A (en) * 2011-10-17 2014-11-17 ロッキード・マーチン・コーポレーション High surface area flow battery electrode
JP2017027920A (en) * 2015-07-28 2017-02-02 東洋紡株式会社 Electrode material for redox battery
WO2017022564A1 (en) * 2015-07-31 2017-02-09 東洋紡株式会社 Carbon electrode material for redox batteries
US9893363B2 (en) 2011-10-17 2018-02-13 Lockheed Martin Corporation High surface area flow battery electrodes
WO2018124199A1 (en) * 2016-12-28 2018-07-05 昭和電工株式会社 Electrode structure, redox flow cell, and redox flow cell production method
JP2018133141A (en) * 2017-02-13 2018-08-23 東洋紡株式会社 Redox battery using thin diaphragm

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6340261A (en) * 1986-08-02 1988-02-20 Toho Rayon Co Ltd Electrode member for redox flow type cell
JPH08138685A (en) * 1994-11-02 1996-05-31 Kashima Kita Kyodo Hatsuden Kk Whole vanadium redox battery
JP2000357520A (en) * 1999-06-11 2000-12-26 Toyobo Co Ltd Carbon electrode material for vanadium-based redox flow battery
JP2014530476A (en) * 2011-10-17 2014-11-17 ロッキード・マーチン・コーポレーション High surface area flow battery electrode
US9893363B2 (en) 2011-10-17 2018-02-13 Lockheed Martin Corporation High surface area flow battery electrodes
US10276874B2 (en) 2011-10-17 2019-04-30 Lockheed Martin Corporation High surface area flow battery electrodes
JP2017027920A (en) * 2015-07-28 2017-02-02 東洋紡株式会社 Electrode material for redox battery
WO2017022564A1 (en) * 2015-07-31 2017-02-09 東洋紡株式会社 Carbon electrode material for redox batteries
JPWO2017022564A1 (en) * 2015-07-31 2018-05-24 東洋紡株式会社 Carbon electrode material for redox batteries
WO2018124199A1 (en) * 2016-12-28 2018-07-05 昭和電工株式会社 Electrode structure, redox flow cell, and redox flow cell production method
JP2018133141A (en) * 2017-02-13 2018-08-23 東洋紡株式会社 Redox battery using thin diaphragm

Also Published As

Publication number Publication date
JPH0690933B2 (en) 1994-11-14

Similar Documents

Publication Publication Date Title
AU698413B2 (en) Redox battery
JPH0113192B2 (en)
CN105900267B (en) Tungsten-based material super battery and super capacitor
JP3496385B2 (en) Redox battery
JP2920230B2 (en) Redox flow battery
JP2955938B2 (en) Carbon-based electrode materials for electrolytic cells
JPS60253163A (en) Laminated electrolytic cell
JPH0992321A (en) Redox cell
JP3555303B2 (en) Redox battery
US20220153591A1 (en) Carbon electrode material for manganese/titanium-based redox flow battery
CN112928315B (en) Preparation and application of composite membrane for alkaline zinc-based flow battery
JPH05234612A (en) Carbon electrode material for electrolytic cell
JPS6023963A (en) Metal-halogen secondary battery
JP2906241B2 (en) Liquid flow type electrolytic cell
JPH0113191B2 (en)
CN109545567A (en) A kind of all-solid-state battery type capacitor
CN109437290A (en) A kind of preparation method and lithium ion super capacitor of a lithium titanate nanobelt ball of string
JPH0711963B2 (en) Carbon-based electrode material for flow-through electrolyzer
JPS60232669A (en) Electrode material for electrolytic bath
JPH08138685A (en) Whole vanadium redox battery
JP2001085028A (en) Carbon electrode material assembly
JPH0711969B2 (en) Metal-halogen secondary battery
JPH11317231A (en) Carbon-based electrode material for electrolytic cell
CN110391404A (en) Mg secondary cell positive active material and the Mg secondary cell for using the positive active material
JP2535877B2 (en) Carbon electrode material for electrolytic cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees