JP2535877B2 - Carbon electrode material for electrolytic cell - Google Patents

Carbon electrode material for electrolytic cell

Info

Publication number
JP2535877B2
JP2535877B2 JP62043885A JP4388587A JP2535877B2 JP 2535877 B2 JP2535877 B2 JP 2535877B2 JP 62043885 A JP62043885 A JP 62043885A JP 4388587 A JP4388587 A JP 4388587A JP 2535877 B2 JP2535877 B2 JP 2535877B2
Authority
JP
Japan
Prior art keywords
carbon
fabric
electrode material
electrode
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62043885A
Other languages
Japanese (ja)
Other versions
JPS63210290A (en
Inventor
保志 筑木
康広 飯塚
誠 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP62043885A priority Critical patent/JP2535877B2/en
Publication of JPS63210290A publication Critical patent/JPS63210290A/en
Application granted granted Critical
Publication of JP2535877B2 publication Critical patent/JP2535877B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電解槽に浸漬して使用する電極材に関し、詳
細には電流効率及び電圧効率が優れ、かつ性能の変化の
少い炭素系電極材に関するものである。
TECHNICAL FIELD The present invention relates to an electrode material to be used by immersing it in an electrolytic cell, and more specifically, a carbon-based electrode having excellent current efficiency and voltage efficiency and little change in performance. It concerns materials.

(従来の技術) 電解槽を利用する分野としては、電気メッキ、食塩電
解、有機化合物の電解合成などの電解工業および各種電
池が代表的である。これらの電解槽に用いられる電極材
には、黒鉛電池などの電池に多くみられるような電極そ
のものが活物質として電気化学反応を生じるものと、活
物質の電気化学的な反応を進行させる反応場として働き
そのもの自身は変化しないものがある。後者の電極材
は、主に電解工業や新型2次電池に適用されてる。この
場合、電極材の特性としては、希望する反応以外の副反
応を起こさないこと(反応選択性)、エネルギー効率が
高いこと、くり返し使用による劣化が小さいこと(高寿
命)および使用する系での耐薬品安定性が要求される。
特に、電力貯蔵用として開発が進められている新型2次
電池においては、将来的なエネルギーの有効利用の面か
ら電極材の性能改善および向上が必須課題となってい
る。
(Prior Art) As fields in which an electrolytic cell is used, the electrolysis industry such as electroplating, salt electrolysis, and electrosynthesis of organic compounds and various batteries are typical. The electrode materials used in these electrolyzers are those in which the electrode itself, which is often found in batteries such as graphite batteries, undergoes an electrochemical reaction as the active material, and the reaction field that promotes the electrochemical reaction of the active material. There is something that does not change itself. The latter electrode material is mainly applied to the electrolytic industry and new secondary batteries. In this case, the characteristics of the electrode material are that side reactions other than the desired reaction do not occur (reaction selectivity), energy efficiency is high, deterioration due to repeated use is small (long life), and it depends on the system used. Chemical stability is required.
In particular, in a new type secondary battery that is being developed for power storage, it is essential to improve and improve the performance of the electrode material from the viewpoint of effective use of energy in the future.

尚、新型2次電池として、ナトリウム−硫黄電池、リ
チウム−硫化鉄電池、金属−ハロゲン電池、レドックス
フロー形電池等が現在開発が進められている。また、こ
れら新型2次電池は、太陽光、風力、波力等の自然エネ
ルギーを利用した発電のバックアップ装置、あるいは電
気自動車電池としても期待が寄せられている。
As new type secondary batteries, sodium-sulfur batteries, lithium-iron sulfide batteries, metal-halogen batteries, redox flow type batteries and the like are currently under development. Further, these new secondary batteries are also expected to be used as backup devices for power generation using natural energy such as sunlight, wind power, and wave power, or as electric vehicle batteries.

しかし、これら新型2次電池を実用化するためには、
開発しなければならない問題点が内在している。すなわ
ちエネルギー効率などの性能の改善及び長寿命化であ
る。例えば、レドックスフロー形2次電池において、現
在最も開発の進んでいる正極活物質に塩化鉄水溶液、負
極活物質に塩化クロム水溶液を用いる鉄−クロムレドッ
クスフロー型2次電池(以下Fe-Cr電池と略す)の電極
材には、耐薬品性があり、導電性を有する通常の炭素繊
維集合体が用いられている。
However, in order to put these new secondary batteries into practical use,
There are inherent problems that need to be developed. That is, the performance such as energy efficiency is improved and the life is extended. For example, in a redox flow type secondary battery, an iron-chromium redox flow type secondary battery (hereinafter referred to as a Fe-Cr battery) using an iron chloride aqueous solution as a positive electrode active material and a chromium chloride aqueous solution as a negative electrode active material, which are currently most developed. For the electrode material (abbreviated), a normal carbon fiber aggregate having chemical resistance and electrical conductivity is used.

該電池において炭素繊維集合体を用いる正極での鉄イ
オンの酸化還元反応は充放電時において反応度が比較的
速く副反応も生成しないのでさほど問題ではない。しか
るに、鉄イオンに比べ錯交換反応を含むクロム錯イオン
の負極における酸化還元反応が遅く、つまり電池の導電
度が低いこと、又充電時に水素が発生し電池の電流効率
が下がり易いこと等が第1に挙げられる問題点となって
いる。それと共に電圧、エネルギー各効率がサイクル経
過に伴って変化する割合(低下率)が大きいことが第2
の問題点となっている。
The redox reaction of iron ions in the positive electrode using the carbon fiber aggregate in the battery is not a serious problem because the reactivity is relatively fast during charging and discharging and no side reaction is generated. However, the redox reaction of the chromium complex ion including the complex exchange reaction in the negative electrode is slower than that of iron ion, that is, the conductivity of the battery is low, and hydrogen is generated during charging, and the current efficiency of the battery is likely to decrease. It is a problem listed in 1. At the same time, the second is that the rate at which the voltage and energy efficiencies change over the course of the cycle (rate of decrease) is large.
Has become a problem.

(発明が解決しようとする問題点) 本願発明はかかる事情に鑑み電池のトータルエネルギ
ー効率を高め、かつサイクル寿命を改善する電解槽用電
極材を提供することにある。
(Problems to be Solved by the Invention) In view of such circumstances, the present invention provides an electrode material for an electrolytic cell, which enhances the total energy efficiency of a battery and improves the cycle life.

(問題点を解決する為の手段) 本発明は、X線広角解析より求めた〈002〉面間隔が
3.70Å以下の擬黒鉛結晶構造を有する炭素であって、該
炭素表面の結合酸素原子比が炭素原子に対し少なくとも
3%以上であり、かつアルミニウム、ガリウム、インジ
ウム、タリウム、長周期表のIVb族またはIVa族元素のう
ち少なくとも一種以上の元素を含有する電解槽用炭素系
電極材でありさらに上記材料にホウ素元素を含有する電
解槽用炭素系電極材である。
(Means for Solving Problems) In the present invention, the <002> plane spacing obtained by X-ray wide-angle analysis is
Carbon having a pseudo-graphite crystal structure of 3.70 Å or less, wherein the ratio of bound oxygen atoms on the carbon surface is at least 3% or more with respect to carbon atoms, and aluminum, gallium, indium, thallium, and IVb group of the long periodic table Alternatively, it is a carbon-based electrode material for an electrolytic cell, which contains at least one element of the IVa group elements, and further contains a boron element in the above-mentioned material.

本発明において擬黒鉛結晶構造を有する炭素とは、X
線広角解析より求めた〈002〉面間隔が3.70Å以上で3.3
54Å(黒鉛構造)までの範囲好ましくは3.40〜3.70Åの
炭素材料である。該炭素材料は電極材に用いることによ
り、充電時負極における水素発生等の副反応が抑制さ
れ、電流効率を著しく高め得ることができる。一方、
〈002〉面間隔が3.70Å以上の炭素材料を用いた場合は
充電時負極における水素発生など有害な副反応が進行
し、電流効率を高めることはできない。また結晶性の高
い完全黒鉛構造よりは擬似黒鉛構造の方が表面酸化処理
が容易である。尚、本発明の炭素材料の原料としては炭
化可能な原料全てを適用しうるものであり、例えば石炭
・石油などのピッチ,フェノール系、アクリル系、芳香
族ポリアミド系、セルロース系原料等を挙げることがで
きる。又さらに炭素材料の構成組織としては、紡績糸、
フィラメント集束糸、不織布、織地、編地或いはこれら
の混成組織からなる炭素質繊維集合体、多孔質炭素体、
炭素−炭素複合体、粒子状炭素材料等を挙げることがで
き、特に制限を設けるものではない。
In the present invention, carbon having a pseudo-graphite crystal structure means X
3.3 when the <002> plane spacing obtained by line wide angle analysis is 3.70Å or more
A carbon material having a range of up to 54 Å (graphite structure), preferably 3.40 to 3.70 Å. By using the carbon material as an electrode material, side reactions such as hydrogen generation in the negative electrode during charging can be suppressed, and the current efficiency can be significantly increased. on the other hand,
When a carbon material with a <002> plane spacing of 3.70 Å or more is used, harmful side reactions such as hydrogen generation in the negative electrode during charging progress and current efficiency cannot be increased. Further, the surface oxidation treatment is easier in the pseudo graphite structure than in the complete graphite structure having high crystallinity. As the raw material of the carbon material of the present invention, all carbonizable raw materials can be applied, and examples thereof include pitch of coal and petroleum, phenol-based, acrylic-based, aromatic polyamide-based, cellulosic-based raw materials and the like. You can Furthermore, as the constituent structure of the carbon material, spun yarn,
Filament-concentrated yarn, non-woven fabric, woven fabric, knitted fabric or a carbonaceous fiber aggregate composed of a hybrid structure thereof, a porous carbon body,
A carbon-carbon composite, a particulate carbon material, and the like can be mentioned, and there is no particular limitation.

本発明における炭素材料表面の結合酸素比とは、ESCA
表面分析(解析方法は後述する)より炭素材料表面より
検出される結合酸素量を意味し、結合酸素原子数の炭素
原子数に対する割合として表わす(%,以下O/C比とい
う)。この値が3%〜30%好ましくは5〜15%の炭素系
材料を電極材に用いることにより、電極反応速度、つま
り電導度を著しく高め得ることができる。一方、ESCA分
析による材料表面のO/C比が3%未満の酸素濃度の低炭
素系材料を用いた場合は充放電池の電極反応速度が小さ
く、電導度を高めることはできない。このような材料表
面の酸素原子を多く結合させた炭素系材料を電極材とし
て用いることにより電導度、いいかえれば電圧効率が高
められる。このような表面酸素原子の濃度を高めた炭素
系材料は、前述した擬黒鉛結晶構造をもつ炭素材料を乾
式酸化処理することにより得られる。例えば1×10-2to
rr以上の酸素分圧を有する酸素雰囲気下で重量収率にし
て65〜99%の範囲になる様に実施される。処理温度は通
常400℃以上が好ましい。低温(例えば200〜300℃)で
は処理する炭素材料の反応性が落ちるため酸化の効果が
得られない。酸化処理を湿式で行なうと層間化合物の生
成、処理地の有害ガスの発生等問題が多いのでさけるべ
きである。又この乾式酸化処理は、一段階の方式でもよ
いし、異なる温度で二段階以上に分れた方式をとっても
よい。
The bound oxygen ratio of the carbon material surface in the present invention means ESCA.
It means the amount of bound oxygen detected from the surface of the carbon material by surface analysis (the analysis method will be described later), and is expressed as the ratio of the number of bound oxygen atoms to the number of carbon atoms (%, hereinafter referred to as O / C ratio). By using a carbonaceous material having this value of 3% to 30%, preferably 5% to 15% for the electrode material, the electrode reaction rate, that is, the electric conductivity can be significantly increased. On the other hand, when using a low carbon material having an oxygen concentration of O / C ratio of less than 3% on the surface of the material by ESCA analysis, the electrode reaction rate of the charge / discharge battery is low and the electric conductivity cannot be increased. By using a carbon-based material having many oxygen atoms bonded to the surface of the material as an electrode material, the electric conductivity, in other words, the voltage efficiency can be improved. Such a carbon-based material having an increased concentration of surface oxygen atoms can be obtained by dry-oxidizing the above-mentioned carbon material having a pseudo-graphite crystal structure. For example, 1 × 10 -2 to
It is carried out in an oxygen atmosphere having an oxygen partial pressure of rr or more so that the weight yield is in the range of 65 to 99%. Generally, the treatment temperature is preferably 400 ° C. or higher. At a low temperature (for example, 200 to 300 ° C.), the carbon material to be treated loses its reactivity and the effect of oxidation cannot be obtained. Wet oxidation should be avoided because there are many problems such as formation of intercalation compounds and generation of harmful gas in the treated area. Further, this dry oxidation treatment may be a one-step method, or may be a two-step method at different temperatures.

上記構成をとることにより電流効率、電圧効率の高い
電極材が得られ、電池のトータルエネルギー効率を大幅
に上昇させることが出来、前述の第1の問題点を解決す
ることができる。
With the above structure, an electrode material having high current efficiency and voltage efficiency can be obtained, the total energy efficiency of the battery can be significantly increased, and the first problem described above can be solved.

本発明において電極材に含有させる元素とは、アルミ
ニウム、ガリウム、インジウム、タリウム、長周期表の
IVb族およびIVa族元素のうち少なくとも一種以上の元素
である。ここでIVb族元素とは、ケイ素、ゲルマニウ
ム、スズ、鉛でありIVa族元素とはチタン、ジルコニウ
ム、ハフニウムである。また、ホウ素を上記元素とあわ
せて含有させてもよい。前述のごとき擬黒鉛結晶構造お
よび表面構造を有する炭素系材料を電極材に用いること
によって、電池のトータルエネルギー効率を大幅に上昇
させることが出来たが、しかるに該電極材を用いて充放
電サイクルを実施すると、充放電サイクルの経過に伴っ
て電流効率は殆んど低下しないが電圧効率は徐々に低下
してくることが分った。これに対し、該炭素系材料に上
記元素を含有させることによって充放電サイクルの経過
に伴う電流、電圧効率の経時変化が極めて少ない、実用
上有用な電極材とし得ることが判明した。すなわち、前
述の擬黒鉛結晶構造および表面構造を有する炭素系材料
に上記元素を含有させることによって第1の問題点とあ
わせて第2の問題点を解決することができる。
The elements contained in the electrode material in the present invention include aluminum, gallium, indium, thallium, and long-term periodic table.
It is at least one element selected from the group IVb and group IVa. Here, the group IVb element is silicon, germanium, tin, and lead, and the group IVa element is titanium, zirconium, and hafnium. Further, boron may be contained together with the above element. By using a carbon-based material having a pseudo-graphite crystal structure and a surface structure as described above as an electrode material, the total energy efficiency of the battery could be significantly increased. When implemented, it was found that the current efficiency hardly decreased with the lapse of charge / discharge cycles, but the voltage efficiency gradually decreased. On the other hand, it has been found that by incorporating the above elements into the carbon-based material, it is possible to obtain a practically useful electrode material in which the change in current and voltage efficiency with the passage of charge / discharge cycles is extremely small. That is, by incorporating the above element into the carbon-based material having the above-mentioned pseudo-graphite crystal structure and surface structure, the second problem can be solved in addition to the first problem.

炭素系材料に上記元素を含有させる方法については特
に制限はないが、炭素化前の原材料に上記元素単味ある
いは無機又は有機化合物を混入又は添着させてもよい
し、一旦低温炭化を行ったものに上記あるいは化合物を
添着し、さらに高温処理を施してもよい。
There is no particular limitation on the method of containing the above element in the carbon-based material, but the raw material before carbonization may be mixed or impregnated with the above-mentioned elemental simple substance or an inorganic or organic compound, or once subjected to low temperature carbonization. The above or the compound may be attached to the above and further subjected to high temperature treatment.

尚、無機化合物の例としては、酸化アルミニウム、酸
化ガリウム、酸化インジウム、酸化タリウム、酸化ケイ
素、酸化ゲルマニウム、酸化スズ、酸化鉛、酸化チタ
ン、酸化ジルコニウム、酸化ハフニウム、酸化ホウ素な
どの酸化物、ケイ酸、チタン酸、アルミン酸、ホウ酸な
どやこれらの酸塩、またアルミノケイ酸塩、ホウケイ酸
塩などの複合塩等であり、有機化合物としては、アルミ
ニウムトリiso−プロポキシド、ケイ酸テトラエチル、
チタン酸テトラn−ブチル、ホウ酸トリエチルなどの各
種アルコキシド等を挙げることができる。又これらの化
合物中には上記元素以外の金属元素を含まないものが好
ましい。金属元素が残留すると、電流効率の温度依存性
が増し好ましくない。その他近年各種材料の改質等に用
いられるイオン注入法を用いてもよいし、蒸着、スパッ
ター法によって添着させてもよい。これらの方法による
添加は好ましくは最終炭化以前に実施するのが望まし
い。添加量は、元素基準として添加元素の緩和が最終的
に炭素に対して0.01〜56mol%存在するよう調整するこ
とが望ましい。より好ましくは、炭素に対して0.05〜12
mol%である。また、上記元素とホウ素をあわせて添加
する場合は、ホウ素と添加元素との総和が炭素に対して
上述の範囲にあり、ホウ素と添加元素のモル比(ホウ素
/添加元素)が0.05〜20.0の範囲となるように調整する
ことが望ましい。
Examples of inorganic compounds include aluminum oxide, gallium oxide, indium oxide, thallium oxide, silicon oxide, germanium oxide, tin oxide, lead oxide, titanium oxide, zirconium oxide, hafnium oxide, oxides such as boron oxide, and silica. Acids, titanic acid, aluminic acid, boric acid and their acid salts, and also aluminosilicate, complex salts such as borosilicate, as the organic compound, aluminum tri iso-propoxide, tetraethyl silicate,
Examples include various alkoxides such as tetra-n-butyl titanate and triethyl borate. Further, it is preferable that these compounds do not contain metal elements other than the above elements. When the metal element remains, the temperature dependence of the current efficiency increases, which is not preferable. In addition, an ion implantation method which has been used for modifying various materials in recent years may be used, or deposition may be performed by vapor deposition or sputtering. Addition by these methods is preferably carried out before the final carbonization. It is desirable that the addition amount is adjusted so that the relaxation of the added element finally exists in the range of 0.01 to 56 mol% with respect to carbon as an element standard. More preferably 0.05 to 12 with respect to carbon
mol%. When the element and boron are added together, the sum of boron and the additive element is in the above range with respect to carbon, and the molar ratio of boron and the additive element (boron / additive element) is 0.05 to 20.0. It is desirable to adjust the range.

尚、本発明では〈002〉面間隔並びにO/C比を特定した
炭素系材料に上記元素あるいは上記元素とあわせてホウ
素を含有させることとしたが、かかる調整を施さない通
常の炭素系材料にこれらの元素を含有させた場合でも初
期電導度の充放電サイクル経時変化を低減させる効果を
得ることができる。
In the present invention, it was decided to include boron in combination with the above-mentioned element or the above element in the carbon-based material having the <002> interplanar spacing and the O / C ratio specified. Even when these elements are contained, it is possible to obtain the effect of reducing the change over time in the charge / discharge cycle of the initial conductivity.

本発明における電解槽とは、液体状の電解質に電極材
を浸漬して、電極材の表面で電気化学的反応(酸化、還
元)を行わせるものであり、電解プロセスや電池に使用
される電解槽である。すなわち本発明による電極材は、
各種電解プロセスやナトリウム−硫黄電池、亜鉛−臭素
電池、亜鉛−塩素電池、レドックスフロー形電池などの
新型2次電池等に有用に使用できる。さらに好ましく
は、レドックスフロー形2次電池、特にFe-Cr電池に最
も適合する。
The electrolysis tank in the present invention is one in which an electrode material is immersed in a liquid electrolyte to cause an electrochemical reaction (oxidation, reduction) on the surface of the electrode material, which is used in an electrolysis process or a battery. It is a tank. That is, the electrode material according to the present invention,
It can be usefully used in various electrolytic processes and new secondary batteries such as sodium-sulfur batteries, zinc-bromine batteries, zinc-chlorine batteries and redox flow batteries. More preferably, it is most suitable for a redox flow secondary battery, especially an Fe-Cr battery.

次に本発明において採用される〈002〉面間隔、電池
効率・電導度及びこれらのサイクル変化量の測定方法に
ついて説明する。
Next, the <002> plane spacing, the battery efficiency / conductivity, and the method for measuring the cycle change amount of these adopted in the present invention will be described.

〈002〉面間隔:d002 電極材料をメノウ乳鉢で、粒径10μm程度になるまで
粉砕し、試料に対して約5重量%のX線標準用高純度シ
リコン粉末を内部標準物として加えて混合し、試料セル
につめ、CuKd線を線源として、透過型ディフラクトメー
ター法によって広角X線回析曲線を測定する。
<002> Surface spacing: d002 The electrode material is crushed in an agate mortar to a particle size of about 10 μm, and about 5% by weight of high purity silicon powder for X-ray standard is added as an internal standard to the sample and mixed. Then, a wide angle X-ray diffraction curve is measured by a transmission diffractometer method using a CuKd ray as a radiation source.

曲線の補正には、いわゆるローレンツ因子、偏光因
子、吸収因子、原子散乱因子等に関する補正は行なわず
次の簡便法を用いる。則ち〈002〉回折に相当するピー
クのベースラインを引き、ベースラインから実質強度を
プロットし直して、〈002〉補正強度曲線を得る。この
曲線のピーク高さの3分の2の高さに引いた角度軸に平
行な線が補正強度曲線と交わる線分の中点を求め、中点
の角度を内部標準で補正し、これを回折角の2倍とし、
CuKαの波長入とから次式のBraggの式によって〈002〉
面間隔を求める。
For the correction of the curve, so-called Lorentz factor, polarization factor, absorption factor, atomic scattering factor, etc. are not corrected and the following simple method is used. That is, the baseline of the peak corresponding to <002> diffraction is drawn, and the actual intensity is plotted again from the baseline to obtain the <002> corrected intensity curve. Find the midpoint of the line segment where the line parallel to the angle axis drawn to the height of two-thirds of the peak height of this curve intersects the correction intensity curve, correct the angle of the midpoint with the internal standard, and Double the diffraction angle,
Based on the wavelength of CuKα and Bragg's equation below, <002>
Calculate the surface spacing.

λ:1.5418Å θ:回折角 電流効率 第1図に示す小型の流通形電解槽を作り、各種定電流
密度で充放電を繰り返し、電極性能のテストを行う。正
極液として各々1Mの塩化第一鉄および塩化第二鉄の4N塩
酸酸性水溶液を用い、負極液には、1Mの塩化第二クロム
の4N塩酸酸性水溶液を用意した。尚第1図では、電極材
の形状を長方形板状としたが、電解槽の形状に対応させ
て適宜三角形、円形の板状、球状、線状、その他異形と
してもよい。
λ: 1.5418 Å θ: Diffraction angle Current efficiency A small flow-through type electrolytic cell shown in Fig. 1 is made, and charging and discharging are repeated at various constant current densities to test electrode performance. As the positive electrode solution, 1M ferric chloride and ferric chloride 4N hydrochloric acid acidic aqueous solutions were used, respectively, and as the negative electrode solution, 1M ferric chloride 4N hydrochloric acid acidic aqueous solution was prepared. In FIG. 1, the shape of the electrode material is a rectangular plate shape, but it may be a triangular shape, a circular plate shape, a spherical shape, a linear shape, or any other irregular shape depending on the shape of the electrolytic cell.

正極液量は負極液量に対して大過剰とし、負極特性を
中心に検討できるようにした。電極面積は10cm2、液流
量は毎分約5mlである。電流密度は、充電時、放電時共
に40mA/cm2で行った。充電に始まり放電に終る1サイク
ルのテストにおいて、1.2Vまでの充電に要した電気量を
1クーロン,0.2Vまでの定電流放電及びこれに続く0.8V
までの定電圧放電で取り出した電気量を各々Q2,Q3クー
ロンとし、次式で電流効率を求める。
The amount of the positive electrode solution was set to a large excess with respect to the amount of the negative electrode solution, so that the characteristics of the negative electrode could be examined mainly. The electrode area is 10 cm 2 , and the liquid flow rate is about 5 ml / min. The current density was 40 mA / cm 2 during charging and discharging. In a one-cycle test that starts with charging and ends with discharging, the amount of electricity required to charge up to 1.2V is Q 1 coulomb, constant current discharge up to 0.2V, and then 0.8V.
Each amount of electricity taken out at a constant voltage discharge to the Q 2, Q 3 coulombs, obtains the current efficiency by the following equation.

充電時にCr3+からCr2+への還元以外の反応、例えばH
+の還元等の副反応が起ると、取り出せる電気量が減
り、電流効率は減少する。
Reactions other than reduction of Cr 3+ to Cr 2+ during charging, eg H
When side reactions such as reduction of + occur, the amount of electricity that can be taken out decreases and current efficiency decreases.

セル電導度 負極液中のCr3+をCr2+に完全に還元するのに必要な理
論電気量Qthに対して、放電によって取り出した電気量
の比を充電率とし、 充電率が50%のときの電流・電圧曲線の傾きから、セル
抵抗(Ωcm2)、及びその逆数であるセル電導度(Sc
m-2)を求める。セル電導度が大きい程電極でのイオン
の酸化還元反応はすみやかに起こるため高電流密度での
放電電圧は高くなり、従ってセルの電圧効率が高く、優
れた電極であると判断できる。
Cell conductivity The ratio of the quantity of electricity extracted by discharge to the theoretical quantity of electricity Qth required to completely reduce Cr 3+ in the negative electrode solution to Cr 2+ is defined as the charging rate, From the slope of the current-voltage curve when the charging rate is 50%, the cell resistance (Ωcm 2 ) and its reciprocal cell conductivity (Sc
m -2 ). The higher the cell conductivity, the sooner the redox reaction of ions at the electrode occurs, and the higher the discharge voltage at high current density becomes. Therefore, the voltage efficiency of the cell is high, and it can be judged that the electrode is excellent.

充放電サイクルの経時変化 ,の測定を終えた後、続いて同セルを用い、40mA
/cm2の定電流密度で、セル電圧0.5〜1.2V間で充放電を
繰り返し実施する。規定サイクル経過後、0.2Vまでの定
電流放電及び0.8Vの定電圧放電を実施して,のデー
タ測定を行なう。尚,,のテストは40℃で行なっ
た。
After the measurement of the change with time of the charge / discharge cycle was completed, the same cell was used to
Charging / discharging is repeatedly performed at a cell voltage of 0.5 to 1.2 V at a constant current density of / cm 2 . After the specified cycle, perform constant current discharge up to 0.2V and constant voltage discharge at 0.8V, and measure the data. The test was conducted at 40 ° C.

O/C比 ESCAあるいは、XPSと略称されているX線光電子分光
法により炭素系材料表面のO/C比を測定する。測定装置
は島津ESCA750で、解析にはESCA PAC760を用いた。
O / C ratio The O / C ratio of the carbon-based material surface is measured by X-ray photoelectron spectroscopy, which is abbreviated as ESCA or XPS. Shimadzu ESCA750 was used as the measuring device, and ESCA PAC760 was used for the analysis.

各試料を6mm径に切り出し、導電性ペーストにより加
熱式試料台に貼り付けて、試料を120℃で加熱しなが
ら、2時間以上真空脱気した後測定を行った。線源には
MgKαの線(1253.6eV)を用い、装置内真空度は10-7tor
rの条件で試料表面の分析を行なった。尚、ここで言う
表面とは試料の最外層から数十Åまでの深さの範囲を意
味する(分析領域)。
Each sample was cut into a diameter of 6 mm, attached to a heating type sample stand with a conductive paste, and the sample was vacuum degassed for 2 hours or more while heating at 120 ° C., and then the measurement was performed. For the radiation source
Using the MgKα line (1253.6 eV), the degree of vacuum in the device is 10 -7 tor
The surface of the sample was analyzed under the condition of r. The surface mentioned here means a range of depth from the outermost layer of the sample to several tens of liters (analysis area).

測定はCls,Olsピークに対して行ない、各ピークをESC
A PAC760(J.H.Scofieidによる補正法に基づく)を用い
補正解析し、各ピーク面積を求める。得られた面積はCl
sについては1.00,Olsに対しては2.85の相対強度を乗じ
たものであり、その面積から直接表面(酸素/炭素)原
子数比を%で算出する。
The measurement was performed for Cls and Ols peaks, and each peak was ESC
A PAC760 (based on the correction method by JHScofieid) is used for correction analysis, and each peak area is obtained. The area obtained is Cl
s is 1.00 and Ols is multiplied by a relative intensity of 2.85, and the surface (oxygen / carbon) atomic number ratio is directly calculated as a percentage from the area.

(実施例) 以下本発明を比較例、実施例によって詳しく説明する
が、本発明はこれらの例に限定されるものではない。
(Examples) The present invention will be described in detail below with reference to comparative examples and examples, but the present invention is not limited to these examples.

実施例1 充分に脱硫、漂白、水洗、乾燥を行なって得た2.0デ
ニールの短繊維再生セルロース繊維から成る20番手双糸
を使って14ゲージ両面丸編機により、両面編地を編成し
布帛Aを得た。この編地は424g/m2の目付と0.3709g/cm3
の見掛け密度、及び1.2mmの厚さを有していた。この編
地を精練・乾燥後9.6重量%のアルミニウムトリiso−プ
ロポキシドを含むiso−プロピルアルコール,エチルア
ルコールおよび水の混合溶液(重量比80:40:1.5)に浸
漬した後、脱水、乾燥して、アルミナゲルとして4.0重
量%(アルミニウムとして2.1重量%)添着させた布帛
を不活性ガス中で1℃/分の昇温速度で270℃まで昇温
し(耐炎化処理)次いで400℃/時間の昇温速度で2350
℃まで昇温しこの温度で30分保ち炭化を行なって冷却
し、空気中650℃で15分処理して布帛Bを得た。布帛B
の電流効率は初期及び50サイクル経過後も99%であっ
た。初期電導度は0.68Scm-2であり、50サイクル経過後
は0.53Scm-2となり布帛Fに比べ改善された。
Example 1 A double-sided knitted fabric was knitted with a 14-gauge double-sided circular knitting machine using 20-count double yarn composed of 2.0-denier short-fiber regenerated cellulose fibers which had been sufficiently desulfurized, bleached, washed with water, and dried to fabric A. Got This knitted fabric has a basis weight of 424 g / m 2 and 0.3709 g / cm 3
It had an apparent density of 1.2 mm and a thickness of 1.2 mm. This knitted fabric was scoured and dried, then immersed in a mixed solution of iso-propyl alcohol, ethyl alcohol and water (weight ratio 80: 40: 1.5) containing 9.6% by weight of aluminum triiso-propoxide, dehydrated and dried. Then, the fabric with 4.0% by weight of alumina gel (2.1% by weight of aluminum) impregnated therein is heated to 270 ° C. at a heating rate of 1 ° C./min in an inert gas (flame resistance treatment) and then 400 ° C./hour. At a heating rate of 2350
The temperature was raised to ℃, kept at this temperature for 30 minutes, carbonized, cooled, and treated in air at 650 ℃ for 15 minutes to obtain Fabric B. Fabric B
Current efficiency was 99% at the beginning and after 50 cycles. The initial conductivity is 0.68Scm -2, after 50 cycles was improved compared to 0.53Scm -2 next fabric F.

尚、布帛Bのd002は3.53Å,O/C比は9.5%であった。The d002 of Fabric B was 3.53Å, and the O / C ratio was 9.5%.

実施例2 実施例1で得た布帛Aを精練・乾燥し、12.1重量%の
オルトケイ酸テトラエチルを含むエチルアルコール、水
および酢酸の混合溶液(重量比63:90:0.03)に浸漬した
後、脱水、乾燥してシリカゲルとして10.3重量%(ケイ
素として4.8重量%)を添着させた布帛を実施例1と同
じ方法で耐炎化及び2000℃で炭化を行なって冷却し、空
気中650℃で15分処理して布帛Cを得た。布帛Cの電流
効率は、初期及び50サイクル経過後も99%であった。
Example 2 The fabric A obtained in Example 1 was scoured and dried, immersed in a mixed solution of ethyl alcohol containing 12.1% by weight of tetraethyl orthosilicate, water and acetic acid (weight ratio 63: 90: 0.03), and then dehydrated. The cloth, which was dried and impregnated with 10.3% by weight of silica gel (4.8% by weight of silicon), was flame-proofed and carbonized at 2000 ° C. in the same manner as in Example 1, cooled, and treated in air at 650 ° C. for 15 minutes. To obtain a cloth C. The current efficiency of Fabric C was 99% at the beginning and after 50 cycles.

初期電導度は0.70Scm-2であり、50サイクル経過後は0.5
5Scm-2となり布帛Fに比べ改善された。
Initial conductivity is 0.70Scm -2 , 0.5 after 50 cycles
It was 5 Scm -2 , which was improved compared to Fabric F.

尚、布帛Cのd002は3.60Å,O/C比は11.0%であった。 The d002 of Fabric C was 3.60Å, and the O / C ratio was 11.0%.

また、X線回折よりSicの回折ピークが認められ、炭素
の(002)回折線からはT成分の回折線も認められた
(2θ=26.0°付近に出現、文献1)参照)。
In addition, a diffraction peak of Sic was recognized by X-ray diffraction, and a diffraction line of T component was also recognized from the (002) diffraction line of carbon (appeared near 2θ = 26.0 °, see Reference 1)).

実施例3 実施例1で編成した布帛Aを、精練・乾燥し、12.3重
量%のチタン酸テトラn−ブチルを含むレタノール、水
および酢酸の混合けん濁液(重量比63:180:0.03)に浸
漬した後、脱水・乾燥して、酸化チタンゲルとして10.0
重量%(チタンとして5.9重量%)添着させた布帛を実
施例1と同じ方法で耐炎化及び2350℃で炭化を行って冷
却し、空気中650℃で15分処理して布帛Dを得た。布帛
Dの電流効率は初期及び50サイクル経過後も98%であっ
た。
Example 3 The fabric A knitted in Example 1 was scoured and dried to prepare a mixed suspension of retanol, water and acetic acid containing 12.3% by weight of tetra-n-butyl titanate (weight ratio 63: 180: 0.03). After soaking, dehydration and drying are performed to form titanium oxide gel 10.0
The fabric impregnated with 1% by weight (5.9% by weight of titanium) was subjected to flame resistance and carbonization at 2350 ° C. in the same manner as in Example 1 to be cooled, and then treated in air at 650 ° C. for 15 minutes to obtain a fabric D. The current efficiency of Fabric D was 98% at the beginning and after 50 cycles.

また、初期電導度は0.65Scm-2であり、50サイクル経
過後は、0.49Scm-2となり布帛Gに比べ改善された。
The initial conductivity is 0.65Scm -2, after 50 cycles, was improved compared with 0.49Scm -2 next fabric G.

尚、布帛Fのd002は3.55Å,O/C比は9.5%であった。
また、X線回折よりTiCの回折ピークが認められた。
The d002 of the cloth F was 3.55Å, and the O / C ratio was 9.5%.
Further, a TiC diffraction peak was confirmed by X-ray diffraction.

実施例4 実施例1で編成した布帛Aを、精練・乾燥し、7.5重
量%kオルトケイ酸テトラエチル及び5.1重量%のホウ
酸を含むエチルアルコールおよび水の混合溶液(重量比
63:180)に浸漬した後、脱水・乾燥してシリカゲルとホ
ウ酸の混合物として15.0重量%(ケイ素として3.5重量
%、ホウ素として1.3重量%)添着させた布帛を実施例
1と同方法で耐炎化及び2350℃で炭化を行なって冷却
し、空気中650℃で15分間処理して布帛Eを得た。布帛
Eの電流効率は初期及び50サイクル経過後も98%であっ
た。また、初期電導度は、0.71Scm-2であり、50サイク
ル経過後は、0.66Scm-2となり布帛Fに比べ改善され
た。
Example 4 The fabric A knitted in Example 1 was scoured and dried, and a mixed solution of ethyl alcohol and water containing 7.5 wt% tetraethyl orthosilicate and 5.1 wt% boric acid (weight ratio).
63: 180) and then dehydrated and dried, and a cloth impregnated with 15.0% by weight (3.5% by weight of silicon and 1.3% by weight of boron) as a mixture of silica gel and boric acid was subjected to flame resistance in the same manner as in Example 1. And was carbonized at 2350 ° C., cooled, and treated in air at 650 ° C. for 15 minutes to obtain a fabric E. The current efficiency of the fabric E was 98% at the initial stage and after 50 cycles. The initial conductivity was 0.71 Scm -2 , which was 0.66 Scm -2 after 50 cycles, which is an improvement over the fabric F.

尚、布帛Eのd002は、3.48Å,O/C比は9.3%であっ
た。
The d002 of the fabric E was 3.48Å, and the O / C ratio was 9.3%.

また、X線回折より炭素の(002)回折線からはT成
分、G成分に対応する回折線も認められた(G成分:黒
鉛成分、文献1)参照)。
Further, from the X-ray diffraction, diffraction lines corresponding to the T component and the G component were recognized from the (002) diffraction line of carbon (G component: graphite component, see Reference 1)).

比較例1 充分に脱硫、漂白、水洗、乾燥を行なって得た2.0デ
ニールの短繊維再生セルロース繊維から成る20番手双糸
を使って14ゲージ両面丸編機により、両面編地を編成し
布帛Aを得た。この編地は424g/m2の目付と、0.3709g/c
m2の見掛け密度、及び1.2mmの厚さを有していた。この
編地を精練・乾燥後不活性ガス中で毎分1度の昇温速度
で270℃まで昇温し、次いで毎時400度の昇温速度850℃
まで昇温し、30分保持した後冷却して、さらに空気中40
0℃で酸化処理を行い炭素繊維布帛Fを得た。布帛Aに
ついてのX線解析結果はd002=3.85Å、又ESCAによるO/
C比は11.3%であった。布帛Fを用いた電池の初期の電
流効率は74%、同電導度は0.12Scm-2であった。尚、布
帛Fの目付は265g/m2、密度は0.26g/ccであった。
Comparative Example 1 A double-sided knitted fabric was knitted by a 14-gauge double-sided circular knitting machine using 20-count double yarn composed of 2.0 denier short-fiber regenerated cellulose fibers obtained by sufficiently desulfurizing, bleaching, washing with water and drying, and a fabric A Got This knitted fabric has a basis weight of 424 g / m 2 and 0.3709 g / c
It had an apparent density of m 2 and a thickness of 1.2 mm. After the scouring and drying of this knitted fabric, the temperature is raised to 270 ° C. at a heating rate of 1 degree per minute in an inert gas, and then a heating rate of 850 ° C. at 400 degrees per hour
Up to 40 minutes, hold for 30 minutes, cool, and
Oxidation treatment was performed at 0 ° C. to obtain a carbon fiber cloth F. The X-ray analysis result for fabric A is d002 = 3.85Å, and ESCA O /
The C ratio was 11.3%. The initial current efficiency of the battery using the cloth F was 74%, and the electric conductivity thereof was 0.12 Scm -2 . The fabric F had a basis weight of 265 g / m 2 and a density of 0.26 g / cc.

(発明の効果) 本発明の電極材を用いることにより、各種電解槽を利
用する分野において、有害な副反応を抑止して電流効率
を高め、また、セル電導度を高めることができ、従って
エネルギー効率を高めることができる。さらにサイクル
の経時劣化を低減することができ、工業的に多大な実用
性をもたらすことができた。
(Effects of the Invention) By using the electrode material of the present invention, in the field of utilizing various electrolytic cells, harmful side reactions can be suppressed to increase current efficiency, and cell conductivity can be increased, thus reducing energy consumption. The efficiency can be increased. Further, deterioration of the cycle with time could be reduced, and industrially great practicality could be brought about.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る電極材の電池性能を測定する為の
実験装置を説明する図である。 1……集電用黒鉛板 2……スペーサー 3……イオン交換膜 4……炭素繊維布帛(電極) 5……活物質水溶液流通路
FIG. 1 is a diagram illustrating an experimental apparatus for measuring the battery performance of the electrode material according to the present invention. 1 ... Graphite plate for collecting current 2 ... Spacer 3 ... Ion exchange membrane 4 ... Carbon fiber cloth (electrode) 5 ... Active material aqueous solution flow passage

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】X線広角解析より求めた〈002〉面間隔が
3.70Å以下の擬黒鉛結晶構造を有する炭素であって、該
炭素表面の結合酸素原子比が炭素原子に対し少くとも3
%以上であり、かつアルミニウム、ガリウム、インジウ
ム、タリウム、長周期表のIVb族またはIVa族元素のうち
少なくとも一種以上の元素を含有することを特徴とする
電解槽用炭素系電極材。
1. A <002> plane spacing obtained by X-ray wide-angle analysis is
A carbon having a pseudo-graphite crystal structure of 3.70Å or less, wherein the ratio of bound oxygen atoms on the carbon surface is at least 3 with respect to carbon atoms.
% Or more and contains at least one element selected from the group consisting of aluminum, gallium, indium, thallium, and IVb group or IVa group element of the long periodic table, a carbon-based electrode material for an electrolytic cell.
JP62043885A 1987-02-25 1987-02-25 Carbon electrode material for electrolytic cell Expired - Fee Related JP2535877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62043885A JP2535877B2 (en) 1987-02-25 1987-02-25 Carbon electrode material for electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62043885A JP2535877B2 (en) 1987-02-25 1987-02-25 Carbon electrode material for electrolytic cell

Publications (2)

Publication Number Publication Date
JPS63210290A JPS63210290A (en) 1988-08-31
JP2535877B2 true JP2535877B2 (en) 1996-09-18

Family

ID=12676161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62043885A Expired - Fee Related JP2535877B2 (en) 1987-02-25 1987-02-25 Carbon electrode material for electrolytic cell

Country Status (1)

Country Link
JP (1) JP2535877B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05182668A (en) * 1991-12-27 1993-07-23 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP6221067B2 (en) * 2013-12-03 2017-11-01 パナソニックIpマネジメント株式会社 Formic acid production apparatus and method
JP6617464B2 (en) * 2015-07-31 2019-12-11 東洋紡株式会社 Carbon electrode material for redox batteries

Also Published As

Publication number Publication date
JPS63210290A (en) 1988-08-31

Similar Documents

Publication Publication Date Title
US8900755B2 (en) Lithium super-battery with a chemically functionalized disordered carbon cathode
US4496637A (en) Electrode for flowcell
JP2955938B2 (en) Carbon-based electrode materials for electrolytic cells
JP2000357520A (en) Carbon electrode material for vanadium-based redox flow battery
JP2612320B2 (en) Lithium secondary battery using carbon fiber for both electrodes
CN103730645A (en) Silicon-coated carbon fiber nano composite material and preparation method and application thereof
CN113517144B (en) Carbon fiber felt-based flexible all-solid-state asymmetric supercapacitor and preparation method thereof
US10553873B2 (en) Graphitic carbon-based cathode for aluminum secondary battery and manufacturing method
CN115275189A (en) Nitrogen-doped rice hull-based hard carbon negative electrode material and preparation method and application thereof
CN105070889A (en) Preparation method, product and application of titanium dioxide nano-film and ferroferric oxide nano-particle-loaded carbon fibre material
Xu et al. Preparation of lithium-doped NaV6O15 thin film cathodes with high cycling performance in SIBs
JP2535877B2 (en) Carbon electrode material for electrolytic cell
CN117293303A (en) Lithium-sulfur battery anode material and preparation method and application thereof
JPH0711963B2 (en) Carbon-based electrode material for flow-through electrolyzer
JPS60253163A (en) Laminated electrolytic cell
JP2906241B2 (en) Liquid flow type electrolytic cell
JPS59101776A (en) Electrode material
JPS63100009A (en) Activated carbon
CN115346803A (en) W 18 O 49 Carbon paper composite electrode material and preparation method thereof
JPH0552033B2 (en)
JPH11317231A (en) Carbon-based electrode material for electrolytic cell
CN108365189A (en) A kind of preparation method of metal sulfide@carbon fibre composite anode material of lithium-ion batteries
CN110211817B (en) Manufacturing method of aluminum-doped basic cobalt fluoride ultrathin nanosheet array electrode
CN112266011A (en) Preparation of cotton fiber loaded SnO2Method for making lithium ion battery cathode material
JPH0711969B2 (en) Metal-halogen secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees