JPH0711963B2 - Carbon-based electrode material for flow-through electrolyzer - Google Patents

Carbon-based electrode material for flow-through electrolyzer

Info

Publication number
JPH0711963B2
JPH0711963B2 JP60192353A JP19235385A JPH0711963B2 JP H0711963 B2 JPH0711963 B2 JP H0711963B2 JP 60192353 A JP60192353 A JP 60192353A JP 19235385 A JP19235385 A JP 19235385A JP H0711963 B2 JPH0711963 B2 JP H0711963B2
Authority
JP
Japan
Prior art keywords
carbon
electrode material
battery
electrode
fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60192353A
Other languages
Japanese (ja)
Other versions
JPS6252861A (en
Inventor
康広 飯▲塚▼
鉄夫 深津
将慶 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP60192353A priority Critical patent/JPH0711963B2/en
Publication of JPS6252861A publication Critical patent/JPS6252861A/en
Publication of JPH0711963B2 publication Critical patent/JPH0711963B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はレドックスフロー2次電池の電解槽に浸漬して
使用する電極材に関し、詳細には電流効率及び電圧効率
が優れ、且つ性能の劣化の少ない炭素系電極材に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of use] The present invention relates to an electrode material used by immersing it in an electrolytic cell of a redox flow secondary battery, and more specifically, it has excellent current efficiency and voltage efficiency and deterioration of performance. The present invention relates to a carbon-based electrode material having a low content.

[従来の技術] 1973年のエネルギー危機以来エネルギー問題が広く各層
で認識される様になっており、新しいエネルギー源の開
発と同時に発生したエネルギーを有効に利用するエネル
ギーの変換、貯蔵、輸送、利用を含めたシステムの開発
も重要となって来ている。
[Prior Art] Since the energy crisis of 1973, the energy problem has been widely recognized by various layers, and at the same time as the development of a new energy source, the energy generated by the energy conversion, storage, transportation, and use that effectively uses the generated energy Development of the system including is becoming important.

例えば将来電源構成で大きな比重を占めると予測されて
いる原子力,石炭火力等の大型発電においては高い発電
効率を保つ上で一定の出力を保持して定常発電すること
が必要であるとされているが、昼夜の電力需要には大き
な差がある為止むを得ず出力を変動させており、現在の
主要発電設備の年間稼動率は60%を下回る低値を続けて
いる。そこで夜間の余剰電力を適切に貯蔵して昼間の需
要増大時にこれを放出し、需要の変動に対応させる(ロ
ードレベリング)ことのできる電力貯蔵技術への要求が
強くなってきている。
For example, in large-scale power generation such as nuclear power and coal-fired thermal power, which is expected to occupy a large proportion in the future power source composition, it is said that it is necessary to maintain a constant output and perform steady power generation in order to maintain high power generation efficiency. However, due to the large difference in power demand between day and night, the output has been forced to fluctuate, and the current annual operating rate of major power generation facilities continues to fall below 60%. Therefore, there is an increasing demand for an electric power storage technology capable of appropriately storing the surplus power at night and discharging the surplus power when the demand increases during the daytime (load leveling).

電力貯蔵の方法には、揚水発電,新型2次電池,フライ
ホイール,圧縮空気,超電導等の各種の方法が検討され
ており、このうち揚水発電の実用化率が高いが、これに
ついても送電ロスが大きい,立地に制約がある等の難が
あり満足できる状態ではない。こうした状況の中、新型
電池による電気化学操作が有力視されつつあり、ここ当
分の間、輸送を含めた解決システムとして、揚水発電に
替る最も実現性の高い方式と考えられている。又新型2
次電池は、太陽光,風力,波力等の自然エネルギーを利
用した発電のバックアップ装置、或は電気自動車用電池
としても期待が寄せられている。上記目的に適用できる
2次電池として、鉛蓄電池,ナトリウム−硫黄電池,リ
チウム−硫化鉄電池,金属−ハロゲン電池,レドックス
フロー形電池等が現在開発されている。
Various methods such as pumped storage power generation, new secondary batteries, flywheels, compressed air, superconductivity, etc. are being studied as methods for storing electric power. Among them, the practical utilization rate of pumped storage power generation is high, but this is also the power transmission loss. It is not in a satisfactory state due to difficulties such as large size and restrictions on location. Under these circumstances, electrochemical operation using a new battery is being considered as a promising method, and for the time being, it is considered to be the most viable method to replace pumped storage power generation as a solution system including transportation. Also new type 2
Secondary batteries are also expected to be used as backup devices for power generation using natural energy such as sunlight, wind power, and wave power, or as batteries for electric vehicles. Lead-acid batteries, sodium-sulfur batteries, lithium-iron sulfide batteries, metal-halogen batteries, redox flow batteries, etc. are currently being developed as secondary batteries applicable to the above purpose.

中でもレドックスフロー2次電池は、次の特徴をもち、
米国,日本で開発が急速に進められている。即ち該電池
では、充放電時の電気化学的エネルギー変化を行なわせ
る流通型電解槽と活物質であるレドックス水溶液を貯蔵
するタンクが完全に分離しているため、タンク容量を変
更するだけで電力貯蔵量を変えることができること、従
って長時間、大容量の電力貯蔵に適していること、液流
通型であるため電池出力を調整しやすいこと、電池停止
時の自己放電が殆んどなく、風力・太陽発電などの自然
エネルギー発電のバックアップに適していること等の優
れた特徴がある。
Among them, the redox flow secondary battery has the following features,
Development is proceeding rapidly in the United States and Japan. That is, in the battery, the flow-through type electrolytic cell for changing the electrochemical energy at the time of charging and discharging and the tank for storing the redox aqueous solution as the active material are completely separated. It is possible to change the amount, so it is suitable for long-term, large-capacity power storage, it is easy to adjust the battery output because it is a liquid circulation type, there is almost no self-discharge when the battery is stopped, wind power It has excellent features such as being suitable for backing up natural energy generation such as solar power generation.

[発明が解決しようとする問題点] しかし、該電池を実用化するためには、他の新型2次電
池と同様に、解決しなければならない問題点が内在して
いる。即ち、レドックスフロー2次電池の中でも現在最
も開発の進んでいるものは正極活物質として塩化鉄水溶
液、負極活物質として塩化クロム水溶液を用いる鉄−ク
ロムレドックスフロー2次電池(以下Fe-Cr電池と略
す)であり、該電池の電極材には耐薬品性があり、導電
性を有する通常の炭素繊維集合体が用いられている。し
かるに該電池において炭素繊維集合体を用いる正極での
鉄イオンの酸化還元反応は充放電時において反応速度が
比較的速く副反応も生起しないのでさほど問題ではない
が、鉄イオンに比べて錯交換反応を含むクロム錯イオン
(水溶液中ではクロロアコ錯体となっている)の負極に
おける酸化還元反応が遅く、つまり電池の電導度が低い
こと、又充電時に水素が発生し電池の電流効率が下がり
易いこと等が第1に挙げられる問題点となっている。そ
れと共に、第2の問題点は、電流・電圧・エネルギー各
効率の充放電時寿命特性であり、充放電のサイクル経過
に伴なってこれら、各効率の変化率(低下率)が大きい
ことが問題となっている。
[Problems to be Solved by the Invention] However, in order to put the battery into practical use, there are inherent problems to be solved, like other new secondary batteries. That is, the most developed redox flow secondary battery at present is an iron-chromium redox flow secondary battery (hereinafter referred to as Fe-Cr battery) that uses an iron chloride aqueous solution as a positive electrode active material and a chromium chloride aqueous solution as a negative electrode active material. (Abbreviated), and an ordinary carbon fiber assembly having chemical resistance and conductivity is used as the electrode material of the battery. However, the redox reaction of iron ions at the positive electrode using the carbon fiber aggregate in the battery is not so problematic because the reaction rate is relatively fast during charging / discharging and side reactions do not occur, but it is more complex than iron ions. Redox reaction of negative electrode of chromium complex ion (containing chloroaco complex in aqueous solution) containing nickel is slow, that is, the electric conductivity of the battery is low, and hydrogen is generated during charging, and the current efficiency of the battery is likely to decrease. Is the first problem. At the same time, the second problem is the charge / discharge life characteristics of the current, voltage, and energy efficiencies, and the rate of change (decrease rate) of these efficiencies is large with the progress of charge / discharge cycles. It's a problem.

このように従来のFe-Cr電池には上述した如き問題が内
在するが、この様な点は電極材の選択とも大いに関係す
る。即ち、充放電時の電気化学反応は電極材の炭素繊維
表面で進行するので、充電時の水素ガスの発生量を抑制
し、電流効率及び電導度(酸化還元反応の速さに関係)
を高め得る電極材並びにこうした性能を充放電サイクル
の経過にかかわらず安定的に発揮する電極材の選定が重
要となってくる。
As described above, the conventional Fe-Cr battery has the above-mentioned problems inherent therein, and such a point is greatly related to the selection of the electrode material. That is, since the electrochemical reaction during charging / discharging proceeds on the carbon fiber surface of the electrode material, the generation amount of hydrogen gas during charging is suppressed, and the current efficiency and conductivity (related to the speed of the redox reaction)
It is important to select an electrode material that can improve the performance and an electrode material that can stably exhibit such performance regardless of the progress of charge / discharge cycles.

本発明者らはかかる事情に鑑み電池のトータルエネルギ
ー効率を高め、かつサイクル寿命を改善するFe-Cr電池
の電極材について鋭意検討した結果、本発明に到達し
た。
The present inventors have arrived at the present invention as a result of earnest studies on the electrode material of the Fe-Cr battery that improves the total energy efficiency of the battery and improves the cycle life in view of the above circumstances.

[問題点を解決する為の手段] 即ち、本発明に係る電解槽用炭素系電極材は、X線広角
解析により求めた<002>面間隔が3.70Å以下の擬黒鉛
微結晶構造を有すると共に、ESCA表面分析により求めた
炭素系材料表面の結合原子数が炭素原子数の少なくとも
3%であり、かつ硼素を含む点に要旨を有するものであ
る。
[Means for Solving Problems] That is, the carbon-based electrode material for an electrolytic cell according to the present invention has a quasi-graphite microcrystal structure with a <002> interplanar spacing of 3.70Å or less determined by wide-angle X-ray analysis. , The number of bonding atoms on the surface of the carbon-based material determined by ESCA surface analysis is at least 3% of the number of carbon atoms, and the point is that boron is contained.

[作用] 即ち上記電極材を用いることにより、電池の特性値であ
る電流効率及び電導度が改善されるばかりでなく、同時
にサイクル寿命も改善されるのである。換言すれば、上
述の如くX線広角解析(解析方法は後述する)より求め
た<002>面間隔が3.70Å以下である擬黒鉛微結晶構造
を有する炭素系材料を電極材に用いることにより、充電
時負極における水素発生量が抑止され、電流効率を著し
く高め得ることができる。尚<002>面間隔が3.70Åを
超える結晶性の低い炭素系材料を用いる場合は充電時負
極における水素発生量が大きく、電流効率を高めること
はできない。このように結晶性の高い特定の結晶構造を
有する炭素系材料を電極材として用いることにより電流
効率が高められる理由については明らかでないが、結晶
構造が発達するに従って水素過電圧が上昇し、充電時に
クロム錯イオンの還元が選択的に起り、以て電流効率が
上昇するものと考えられる。
[Operation] That is, by using the above-mentioned electrode material, not only the current efficiency and electric conductivity which are the characteristic values of the battery are improved, but also the cycle life is improved at the same time. In other words, by using a carbon-based material having a pseudo-graphite microcrystalline structure with a <002> interplanar spacing of 3.70Å or less obtained by X-ray wide-angle analysis (the analysis method will be described later) as described above as an electrode material, The amount of hydrogen generated in the negative electrode during charging is suppressed, and the current efficiency can be significantly increased. When a carbon-based material having a <002> plane spacing of more than 3.70Å and low crystallinity is used, the amount of hydrogen generated in the negative electrode during charging is large, and the current efficiency cannot be increased. Although it is not clear why the current efficiency is improved by using a carbon-based material having a specific crystal structure with high crystallinity as an electrode material, the hydrogen overvoltage increases as the crystal structure develops, and the chromium overcharge occurs during charging. It is considered that the reduction of the complex ions occurs selectively, and thus the current efficiency increases.

一方、前述の如くESCA表面分析(解析方法は後述する)
より求めた炭材表面の結合酸素原子数の炭素原子数に対
する割合(%以下O/C比という)が3%以上の炭素系材
料を電極材に用いることにより、電極反応速度、つまり
電導度を著しく高め得ることができる。ESCA分析による
材料表面のO/C比率が3%未満の酸素濃度の低い炭素系
材料を用いる場合は放電時の電極反応速度が小さく、電
導率を高めることはできない。このように材料表面に酸
素原子を多く結合させた炭素系材料を電極材として用い
ることにより電導率、いいかえれば電圧効率が高められ
る理由については明らかでないが、電子の授受、錯イオ
ンの炭素材料からの脱離、錯交換反応等に表面の酸素原
子が有効に働いているものと考えられる。
On the other hand, ESCA surface analysis as described above (analysis method will be described later)
The ratio of the number of bonded oxygen atoms on the carbon material surface to the number of carbon atoms (obtained as% or less O / C ratio) obtained from the above is 3% or more. It can be significantly increased. When a carbon-based material having a low oxygen concentration with an O / C ratio of less than 3% on the surface of the material by ESCA analysis is used, the electrode reaction rate during discharge is small and the conductivity cannot be increased. It is not clear why the electric conductivity, in other words, the voltage efficiency can be improved by using a carbon-based material having a large number of oxygen atoms bonded to the surface of the material as an electrode material. It is considered that the oxygen atoms on the surface are effectively acting on the elimination of oxygen, the complex exchange reaction, and the like.

このように表面酸素原子の濃度を高めた炭素系材料は前
述した内部結晶構造をもつ炭素系材料を乾式酸化処理す
ることにより得られる。これは例えば1×10-2torr以上
の酸素分圧を有する酸素雰囲気下で重量収率にして65〜
99%の範囲になる様に実施される。処理温度は通常400
℃以上が好ましい。低温(例えば200〜300℃)では処理
する炭素系材料の反応性が落ちるため酸化の効果が得ら
れない。酸化処理を湿式で行なうと層間化合物の生成、
処理時の有害ガスの発生等問題が多いのでさけるべきで
ある。又この乾式酸化処理は、一段階の方式でもよい
し、異なる温度で二段階以上に分かれた方式をとっても
よい。
The carbon-based material having an increased concentration of surface oxygen atoms can be obtained by dry-oxidizing the carbon-based material having the internal crystal structure described above. This is, for example, in a weight yield of 65 ~ under an oxygen atmosphere having an oxygen partial pressure of 1 x 10 -2 torr or more.
It is implemented so that it is within the range of 99%. Processing temperature is usually 400
C. or higher is preferable. At a low temperature (for example, 200 to 300 ° C.), the carbonaceous material to be treated loses its reactivity and the effect of oxidation cannot be obtained. When the oxidation treatment is performed wet, the formation of intercalation compounds,
It should be avoided because there are many problems such as generation of harmful gas during processing. Further, this dry oxidation treatment may be a one-step system, or may be a two-step system at different temperatures.

上述の如く乾式酸化処理を行なうことにより擬黒鉛微結
晶のC軸に垂直な面のエッジをより多く材料表面に露出
させることができ、かつこのエッジに電気化学反応に有
効に酸素原子を形成させることができる。この酸素原子
はカルボキシル基,フェノール性水酸基,カルボニル
基,キノン基,ラクトン基,フリーラジカル的な酸化物
として生成され、これらの反応基が電極反応に大きく寄
与し、以て電導率(電圧効率)を高め得るものとなる。
By performing the dry oxidation treatment as described above, it is possible to expose more edges of the surface of the pseudo-graphite crystallite perpendicular to the C-axis to the material surface, and to form oxygen atoms effectively at this edge in the electrochemical reaction. be able to. This oxygen atom is generated as a carboxyl group, a phenolic hydroxyl group, a carbonyl group, a quinone group, a lactone group, or a free radical-like oxide, and these reactive groups greatly contribute to the electrode reaction, so that the conductivity (voltage efficiency) Can be increased.

上記構成をとることにより電流効率,電圧効率の高い電
極材が得られ、電池のトータルエネルギー効率を大幅に
上昇させることが出来、前述の第1の問題点を解決する
ことができる。
With the above configuration, an electrode material having high current efficiency and voltage efficiency can be obtained, the total energy efficiency of the battery can be significantly increased, and the first problem described above can be solved.

しかるに上記構成の電極材を用いた電池の各効率の充放
電サイクル経時変化(測定法は後述する)をとると、電
流効率は殆んど低下しないが、電圧効率は徐々に低下し
てくることが分かった。
However, when the efficiency of each charge / discharge cycle of the battery using the electrode material having the above-mentioned structure is changed (the measuring method will be described later), the current efficiency hardly decreases, but the voltage efficiency gradually decreases. I understood.

我々はこの第2の問題点についても鋭意研究の結果本発
明に到達した。即ち前述のごとき内部及び表面構造を有
する炭素系材料に硼素を含有させることによってサイク
ル経時変化の極めて少ない、実用上有用な電極材としう
ることが判明した。硼素を含ませることによって電圧効
率が安定化する理由についてはいまだ明らかではない
が、レドックス系でより安定な表面酸素グループの形成
或はその保護に硼素が影響を及ぼしているものと考えら
れる。
We also arrived at the present invention as a result of earnest research on this second problem. That is, it has been found that by incorporating boron into the carbon-based material having the internal and surface structures as described above, a practically useful electrode material with very little change over time in the cycle can be obtained. The reason why the voltage efficiency is stabilized by including boron is not yet clear, but it is considered that boron influences the formation or protection of more stable surface oxygen groups in the redox system.

炭素系材料に硼素を含有させる方法については特に制限
はないが、炭素化前の原材料に無機又は有機硼素化合物
を添着させてもよいし、一旦低温炭化を行なったものに
硼素化合物を添着し、さらに高温処理を施してもよい。
There is no particular limitation on the method of containing boron in the carbon-based material, but it is also possible to impregnate an inorganic or organic boron compound to the raw material before carbonization, or to impregnate the boron compound to what was once low-temperature carbonized, Further, high temperature treatment may be performed.

尚無機硼素化合物の例としては、硼酸,硼酸塩等,有機
硼素化合物としては、硼酸トリエチル,硼酸トリブチ
ル,硼酸トリプロピル,硼酸トリフェニル等の有機硼酸
塩を挙げることができる。又硼素の化合物中に金属元素
を含まないものが好ましい。金属元素が残留すると、電
流効率の温度依存性が増し好ましくない。これら化合物
は添着後の炭素によって分解され、硼素として炭素中に
残留すると考えられる。その他近年各種材料の改質等に
用いられるイオン注入法を用いてもよいし、蒸着,スパ
ッター法によって添着させてもよい。これらの方法によ
る添着は好ましくは最終炭化以前に実施するのが望まし
い。添着量は硼素として最終的に炭素に対して0.01〜50
重量%存在する様に調製することが望ましい。より好ま
しくは0.05〜10重量%である。尚炭素系材料中における
硼素の分布に関しては表面等に局在する場合あるいは全
体に均一に分布する場合のいずれもが考えられる。
Examples of the inorganic boron compound include boric acid and borate, and examples of the organic boron compound include organic borate such as triethyl borate, tributyl borate, tripropyl borate and triphenyl borate. Further, it is preferable that the boron compound does not contain a metal element. When the metal element remains, the temperature dependence of the current efficiency increases, which is not preferable. It is considered that these compounds are decomposed by carbon after the attachment and remain in the carbon as boron. In addition, an ion implantation method, which is used for modifying various materials in recent years, may be used, or deposition may be performed by vapor deposition or sputtering. The impregnation by these methods is preferably carried out before the final carbonization. The amount of impregnation is 0.01 to 50 with respect to carbon as boron.
It is desirable to prepare it so that it exists in a weight percentage. It is more preferably 0.05 to 10% by weight. Regarding the distribution of boron in the carbonaceous material, it may be localized on the surface or the like or may be uniformly distributed over the entire surface.

すでに明らかな様に本発明の炭素系材料の原料としては
炭素可能な原料総べてを適用しうるものであり、例えば
石炭・石油からのピッチ,フェノール系,アクリル系,
セルロース系原料等を挙げることが出来る。又さらに炭
素系材料の構成組織としては、紡績糸,不織布,織地,
編地或はこれらの混成組織からなる炭素質繊維集合体,
多孔質炭素体,炭素−炭素複合体,粒子状炭素材料等を
挙げることができ、特に制限を設けるものではない。
As is apparent, all carbon-capable raw materials can be applied as the raw material of the carbon-based material of the present invention. For example, pitch from coal / petroleum, phenol-based, acrylic-based,
Cellulosic raw materials and the like can be mentioned. Furthermore, as the constituent structure of the carbon-based material, spun yarn, non-woven fabric, woven fabric,
A carbonaceous fiber aggregate composed of a knitted fabric or a hybrid structure thereof,
Examples thereof include a porous carbon body, a carbon-carbon composite, and a particulate carbon material, which are not particularly limited.

尚本発明では<002>面間隔並びにO/C比を特定した炭素
系材料に硼素を含有させることとしたが、かかる調製を
施さない通常の炭素系材料に硼素を含有させた場合でも
電流効率及び初期電導度のサイクル変化を低減するとい
う硼素添加固有の効果を得ることができる。
In the present invention, the carbon material specified for the <002> interplanar spacing and the O / C ratio was made to contain boron, but the current efficiency can be improved even when boron is contained in an ordinary carbon material which has not been prepared. Also, it is possible to obtain an effect peculiar to the addition of boron that the cycle change of the initial conductivity is reduced.

さらに付言すれば、本発明になる電極在は、電解合成に
用いる電極並びに亜鉛−塩素2次電池,亜鉛−臭素2次
電池等にも有用に使用できることはいうまでもない。
In addition, it is needless to say that the electrode according to the present invention can be effectively used for an electrode used for electrolytic synthesis, a zinc-chlorine secondary battery, a zinc-bromine secondary battery and the like.

次に本発明において採用される<002>面間隔,電流効
率・電導度及びこれらのサイクル変化量の測定方法につ
いても説明する。
Next, the <002> plane spacing, the current efficiency / conductivity, and the method of measuring the amount of cycle change of these adopted in the present invention will also be described.

<002>面間隔:d002 炭素繊維編地をメノウ乳鉢で粉末化し、試料に対して約
5〜10重量%のX線標準用高純度シリコン粉末を内部標
準物質として加え混合し、試料セルにつめ、CuKα線を
線源とし、透過型ディフラクトメーター法によって広角
X線回折曲線を測定する。
<002> Surface spacing: d 002 Carbon fiber knitted fabric was pulverized in an agate mortar, and about 5-10% by weight of high purity silicon powder for X-ray standard was added as an internal standard substance to the sample and mixed to form a sample cell. First, a wide-angle X-ray diffraction curve is measured by a transmission diffractometer method using CuKα rays as a radiation source.

曲線の補正には、いわゆるローレンツ,偏光因子,吸収
因子,原子散乱因子等に関する補正は行なわず次の簡便
法を用いる。即ち<002>回折に相当するピークのベー
スラインを引き、ベースラインからの実質強度をプロッ
トし直して<002>補正強度曲線を得る。この曲線のピ
ーク高さの3分の2の高さに引いた角度軸に平行な線が
強度曲線と交わる線分の中点を求め、中点の角度を内部
標準で補正し、これを回折角の2倍とし、CuKαの波長
λとから次式のBragg式によって<002>面間隔を求め
る。
For the correction of the curve, the so-called Lorentz, polarization factor, absorption factor, atomic scattering factor, etc. are not corrected and the following simple method is used. That is, the baseline of the peak corresponding to <002> diffraction is drawn, and the actual intensity from the baseline is plotted again to obtain the <002> corrected intensity curve. Find the midpoint of the line segment where the line parallel to the angle axis drawn to the height of two-thirds of the peak height of this curve intersects the intensity curve, correct the angle of the midpoint with the internal standard, and turn this. It is twice the bending angle, and the <002> plane spacing is calculated from the wavelength λ of CuKα by the Bragg equation below.

λ:1.5418Å θ:回折角 電流効率 第1図に示す小型の流通型電解槽を作り、各種定電流密
度で充放電を繰り返し、電極性能のテストを行う。正極
には塩化第一鉄,塩化第二鉄濃度各1M/lの4N塩酸酸性水
溶液を用い、負極には塩化第二クロム濃度1M/lの4N塩酸
酸性水溶液を用意した。尚図では電極材の形状を長方形
板状としたが、電解槽の形状に対応させて適宜三角形,
円形等の板状,球状,線状その他異形としてもよい。
λ: 1.5418Å θ: Diffraction angle Current efficiency A small flow-through type electrolytic cell shown in Fig. 1 is made, and charging / discharging is repeated at various constant current densities to test the electrode performance. 4N hydrochloric acid aqueous solution with ferric chloride and ferric chloride concentrations of 1M / l each was used for the positive electrode, and 4N hydrochloric acid aqueous solution with ferric chloride concentration of 1M / l was prepared for the negative electrode. In addition, although the shape of the electrode material is a rectangular plate in the figure, a triangular shape may be used to correspond to the shape of the electrolytic cell.
It may have a plate shape such as a circular shape, a spherical shape, a linear shape, or another irregular shape.

正極液量は負極液量に対して大過剰とし、負極特性を中
心に検討できるようにした。電極面積は10cm2、液流量
は毎分約5mlである。電流密度は40mA/cm2で行なった
が、充電時と放電時は同じ値でテストを行なった。充電
に始まり放電で終る1サイクルのテストにおいて、充電
に要した電気量をQ1クーロン、0.2Vまでの定電流放電及
びこれに続く0.8Vでの定電位放電で取り出した電気量を
夫々Q2,Q3クーロンとし、次式で電流効率を求める。
The amount of the positive electrode liquid was made to be a large excess with respect to the amount of the negative electrode liquid, so that the negative electrode characteristics could be mainly studied. The electrode area is 10 cm 2 , and the liquid flow rate is about 5 ml / min. The current density was 40 mA / cm 2 , but the same value was used during charging and discharging. In the one-cycle test that starts with charging and ends with discharging, the amount of electricity required for charging is Q 1 coulomb, the amount of electricity extracted by constant current discharge up to 0.2 V and the subsequent constant potential discharge at 0.8 V is Q 2 respectively. , Q 3 coulomb, and calculate the current efficiency by the following formula.

充電時にCr3+からCr2+への還元以外の反応、例えばH+
還元等の副反応が起ると、取り出せる電気量が減り、電
流効率は減少する。
If a reaction other than the reduction of Cr 3+ to Cr 2+ , such as a side reaction such as reduction of H + , occurs during charging, the amount of electricity that can be taken out will decrease, and the current efficiency will decrease.

セル電導度 負極液中のCr3+をCr2+に完全に還元するのに必要な理論
電気量Qthに対して、放電途中までに取り出した電気量
の比を充電率とし、 充電率が50%のときの電流・電圧曲線の傾きから、セル
抵抗(Ωcm2)、及びその逆数であるセル電導度(Sc
m-2)を求める。セル電導度が大きい程電極でのイオン
の酸化還元反応はすみやかに起り、高電流密度での放電
電位は高く、セルの電圧効率が高く、優れた電極である
と判断できる。
Cell conductivity The ratio of the quantity of electricity taken out during discharge to the theoretical quantity of electricity Qth required to completely reduce Cr 3+ in the negative electrode solution to Cr 2+ is defined as the charging rate, From the slope of the current-voltage curve when the charging rate is 50%, the cell resistance (Ωcm 2 ) and its reciprocal cell conductivity (Sc
m -2 ). The higher the cell conductivity, the sooner the redox reaction of ions at the electrode occurs, the higher the discharge potential at high current density, the higher the voltage efficiency of the cell, and it can be judged that this is an excellent electrode.

サイクル経時変化測定 ,の測定を終えた後、続いて同じセルを用い、40mA
/cm2の定電流密度で、セル電圧0.5〜1.2ボルト間で充放
電を繰り返し実施する。規定サイクル経過後0.2Vまでの
放電及び0.8Vの定電圧放電を実施したのち,のデー
タ測定を行なう。なお、,,のテストは40℃で行
なった。
After completing the measurement of cycle time change, and then using the same cell,
Charging / discharging is repeatedly performed at a cell voltage of 0.5 to 1.2 V at a constant current density of / cm 2 . After the specified cycle has elapsed, discharge to 0.2 V and discharge at a constant voltage of 0.8 V, and then measure the data. The tests of and were carried out at 40 ° C.

ESCAによるC/O比の測定 ESCAあるいは、XPCと略称されているX線光電子分光法
によるO/C比の測定に用いた装置は島津ESCA 750で、解
析にはESCAPAC 760を用いた。
Measurement of C / O ratio by ESCA The device used for measuring the O / C ratio by X-ray photoelectron spectroscopy, which is abbreviated as ESPC or XPC, was Shimadzu ESCA 750, and ESCAPAC 760 was used for analysis.

各試料を6mm径に成型し、導電性ペーストにより加熱式
試料台に貼り付け分析に供した。測定前に試料を120℃
に加熱し、3時間以上真空脱気した。線源にはMgKα線
(1253.6eV)を用い、装攪内真空度は10-7torrとした。
Each sample was molded into a diameter of 6 mm, and was attached to a heating type sample stand with a conductive paste for analysis. 120 ° C before measurement
And vacuum degassed for 3 hours or more. A MgKα ray (1253.6 eV) was used as the radiation source, and the vacuum degree inside the apparatus was set to 10 -7 torr.

測定はCls,Olsピークに対して行ない、各ピークをESCAP
AC 760(J.H.Scofieidによる補正法に基づく)を用い補
正解析し、各ピーク面積を求める。得られた面積はCls
については1.00,Olsに対しては2.85の相対強度を乗じた
ものであり、その面積から直接表面(酸素/炭素)原子
数比を%で算出する。
Measurement is performed for Cl s and Ol s peaks, and each peak is ESCAPed.
Perform a correction analysis using AC 760 (based on the correction method by JHS cofieid) to obtain each peak area. The area obtained is Cl s
Is obtained by multiplying 1.00, Ol s by the relative intensity of 2.85, and the surface (oxygen / carbon) atomic number ratio is directly calculated as a percentage from the area.

[実施例] 以下本発明を比較例、実施例によって詳しく説明する
が、本発明はこれらの例に限定されるものではない。
[Examples] The present invention will be described in detail below with reference to comparative examples and examples, but the present invention is not limited to these examples.

比較例1 充分に脱硫,漂白,水洗,乾燥を行なって得た2.0デニ
ールの単繊維再生セルロース繊維から成る20番手双糸を
使って14ゲージ両面丸編機により、両面編地を編成し
た。この編地は424g/m2の目付と、0.3709g/cm2の見掛け
密度、及び1.2mmの厚さを有していた。この編地を精練
・乾燥後不活性ガス中で毎分1度の昇温速度で270℃ま
で昇温し、次いで毎時400度の昇温速度で850℃まで昇温
し、30分保持した後冷却して、さらに空気中400℃の酸
化を行ない、炭素繊維布帛Aを得た。布帛Aについての
X線解析結果はd002=3.85Å、又O/Cは11.3%であっ
た。布帛Aを用いた電池の初期の電流効率は74%、同電
導度は0.12cm-2であった。布帛Aの目付は265g/m2,密
度0.26g/ccであった。
Comparative Example 1 A double-sided knitted fabric was knitted by a 14-gauge double-sided circular knitting machine using 20-count double yarn composed of 2.0 denier monofilament regenerated cellulose fiber which was sufficiently desulfurized, bleached, washed with water and dried. This knitted fabric had a basis weight of 424 g / m 2 , an apparent density of 0.3709 g / cm 2 , and a thickness of 1.2 mm. After scouring and drying this knitted fabric, the temperature was raised to 270 ° C. at a heating rate of 1 degree per minute in inert gas, then to 850 ° C. at a heating rate of 400 degree per hour, and after holding for 30 minutes It was cooled and further oxidized at 400 ° C. in air to obtain a carbon fiber cloth A. The X-ray analysis result for the fabric A was d 002 = 3.85Å, and O / C was 11.3%. The initial current efficiency of the battery using the cloth A was 74%, and the electric conductivity thereof was 0.12 cm -2 . The fabric A had a basis weight of 265 g / m 2 and a density of 0.26 g / cc.

比較例2 布帛Aの最高炭化温度は850℃であったが、この温度を2
400℃として冷却し布帛Bを得た。また布帛Bを650℃で
15分空気中で処理して布帛Cを得た。布帛Bのd002は3.
51Å,O/Cは2.1%であり、布帛Cのd002は3.50Å,O/Cは1
0.1%であった。布帛Bを用いた電池の初期電流効率は9
3%,初期電導度は0.24Scm-2であった。又布帛Cの初期
電流効率は98%,同電導度は0.65Scm-2であったが、100
サイクル経過後の電流効率は98%,電導度は0.40Scm-2
であった。
Comparative Example 2 The maximum carbonization temperature of Fabric A was 850 ° C., but this temperature was 2
It was cooled to 400 ° C. to obtain a fabric B. Cloth B at 650 ° C
Fabric C was obtained by treating in air for 15 minutes. Cloth B has d 002 of 3.
51Å, O / C is 2.1%, d 002 of Fabric C is 3.50Å, O / C is 1
It was 0.1%. The initial current efficiency of the battery using fabric B is 9
3%, the initial conductivity was 0.24Scm -2 . The initial current efficiency of Fabric C was 98%, and the conductivity was 0.65 Scm -2 , but 100
Current efficiency after cycle is 98%, conductivity is 0.40Scm -2
Met.

実施例 比較例1で編成し、精練・乾燥した編地を5.0重量%の
硼酸水溶液に浸漬した後、脱水し硼酸を8.1%(硼素と
して1.4重量%)添着し、乾燥して得た布帛を比較例1
と同じ方法で耐炎化及び2200℃までの炭化を行なって冷
却し、空気中650℃で15分処理して布帛Dを得た。布帛
Dの電流効率は初期及び100サイクル経過後も98%であ
った。又初期電導度は0.66Scm-2であり、100サイクル経
過後は0.57Scm-2と布帛Cに比べ大幅に改善され、100サ
イクル以後の変化率はさらに小さかった。
Example The knitted fabric knitted in Comparative Example 1, scoured and dried, was dipped in a 5.0 wt% aqueous solution of boric acid, dehydrated, impregnated with 8.1% boric acid (1.4 wt% as boron), and dried to obtain a fabric. Comparative Example 1
Flame resistance and carbonization up to 2200 ° C. were carried out in the same manner as in the above, followed by cooling and treatment in air at 650 ° C. for 15 minutes to obtain a fabric D. The current efficiency of Fabric D was 98% at the initial stage and after 100 cycles. The initial conductivity was 0.66 Scm -2 , which was 0.57 Scm -2 after 100 cycles, which was a great improvement compared to Fabric C, and the rate of change after 100 cycles was even smaller.

なお布帛Dのd002は3.49Å,O/Cは9.7%であった。Fabric D had d 002 of 3.49Å and O / C of 9.7%.

[発明の効果] 本発明は以上の様に構成されており、充電時の水素ガス
発生量を抑止して電流効率及びセル電導度を著しく高め
ることができる。またサイクル経時変化も低減すること
ができ、工業的に多大な実用性をもたらすことができ
た。
[Advantages of the Invention] The present invention is configured as described above, and it is possible to suppress the amount of hydrogen gas generated during charging and significantly increase the current efficiency and the cell conductivity. In addition, it was possible to reduce the change with time of the cycle, and it was possible to bring about great industrial utility.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る電極材の電池性能を測定する為の
実験装置を示す説明図である。 1……集電用黒鉛板 2……スペーサー 3……イオン交換膜 4……炭素繊維布帛(電極) 5……活物質水溶液流通路
FIG. 1 is an explanatory view showing an experimental device for measuring the battery performance of the electrode material according to the present invention. 1 ... Graphite plate for collecting current 2 ... Spacer 3 ... Ion exchange membrane 4 ... Carbon fiber cloth (electrode) 5 ... Active material aqueous solution flow passage

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】X線広角解析より求めた<002>面間隔が
3.70Å以下の擬黒鉛微結晶構造を有すると共に、ESCA表
面分析により求めた炭素系材料表面の結合酸素数が炭素
原子数の少なくとも3%であり、且つ硼素を含有するこ
とを特徴とする流通型電解槽用炭素系電極材。
1. A <002> plane spacing obtained by X-ray wide-angle analysis is
It has a pseudo-graphite crystallite structure of 3.70 Å or less, the number of bound oxygen on the surface of the carbon-based material determined by ESCA surface analysis is at least 3% of the number of carbon atoms, and it contains boron. Carbon-based electrode material for electrolytic cells.
JP60192353A 1985-08-31 1985-08-31 Carbon-based electrode material for flow-through electrolyzer Expired - Fee Related JPH0711963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60192353A JPH0711963B2 (en) 1985-08-31 1985-08-31 Carbon-based electrode material for flow-through electrolyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60192353A JPH0711963B2 (en) 1985-08-31 1985-08-31 Carbon-based electrode material for flow-through electrolyzer

Publications (2)

Publication Number Publication Date
JPS6252861A JPS6252861A (en) 1987-03-07
JPH0711963B2 true JPH0711963B2 (en) 1995-02-08

Family

ID=16289862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60192353A Expired - Fee Related JPH0711963B2 (en) 1985-08-31 1985-08-31 Carbon-based electrode material for flow-through electrolyzer

Country Status (1)

Country Link
JP (1) JPH0711963B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3474828B2 (en) * 1998-07-10 2003-12-08 住友電気工業株式会社 Electrode material for all-vanadium redox flow battery and method for manufacturing all-vanadium redox flow battery
JP3167295B2 (en) * 1998-07-10 2001-05-21 住友電気工業株式会社 Battery electrode material
KR100318375B1 (en) * 1999-02-10 2001-12-22 김순택 Lithium ion secondary battery
US7820321B2 (en) 2008-07-07 2010-10-26 Enervault Corporation Redox flow battery system for distributed energy storage
US8980484B2 (en) 2011-03-29 2015-03-17 Enervault Corporation Monitoring electrolyte concentrations in redox flow battery systems
US8916281B2 (en) 2011-03-29 2014-12-23 Enervault Corporation Rebalancing electrolytes in redox flow battery systems

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0086884A2 (en) * 1982-02-22 1983-08-31 Electric Power Research Institute, Inc Low temperature preparation of graphitized carbons using boron and silicon
JPS59119680A (en) * 1982-12-27 1984-07-10 Toyobo Co Ltd Electrode for flow type electrolytic cell

Also Published As

Publication number Publication date
JPS6252861A (en) 1987-03-07

Similar Documents

Publication Publication Date Title
US4496637A (en) Electrode for flowcell
JP2955938B2 (en) Carbon-based electrode materials for electrolytic cells
CN112928255B (en) Lithium-sulfur battery composite positive electrode material and preparation method and application thereof
CN109286002A (en) Thousand layers of Bark Biomass carbon load red phosphorus anode material of lithium-ion battery of one kind and preparation method thereof
CN109950640B (en) Metal graphite medium-temperature energy storage battery and preparation method thereof
CN105070889A (en) Preparation method, product and application of titanium dioxide nano-film and ferroferric oxide nano-particle-loaded carbon fibre material
CN113571682A (en) Bismuth/carbon composite material and preparation method and application thereof
CN112490013B (en) Polypyrrole-coated Zn-Co-S needle cluster-shaped core-shell composite material and preparation method and application thereof
Chen et al. Two‐dimensional V2CTx In‐situ Derived Porous V2O3@ C Flakes Towards Zinc‐Ion Capacitors as a Competitive Cathode Material
JPH0711963B2 (en) Carbon-based electrode material for flow-through electrolyzer
CN100557740C (en) Ultra-capacitor conductivity titania lithium electrode material with carbon and preparation method thereof
JPH0113191B2 (en)
JPH0690933B2 (en) Stacked electrolytic cell
CN111261870A (en) NASICON structure Na4CrMn(PO4)3Method for producing materials and use thereof
JPH0552033B2 (en)
JP2535877B2 (en) Carbon electrode material for electrolytic cell
CN112390284A (en) Preparation method of tin oxide modified cobalt-zinc bimetallic organic framework derived carbon composite material
CN112271342A (en) Preparation method of zinc ion battery ZIB based on vanadium oxide positive electrode material
JPH0711969B2 (en) Metal-halogen secondary battery
CN115133109B (en) Water system copper ion battery
JPH11317231A (en) Carbon-based electrode material for electrolytic cell
JPH0552034B2 (en)
CN112751009B (en) Zinc aluminate porous carbon-based negative electrode material for lithium ion battery and preparation method and application thereof
CN114538459B (en) Preparation method of borate lithium ion battery anode material and lithium ion battery
CN115911382B (en) Self-supporting SnO of foam nickel 2 Nano array@porous carbon fiber composite material and preparation method and application thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees