JPH11317231A - Carbon-based electrode material for electrolytic cell - Google Patents

Carbon-based electrode material for electrolytic cell

Info

Publication number
JPH11317231A
JPH11317231A JP11075983A JP7598399A JPH11317231A JP H11317231 A JPH11317231 A JP H11317231A JP 11075983 A JP11075983 A JP 11075983A JP 7598399 A JP7598399 A JP 7598399A JP H11317231 A JPH11317231 A JP H11317231A
Authority
JP
Japan
Prior art keywords
carbon
electrode
nitrogen
efficiency
electrolytic cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11075983A
Other languages
Japanese (ja)
Inventor
Yasushi Chikugi
保志 筑木
Yasuhiro Iizuka
康広 飯塚
Teizo Harima
貞三 播磨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP11075983A priority Critical patent/JPH11317231A/en
Publication of JPH11317231A publication Critical patent/JPH11317231A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a carbon-based electrode material for an electrolytic cell having an enhanced energy efficiency by suppressing a detrimental side reaction improving current efficiency and by reducing a cell resistance and hence improving voltage efficiency. SOLUTION: This carbon-based electrode material for an electrolytic cell consists of a carbon material having a pseudo-graphite crystal structure with spacing between the <002> planes obtained by X-ray wide angle analysis <=3.70 Å and a BET surface area >=5 m<2> /g. The number of bonded nitrogen atoms to the surface of the carbon material is set >=0.3% in relation to the number of carbon atoms, and the nitrogen atoms bonded to the surface are made to exist in the form of a nitrogen-containing acidic functional group.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レドックスフロー
型電池等の電解槽に使用される電極材に関し、さらに詳
しくはエネルギー効率に優れる炭素系電極材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode material used for an electrolytic cell of a redox flow battery or the like, and more particularly to a carbon-based electrode material having excellent energy efficiency.

【0002】[0002]

【従来の技術】電解槽を利用する分野としては、各種電
池および電気メッキ、食塩電解、有機化合物の電解合成
などの電解工業が代表的である。これらの電解槽に用い
られる電極材には、鉛蓄電池などの電池に多くみられる
ような電極そのものが活物質として電気化学的反応を生
じるものと、活物質の電気化学的反応を生じるものと、
活物質の電気化学的反応を進行させる反応場として働き
そのもの自身は変化しないものとがある。後者の電極材
は、主に電解工業や新型2次電池に適用されている。
2. Description of the Related Art As a field in which an electrolytic cell is used, various batteries and an electrolytic industry such as electroplating, salt electrolysis, and electrolytic synthesis of organic compounds are representative. Electrode materials used in these electrolyzers include those that cause an electrochemical reaction as an active material, such as those commonly found in batteries such as lead-acid batteries, those that cause an electrochemical reaction of the active material,
Some act as a reaction field for promoting the electrochemical reaction of the active material and do not themselves change. The latter electrode material is mainly applied to the electrolytic industry and new type secondary batteries.

【0003】この新型2次電池は、将来的なエネルギー
の有効利用の面から、夜間の余剰電力を貯蔵し、これを
昼間の需要増大時に放出して需要の変動を平準化するた
めの電力貯蔵用電池として開発が行われており、ナトリ
ウム−硫黄電池、金属−ハロゲン電池、レドックスフロ
ー型電池等が知られている。また、これらの新型2次電
池は、太陽光、風力、波力等の自然エネルギーを利用し
た発電のバックアップ電源、あるいは電気自動車用電源
としても開発が進められている。
[0003] This new type of secondary battery stores excess power at night and discharges it when the demand increases in the daytime to level out fluctuations in demand in order to use energy efficiently in the future. For example, sodium-sulfur batteries, metal-halogen batteries, redox flow batteries, and the like are known. In addition, these new type secondary batteries are also being developed as backup power sources for power generation using natural energy such as sunlight, wind, and wave power, or as power sources for electric vehicles.

【0004】新型2次電池の構成は、例えばレドックス
フロー型電池の場合、通常、電解液を貯える外部タンク
と電解槽から成り、活物質を含む電解液を外部タンクか
ら電解槽に組み込まれた電極上で電気化学的なエネルギ
ー変換、すなわち充放電が行われる。一般に、充放電の
際は、電解液を外部タンクと電解槽との間で循環させる
ため、電解槽は第1図に示すような液硫通型構造をと
る。該液硫通型電解槽を単セルと称し、これを最小単位
として単独もしくは多段積層して用いられる。液硫通型
電解槽における電気化学反応は、電極表面で起こる不均
一相反応であるため、一般的には二次元的な電解反応場
を伴うことになる。電解反応場が二次元的であると、電
解槽の単位体積当たりの反応量が小さいという難点があ
る。
The structure of a new type of secondary battery, for example, in the case of a redox flow type battery, usually comprises an external tank for storing an electrolytic solution and an electrolytic cell, and an electrolytic solution containing an active material is incorporated into the electrolytic cell from the external tank. Above, electrochemical energy conversion, that is, charging and discharging is performed. In general, at the time of charging and discharging, an electrolytic solution is circulated between an external tank and an electrolytic cell, so that the electrolytic cell has a liquid sulfuric type structure as shown in FIG. The liquid sulfuric acid type electrolyzer is called a single cell, which is used as a minimum unit and is used alone or in a multi-layered structure. Since the electrochemical reaction in the liquid sulfuric acid type electrolytic cell is a heterogeneous phase reaction occurring on the electrode surface, it generally involves a two-dimensional electrolytic reaction field. When the electrolytic reaction field is two-dimensional, there is a disadvantage that the reaction amount per unit volume of the electrolytic cell is small.

【0005】そこで、単位面積当りの反応量、すなわち
電流密度を増すために電気化学反応場の三次元化が行わ
れるようになった。
[0005] Therefore, in order to increase the amount of reaction per unit area, that is, the current density, the electrochemical reaction field has been made three-dimensional.

【0006】第2図は、三次元電極を有する液硫通型電
解槽の模式図である。
FIG. 2 is a schematic view of a liquid sulfuric acid type electrolytic cell having three-dimensional electrodes.

【0007】該電解槽では、相対する二枚の集電板1、
1間にイオン交換膜が配設され、イオン交換膜3の両側
にスペーサ2によって集電板1、1の内面に沿った電解
液の流路4a、4bが形成されている。該流通路4a、
4bの少なくとも一方には炭素繊維集合対等の電極材5
が配設されており、このようにして三次元電極が構成さ
れている。
In the electrolytic cell, two opposing current collector plates 1,
An ion exchange membrane is provided between the two, and an electrolyte exchange flow path 4a, 4b is formed on both sides of the ion exchange membrane 3 by spacers 2 along the inner surfaces of the current collector plates 1, 1. The flow passage 4a,
4b is provided with an electrode material 5 such as a carbon fiber assembly pair.
Are provided, and thus a three-dimensional electrode is configured.

【0008】正極電解液に塩化鉄、負極電解液に塩化ク
ロムの各々塩酸酸性水溶液を用いたレドックスフロー型
電池の場合、放電的には、Cr2+を含む電解液か負極側
の液流路4aに供給され、正極側の流路4bにはFe3+
を含む電解液が供給される。負極側の流路4aでは、三
次元電極5内でCr2+が電子を放出しCr3+に酸化され
る。放出された電子は外部回路を通って正極側の三次元
電極内でFe3+をFe2+に還元する。
[0008] In the case of a redox flow battery using an aqueous hydrochloric acid solution of iron chloride as a positive electrode electrolyte and chromium chloride as a negative electrode electrolyte, the discharge flow from the electrolyte containing Cr 2+ to the liquid flow path on the negative electrode side 4a, and Fe 3+ is supplied to the flow path 4b on the positive electrode side.
Is supplied. In the flow path 4a on the negative electrode side, Cr 2+ emits electrons in the three-dimensional electrode 5 and is oxidized to Cr 3+ . The emitted electrons pass through an external circuit and reduce Fe 3+ to Fe 2+ in the three-dimensional electrode on the positive electrode side.

【0009】この酸化還元反応に伴って負極電解液中の
Cl-が不足し、正極電解液ではCl-が過剰になるた
め、イオン交換膜3を通ってCl-が正極側から負極側
に移動し電荷バランスが保たれる。あるいは、H+がイ
オン交換膜を通って負極側から正極側へ移動することに
よっても電荷バランスを保つことができる。現在のとこ
ろ、イオン交換膜に陽イオン交換膜を用い、H+の移動
により電荷をバランスさせる方式が多い。充電時には放
電と逆の反応が進行する。
Move from the positive electrode side to the negative - [0009] Cl of the negative electrode electrolytic solution in accordance with this redox reaction - is insufficient, Cl is positive electrode electrolyte - for is excessive, through the ion exchange membrane 3 Cl The charge balance is maintained. Alternatively, the charge balance can be maintained by moving H + from the negative electrode side to the positive electrode side through the ion exchange membrane. At present, there are many schemes in which a cation exchange membrane is used as an ion exchange membrane and charges are balanced by the movement of H + . At the time of charging, a reaction reverse to that of discharging proceeds.

【0010】これらの新型2次電池等に用いられる電解
槽用電極材の特性としては、特に以下に示す性能が要求
される。 目的とする反応以外の副反応を起こさないこと(反
応選択性が高いこと)、具体的には電流効率(ηI)が
高いこと。 電極反応活性が高いこと、具体的にはセル抵抗
(R)が小さいこと。すなわち電圧効率(ηV)が高い
こと。 、に関連するが電池エネルギー効率(ηE)が
高いこと。 ηE=ηI×ηV くり返し使用に対する劣化が小さいこと(高寿
命)、具体的にはセル抵抗(R)の増加量および電流効
率(ηI)の低下が小さいこと。
[0010] The characteristics of the electrode material for the electrolytic cell used in these new type secondary batteries and the like are particularly required to have the following performance. No side reaction other than the desired reaction should occur (high reaction selectivity), specifically, high current efficiency (η I ). High electrode reaction activity, specifically, low cell resistance (R). That is, the voltage efficiency (η V ) is high. , But high battery energy efficiency (η E ). η E = η I × η V Deterioration due to repeated use is small (long life), specifically, the increase in cell resistance (R) and the decrease in current efficiency (η I ) are small.

【0011】[0011]

【発明が解決しようとする課題】しかし、これら新型2
次電池を実用化するためには、解決しなければならない
問題点が内在している。すなわち、エネルギー効率等の
性能の向上およぴ高寿命化である。例えば、レドックス
フロー型電池におい、現在最も開発の進んでいる正極活
物質に塩化鉄水溶液、負極活物質に塩化クロム水溶液を
用いる鉄−クロムレドックスフロー型2次電池の電極材
には、耐薬品性があり、導電性を有する炭素繊維重合体
が用いられている。
However, these new models 2
There are inherent problems that need to be solved in order to put a secondary battery into practical use. That is, improvement of performance such as energy efficiency and extension of life. For example, in the redox flow type battery, the electrode material of the iron-chromium redox flow type secondary battery using an aqueous solution of iron chloride as the positive electrode active material and an aqueous solution of chromium chloride as the negative electrode active material, which is currently under development, has chemical resistance. And a conductive carbon fiber polymer is used.

【0012】該電池において炭素繊維集合体を用いる正
極での鉄イオンの酸化還元反応は反応速度が比較的速く
副反応も生じ難いのでさほど問題ではない。しかるに、
負極では、鉄イオンに比べ錯交換反応を含むクロム錯イ
オンの酸化還元反応速度が遅いためセル抵抗Rが大きく
なり(電圧効率ηVが低くなり)、また、充電時に副反
応として水素が発生するため電流効率ηIが低下するこ
とが問題となっていた。
The oxidation-reduction reaction of iron ions at the positive electrode using the carbon fiber aggregate in the battery is not so problematic because the reaction rate is relatively high and side reactions hardly occur. However,
In the negative electrode, since the oxidation-reduction reaction rate of chromium complex ions including a complex exchange reaction is slower than that of iron ions, the cell resistance R increases (voltage efficiency η V decreases), and hydrogen is generated as a side reaction during charging. Therefore, there has been a problem that the current efficiency η I decreases.

【0013】本発明者はかかる事情に鑑み、電池のエネ
ルギー効率を高める電解槽用電極材について鋭意検討し
た結果、本発明に到達した。
In view of such circumstances, the present inventors have made intensive studies on an electrode material for an electrolytic cell that enhances the energy efficiency of a battery, and have reached the present invention.

【0014】[0014]

【課題を解決するための手段】本発明は、X線広角解析
より求めた<002>面間隔が3.70Å以下の擬黒鉛
結晶構造を有し、BET表面積が5m2/g以上である
炭素材料からなる電解槽用炭素系電極材であって、前記
炭素材料の表面の結合窒素原子数が炭素原子数に対して
0.3%以上であり、且つ、該表面に結合した窒素原子
が含窒素酸性官能基の形で存在してなることを特徴とす
る電解槽用炭素系電極材である。
According to the present invention, there is provided a carbon material having a pseudo-graphite crystal structure with a <002> plane spacing of 3.70 ° or less and a BET surface area of 5 m 2 / g or more determined by X-ray wide-angle analysis. A carbon-based electrode material for an electrolytic cell comprising a material, wherein the number of bonded nitrogen atoms on the surface of the carbon material is 0.3% or more with respect to the number of carbon atoms, and the carbon material contains nitrogen atoms bonded to the surface. A carbon-based electrode material for an electrolytic cell, characterized by being present in the form of a nitrogen acidic functional group.

【0015】[0015]

【発明の実施の形態】本発明において擬黒鉛結晶構造を
有する炭素とは、X線広角解析より求めた<002>面
間隔が3.70Å以下で3.354Å(黒鉛構造)まで
の範囲、好ましくは3.40〜3.70Åの炭素材料で
ある。該炭素材料を電極材に用いることにより、充電
時、負極における水素発生等の副反応が抑制され、電流
効率ηIを著しく高め得ることができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, carbon having a pseudo-graphite crystal structure is defined as having a <002> plane spacing of 3.70 ° or less and 3.354 ° (graphite structure) determined by X-ray wide-angle analysis, preferably. Is a carbon material of 3.40 to 3.70 °. By using the carbon material as the electrode material, side reactions such as generation of hydrogen at the negative electrode during charging can be suppressed, and the current efficiency η I can be significantly increased.

【0016】一方、<002>面間隔が3.70Åより
大きな炭素材料を用いた場合は、充電時、負極における
水素発生などの副反応が進行し電流効率ηIを高めるこ
とができない。また、結晶性の高い完全黒鉛構造よりは
擬黒鉛結晶構造の方が後述する表面酸化処理が容易で、
かつより大きなBET表面積が得られる。
On the other hand, when a carbon material having a <002> plane spacing larger than 3.70 ° is used, a side reaction such as generation of hydrogen at the negative electrode proceeds during charging, and the current efficiency η I cannot be increased. In addition, the pseudo-graphite crystal structure is easier to perform surface oxidation treatment described later than the perfect graphite structure having high crystallinity,
And a larger BET surface area is obtained.

【0017】尚、本発明の炭素材料の原料としては、炭
化可能な原料全てを適用しうるものであり、例えば石炭
・石油からのピッチ、フェノール系、アクリル系、芳香
族ポリアミド系、セルロース系原料等を挙げることがで
きる。また、さらに炭素材料の構成組織としては、紡績
糸、フィラメント集束糸、不織布、編地、織地、特殊織
編物(特許公開昭和63−200467に開示されてい
るような)、あるいはこれらの混成組織からなる炭素質
織繊維集合体、多孔質炭素体、炭素−炭素複合体、粒子
状炭素材料等を挙げることができ、特に制限を設けるも
のではない。尚、該炭素質材料の目付量は組織にもよる
が50g/m2〜1,000g/m2、好ましくは、10
0g/m2〜500g/m2が望ましい。
As the raw material of the carbon material of the present invention, any carbonizable raw material can be used. For example, pitch, phenolic, acrylic, aromatic polyamide, and cellulose raw materials from coal and petroleum can be used. And the like. Further, as a constituent structure of the carbon material, a spun yarn, a filament bundled yarn, a nonwoven fabric, a knitted fabric, a woven fabric, a special woven or knitted fabric (as disclosed in Japanese Patent Application Laid-Open No. 63-200467), or a mixed structure thereof is used. Carbonaceous woven fiber aggregates, porous carbon bodies, carbon-carbon composites, particulate carbon materials, etc., which are not particularly limited. Although the basis weight of the carbonaceous material depends on the structure, it is 50 g / m 2 to 1,000 g / m 2 , preferably 10 g / m 2.
0g / m 2 ~500g / m 2 is desirable.

【0018】本発明における含窒素酸性官能基とは、上
述した炭素材料の表面ヒドロキシアミノ基(>−NH−
OH)および/またはヒドロキシイミノ基(>=N−O
H)などの官能基を意味する。また表面の結合窒素原子
数とはESCA表面分析によって検出される炭素質材料
表面の結合窒素量を意味し、結合窒素原子数の炭素原子
数に対する割合として表わす(%、以下N/C比とい
う)。
In the present invention, the nitrogen-containing acidic functional group refers to a surface hydroxyamino group (> -NH-
OH) and / or hydroxyimino groups (> = NO)
H) and the like. The number of bonded nitrogen atoms on the surface means the amount of bonded nitrogen on the surface of the carbonaceous material detected by ESCA surface analysis, and is expressed as a ratio of the number of bonded nitrogen atoms to the number of carbon atoms (%, hereinafter referred to as N / C ratio). .

【0019】この結合窒素原子数が炭素原子数に対して
0.3%以上であり、且つ、該表面に結合した窒素原子
が含窒素酸性官能基の形で存在してなる炭素質材料を電
極材に用いることにより表面積の利用率を高めることが
できる。
The carbonaceous material having the number of bonded nitrogen atoms of 0.3% or more of the number of carbon atoms and having the nitrogen atoms bonded to the surface in the form of a nitrogen-containing acidic functional group is used as an electrode. The use rate of the surface area can be increased by using the material.

【0020】本発明におけるBET表面積とは、後述す
る方法(B.E.T.法)で求めた該炭素質材料の重量当りの
比表面積である。このBET表面積が5m2/g以上、
好ましくは5m2/g〜100m2/gの炭素質材料を電
極材に用いた場合、前述の結合窒素原子数が炭素原子数
に対して0.3%以上であり、且つ、該表面に結合した
窒素原子が含窒素酸性官能基の形で存在していれば、セ
ル抵抗Rが減少し電圧効率ηVを著しく高めることがで
きる。一方、BET表面積が5m2/g未満の場合、電
極表面積が小さいためセル抵抗Rが増大し、電圧効率η
Vが低下する。また、BET表面積が100m2/gより
大きくなると炭素質材料表面が粗れてくるため接触抵抗
が増大したり、細孔内への電解液の淀み等が生じ水素発
生などの副反応が進行しやすくなるので好ましくない。
The BET surface area in the present invention is a specific surface area per weight of the carbonaceous material obtained by a method described later (BET method). This BET surface area is 5 m 2 / g or more,
Preferably in the case of using the carbonaceous material of 5m 2 / g~100m 2 / g to the electrode material, and the number of attached nitrogen atom described above is 0.3% with respect to the number of carbon atoms, and, attached to said surface When the nitrogen atoms are present in the form of a nitrogen-containing acidic functional group, the cell resistance R decreases and the voltage efficiency η V can be significantly increased. On the other hand, when the BET surface area is less than 5 m 2 / g, the cell surface resistance R increases due to the small electrode surface area, and the voltage efficiency η
V decreases. If the BET surface area is larger than 100 m 2 / g, the surface of the carbonaceous material becomes rough, so that the contact resistance increases, the electrolyte stagnates into the pores, and side reactions such as hydrogen generation progress. It is not preferable because it becomes easier.

【0021】このような含窒素酸性官能基が存在し、か
つその結合窒素原子数が炭素原子数に対して少なくとも
0.3%あり、かつBET表面積を高めた炭素質材料
は、前述した擬黒鉛結晶構造を有する炭素材料を乾式酸
化処理することにより得られる。例えば1×10-2torr
以上の酸素分圧を有する酸素雰囲気下での重量収率にし
て65〜99%の範囲になる様に実施される。処理温度
は通常400℃以上が好ましい。低温(例えば300℃
以下)では処理する炭素材料の反応性が落ちるため酸化
の効果が得られない。酸化処理を湿式で行うと層間化合
物の生成、処理時の有害ガスの発生等問題が多いので避
けるべきである。この乾式酸化処理は、一段階の方式で
もよいし、異なる湿度で二段階以上に分れた方式をとっ
てもよい。また、加熱の代りにプラズマを発生させた
り、プラズマ発生と加熱とを併用して処理を行ってもよ
い。BET表面積が5m2/g以上となるような乾式酸
化処理を行うことで、炭素材料の内部に存在している安
定な結晶構造についている窒素が端部に現れ、その窒素
と酸性官能基が反応することによって、電気化学的に安
定な含窒素酸性官能基となると考えられる。また、窒素
共存下での乾式酸化処理ではBET表面積が5m2/g
以上となるような乾式酸化処理で含窒素酸性官能基が得
られる。
The carbonaceous material in which such a nitrogen-containing acidic functional group is present, the number of bonded nitrogen atoms thereof is at least 0.3% based on the number of carbon atoms, and the BET surface area is increased is the above-described pseudographite. It is obtained by dry-oxidizing a carbon material having a crystal structure. For example, 1 × 10 -2 torr
The weight yield under the oxygen atmosphere having the above oxygen partial pressure is in the range of 65 to 99%. The processing temperature is usually preferably 400 ° C. or higher. Low temperature (for example, 300 ° C
In the case of (1), the reactivity of the carbon material to be treated is lowered, so that the oxidation effect cannot be obtained. If the oxidation treatment is performed by a wet method, there are many problems such as generation of an intercalation compound and generation of harmful gas during the treatment, so that it should be avoided. This dry oxidation treatment may be a one-step method or a method in which two or more steps are performed at different humidity. Further, instead of heating, plasma may be generated, or processing may be performed using both plasma generation and heating. By performing the dry oxidation treatment so that the BET surface area becomes 5 m 2 / g or more, nitrogen having a stable crystal structure existing inside the carbon material appears at the end, and the nitrogen reacts with the acidic functional group. It is considered that this results in an electrochemically stable nitrogen-containing acidic functional group. In the dry oxidation treatment in the presence of nitrogen, the BET surface area is 5 m 2 / g.
The nitrogen-containing acidic functional group is obtained by the dry oxidation treatment as described above.

【0022】また表面結合窒素量(N/C比)を高めた
炭素質材料は、例えばアクリル系、芳香族ポリアミド系
原料のように元来窒素を含有する原料を炭化することに
よって得られる。この際、炭化処理温度が高すぎると窒
素の揮散が進行し、残留する窒素量が減少してしまう。
また、逆に処理温度が低すぎると結晶性が低くなり、前
述の<002>面間隔が3.70Å以上になってしまう
ため、原料の構造にもよるが800℃〜1700℃の範
囲内で炭化処理を行うことが好ましい。このようにして
得られた炭素材料に前述の乾式酸化処理を施すことによ
り、表面近傍に電極性能に有効な結合窒素が形成され
る。
A carbonaceous material having an increased surface-bound nitrogen amount (N / C ratio) can be obtained by carbonizing a raw material containing nitrogen, such as an acrylic or aromatic polyamide raw material. At this time, if the carbonization temperature is too high, volatilization of nitrogen proceeds, and the amount of remaining nitrogen decreases.
On the other hand, if the processing temperature is too low, the crystallinity becomes low, and the above-mentioned <002> plane spacing becomes 3.70 ° or more. It is preferable to perform a carbonization treatment. By subjecting the carbon material thus obtained to the dry oxidation treatment described above, bound nitrogen effective for electrode performance is formed near the surface.

【0023】一方、石炭、石油ピッチ系、フエノール
系、セルロース系原料のように元来窒素を含有しない
か、または窒素の含有量の少ない原料の場合は、炭化処
理後、前述の乾式酸化処理を行った炭素材料を、例え
ば、ヒドロキシルアミン塩酸塩等の含窒素試薬の溶液中
に浸せきし、加熱処理することにより同様に表面へ窒素
原子を結合(含窒素官能基を導入)させることができ
る。その他、炭素材料の表面をハロゲン化後、同様にヒ
ドロキシルアミン塩等の溶液で処理したり、雰囲気中に
窒素含有物質(例えば、アンモニアガス等)を共存させ
て炭化処理した後、乾式酸化処理を行ってもよい。何れ
にしても炭素材料表面に結合窒素を形成させる方法につ
いては、特に制限を設けるものではない。
On the other hand, in the case of a raw material which does not originally contain nitrogen or has a low nitrogen content such as coal, petroleum pitch-based, phenol-based, and cellulosic raw materials, the above-mentioned dry oxidation treatment is performed after the carbonization treatment. The obtained carbon material is immersed in, for example, a solution of a nitrogen-containing reagent such as hydroxylamine hydrochloride and heat-treated, whereby nitrogen atoms can be similarly bonded to the surface (introducing a nitrogen-containing functional group). In addition, after halogenating the surface of the carbon material, it is similarly treated with a solution such as a hydroxylamine salt, or carbonized in the presence of a nitrogen-containing substance (for example, ammonia gas) in the atmosphere, and then subjected to dry oxidation treatment. May go. In any case, there is no particular limitation on the method of forming bonded nitrogen on the carbon material surface.

【0024】このようにして、前述の擬黒鉛結晶構造お
よび表面構造を有する炭素質材料の表面に結合窒素を形
成させることにより問題点を解決することができる。
In this way, the problem can be solved by forming bonded nitrogen on the surface of the carbonaceous material having the above-mentioned pseudo-graphite crystal structure and surface structure.

【0025】次に本発明において採用される<002>
面間隔(d002)、電流効率ηI・セル抵抗R・電圧効率
ηV・電池エネルギー効率ηE、BET表面積、N/C比
の各測定法について説明する。
Next, <002> employed in the present invention.
Measurement methods of the plane spacing (d 002 ), current efficiency η I , cell resistance R, voltage efficiency η V , battery energy efficiency η E , BET surface area, and N / C ratio will be described.

【0026】 <002>面間隔:d002 電極材料をメノウ乳鉢で、粒径10μm程度になるまで
粉砕し、試料に対して約5重量%のX線標準用高純度シ
リコン粉末を内部標準物質として混合し、試料セルにつ
め、CuKα線を線源として、ディフラクトメーター法
によって広角X線解析曲線を測定する。
<002> Spacing: d 002 The electrode material is pulverized in an agate mortar until the particle size becomes about 10 μm, and about 5% by weight of the sample as a high purity silicon powder for X-ray standard is used as an internal standard substance. The mixture is mixed, packed in a sample cell, and a wide-angle X-ray analysis curve is measured by a diffractometer method using CuKα radiation as a radiation source.

【0027】曲線の補正には、いわゆるローレンツ因
子、偏光因子、吸収因子、原子散乱因子等に関する補正
を行わず次の簡便法を用いる。即ち<002>回析に相
当するピーク高さの2/3の高さに引いた角度軸に平行
な線が補正強度曲線と交わる部分の中点を求め、中点の
角度を内部標準で補正し、これを回析角の2倍とし、C
uKαの波長λとから次式のBraggの式によって<00
2>面間隔を求める。 d002=λ/2sinθ 但し、λ=1.5418Å θ=<002>回折角
For the correction of the curve, the following simple method is used without correcting the so-called Lorentz factor, polarization factor, absorption factor, atomic scattering factor and the like. That is, the midpoint where the line parallel to the angle axis drawn to the height of 2/3 of the peak height corresponding to <002> diffraction crosses the corrected intensity curve is determined, and the angle of the midpoint is corrected by the internal standard. This is set to twice the diffraction angle, and C
<00 from the wavelength λ of uKα by the Bragg equation
2> Find the surface spacing. d 002 = λ / 2 sin θ, where λ = 1.5418 ° θ = <002> diffraction angle

【0028】 電極特性 2図に示す液流通型電解槽と同じ形状で上下方向(通液
方向)に10cm、幅方向に1cmの電極面積10cm
2を有する小型のセルを作り、定電流密度で充放電をく
り返し、電極性能のテストを行う。正極電解液には塩化
第一鉄、塩化第二鉄を各1M/lの濃度で混合した4N
塩酸酸性水溶液を用い、負極電解液には1M/lの塩化
クロムの4N塩酸酸性水溶液を用いた。正極電解液量は
負極電解液量に対し大過剰とし、負極特性を中心に検討
できるようにした。尚、用いたスペーサ厚みは1.5m
m、液流量は毎分4.8mlとし、40℃で測定を行っ
た。
Electrode Characteristics An electrode area of the same shape as the liquid flow type electrolytic cell shown in FIG. 2 having an electrode area of 10 cm in the vertical direction (liquid flowing direction) and 1 cm in the width direction.
A small cell with 2 is made, charge and discharge are repeated at a constant current density, and the electrode performance is tested. 4N mixed with ferrous chloride and ferric chloride at a concentration of 1 M / l each for the positive electrode electrolyte
A hydrochloric acid aqueous solution was used, and a 1 M / l chromium chloride 4N hydrochloric acid aqueous solution was used as a negative electrode electrolyte. The amount of the positive electrode electrolyte was made to be a large excess with respect to the amount of the negative electrode electrolyte so that the characteristics of the negative electrode could be examined mainly. The spacer thickness used was 1.5 m
m, the liquid flow rate was 4.8 ml per minute, and the measurement was performed at 40 ° C.

【0029】(1) 電流効率:ηI 充電に始まり放電で終わる1サイクルのテストにおい
て、電流密度を電極幾何面積当り40mA/cm2(4
00mA)として、1.2Vまでの充電に要した電気量
をQ1クーロン、0.2Vまでの定電流放電、およびこ
れに続く0.8Vでの定電圧放電で取り出した電気量を
それぞれQ2、Q3クーロンとし、次式で電流効率ηI
求める。 ηI=(Q2+Q3)/Q1×100(%) 充電時にCr 3+からCr 2+への還元以外の反応、例えばH
+の還元等の副反応(水素ガスの発生)が起こると、取
り出せる電気量が減り、電流効率ηIは減少する。
(1) Current efficiency: In a one-cycle test starting from η I charge and ending with discharge, the current density was set to 40 mA / cm 2 (4
00 mA), the quantity of electricity required for charging up to 1.2 V is Q 1 coulomb, the quantity of electricity extracted by constant-current discharge up to 0.2 V and the subsequent quantity of constant voltage discharge at 0.8 V is Q 2 , and Q 3 coulombs, obtains the current efficiency eta I by the following equation. η I = (Q 2 + Q 3) / Q 1 × 100 (%) reactions other than reduction of C r 3+ upon charging to the C r 2+, for example H
When a side reaction (generation of hydrogen gas) such as reduction of + occurs, the amount of electricity that can be taken out decreases, and the current efficiency η I decreases.

【0030】(2) セル抵抗:R 負極液中のCr 3+をCr 2+に完全に還元するのに必要な理
論電気量Qthに対して、対して、放電により取り出した
電気量の比を充電率とし、 充電率=(Q2+Q3)/Qth×100(%) 充電率が50%のときの電流・電圧曲線の傾きから電極
幾何面積に対する抵抗R(Ωcm2)を求める。
[0030] (2) the cell resistance: the C r 3+ in R negative electrode solution on the theoretical quantity of electricity Q th required to completely reduce the C r 2+, for, the quantity of electricity taken out by the discharge Is defined as the charging rate, the charging rate = (Q 2 + Q 3 ) / Q th × 100 (%) The resistance R (Ωcm 2) with respect to the electrode geometric area is obtained from the slope of the current / voltage curve when the charging rate is 50%. .

【0031】(3) 電圧効率:ηV 上記した方法で求めたセル抵抗Rを用いて次式の簡便法
により電圧効率ηVを求める。 ηV=(E−I・R/10)/(E+I・R/10)×100
(%) ここで、Eは充電率50%のときのセルの開回路電圧
(V)、Iは、定電流充放電における電流値(A)であ
る。Eには実測値である0.987Vを用い、I=0.
4A、すなわち電流密度40mA/cm2の時の電圧効
率ηVで評価した。Rは前記したセル抵抗(Ωcm2)で
ある。セル抵抗Rが小さい程、活物質のイオンの酸化還
元反応はすみやかに起こるため高電流密度での放電電圧
は高くなり、従ってセルの電圧効率ηVが高くなる。
(3) Voltage efficiency: η V Using the cell resistance R obtained by the above method, the voltage efficiency η V is obtained by a simple method of the following equation. η V = (E−I · R / 10) / (E + I · R / 10) × 100
(%) Here, E is an open circuit voltage (V) of the cell when the charging rate is 50%, and I is a current value (A) in constant current charging and discharging. For E, 0.987 V which is an actually measured value was used, and I = 0.
The voltage efficiency η V at 4 A, that is, at a current density of 40 mA / cm 2 was evaluated. R is the cell resistance (Ωcm 2 ) described above. As the cell resistance R is smaller, the oxidation-reduction reaction of the ions of the active material occurs more quickly, so that the discharge voltage at a high current density becomes higher, and the voltage efficiency η V of the cell becomes higher.

【0032】(4) 電池のエネルギー効率:ηE 前述の電流効率ηIと電圧効率ηVを用いて、次式により
電池エネルギー効率η Eを求める。 ηE=ηI×ηV×(1/100)(%) 電流効率ηIおよび電圧効率ηVが高くなる程、電池エネ
ルギー効率ηEは高くなり、従って、充放電におけるエ
ネルギーロスが小さく、優れた電極であると判断され
る。
(4) Energy efficiency of battery: ηE Current efficiency η described aboveIAnd voltage efficiency ηVAnd the following equation
Battery energy efficiency η EAsk for. ηE= ΗI× ηV× (1/100) (%) Current efficiency ηIAnd voltage efficiency ηVThe higher the
Lugie efficiency ηEIs high, and therefore the
Energy loss is small and it is judged to be an excellent electrode
You.

【0033】 BET表面積 電極材を約0.1g採取し、120℃で12時間真空乾
燥して秤量し、液体窒素の沸点(−195.8℃)にお
ける窒素ガスの吸着量を相対圧を0.0〜0.2の範囲
で徐々に高めながら数点測定し、B.E.T.プロット
により電極材重量当りの比表面積(m2/g)を求め
た。
BET Surface Area About 0.1 g of the electrode material was sampled, vacuum-dried at 120 ° C. for 12 hours and weighed, and the nitrogen gas adsorption amount at the boiling point of liquid nitrogen (−195.8 ° C.) was measured at a relative pressure of 0.1%. A few points were measured while gradually increasing in the range of 0 to 0.2. E. FIG. T. The specific surface area (m 2 / g) per electrode material weight was determined by plotting.

【0034】 N/C比 ESCAあるいは、XPSと略称されているX線光電子
分光法により炭素質材料表面のN/C比を測定する。測
定装置は島津ESCA750、解析にはESCA PA
C760を用いた。電極材を6mm径に切り出し、導電
性ペーストにより加熱試料台に貼り付けて、試料を12
0℃で加熱しながら、3時間以上真空脱気した後測定を
行った。線源にはMgKα線(1253.6eV)を用
い、装置内真空度は10−7torrの条件で試料表面の分
析を行った。尚、ここで言う表面とは試料の最外層から
数十Åまでの深さの領域を意味する。
N / C Ratio The N / C ratio on the surface of the carbonaceous material is measured by X-ray photoelectron spectroscopy, which is abbreviated as ESCA or XPS. The measuring device is Shimadzu ESCA750, and the analysis is ESCA PA
C760 was used. The electrode material was cut out to a diameter of 6 mm and attached to a heated sample stage with a conductive paste.
While heating at 0 ° C., measurement was performed after degassing for 3 hours or more. The MgKα ray (1253.6 eV) was used as the radiation source, and the surface of the sample was analyzed under the condition that the degree of vacuum in the apparatus was 10 −7 torr. Here, the surface means a region having a depth from the outermost layer of the sample to several tens of mm.

【0035】測定は、Cls、N1sピークに対して行
いESCA PAC760を用いて、各ピーク面積を求
める。
The measurement is performed on the Cls and N1s peaks, and the area of each peak is determined using ESCA PAC760.

【0036】得られた面積を、J.H.Scofieidによる補正
法に基づきC1sについては1.00、N1sに対して
は1.77の相対強度で除して、その値から直接表面
(窒素/窒素)原子数比を%で算出した。
The obtained area is divided by the relative intensity of 1.00 for C1s and 1.77 for N1s based on the correction method by JHScofieid, and the surface (nitrogen / nitrogen) atom number is directly calculated from the value. The ratio was calculated in%.

【0037】(作用)新型2次電池等の電解槽用電極材
の特性は、主に上記のように電流効率ηI、電圧効率ηV
(セル抵抗R)および電池エネルギー効率ηEで表され
る。
(Function) The characteristics of the electrode material for an electrolytic cell of a new type secondary battery or the like mainly include the current efficiency η I and the voltage efficiency η V as described above.
(Cell resistance R) and battery energy efficiency η E.

【0038】電流効率ηIは、主に充電時における水素
発生等の副反応によって充電電気量の一部が消費される
ために低下する。通常の炭素材料は、原料系によってそ
の度合は異なるが、処理温度の上昇と共に結晶化が進行
し、d002の値が減少し、黒鉛結晶の値に近づいてい
く。この結晶化の状態、すなわち炭素材料の値に近づい
ていく。この結晶化の状態、すなわち炭素材料の結晶構
造が異なれば、相対する電子エネルギー構造も異なる。
一般に金属元素を電極に用いた場合、各元素で電気化学
的反応選択性が異なることが認められるように、炭素に
おいてもその結晶構造が電気化学的反応選択性、すなわ
ち電流効率ηIに大きく影響すると考えられる。本発明
によって、d002が3.70Å以下の擬黒鉛結晶構造を
有すれば、電流効率ηIを著しく高めることができる。
おそらく、上記構造の炭素材料の電子エネルギー構造に
基づく反応選択性が使用する系に最適な状態にあるもの
と推測される。また、加熱処理による結晶化の進行に伴
い炭素内部構造が均一化(平均化)し、構造欠陥等も減
少あるいは消失していくため、電極材に用いた時の電極
電位が均一化(電極電位分布が狭くなる)することも電
流効率ηIの上昇に寄与していると推測される。尚、公
知の通り金属不純物、特に鉄、クロム、ニッケルなどの
遷移金属は、副反応促進の触媒となるため、これらの不
純物量極力おさえた炭素材料を用いることが重要であ
る。
The current efficiency η I decreases mainly because part of the charged electricity is consumed by side reactions such as generation of hydrogen during charging. Although the degree of the ordinary carbon material varies depending on the raw material system, crystallization progresses with an increase in the processing temperature, and the value of d 002 decreases and approaches the value of graphite crystal. The state of the crystallization approaches the value of the carbon material. If the crystallization state, that is, the crystal structure of the carbon material is different, the corresponding electron energy structure is also different.
In general, when a metal element is used for an electrode, the crystal structure of carbon greatly affects the electrochemical reaction selectivity, that is, the current efficiency η I , as can be seen that the electrochemical reaction selectivity differs for each element. It is thought that. The present invention, d 002 is if it has the following擬黒lead crystal structure 3.70A, can significantly increase the current efficiency eta I.
It is presumed that the reaction selectivity based on the electron energy structure of the carbon material having the above structure is in an optimum state for the system to be used. In addition, the internal structure of carbon is made uniform (averaged) with the progress of crystallization due to the heat treatment, and structural defects are reduced or eliminated. Therefore, the electrode potential when used as an electrode material is made uniform (electrode potential). distribution is presumed that also contribute to the increase of the current efficiency eta I narrowing made). As is well known, metal impurities, particularly transition metals such as iron, chromium, and nickel, act as catalysts for accelerating side reactions. Therefore, it is important to use a carbon material with a minimum amount of these impurities.

【0039】炭素材料の結晶構造を上記した本発明にお
ける範囲内に制御することにより電流効率ηIを高める
ことができる。また、同じ結晶構造の炭素材料であれ
ば、その単位表面積当りの電極(反応)活性が同等であ
ると考えた場合、電極材の重量が同じであれば、電極活
性はその表面積に比例すると考えられる。
By controlling the crystal structure of the carbon material within the above-described range of the present invention, the current efficiency η I can be increased. Further, if carbon materials having the same crystal structure are considered to have the same electrode (reaction) activity per unit surface area, electrode activity is considered to be proportional to the surface area if the weight of the electrode material is the same. Can be

【0040】ところが、炭素は元来疎水性であるため水
溶液系電解液等の極性の強い電解液を用いた時、炭素材
料表面のこれら電解液に対する濡れ性が不十分となり表
面積の利用率が低くなる。そこで、本発明により炭素材
料表面に電解液の塗れ性に寄与する含窒素酸性官能基
を、その結合窒素原子数が炭素原子に対して0.3%以
上になるように存在させることにより、電解液との濡れ
性が向上し、さらに初期(1サイクル目)に酸性官能基
が脱離することなく、表面積の利用率が大幅に上昇す
る。このように含窒素酸性官能基を増加させた炭素質材
料であれば、電極活性は該炭素質材料の表面積に比例す
ると考えられる(例えば白金と白金黒との関係)。本発
明における電解槽用炭素系電極材は、前記の含窒素酸性
官能基で電解液の濡れ性を確保し、表面積を増加させた
炭素質材料であるため、電極有効表面積が著しく増加
し、セル抵抗Rが減少し、従って電圧効率ηVを大幅に
上昇させることができる。尚、表面積を増加させるに従
い、炭素質材料の表面エッチングが進行するため接触抵
抗が増大したり、細孔の増加に伴う電解液の淀み等が生
じて、この部分への活物質イオンの供給がスムーズに行
われず過電圧が上昇して水素発生等の副反応が生じやす
くなるので、表面積は100m2/g以下が好ましい。
However, since carbon is inherently hydrophobic, when a highly polar electrolyte such as an aqueous electrolyte is used, the wettability of the surface of the carbon material with these electrolytes is insufficient, and the utilization of the surface area is low. Become. Therefore, the present invention provides a carbon-containing material having a nitrogen-containing acidic functional group which contributes to the wettability of the electrolytic solution on the surface of the carbon material so that the number of bonded nitrogen atoms is 0.3% or more of the carbon atom. The wettability with the liquid is improved, and the utilization rate of the surface area is significantly increased without the acidic functional group being eliminated in the initial stage (first cycle). If the carbonaceous material has an increased number of nitrogen-containing acidic functional groups, the electrode activity is considered to be proportional to the surface area of the carbonaceous material (for example, the relationship between platinum and platinum black). The carbon-based electrode material for the electrolytic cell in the present invention is a carbonaceous material having an increased surface area because of ensuring the wettability of the electrolytic solution with the nitrogen-containing acidic functional group, so that the electrode effective surface area is significantly increased, The resistance R is reduced, so that the voltage efficiency η V can be increased significantly. In addition, as the surface area increases, the surface resistance of the carbonaceous material progresses, so that the contact resistance increases, the stagnation of the electrolytic solution accompanying the increase in the pores, etc., and the supply of active material ions to this portion occurs. The surface area is preferably not more than 100 m 2 / g, since the reaction is not carried out smoothly and the overvoltage rises to easily cause side reactions such as hydrogen generation.

【0041】以上示した擬黒鉛結晶構造および表面構造
を有する炭素質材料を電極材に用いることにより電流効
率ηI、電圧効率ηVが上昇し、従って電池エネルギー効
率η Eを大幅に高めることができる。
The above-described pseudo-graphite crystal structure and surface structure
Current effect by using carbonaceous material with
Rate ηI, Voltage efficiency ηVRise, and therefore the battery energy efficiency
Rate η ECan be greatly increased.

【0042】今のところ、この結合窒素の効果について
は不明であるが、例えば、炭素質材料表面でヒドロキシ
アミノ基(>─NH−OH)やヒドロキシイミド基(>
N−OH)の形で存在し、これらの含窒素酸性基が前
述の含酸素酸性基と同様に電極材表面の濡れ性に寄与し
ていると考えられる。さらに、これらの含窒素酸性官能
基が含酸素酸性官能基に比べ還元されにくい(変質しに
くい;変質電位がより卑な電位にある)状態にあると考
えられ、1サイクル目の充放電の際にも安定しており、
電極材表面の濡れ性に寄与し、セル抵抗の増加を抑制し
ていると推測される。
At this time, the effect of the bonded nitrogen is unknown, but, for example, a hydroxyamino group (> @ NH-OH) or a hydroxyimide group (>) on the surface of the carbonaceous material.
N-OH), and it is considered that these nitrogen-containing acidic groups contribute to the wettability of the electrode material surface similarly to the above-mentioned oxygen-containing acidic groups. Furthermore, it is considered that these nitrogen-containing acidic functional groups are in a state where they are less likely to be reduced than the oxygen-containing acidic functional groups (they are less likely to be altered; the altered potential is at a lower potential). Is also stable,
It is presumed that it contributes to the wettability of the electrode material surface and suppresses an increase in cell resistance.

【0043】[0043]

【実施例】以下に実施例を挙げて本発明を説明する。The present invention will be described below with reference to examples.

【0044】(実施例1)平均繊維径16μmのポリア
クリロニトリル繊維を空気中250℃で耐炎化した後、
該耐炎化繊維の短繊維を用いてフェルト化して目付量4
00g/m2の布帛を作製した。該布帛を不活性ガス中
で10℃/分の昇温速度で1250℃まで昇音し、この
温度で1時間保持し炭化を行って冷却し、続いて空気中
650℃で重量収率91%になるまて酸化処理して布帛
Aを得た。布帛Aの目付量は203g/m2、平均繊維
径は10μmであり、また、d002は3.55Å、BE
T表面積は8.62m2/g、N/C比は2.8%であ
った。この布帛Aを用いて電極性能を測定した結果、充
放電サイクル2サイクル目で、電流効率ηI=98.6
%、セル抵抗R=1.04Ωcm2、電圧効率ηV=9
1.9%、電池エネルギー効率ηE=90.6%であっ
た。
Example 1 A polyacrylonitrile fiber having an average fiber diameter of 16 μm was oxidized at 250 ° C. in air.
The short fiber of the flame-resistant fiber is used to make a felt and the basis weight is 4
A fabric of 00 g / m 2 was produced. The fabric was heated in an inert gas at a rate of 10 ° C./min to 1250 ° C., kept at this temperature for 1 hour, carbonized and cooled, and subsequently 650 ° C. in air at 91% weight yield. To obtain a fabric A. The basis weight of the fabric A was 203 g / m 2 , the average fiber diameter was 10 μm, d 002 was 3.55 °, BE
The T surface area was 8.62 m 2 / g, and the N / C ratio was 2.8%. As a result of measuring the electrode performance using the cloth A, the current efficiency η I = 98.6 at the second charge / discharge cycle.
%, Cell resistance R = 1.04 Ωcm 2 , voltage efficiency η V = 9
1.9% and battery energy efficiency η E = 90.6%.

【0045】(実施例2)平均繊維径23μmの芳香族
ポリアミド短繊維をフェルト化し目付量283g/m2
の布帛を作製した。この布帛を不活性ガス中で10℃/
分の昇温速度で1500℃まで昇温し、この温度で1時
間保持して炭化を行って冷却し、続いて空気中700℃
で重量収率90%になるまで酸化処理して布帛Bを得
た。布帛Bの目付量は210g/m2、平均繊維径は1
8μm、d002は3.60Å、BET表面積は6.51
2/g、N/C比は2.2%であった。この布帛Bを
用いて電極性能を測定した結果、充放電サイクル2サイ
クル目で、電流効率ηI=98.0%、セル抵抗R=
1.30Ωcm2、電圧効率ηV=90.0%、電池エネ
ルギー効率ηE=88.2%であった。
Example 2 Aromatic polyamide short fibers having an average fiber diameter of 23 μm were made into felts, and the basis weight was 283 g / m 2.
Was produced. This fabric is heated at 10 ° C /
The temperature was raised to 1500 ° C. at a rate of 1 minute, and kept at this temperature for 1 hour to perform carbonization and cooling.
To obtain a fabric B by oxidizing until the weight yield became 90%. Fabric B has a basis weight of 210 g / m 2 and an average fiber diameter of 1
8 μm, d 002 is 3.60 °, BET surface area is 6.51
m 2 / g, N / C ratio was 2.2%. The electrode performance was measured using the cloth B. As a result, at the second charge / discharge cycle, the current efficiency η I = 98.0% and the cell resistance R =
1.30 Ωcm 2 , voltage efficiency η V = 90.0%, and battery energy efficiency η E = 88.2%.

【0046】(実施例3)平均繊維径14μmのフェノ
ールノボラック短繊維をフェルト化して作製した目付量
260g/m2の布帛を不活性ガス中、10℃/分の昇
温速度で1800℃まで昇温し、この温度で1時間保持
して炭化を行って冷却し、続いて空気中700℃で重量
収率93%になるまで酸化処理して炭素繊維よりなる布
帛を得た。該炭素質繊維布帛をヒドロキシルアミン2塩
酸塩(NH2OH・2HCl)の10wt%水溶液中、
95℃で5時間処理した後、水洗・乾燥して布帛Cを得
た。布帛Cの目付量は195g/m2、平均繊維径は1
0.3μmであり、d002は3.65Å、BET表面積
は30.00m2/g、N/C比は1.7%であった。
この布帛Cを用いて電極性能を測定した結果、充放電サ
イクル2サイクル目で電流効率ηI=98.1%、セル
抵抗R=1.35Ωcm2、電圧効率ηV=89.6%、
電池エネルギー効率ηE=87.9%であった。
Example 3 A fabric having a basis weight of 260 g / m 2 prepared by felting phenol novolak short fibers having an average fiber diameter of 14 μm was heated to 1800 ° C. in an inert gas at a rate of 10 ° C./min. After heating at this temperature for 1 hour, carbonization was performed and cooling was performed, followed by oxidation treatment at 700 ° C. in air until the weight yield became 93%, to obtain a fabric made of carbon fibers. The carbonaceous fiber fabric was placed in a 10 wt% aqueous solution of hydroxylamine dihydrochloride (NH 2 OH · 2HCl),
After treating at 95 ° C. for 5 hours, it was washed with water and dried to obtain Fabric C. Fabric C has a basis weight of 195 g / m 2 and an average fiber diameter of 1
0.3 μm, d 002 was 3.65 °, BET surface area was 30.00 m 2 / g, and N / C ratio was 1.7%.
As a result of measuring the electrode performance using the cloth C, the current efficiency η I = 98.1%, the cell resistance R = 1.35 Ωcm 2 , the voltage efficiency η V = 89.6% in the second charge / discharge cycle,
The battery energy efficiency η E was 87.9%.

【0047】(実施例4)実施例3で用いたヒドロキシ
ルアミン2塩酸塩処理を行う前の炭素質繊維布帛を布帛
Gとして、この布帛Gを用いて電極性能を測定した結
果、充放電サイクル2サイクル目で電流効率ηI=9
8.2%、セル抵抗R=1.38Ωcm2、電圧効率ηV
=89.4%、電池エネルギー効率ηE=87.8%で
あった。尚布帛Gの目付量は193g/m2、平均繊維
径10.3μmであり、d002は3.65Å、BET表
面積は30.00m2/g、N/C比は0.3%であっ
た。
(Example 4) The carbonaceous fiber cloth before the hydroxylamine dihydrochloride treatment used in Example 3 was used as the cloth G, and the electrode performance was measured using the cloth G. Current efficiency η I = 9 at cycle
8.2%, cell resistance R = 1.38Ωcm 2 , voltage efficiency η V
= 89.4%, and the battery energy efficiency η E was 87.8%. The basis weight of the fabric G was 193 g / m 2 , the average fiber diameter was 10.3 μm, d 002 was 3.65 °, the BET surface area was 30.00 m 2 / g, and the N / C ratio was 0.3%. .

【0048】(実施例5)充分に脱硫・漂白・水洗・乾
燥を行った平均繊維径25μmの再生セルロース短繊維
をフェルト化して作製した目付量313g/m2の布帛
を不活性ガス中、1℃/分の昇温速度で270℃まで昇
温し(耐炎化処理)次いで10℃/分の昇温速度で20
00℃まで昇温し、この温度で1時間保持して炭化を行
って冷却し、続いて空気中700℃で重量収率93%に
なるまで酸化処理して炭素質繊維の布帛Hを得た。この
布帛Hを用いて電極性能を測定した結果、充放電サイク
ル2サイクル目で電流効率ηI=97.5%、セル抵抗
R=1.35Ωcm2、電圧効率ηV=89.6%、電池
エネルギー効率ηE=87.4%であった。尚布帛Hの
目付量は197g/m2、平均繊維径21.0μmであ
り、d002は3.61Å、BET表面積は65.00m2
/g、N/C比は0.4%であった。
Example 5 A regenerated cellulose short fiber having an average fiber diameter of 25 μm, which was sufficiently desulfurized, bleached, washed and dried, was made into a felt, and a fabric having a basis weight of 313 g / m 2 was prepared in an inert gas. The temperature was raised to 270 ° C. at a rate of 10 ° C./min (flame-resistant treatment) and then 20 ° C.
The temperature was raised to 00 ° C., kept at this temperature for 1 hour, carbonized and cooled, and then oxidized at 700 ° C. in air until the weight yield became 93% to obtain a carbonaceous fiber fabric H. . As a result of measuring the electrode performance using the cloth H, the current efficiency η I = 97.5%, the cell resistance R = 1.35 Ωcm 2 , the voltage efficiency η V = 89.6%, and the battery in the second charge / discharge cycle. The energy efficiency η E was 87.4%. The fabric H had a basis weight of 197 g / m 2 , an average fiber diameter of 21.0 μm, d 002 of 3.61 °, and a BET surface area of 65.00 m 2.
/ G, N / C ratio was 0.4%.

【0049】(実施例6)平均繊維径15μmの等方性
ピッチ繊維を空気中、1.5℃/分の昇温速度で350
℃まで昇温し、この温度で1.5時間保持して不融化し
た後、該不融化繊維の短繊維をフェルト化して作製した
目付量241g/m2の布帛を不活性ガス中10℃/分
の昇温速度で1500℃まで昇温し、この温度で1時間
保持して炭化を行って冷却し、続いて空気中650℃で
重量収率93%になるまで酸化処理して炭素質繊維の布
帛Iを得た。この布帛Iを用いて電極性能を測定した結
果、充放電サイクル2サイクル目で電流効率ηI=9
7.7%、セル抵抗R=1.35Ωcm2、電圧効率ηV
=89.6%、電池エネルギー効率ηE=87.5%で
あった。尚布帛Iの目付量は245g/m2、平均繊維
径13μmであり、d002は3.67Å、BET表面積
は76.50m2/g、N/C比は0.4%であった。
Example 6 An isotropic pitch fiber having an average fiber diameter of 15 μm was heated in air at a rate of 1.5 ° C./min.
C., and kept at this temperature for 1.5 hours to infusibilize. Then, a short fiber of the infusibilized fiber was made into a felt, and a fabric having a basis weight of 241 g / m 2 was produced in an inert gas at 10 ° C. / The temperature is raised to 1500 ° C. at a temperature rising rate of 1 minute, the temperature is maintained for 1 hour, carbonization is performed, and cooling is performed. Fabric I was obtained. As a result of measuring the electrode performance using the cloth I, the current efficiency η I = 9 at the second charge / discharge cycle.
7.7%, cell resistance R = 1.35Ωcm 2 , voltage efficiency η V
= 89.6%, and the battery energy efficiency η E was 87.5%. The basis weight of Fabric I was 245 g / m 2 , the average fiber diameter was 13 μm, d 002 was 3.67 °, the BET surface area was 76.50 m 2 / g, and the N / C ratio was 0.4%.

【0050】(比較例1)平均繊維径13μmの異方性
ピッチ繊維(メソフェーズピッチ繊維)を空気中、1.
5℃/分の昇温速度で350℃まで昇温し、この温度で
1.5時間保持して不融化した後、該不融化繊維の短繊
維をフェルト化して作製した目付量255g/m2の布
帛を不活性ガス中10℃/分の昇温速度で1300℃ま
で昇温し、この温度で1時間保持して炭化を行って冷却
し、続いて空気中650℃で重量収率94%になるまで
酸化処理して炭素質繊維の布帛Jを得た。この布帛Jを
用いて電極性能を測定した結果、充放電サイクル2サイ
クル目で電流効率ηI=98.4%、セル抵抗R=2.
10Ωcm2、電圧効率ηV=84.3%、電池エネルギ
ー効率ηE=83.0%であった。尚、布帛Jの目付量
は225g/m2、平均繊維径10μmであり、d002
3.50Å、BET表面積は3.96m2/g、N/C
比は0.3%であった。
(Comparative Example 1) An anisotropic pitch fiber (mesophase pitch fiber) having an average fiber diameter of 13 µm was used in air.
The temperature was raised to 350 ° C. at a temperature rising rate of 5 ° C./min, and the temperature was maintained at this temperature for 1.5 hours to infusibilize, and then the short fiber of the infusibilized fiber was felted to produce a basis weight of 255 g / m 2. Is heated in an inert gas at a heating rate of 10 ° C./min to 1300 ° C., kept at this temperature for 1 hour, carbonized and cooled, and subsequently 650 ° C. in air at 94% weight yield. To obtain a carbonaceous fiber fabric J. As a result of measuring the electrode performance using the cloth J, the current efficiency η I = 98.4% and the cell resistance R = 2.
10 Ωcm 2 , voltage efficiency η V = 84.3%, and battery energy efficiency η E = 83.0%. The basis weight of the fabric J was 225 g / m 2 , the average fiber diameter was 10 μm, d 002 was 3.50 °, the BET surface area was 3.96 m 2 / g, and N / C
The ratio was 0.3%.

【0051】(比較例2)実施例3で用いた酸化処理を
行う前の炭化繊維布帛を布帛Mとし、この布帛Mを用い
て電極性能を測定した結果、充放電サイクル2サイクル
目で電流効率ηI=98.0%、セル抵抗R=10.0
Ωcm2、ηV=42.3%、電池エネルギー効率ηE
41.5%であった。尚、布帛Lの目付量は204g/
2、平均繊維径10.9μmであり、d002は3.65
Å、BET表面積は0.53m2/g、N/C比は0.
2%であった。
(Comparative Example 2) The carbonized fiber cloth before the oxidation treatment used in Example 3 was used as cloth M, and the electrode performance was measured using this cloth M. As a result, the current efficiency in the second charge / discharge cycle was measured. η I = 98.0%, cell resistance R = 10.0
Ωcm 2 , η V = 42.3%, battery energy efficiency η E =
41.5%. The basis weight of the fabric L was 204 g /
m 2 , average fiber diameter is 10.9 μm, and d 002 is 3.65
Å, BET surface area: 0.53 m 2 / g, N / C ratio: 0.3
2%.

【0052】(比較例3)実施例3で用いたフェノール
ノボラック繊維よりなるフェルト状布帛を、不活性ガス
中、10℃/分の昇温速度で1300℃まで昇温し、こ
の温度で1時間保持して炭化を行って冷却して炭化繊維
布帛Qを得た。この布帛Qを用いて電極性能を測定した
結果、充放電サイクル2サイクル目で電流効率ηI=6
8.0%、セル抵抗R=9.2Ωcm2、電圧効率ηV
45.7%、電池エネルギー効率η E=31.1%であ
った。尚、布帛Qの目付量は224g/m2、平均繊維
径11.8μmであり、d002は3.74Å、BET
表面積は0.83m2/g、N/C比は0.4%であっ
た。
Comparative Example 3 Phenol used in Example 3
A felt-like fabric made of novolak fiber is treated with an inert gas.
In the medium, the temperature was raised to 1300 ° C at a rate of 10 ° C / min.
Temperature for 1 hour, carbonized, cooled and carbonized fiber
Fabric Q was obtained. The electrode performance was measured using this cloth Q.
As a result, the current efficiency η at the second charge / discharge cycleI= 6
8.0%, cell resistance R = 9.2ΩcmTwo, Voltage efficiency ηV=
45.7%, battery energy efficiency η E= 31.1%
Was. The basis weight of the fabric Q was 224 g / m.Two, Average fiber
The diameter is 11.8 μm, d002 is 3.74 °, BET
The surface area is 0.83mTwo/ G, N / C ratio is 0.4%.
Was.

【0053】以上の実施例、比較例の結果を表1にまと
める。尚、本実施例においては、電極材の構成組織とし
てフェルト(不織布)の場合について説明したが、他の
組織、例えば編地、織地、特殊編織物、フィラメント集
束糸等においても本実施例と同様な効果が認められる。
Table 1 summarizes the results of the above examples and comparative examples. In the present embodiment, the case of felt (non-woven fabric) is described as a constituent structure of the electrode material. However, other structures such as a knitted fabric, a woven fabric, a special knitted fabric, a filament bundled yarn, and the like are similar to the present embodiment. Effect is recognized.

【0054】[0054]

【表1】 [Table 1]

【0055】[0055]

【発明の効果】本発明の電極材を用いることにより、各
種電解槽を利用する分野において、有害な副反応を抑圧
して電流効率を高め、またセル抵抗を低くおさえて電圧
効率を高めることができ、従って電池エネルギー効率を
高めることができる。さらに工業的に多大な実用性をも
たらすことができる。
By using the electrode material of the present invention, in the field of using various electrolytic cells, it is possible to suppress harmful side reactions to increase the current efficiency and to suppress the cell resistance to increase the voltage efficiency. Battery energy efficiency. Furthermore, it can bring great industrial utility.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1図はレドックスフロー型電池等の流通型電
解槽を用いた電池の概略図である。
FIG. 1 is a schematic diagram of a battery using a flow-through electrolytic cell such as a redox flow battery.

【図2】第2図は本発明の一実施例を示す三次元電極を
有する液流通型電解槽の分解斜視模式図である。
FIG. 2 is a schematic exploded perspective view of a liquid flow type electrolytic cell having a three-dimensional electrode according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…集電板、2…スペーサ、3…イオン交換膜、4a,
b…通液路、5…電極材、11…液流入口、12…液流
出口
DESCRIPTION OF SYMBOLS 1 ... Current collecting plate, 2 ... Spacer, 3 ... Ion exchange membrane, 4a,
b: liquid passage, 5: electrode material, 11: liquid inlet, 12: liquid outlet

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 X線広角解析より求めた<002>面間
隔が3.70Å以下の擬黒鉛結晶構造を有し、BET表
面積が5m2/g以上である炭素材料からなる電解槽用
炭素系電極材であって、前記炭素材料の表面の結合窒素
原子数が炭素原子数に対して0.3%以上であり、且
つ、該表面に結合した窒素原子が含窒素酸性官能基の形
で存在してなることを特徴とする電解槽用炭素系電極
材。
1. A carbon system for an electrolytic cell comprising a carbon material having a pseudo-graphite crystal structure having a <002> plane spacing of 3.70 ° or less and a BET surface area of 5 m 2 / g or more determined by X-ray wide-angle analysis. An electrode material, wherein the number of bonded nitrogen atoms on the surface of the carbon material is 0.3% or more of the number of carbon atoms, and the nitrogen atoms bonded to the surface are present in the form of a nitrogen-containing acidic functional group. A carbon-based electrode material for an electrolytic cell, comprising:
JP11075983A 1999-03-19 1999-03-19 Carbon-based electrode material for electrolytic cell Pending JPH11317231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11075983A JPH11317231A (en) 1999-03-19 1999-03-19 Carbon-based electrode material for electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11075983A JPH11317231A (en) 1999-03-19 1999-03-19 Carbon-based electrode material for electrolytic cell

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP1101400A Division JP2955938B2 (en) 1989-04-20 1989-04-20 Carbon-based electrode materials for electrolytic cells

Publications (1)

Publication Number Publication Date
JPH11317231A true JPH11317231A (en) 1999-11-16

Family

ID=13592019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11075983A Pending JPH11317231A (en) 1999-03-19 1999-03-19 Carbon-based electrode material for electrolytic cell

Country Status (1)

Country Link
JP (1) JPH11317231A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012160258A (en) * 2011-01-28 2012-08-23 Shunichi Uchiyama Method for manufacturing electrode material containing carbon as base substance, electrode material containing carbon as base substance, and fuel battery and secondary battery both using the same
JP2012221735A (en) * 2011-04-08 2012-11-12 Kumamoto Univ Electrode catalyst for fuel cell
JP2017027919A (en) * 2015-07-28 2017-02-02 東洋紡株式会社 Electrode material for redox battery
JP2018528331A (en) * 2015-06-30 2018-09-27 エスジーエル・カーボン・エスイー Process for the preparation of carbon felt electrodes for redox flow batteries
JP2019125509A (en) * 2018-01-17 2019-07-25 トヨタ自動車株式会社 Redox flow fuel cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02281564A (en) * 1989-04-20 1990-11-19 Toyobo Co Ltd Carbon electrode material for electrolytic bath

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02281564A (en) * 1989-04-20 1990-11-19 Toyobo Co Ltd Carbon electrode material for electrolytic bath

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012160258A (en) * 2011-01-28 2012-08-23 Shunichi Uchiyama Method for manufacturing electrode material containing carbon as base substance, electrode material containing carbon as base substance, and fuel battery and secondary battery both using the same
JP2012221735A (en) * 2011-04-08 2012-11-12 Kumamoto Univ Electrode catalyst for fuel cell
JP2018528331A (en) * 2015-06-30 2018-09-27 エスジーエル・カーボン・エスイー Process for the preparation of carbon felt electrodes for redox flow batteries
JP2017027919A (en) * 2015-07-28 2017-02-02 東洋紡株式会社 Electrode material for redox battery
JP2019125509A (en) * 2018-01-17 2019-07-25 トヨタ自動車株式会社 Redox flow fuel cell

Similar Documents

Publication Publication Date Title
JP3601581B2 (en) Carbon electrode material for vanadium redox flow battery
Ghimire et al. Titanium carbide-decorated graphite felt as high performance negative electrode in vanadium redox flow batteries
Xiang et al. Cr2O3-modified graphite felt as a novel positive electrode for vanadium redox flow battery
Xiang et al. Investigation of an advanced catalytic effect of cobalt oxide modification on graphite felt as the positive electrode of the vanadium redox flow battery
CN106025200B (en) A kind of preparation method and applications of N doping MXene cell negative electrode material
JP2955938B2 (en) Carbon-based electrode materials for electrolytic cells
JP6617464B2 (en) Carbon electrode material for redox batteries
JP6669784B2 (en) Process for the preparation of carbon felt electrodes for redox flow batteries
WO2017022564A1 (en) Carbon electrode material for redox batteries
Jiang et al. The Dual Functions of Defect‐Rich Carbon Nanotubes as Both Conductive Matrix and Efficient Mediator for Li S Batteries
JP2023154069A (en) Carbon electrode material and redox battery
JPH05234612A (en) Carbon electrode material for electrolytic cell
US20220153591A1 (en) Carbon electrode material for manganese/titanium-based redox flow battery
JP6809257B2 (en) Carbon material and batteries using it
JPH11317231A (en) Carbon-based electrode material for electrolytic cell
JP6819982B2 (en) Carbon catalyst for redox flow battery electrodes
JPS59101776A (en) Electrode material
JPH11260377A (en) Carbon electrode material and its manufacture
JP2535877B2 (en) Carbon electrode material for electrolytic cell
JP2001085022A (en) Carbon electrode material and carbon electrode material assembly
JP2001085028A (en) Carbon electrode material assembly
JPH0711963B2 (en) Carbon-based electrode material for flow-through electrolyzer
JP3589285B2 (en) Carbon electrode material for redox flow batteries
WO2017145708A1 (en) Carbon catalyst for redox flow battery electrodes
KR20140121752A (en) Electrode and Method of manufacturing the same and secondary battery using the same