JPS63100009A - Activated carbon - Google Patents

Activated carbon

Info

Publication number
JPS63100009A
JPS63100009A JP61244719A JP24471986A JPS63100009A JP S63100009 A JPS63100009 A JP S63100009A JP 61244719 A JP61244719 A JP 61244719A JP 24471986 A JP24471986 A JP 24471986A JP S63100009 A JPS63100009 A JP S63100009A
Authority
JP
Japan
Prior art keywords
activated carbon
fiber
intensity
diffraction
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61244719A
Other languages
Japanese (ja)
Other versions
JP2502986B2 (en
Inventor
Kiyoto Otsuka
清人 大塚
Shoji Akiyama
昭次 秋山
Toshihiro Hamada
敏裕 浜田
Eiji Tanaka
栄治 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP61244719A priority Critical patent/JP2502986B2/en
Publication of JPS63100009A publication Critical patent/JPS63100009A/en
Application granted granted Critical
Publication of JP2502986B2 publication Critical patent/JP2502986B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Fibers (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To obtain an activated carbon with high ion adsorbing and desorbing capacity and useful for an electrode of a secondary battery by allowing it to have a specified parameter of graphitical crystal structure at the diffraction peak of face (002) in an X-ray diffraction intensity curve. CONSTITUTION:A fiber such as PVA is stuck with about 10wt% dehydrating agent of the fiber amt. by impregnating with the aq. soln. of the dehydrating agent consisting of (NH4)2SO4, and (NH4)2HPO4, etc. The fiber is dehydrated and carbonized to lose 45-50wt% of the fiber while controlling the shrinkage rate of the fiber, and then is activated at <=1,000 deg.C. The X-ray diffraction intensity curve of the obtained activated carbon fiber with >=500m<2>/g specific surface area is measured and then the sheet-like activated carbon with the parameter Ip/Io of graphitic crystal structure at the diffraction peak of the face (002) of >=0.3 is obtained. [wherein Ip is the largest intensity in the range over the tangent line drawn at the skirts of the diffraction peak of the face (002) and Io is the residual X-ray intensity obtained by reducing the air dispersion intensity from the actually measured diffraction intensity with 2theta diffraction angle indicating Ip.].

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は非晶構造よシなる炭素材料において、電解液中
における炭素材料に対するイオンの安定的な吸着量を大
幅に増加させた炭素材料を得ることを目的とする。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is directed to a carbon material having an amorphous structure that greatly increases the amount of stable adsorption of ions to the carbon material in an electrolytic solution. The purpose is to obtain.

〔従来の技術〕[Conventional technology]

炭素は多くのイオンを取シ込めることから最近活発に研
究が行われている。特に形態が繊維状である炭素繊維は
電極としての取シ扱いが容易であることから特に活発に
研究が行われている。炭素特に炭素繊維に対するイオン
の吸着量を増加させるために大きく二つの方向から検討
が行われている。一つの方向は炭素繊維の黒鉛化度を高
めることによって層状化合物である黒鉛の層間に電気化
学的に種々のイオンを蓄えようとする方法である(時開
6O−36315)。
Carbon has been actively researched recently because it can absorb many ions. In particular, carbon fibers having a fibrous form are being actively researched because they are easy to handle as electrodes. In order to increase the amount of ions adsorbed to carbon, particularly carbon fiber, studies are being conducted from two main directions. One approach is to electrochemically store various ions between the layers of graphite, which is a layered compound, by increasing the degree of graphitization of carbon fibers (Jikou 6O-36315).

さらにもう一方の方向としては炭’RJ4に維の比表面
積を極めて大きくすることによって(100r+?/f
以上)、界面現象である電気二重層の形成に基づく蓄電
容量を増加させようとする手法である。比表面積の大き
な活性炭素繊維を用いることによシ、蓄電容量が増大し
た電気工1層キャパシタ(時開58−206116、時
開55−99714)あるいは二次電池(%開59−1
46165、時開6O−25152)、更には電気化学
的表示装置用対向極(特開昭59−143130)等様
々なものが提案されている。
Furthermore, in the other direction, by making the specific surface area of the fibers extremely large in charcoal RJ4 (100r+?/f
The above) is a method that attempts to increase the storage capacity based on the formation of an electric double layer, which is an interfacial phenomenon. By using activated carbon fiber with a large specific surface area, electrician single-layer capacitors (Jikai 58-206116, Jikai 55-99714) or secondary batteries (%A 59-1) have increased storage capacity.
46165, Jikai 6O-25152), and a counter electrode for electrochemical display devices (Japanese Patent Laid-open No. 59-143130).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

炭素材料のイオンの吸脱着能力を大幅に増加させること
はこのように工業的に非常に重要な課題であった。しか
し炭素材料に対し安定的に吸脱着可能なイオンの量は炭
素材料を構成する炭素原子あたり高々1〜4モル慢にす
ぎなかった。この場合の安定的に吸脱着可能とはイオン
が吸着(インターカレーション反応も含む)することに
よって濱 炭素I料のイオンの吸脱着機構が破壊されることなく電
荷効率において少なくとも80%以上の領域でイオンの
吸脱着が可能な事を言う。粉末とかフィルム状の炭素材
料と繊維状の炭素材料を比較した場合電解液との接触面
積が大きいためにt′R維状の形態が電極としては特に
優れている。繊維状の形態にした場合には直径約10μ
m程度のものも得ることができる。
As described above, significantly increasing the ion adsorption/desorption ability of carbon materials has been an extremely important industrial issue. However, the amount of ions that can be stably adsorbed and desorbed into the carbon material is only 1 to 4 moles per carbon atom constituting the carbon material. In this case, stable adsorption/desorption means that the ion adsorption/desorption mechanism of Hama Carbon I material is not destroyed due to ion adsorption (including intercalation reaction), and the charge efficiency is at least 80% or more. It means that adsorption and desorption of ions is possible. When comparing a powder or film carbon material with a fibrous carbon material, the t'R fibrous form is particularly excellent as an electrode because it has a large contact area with the electrolyte. When made into a fibrous form, the diameter is approximately 10μ
It is also possible to obtain one of about m.

炭素材料の中でも最も結晶構造が発達したものが黒鉛で
ある。
Among carbon materials, graphite has the most developed crystal structure.

電解液中において電気化学的な手法で黒鉛にイオンを吸
脱着(この場合はインターカレーシン反応)させた場合
には安定的に吸脱着可能なイオンの量は黒鉛の炭素原子
あたり高々1モルチであって、イオンの吸N′llを1
チ以上に上げた場合には黒鉛のイオン吸脱着機構が破壊
されるために、黒鉛の安定的なイオン吸着量は炭素原子
あたり高々1モルチであった〔デンキカガク、46、ム
8(1973)438〜441〕。
When ions are adsorbed and desorbed onto graphite in an electrolytic solution using an electrochemical method (in this case, an intercalesin reaction), the amount of ions that can be stably adsorbed and desorbed is at most 1 molti per carbon atom of graphite. Therefore, the ion adsorption N'll is 1
If the ion adsorption and desorption mechanism of graphite is destroyed when the temperature is increased to more than 1 mol, the stable ion adsorption amount of graphite was at most 1 mol per carbon atom [Denki Kagaku, 46, Mu 8 (1973) 438 ~441].

比表面積の大きな炭素特に炭素繊維(1o o gt以
上、以下活性炭素繊維と言う)の安定的なイオンの吸着
量は、例えば活性炭素繊維を二次電池の正極側に用いた
場合には、活性炭素繊維の炭素原子あたシ高々2〜4モ
ルチであった〔シンセティツクメタル(5ynthet
ic Metalg )、10(1985)229〜2
34、第26回電池討論会(1985)!s演要旨集5
7(IA−15))0 活性炭素fa維の充放電機構は電気二重層に基づくとさ
れているが高電位域で充電される部分についてはインタ
ーカレーション反応に基づくものであることが指摘され
ている。
The amount of stable ion adsorption of carbon, especially carbon fiber (more than 1 o gt, hereinafter referred to as activated carbon fiber), which has a large specific surface area is, for example, when activated carbon fiber is used on the positive electrode side of a secondary battery, The carbon atom density of carbon fiber was at most 2 to 4 mol[synthetic metal (5ynthet
ic Metalg), 10 (1985) 229-2
34, 26th Battery Debate (1985)! s performance abstract collection 5
7 (IA-15)) 0 The charging and discharging mechanism of activated carbon fa fibers is said to be based on an electric double layer, but it has been pointed out that the part that is charged in a high potential region is based on an intercalation reaction. ing.

而して本発明の目的は高いレベルで安定的にイオンを吸
脱着可能な炭素材料を提供することである0 〔問題点を解決するための手段〕 本発明者らは上述の目的に鑑みて種々検討を行ったとこ
ろ非晶構造よりなる炭素材料はイオンの安定的な吸脱着
能力が極めて高いことを見い出し、上述の問題点を解決
できることを認めた。
Therefore, an object of the present invention is to provide a carbon material capable of stably adsorbing and desorbing ions at a high level. After conducting various studies, it was discovered that carbon materials with an amorphous structure have an extremely high ability to stably adsorb and desorb ions, and it was recognized that the above-mentioned problems could be solved.

炭素繊維も含め炭素材料の微視的構造の研究にはX線回
折法が主な実験手段であって黒鉛やカーボンブラックだ
けではなく非晶質炭素(無定形炭素)についても詳細に
検討が行われている〔炭素材料(材料科学シリーズ3、
共立出版)、第4章〕0黒鉛結晶の(002)面に相当
する炭素材料のX線回折ピークの高さは芳香族縮合環に
起因する結晶化度を示し、牛価幅は結晶子の大きさおよ
び均一性を示している。(片肉1日本化学会誌、 19
75゜(9)、1551〜1554頁)。
X-ray diffraction is the main experimental method used to study the microscopic structure of carbon materials, including carbon fibers, and detailed studies have been carried out not only on graphite and carbon black but also on amorphous carbon. [Carbon materials (Materials science series 3,
Kyoritsu Shuppan), Chapter 4] The height of the X-ray diffraction peak of a carbon material corresponding to the (002) plane of a graphite crystal indicates the degree of crystallinity caused by aromatic condensed rings, and the cattle price width is the Showing size and uniformity. (Katsuniku 1 Journal of the Chemical Society of Japan, 19
75°(9), pp. 1551-1554).

実際のX線回折強度曲線(CuKα)から(002)面
の回折を用いた炭素の構造解析法について述べる0 第1図はポリアクリロニトリル系活性炭素繊維(比表面
積的1000i/r)のX線回折強度曲線である。(0
02)面のX線回折ピークの両すそのに接線jを引き実
測曲線と接線との差をベースライン上に書き直し曲線工
を得た。曲線工の最大値IpおよびIPを示す回折角2
θさらにその回折角2θにおける実測曲線の強度から空
気の散乱強度を差し引き強度Ioを求めた。空気の散乱
強度は試料のない状態で同一条件で走査して得られたも
のである。ここでIpは黒鉛的な結晶性構造に起因する
X線回折ピーク強度であシ、  (io−Ip)F′i
非品性構造に起因するX線散乱強度である。
A method for analyzing the structure of carbon using (002) plane diffraction from an actual X-ray diffraction intensity curve (CuKα) will be described. Figure 1 shows the X-ray diffraction of polyacrylonitrile activated carbon fiber (specific surface area 1000i/r). This is an intensity curve. (0
02) A tangent line j was drawn to both sides of the X-ray diffraction peak of the plane, and the difference between the measured curve and the tangent line was rewritten on the baseline to obtain a curved line. Diffraction angle 2 showing the maximum value Ip and IP of the curved line
Further, the intensity Io was determined by subtracting the air scattering intensity from the intensity of the measured curve at the diffraction angle 2θ. The air scattering intensity was obtained by scanning under the same conditions without a sample. Here, Ip is the X-ray diffraction peak intensity due to the graphitic crystalline structure, (io-Ip)F'i
This is the X-ray scattering intensity due to the defective structure.

一般に回折ピーク強度は結晶子の結晶サイズ、結晶化度
の大きい程大きくなり結晶の発達の程度を示す。結晶サ
イズはピークのシャープさKより定量(X −ray 
Diff、Procedures、 P537 (19
54))され多くの活性炭あるいは活性炭素繊維の場合
、(002)面の垂直方向の微結晶子のサイズは10〜
16人であった。結晶化度は一般に全結晶散乱強度の全
散乱強度に対する割合であって、X線照射体積中の結晶
の体積分率を意味する〔繊維学会誌、31巻(1975
)、203〜214頁〕。しかし炭素材料の場合、結晶
部分と非晶部分とは構造的に明確にわかれているもので
はなく (J、 Appl。
Generally, the diffraction peak intensity increases as the crystal size and crystallinity of the crystallite increases, indicating the degree of crystal development. The crystal size is determined by the peak sharpness K (X-ray
Diff, Procedures, P537 (19
54)) In the case of many activated carbons or activated carbon fibers, the size of microcrystallite in the direction perpendicular to the (002) plane is 10~
There were 16 people. Crystallinity is generally the ratio of the total crystal scattering intensity to the total scattering intensity, and refers to the volume fraction of crystals in the X-ray irradiation volume [Journal of the Japan Institute of Textile Technology, Vol. 31 (1975)
), pp. 203-214]. However, in the case of carbon materials, the crystalline portion and the amorphous portion are not clearly separated structurally (J, Appl.

PhY、13(1942)P364〜P371、炭素化
工業の基礎(オーム社)第1章、炭素材料(共立出版)
第4章〕、通常の結晶性高分子の場合のように単純に結
晶部分と非晶部分から成る二相構造として内部構造をと
らえるわけにはいかない。活性炭あるいは活性炭素繊維
の場合、非晶の海の中に極めて完全度の低い微結晶子が
分散し〔活性炭工業(共立出版)第2章〕、それらの集
合組織の黒鉛的結晶性領域からの干渉性散乱がIpであ
シ、非晶性領域からの非干渉性散乱が(Io −Ip)
である。
PhY, 13 (1942) P364-P371, Basics of carbonization industry (Ohmsha) Chapter 1, Carbon materials (Kyoritsu Shuppan)
Chapter 4], the internal structure cannot simply be understood as a two-phase structure consisting of a crystalline part and an amorphous part, as is the case with ordinary crystalline polymers. In the case of activated carbon or activated carbon fiber, microcrystallites with extremely low degree of perfection are dispersed in an amorphous sea [Chapter 2 of Activated Carbon Industry (Kyoritsu Publishing)], and the crystallites are separated from the graphitic crystalline region of their texture. The coherent scattering is Ip, and the incoherent scattering from the amorphous region is (Io - Ip)
It is.

本発明で用いられるパラメーターであるIp/I。Ip/I is a parameter used in the present invention.

は黒鉛的結晶性構造の発達度合を示すものである。indicates the degree of development of graphitic crystalline structure.

しかし活性炭の場合の結晶性構造の発達度合と通常の高
分子材料の場合のいわゆる結晶化度とは大きく相違する
のは前述したとうシであるが、活性炭の場合結晶部分と
非晶部分とは構造的に明確にわかれてはいない。充分に
発達した完全に近い黒鉛結晶ではIP/IOは0.96
以上である。また活性炭素繊維も含めて二次電池材料と
して使用されている従来公知の活性炭ではいずれのもの
もIp/I。
However, as mentioned above, there is a big difference between the degree of development of the crystalline structure in activated carbon and the so-called degree of crystallinity in the case of ordinary polymer materials. It is not clearly defined structurally. For a fully developed, nearly perfect graphite crystal, the IP/IO is 0.96.
That's all. In addition, all conventionally known activated carbons used as secondary battery materials, including activated carbon fibers, have Ip/I.

が0.35よシ大であるが、本発明の;大t#を浦章噂
#キ活性炭特に活性炭素繊維はIp/Ioが0.3以下
であって黒鉛的結晶性構造が極めて未発達であると解釈
される。このような活性炭特に活性炭素11Mを我々は
主として非品性構造よシなる活性炭あるいは活性炭素繊
維と称し、Ip/Ioを黒鉛的結晶性構造パラメーター
と呼ぶ。また本発明の活性炭特に活性炭素繊維は基本的
にはフェニル基骨格よシなるものであシさらに実質的に
赤外吸収スペクトルによシCHの吸収が観察されない。
is larger than 0.35, but the large T# of the present invention is rumored to be Uraaki#ki activated carbon, especially activated carbon fiber, has an Ip/Io of 0.3 or less and a graphite-like crystalline structure is extremely underdeveloped. It is interpreted that We mainly refer to such activated carbon, especially activated carbon 11M, as activated carbon or activated carbon fiber with a non-structural structure, and Ip/Io as a graphite-like crystalline structure parameter. Furthermore, the activated carbon, particularly the activated carbon fiber, of the present invention basically consists of a phenyl group skeleton, and furthermore, substantially no CH absorption is observed in the infrared absorption spectrum.

本発明の活性炭は炭素に対する水素の比が通常5モルチ
以下、好ましくは3モルチ以下、特に好ましくは2モル
チ以下のものである。
The activated carbon of the present invention has a hydrogen to carbon ratio of usually 5 molti or less, preferably 3 molti or less, particularly preferably 2 molti or less.

Ip/Ioのパラメーターと同時に(002)面のX!
!(CuKα)の回折角2θも炭素の構造を示す重要な
パラメーターである。本発明による炭素材料はIp/I
oが0.3以下であると同時に20が24°以下である
。回折角2θが24°以下ということはブラッグの式2
 dsinθ=λから算出される(002)面の面間隔
dが3.708Å以上であることを意味する。
At the same time as the Ip/Io parameter, the X of the (002) plane!
! The diffraction angle 2θ of (CuKα) is also an important parameter indicating the structure of carbon. The carbon material according to the present invention has Ip/I
o is 0.3 or less, and 20 is 24° or less. The fact that the diffraction angle 2θ is less than 24° means that Bragg's equation 2
This means that the interplanar spacing d of the (002) plane calculated from dsinθ=λ is 3.708 Å or more.

完全黒鉛結晶がd=3.3543人であることを考慮す
れば〔化学増刊87(1981)P127〜136〕、
本発明の炭素材料は黒鉛構造よシ大きくかけはなれてい
ると言える。しかし2θはIp/Ioが零に近づくにし
たがい測定しにくくなl) Ip/Ioがほとんど零の
場合には実際上測定不可能である。
Considering that the perfect graphite crystal has d=3.3543 people [Kagaku Special Edition 87 (1981) P127-136],
It can be said that the carbon material of the present invention has a structure far different from that of graphite. However, as Ip/Io approaches zero, 2θ becomes difficult to measure.l) When Ip/Io is almost zero, it is practically impossible to measure.

第2図に本発明の代表的活性炭素繊維の(002)面に
おけるX線回折強度曲線を示すがそのIp/I。
FIG. 2 shows an X-ray diffraction intensity curve in the (002) plane of a typical activated carbon fiber of the present invention, and its Ip/I.

11t0.07であって結晶的な構造に起因する回折ピ
ークはほとんど存在しておらず、その構造は著しく非品
性であることがわかる。
11t0.07, there are almost no diffraction peaks due to the crystalline structure, and it can be seen that the structure is extremely inferior.

本発明者らは電極用に適した炭素材料について鋭意検討
したところ、非品性の炭素材料が電極性能の点で優れて
いることを見い出した。すなわち黒鉛的結晶パラメータ
ー(Ip/Io )が小さくなるにしたがって電極性能
が大幅に向上することを見い出した。
The present inventors conducted extensive studies on carbon materials suitable for electrodes and found that non-quality carbon materials are superior in terms of electrode performance. That is, it has been found that as the graphitic crystal parameter (Ip/Io) becomes smaller, the electrode performance is significantly improved.

Ip/Ioが0.8以下の場□合には活性炭素繊維の非
品性構造が増すにつれて比表面積が増加する。ポリアク
リロニトリルを出発原料とした活性炭素繊維は比表面積
が約100On?/rにおいてIp/Ioが0.66で
あった。またレーヨンを出発原料とした活性炭素繊維は
比表面積が約1500rr!/fの場合にIp/Ioが
0.54であった。フェノールを原料とした活性炭素繊
維では比表面積を2300rt/lまで上げた場合でも
Ip/Ioは0.37であった。また粉末状の炭素材料
のIp/Ioとしては、石油コークスでは0.7であり
、カーボンブラックで0.6であシ、木炭では0.5で
あった。
When Ip/Io is 0.8 or less, the specific surface area increases as the rough structure of the activated carbon fiber increases. Activated carbon fiber made from polyacrylonitrile as a starting material has a specific surface area of about 100 On? /r, Ip/Io was 0.66. Additionally, activated carbon fiber made from rayon has a specific surface area of approximately 1500rr! /f, Ip/Io was 0.54. In activated carbon fibers made from phenol, Ip/Io was 0.37 even when the specific surface area was increased to 2300 rt/l. Further, Ip/Io of the powdered carbon material was 0.7 for petroleum coke, 0.6 for carbon black, and 0.5 for charcoal.

本発明に用いられる活性炭の原料としては天然高分子、
ピッチ、有機合成高分子が挙げられる。
Raw materials for activated carbon used in the present invention include natural polymers,
Examples include pitch and organic synthetic polymers.

該有機合成高分子にはポリビニルアルコール、フェノー
ル樹脂、ポリアクリロニトリルの様な合成高分子の他に
セルロース等の様な半合成高分子を包含する。これらの
中でIp/Io f:9.3以下とするためには、ポリ
ビニルアルコールを用いるのが好ましい。ポリビニルア
ルコールとしては、その製造方法は限定されない。また
少量の変性剤によシ処理されたものであってもよい。
The organic synthetic polymers include semi-synthetic polymers such as cellulose in addition to synthetic polymers such as polyvinyl alcohol, phenol resin, and polyacrylonitrile. Among these, polyvinyl alcohol is preferably used in order to achieve Ip/Iof: 9.3 or less. The manufacturing method of polyvinyl alcohol is not limited. It may also be treated with a small amount of a modifier.

本発明において用いられる活性炭の原料としてはその原
料は合成有機高分子またはピッチよシなるものが挙げら
れる。該合成有機高分子にはポリビニルアルコール、フ
ェノール樹脂、ポリアクリロニトリル等のような純合成
高分子の他繊維素置導体、等のような半合成高分子を包
含する。Ip/Ioが0.3以下特に好ましくは0.2
以下にするためは、その輿造方法は限定されない。まf
c、これらの繊維は、その物理的性質を向上する目的等
で少量の変性剤によシ変性してあってもよい。また耐水
性の向上環の目的で架橋されたものでもよい0以下、ポ
リビニルアルコール系繊維を例にとり。
Examples of raw materials for activated carbon used in the present invention include synthetic organic polymers and pitch. The synthetic organic polymers include pure synthetic polymers such as polyvinyl alcohol, phenolic resin, polyacrylonitrile, etc., as well as semi-synthetic polymers such as fiber-based conductors. Ip/Io is 0.3 or less, particularly preferably 0.2
To achieve the following, the method of constructing the palanquin is not limited. Maf
c. These fibers may be modified with a small amount of a modifier for the purpose of improving their physical properties. In addition, polyvinyl alcohol fibers may be cross-linked for the purpose of improving water resistance.

上記のIp/Ioを満足する活性炭素繊維の製造法の一
例について述べるが、本発明は、その製造方法に限定さ
れない。
An example of a method for manufacturing an activated carbon fiber that satisfies the above Ip/Io will be described, but the present invention is not limited to this method.

一般に活性炭素繊維の製造は、脱水処理工程、炭化反応
工程、賦活工程、水洗、乾燥工程よりなる。Ip/Io
を小さくするためには、脱水剤の付着方法の選定、脱水
条件の選定並びに賦活条件の選定は重要である。
Generally, the production of activated carbon fibers consists of a dehydration process, a carbonization reaction process, an activation process, a washing process, and a drying process. Ip/Io
In order to reduce this, it is important to select the method of applying the dehydrating agent, the dehydrating conditions, and the activation conditions.

脱水剤として硫酸アンモニウム及びリン酸アンモニウム
の等重量を約10%の濃度で含浸方法によシ付着し、繊
維の収縮率を制御しながら繊維の重量減を45〜509
6程度になるように脱水炭化させ、更に賦活条件として
比較的低温で1例えば1000℃よシ低い温度で賦活を
行えばよ論。この際賦活時間をよシ長く取ることによシ
、活性炭素繊維の収率は低下するものの目的とするIp
/Ioの小さい活性炭素繊維を得ることができる。
Equal weights of ammonium sulfate and ammonium phosphate as dehydrating agents are applied at a concentration of about 10% by an impregnation method, and the weight loss of the fibers is reduced by 45 to 509% while controlling the shrinkage rate of the fibers.
It would be a good idea to dehydrate and carbonize it to a temperature of about 6°C, and then activate it at a relatively low temperature, for example, 1000°C. At this time, by taking a longer activation time, the yield of activated carbon fibers decreases, but the desired Ip
Activated carbon fibers with a small /Io can be obtained.

本発明において用いられる“活性”とはその比表面積が
大きいことを意味する。一般にBET法による比表面積
が100m’/f以上である。該比表面積は大きい程電
解質との接触面積が大きくなるため、電極性能は向上す
る。好ましい比表面積は。
"Activity" as used in the present invention means that the specific surface area is large. Generally, the specific surface area measured by the BET method is 100 m'/f or more. The larger the specific surface area, the larger the contact area with the electrolyte, which improves electrode performance. What is the preferred specific surface area?

500rl/を以上、更に好ましくは1000ni’、
#以上。
500rl/or more, more preferably 1000ni',
#that's all.

特VCFi2000d/f以上である。Special VCFi2000d/f or higher.

該活性炭素繊維はそのまま、あるいは公知の任意の処理
1例えばアルミニウム、チタンなどのラスや蒸着膜によ
る集電体を付与して電池等の電極として用いられる。活
性炭素繊維の形状がフェルト状、布状、紙状等いずれの
形状であってもよいことは従来と同じであシ、シート状
であることが最もよい。
The activated carbon fibers may be used as electrodes for batteries or the like as they are, or after being subjected to any known treatment such as a lath or vapor-deposited film of aluminum or titanium, to provide a current collector. As in the past, the activated carbon fibers may be in any shape such as felt, cloth, paper, etc., but sheet-like is best.

以上、本発明を活性炭素繊維について説明したが1本発
明の活性炭は粉末状、シート状、フィルム状等任意の形
状であってもよい。
Although the present invention has been described above with respect to activated carbon fibers, the activated carbon of the present invention may be in any shape such as powder, sheet, or film.

〔発明の効果〕〔Effect of the invention〕

本発明は主として非晶構造よりなる活性炭を二次電池の
電極として用いるとその素子は、小型・軽量・溶量化が
容易となり、エネルギー密度が高いために電力貯蔵用の
目的を中心として工業的に非常に重要である。さらに溶
剤回収用、燃料電池繊維を用いて、負極がリチウム金属
、正極が炭素材料、電解質が有機非水溶媒であるリチウ
ム二次電池を作り、その性能を調べたところ、その二次
電池のサイクル安定性および電荷効率は、イオンの吸脱
着率が炭素原子あ九)1モルチの場合は97〜100チ
という極めて高い効率において少なくとも200回以上
のサイクル充放電が可能である。さらにイオンの吸脱N
率を6モル%まで上げた場合でも95〜99チの効率に
おいて少なくとも200回以上のサイクル充放電が可能
である。
The present invention proposes that when activated carbon, which mainly has an amorphous structure, is used as an electrode for a secondary battery, the device can be made small, lightweight, and easy to melt, and has a high energy density, so it can be used industrially mainly for power storage purposes. Very important. Furthermore, using fuel cell fibers for solvent recovery, we created a lithium secondary battery in which the negative electrode is lithium metal, the positive electrode is a carbon material, and the electrolyte is an organic non-aqueous solvent, and its performance was investigated. In terms of stability and charge efficiency, when the rate of adsorption and desorption of ions is 97 to 100 mol of carbon atoms, it is possible to charge and discharge at least 200 cycles at an extremely high efficiency. Furthermore, ion adsorption and desorption N
Even when the ratio is increased to 6 mol %, at least 200 cycles of charging and discharging are possible at an efficiency of 95 to 99 cm.

さらにイオンの吸脱着率を12モル%まで上げた場合で
も電荷効2$90〜80俤において少なくとも100回
以上のサイクル充放電が可能である。
Furthermore, even when the ion adsorption/desorption rate is increased to 12 mol %, at least 100 cycles of charging and discharging are possible at a charge effect of 2 $90 to 80 yen.

このように本発明の活性炭を用いた二次電池の大きな特
徴は高いイオンの吸脱着率における高い電荷効率とサイ
クル安定性が良好なことである。さらにこの二次電池は
出力密度が10〜20kw/′に9と鉛二次電池(1,
2kW/Ay )の約10〜20倍と極めて大きいこと
も大きな特徴である。
As described above, the major features of the secondary battery using the activated carbon of the present invention are high charge efficiency and good cycle stability at a high ion adsorption/desorption rate. Furthermore, this secondary battery has an output density of 10 to 20kw/'9 and a lead secondary battery (1,
Another major feature is that it is extremely large, approximately 10 to 20 times as large as 2kW/Ay).

〔実施例〕〔Example〕

以下実施例により本発明をより具体的に説明する0 実施例1 〔ポリビニルアルコール系繊維を出発原料とした、主と
して非品性構造よシなる活性炭素繊維の合成〕 出発原料として平均重合度1700のPVA(ポリビニ
ルアルコール)水溶液より湿式紡糸法により紡糸したP
VA繊維(デニール1800d、フィラメント数100
Of、強度10.5f/d、伸度7%)から得た織布を
用いた。次に脱水・炭化剤として(NH4)2SO4と
(NHす2HPO4の各5ofを10002の水に溶解
し、この水溶液を60°に加温しその中に織布を5分間
浸漬し、その後マングルで絞液し、105℃で3分間乾
燥させた。脱水剤の付着率は重量法で10%であった。
The present invention will be described in more detail with reference to Examples below.0 Example 1 [Synthesis of activated carbon fiber mainly having a non-structural structure using polyvinyl alcohol fiber as a starting material] P spun from PVA (polyvinyl alcohol) aqueous solution by wet spinning method
VA fiber (denier 1800d, number of filaments 100
A woven fabric obtained from a fabric with a strength of 10.5 f/d and an elongation of 7% was used. Next, dissolve 5 of each of (NH4)2SO4 and (NH2HPO4) as dehydration and carbonizing agents in 10002 water, heat this aqueous solution to 60°, soak the woven fabric in it for 5 minutes, and then use a mangle. The liquid was squeezed out and dried for 3 minutes at 105° C. The adhesion rate of the dehydrating agent was 10% by weight.

この脱水剤の付着した織布を210℃で30分間加熱す
る際に織布の1m1ll!当シ50?の低張力をかける
ことにより繊維の収縮率を制御し40%とした。さらに
炭化条件である330℃XIO分間とその後400℃×
20分間の2段階で加熱する際にも織布の1倒幅当シ3
09の低張力をかけて繊維の収縮率を出発PVA繊維か
ら見て60!1とした。なおその時の重量減少率Vi5
5%であった。以上の様に脱水・炭化を行った黒色の炭
素質繊維よシなる織布を燃焼ガス中で950℃1時間3
0分賦活を行うことにより活性炭素線維シートを得た。
When heating the woven fabric coated with this dehydrating agent at 210°C for 30 minutes, 1 ml of woven fabric! Is it 50? The shrinkage rate of the fiber was controlled to 40% by applying a low tension of . Furthermore, the carbonization condition is 330℃XIO minutes and then 400℃×
Even when heating in two stages for 20 minutes, the width of the woven fabric is 1.
A low tension of 0.09 was applied to give a fiber shrinkage ratio of 60!1 compared to the starting PVA fiber. Furthermore, the weight reduction rate Vi5 at that time
It was 5%. A woven fabric made of black carbonaceous fibers that has been dehydrated and carbonized as described above is placed in a combustion gas at 950°C for 1 hour.
An activated carbon fiber sheet was obtained by performing activation for 0 minutes.

N2ガスによるBET法の比表面積は2300d/9で
あった。
The specific surface area of the BET method using N2 gas was 2300 d/9.

この活性炭素繊維のX線回折強度曲線を理学電機(株)
製回転対陰極型X線回折装置ItType RAD −
rAを用いて測定した。測定条件は40kV100mA
、 CuKa線(λ= 1.5418人)、スリット幅
1/2°、0.15so++走査速g 1’/min、
  7 ルスケール8o。
The X-ray diffraction intensity curve of this activated carbon fiber was obtained from Rigaku Denki Co., Ltd.
ItType RAD-
It was measured using rA. Measurement conditions are 40kV100mA
, CuKa line (λ = 1.5418 people), slit width 1/2°, 0.15so++ scanning speed g 1'/min,
7 le scale 8o.

cpaにおいて透過法で測定した。このようにして求め
たグラフを第2図に示した。2θが25°付近に存在す
る筈の(002)面に基づくピークがほとんど消失して
おシ、主として非品性構造よシなる炭素繊維が生成して
いることがわかった( Ip/Io=0.07)。固体
高分解能NMRにより内部のさらに微細な構造の検討を
行った。(株)日本電子MGX−270を使用しMAS
  GATE法によシ測定し念。データーポイントは8
に、サンプリングポイン)1.5に、スキャン数100
00回、の条件で測定を行ったこの結果を第3図に示し
た。140PPM付近にピークを有する曲線が得られた
事からフェニル基骨格を中心とする構造である事が確認
された。元素分析より求めた炭素原子に対する水素原子
の存在比Fi2モルチ以下であった。表面反射赤外の結
果を第4図に示したがC−Hの吸収はまったく観察され
ずほぼ完全て炭素化している事が確認された。まfc賦
活条件を変化させることによシIp/Ioが0.42〜
0.07まで数種の試料を合成した(表1)。Ip/l
oを小さくするためには。
Measured by transmission method at cpa. The graph obtained in this manner is shown in FIG. It was found that the peak based on the (002) plane, which should exist around 2θ of 25°, almost disappeared, and carbon fibers with a non-standard structure were mainly produced (Ip/Io=0 .07). The internal finer structure was examined using solid-state high-resolution NMR. MAS using JEOL Ltd. MGX-270
Be sure to measure using the GATE method. Data points are 8
, sampling point) 1.5, number of scans 100
The results of measurements conducted under the conditions of 00 times are shown in FIG. Since a curve having a peak around 140 PPM was obtained, it was confirmed that the structure was centered on a phenyl group skeleton. The abundance ratio of hydrogen atoms to carbon atoms determined by elemental analysis was less than Fi2 molti. The results of surface reflection infrared are shown in Figure 4, and no C-H absorption was observed, confirming that almost complete carbonization occurred. By changing the fc activation conditions, Ip/Io can be increased from 0.42 to
Several samples were synthesized up to 0.07 (Table 1). Ip/l
In order to reduce o.

賦活時間を長霧剪才することが必要だった。It was necessary to shorten the activation time.

比較例1 [PVA繊維を原料とした活性炭素繊維の合成(急速賦
活法によるもの)〕 実施例1で用いたものと同一の原料を用い、さらに同様
な条件で脱水・炭化を行い黒色の炭素質繊維よりなる織
布を得た。これを燃焼ガス中で1100℃、30分賦活
を行ったところN2を用いたBET法による比表面が2
35On?/rの活性炭素繊維が得られた。該活性炭素
繊維のIp/Ioは0.38であシ2θは24.5°で
あった。賦活ガス、賦活温度および時間を変化させて数
也の試料を得た。賦活条件および得られた試料のIp/
Ioおよび2θを表1に示した。
Comparative Example 1 [Synthesis of activated carbon fiber using PVA fiber as raw material (by rapid activation method)] Using the same raw material as that used in Example 1, dehydration and carbonization were performed under the same conditions to produce black carbon. A woven fabric made of quality fibers was obtained. When this was activated in combustion gas at 1100℃ for 30 minutes, the specific surface by the BET method using N2 was 2.
35 On? /r activated carbon fibers were obtained. The activated carbon fiber had an Ip/Io of 0.38 and a 2θ of 24.5°. Several samples were obtained by varying the activation gas, activation temperature, and time. Activation conditions and Ip/ of the obtained sample
Io and 2θ are shown in Table 1.

以下余白 比較例2 〔フェノール系繊維、アクリル系繊維、レーヨン系繊維
を原料とした活性炭素繊維の合成〕繊維化したフェノー
ル樹脂からなる織物を作りこれを炭素質とした後にスチ
ーム中1000℃の条件で1時間賦活を行い比表面積が
2300♂/gの活性炭素繊維を得た。該活性炭素繊維
のip/ioは0.37.2θは23.7℃であった。
Comparative Example 2 [Synthesis of activated carbon fibers using phenolic fibers, acrylic fibers, and rayon fibers as raw materials] Fabrics made of fibrous phenol resin were made into carbonaceous material and then heated at 1000°C in steam. Activation was carried out for 1 hour to obtain activated carbon fibers with a specific surface area of 2300♂/g. The activated carbon fiber had an ip/io of 0.37.2θ of 23.7°C.

またフェノール系樹脂を原料としたものでは市販品とし
て(株)クラレケミカル製CH−2sがあるが、これの
比表面積も2300r+?/gであってlp/loは0
.37であった。
Also, a commercially available product made from phenolic resin is CH-2s manufactured by Kuraray Chemical Co., Ltd., but its specific surface area is 2300r+? /g and lp/lo is 0
.. It was 37.

またさらに微細な構造を検討するために固体高分解能N
MRおよび表面反射赤外の測定も行った(第5図および
第6図)。この比較例のフェノール系活性炭素繊維は1
p/10が大きい以外はポリビニルアルコール系のもの
との構造的な違いはなかった。
In addition, in order to examine even finer structures, solid-state high resolution N
MR and surface reflection infrared measurements were also performed (Figures 5 and 6). The phenolic activated carbon fiber of this comparative example was 1
There was no structural difference from the polyvinyl alcohol type except that p/10 was large.

レーヨン繊維よシなる紡績糸からの織布を作りこの織布
をリン酸アンモニウム((NH4)2PO4)水溶液に
浸し、しぼり後乾燥させリン酸アンモニウムを10チ含
浸させた後270℃のN2ガス中で30分間加熱し、つ
づいて270℃から850℃まで90分間を要して昇温
した。さらに水蒸気を40チ含むN2ガス中で1000
℃で60分間賦活した。
A woven fabric is made from spun yarn such as rayon fiber, and this woven fabric is soaked in an ammonium phosphate ((NH4)2PO4) aqueous solution, squeezed, dried, impregnated with 10 grams of ammonium phosphate, and then placed in N2 gas at 270°C. The mixture was heated for 30 minutes, and then the temperature was raised from 270°C to 850°C over a period of 90 minutes. 1000 in N2 gas containing 40 ml of water vapor.
Activation was performed at ℃ for 60 minutes.

これより比表面積が1650rI!/gでII)/io
が0.54のものが得られた。収率を15%になるまで
賦活を進めた場合においても得られた活性炭素繊維のl
p/10は0.54以下には下がらなかった。この結果
通常の手法を用いた場合にはレーヨン系繊維ではIp/
ioが0.5以下のものは得られにくいことが確認され
た。
From this, the specific surface area is 1650 rI! /g II) /io
A product with a value of 0.54 was obtained. l of activated carbon fiber obtained even when activation was continued until the yield reached 15%.
p/10 did not fall below 0.54. As a result, when using the usual method, Ip/
It was confirmed that those with io of 0.5 or less are difficult to obtain.

アクリル繊維の紡績糸からの織物にリン酸アンモニウム
((NH4) 2804 )を10チ付着させ270℃
の空気中で2時間、自由収縮を与えながら十分に酸化さ
せた後に1000℃で1時間賦活することにより比表面
積1080rI!/gでIp/loが0.66の活性炭
素繊維が得られた。更に賦活収率を1591iになるま
で賦活を進めても1m)/10が0.5以下のものは極
めて得られにくかった。また上記の試料の賦活条件と得
られたものの拾遺との関係を表2に示した0 表2 賦活条件およびII)/ 10% 20 、比表
面積実施例2 〔フェノール系繊維を出発原料とした主として非晶性構
造よりなる活性炭素繊維の合成〕繊維化したフェノール
樹脂からなる織物を作りこれを炭素質とした後にスチー
ム中1000℃の条件で1時間賦活を行った。得られた
活性炭素繊維の比表面積は2300j/gであってip
/ioが0.37の活性炭素繊維を得た。この時の収率
は14%であった。さらにこれをスチーム900℃の条
件で1時間50分賦活を行った。得られた活性炭素繊維
のip/ioは0.20であった。この時の収率は31
であった。
Ten units of ammonium phosphate ((NH4) 2804) were attached to a fabric made from spun yarn of acrylic fibers and heated at 270°C.
The specific surface area was 1080 rI! after being sufficiently oxidized in the air for 2 hours with free shrinkage and then activated at 1000°C for 1 hour! /g and an activated carbon fiber having an Ip/lo of 0.66 was obtained. Furthermore, even if activation was continued until the activation yield reached 1591i, it was extremely difficult to obtain a product with 1m)/10 of 0.5 or less. In addition, Table 2 shows the relationship between the activation conditions of the above samples and the findings of the samples obtained. Synthesis of activated carbon fiber with amorphous structure] A fabric made of fibrous phenol resin was made into a carbonaceous material, and then activated in steam at 1000° C. for 1 hour. The specific surface area of the obtained activated carbon fiber was 2300j/g and ip
Activated carbon fibers with /io of 0.37 were obtained. The yield at this time was 14%. Further, this was activated with steam at 900° C. for 1 hour and 50 minutes. The obtained activated carbon fiber had an ip/io of 0.20. The yield at this time was 31
Met.

実施例3 〔主として非品性構造よりなる活性炭粉末の作製〕 実施例1(合成番号1)で得られた主として非品性構造
よシなる活性炭素繊維をボールミルで24時間粉砕し主
として非品性構造よりなる粉末状活性炭を得た。粒度分
布は350メツシユ下が99.6チであった。
Example 3 [Preparation of activated carbon powder mainly having a non-grade structure] The activated carbon fibers having a mainly non-grade structure obtained in Example 1 (synthesis number 1) were ground in a ball mill for 24 hours to obtain a powder with a mainly non-grade structure. A powdered activated carbon consisting of a structure was obtained. The particle size distribution was 99.6 inches below 350 mesh.

使用例1 〔正極に主として非品性構造よりなる活性炭素繊維を用
い、負極に金属リチウムを用いた二次電池〕 実施例1で得られたポリビニルアルコール系活性炭素繊
維シー) (lp/Io=0.07.2,300rrI
/g)を正極に用い、負極側に金属リチウムを用いた二
次電池をアルゴン雰囲気下で作製した。活性炭素繊維と
金稿リチウムは厚さ0.5 mmのガラス繊維フィルタ
を介して両極に設置された。電解液にはプロピレンカー
ボネートに過塩素酸リチウムを1モル/lの濃度で溶解
させたものを用いた。集電用の電極として正負極とも白
金メッシニを用いた。用いた活性炭素繊維シートの大き
さは1 cm X 1 cmであってi量は約6119
であった。
Usage Example 1 [Secondary battery using activated carbon fiber mainly having a non-standard structure as the positive electrode and using metallic lithium as the negative electrode] Polyvinyl alcohol-based activated carbon fiber sheet obtained in Example 1) (lp/Io= 0.07.2,300rrI
/g) as the positive electrode and metallic lithium as the negative electrode was fabricated under an argon atmosphere. Activated carbon fiber and gold lithium were placed on both poles through a glass fiber filter with a thickness of 0.5 mm. The electrolytic solution used was one in which lithium perchlorate was dissolved in propylene carbonate at a concentration of 1 mol/l. Platinum Messini was used as the current collecting electrode for both the positive and negative electrodes. The size of the activated carbon fiber sheet used was 1 cm x 1 cm, and the i amount was approximately 6119.
Met.

この二次電池の定電流充放電特性を測定した。The constant current charging and discharging characteristics of this secondary battery were measured.

二次電池セル組み立て直後のVoc (開放端電圧)は
3.0■であった。電流密度を活性炭素繊維に対し0.
0677 A/gとして2時間充電を行った後(活性炭
素繊維がすべて炭素原子からなると仮定すると、2時間
充電あるいは放電を行うことにより炭素原子に対し6モ
ルチに相当するイオンの吸脱着が発生する)、セル電圧
2vまで放電を行った。
Voc (open circuit voltage) immediately after the secondary battery cell was assembled was 3.0 . The current density was set to 0.0 for activated carbon fiber.
After charging for 2 hours at 0677 A/g (assuming that the activated carbon fibers are made entirely of carbon atoms, by charging or discharging for 2 hours, adsorption and desorption of ions equivalent to 6 moles per carbon atom will occur) ) and discharged to a cell voltage of 2V.

繰り返し充放′w13回目から充放電曲線が安定した。The charging and discharging curve became stable from the 13th time of repeated charging and discharging.

第7図に3回目の充放電曲線を示した。また電荷効率〔
セル電圧が2vtでの範囲で取り出せる電荷の割合:(
放電時においてセル電圧が2vまで低下する時間)+(
充電時間)〕と繰り返し回数の関係を第8図に示した。
FIG. 7 shows the third charge/discharge curve. Also, charge efficiency [
Percentage of charge that can be extracted within the range of cell voltage 2vt: (
Time for cell voltage to drop to 2V during discharge) + (
The relationship between the charging time) and the number of repetitions is shown in FIG.

また充放電の梯り返しは20()同程度まで行い、それ
以上充放電可能なことも確認した。
We also confirmed that charging and discharging could be repeated up to about 20 (), and that it was possible to charge and discharge for more than that.

実施例1及び比較例1で得られた他の試料についても同
様な条件で測定を行い、電荷効率と繰り返し回数につい
て同様に第8図に示した(図中の番号は合成番号に対応
する)。なお、合成番号7の活性炭素繊維よりなる電池
は安定な充放電が全く行えなくなっていた。
Other samples obtained in Example 1 and Comparative Example 1 were measured under similar conditions, and the charge efficiency and number of repetitions are similarly shown in Figure 8 (numbers in the figure correspond to synthesis numbers). . Note that the battery made of activated carbon fiber of synthesis number 7 could not be stably charged and discharged at all.

ip/loと電極性能とは明らかな相関関係があった。There was a clear correlation between ip/lo and electrode performance.

Ip/loが0.3以下のものはかなシ優れた性能を有
していた。また特にip/Ioが0.2以下のものは繰
り返し充放電に対する劣化は極めて少なかった。ip 
/ ioが0.4以上になるとこのイオンの吸脱着レベ
ルでは#1とんど充放電は行えなかった。
Those with Ip/lo of 0.3 or less had excellent performance. In particular, those with ip/Io of 0.2 or less showed extremely little deterioration due to repeated charging and discharging. ip
When /io was 0.4 or higher, charging and discharging of #1 could hardly be performed at this ion adsorption/desorption level.

使用例2 比較例2で得られた各種活性炭素繊維および黒鉛(実験
番号11 ) (1)/10. 0.98 )を用イテ
Use Example 2 Various activated carbon fibers and graphite obtained in Comparative Example 2 (Experiment No. 11) (1)/10. 0.98) is used.

使用例1と同様な条件(吸脱着レベル6モル%)で充放
電に対するサイクル安定性を評価した。この結果を第9
図に示した。フェノール系活性炭素繊維は比較的良好な
性能を示したがそれでも高々30回徨度のサイクル安定
性しか有していなかった。他のものはほとんど充放電が
行えず性能的にまったく問題にならなかった。
The cycle stability against charging and discharging was evaluated under the same conditions as in Use Example 1 (adsorption/desorption level: 6 mol %). This result is the 9th
Shown in the figure. Phenolic activated carbon fibers showed relatively good performance, but still had cycle stability of no more than 30 cycles. The other batteries could hardly be charged or discharged, so there was no problem at all in terms of performance.

以上の結果よりII)/10が0.4以下の領域からイ
オンの吸脱着レベルが6モルチでの電極性能は徐々に向
上し、0.3以下の領域では顕著な向上を示した。特に
0.2以下では極めて優れた性能を有することがわかっ
た。
From the above results, the electrode performance gradually improved when the ion adsorption/desorption level was 6 molti from the region where II)/10 was 0.4 or less, and showed remarkable improvement in the region where II)/10 was 0.3 or less. In particular, it was found that a value of 0.2 or less provides extremely excellent performance.

使用例3 実施例1で得られた主として非晶性構造よシなる活性炭
素繊維を用い(合成番号1)、イオンの吸脱着レベルを
12モル俤まで上げて(電流密度は活性炭素繊維に対し
0.0677 A/gとして4時間充電、セル電圧2v
で放電終了)サイクル安定性を評価した。その結果を第
10図に示した。このように極めて高いイオンの吸脱着
レベルにおいても主として非品性構造よりなる活性炭素
繊維は極めて安定した性能を有していた。
Use example 3 Using the activated carbon fiber with a mainly amorphous structure obtained in Example 1 (synthesis number 1), the ion adsorption/desorption level was increased to 12 molar (the current density was Charged at 0.0677 A/g for 4 hours, cell voltage 2V
(discharge ended) cycle stability was evaluated. The results are shown in FIG. Even at such extremely high levels of ion adsorption and desorption, the activated carbon fibers mainly having a non-standard structure had extremely stable performance.

使用例4 〔イオンの吸脱着レベルが1モルチの場合のサイクル充
放電試験〕 実施例1で得られたポリビニルアルコール系活性炭素繊
維を用い、使用例1と同様にしτ二次電池セルを作製し
、電流密度0.0113A/gとして2時間充電を行っ
た後(炭素原子あたシ1モルチに相当するイオンの吸脱
着が発生する)セル電圧2,8Vまで放電を行った。充
放電曲線を第11図に示し電荷効率と繰り返し回数の関
係を第10図に示した。1モルチのレベルであれば20
0回の充放電に対し電荷効率100〜97%の範囲で極
めて安定的なサイクル充放電が可能であった。
Usage Example 4 [Cycle charge/discharge test when the ion adsorption/desorption level is 1 molti] Using the polyvinyl alcohol-based activated carbon fiber obtained in Example 1, a τ secondary battery cell was produced in the same manner as in Usage Example 1. After charging for 2 hours at a current density of 0.0113 A/g (adsorption and desorption of ions equivalent to 1 molti per carbon atom occurs), discharging was performed to a cell voltage of 2.8 V. The charge/discharge curve is shown in FIG. 11, and the relationship between the charge efficiency and the number of repetitions is shown in FIG. 10. 20 at the level of 1 molti
Extremely stable cycle charging and discharging was possible with a charge efficiency in the range of 100 to 97% for zero charging and discharging cycles.

使用例5 電解液としてLi1F4(ホウフッ化リチウム)のプロ
ビレンカーボネー) 1 mol/Z M液を用いた以
外は使用例1と同様にして二次電池セルを作製した。
Usage Example 5 A secondary battery cell was produced in the same manner as Usage Example 1 except that Li1F4 (lithium borofluoride) propylene carbonate 1 mol/Z M solution was used as the electrolyte.

さらに使用例1と同様な条件でサイクル充放電を行った
。極り返し充放電3回目から充放電曲線が安定する。第
12図に3回目の充放電曲線を示し、第13図にサイク
ル安定性を示した(図中の番号は合成番号に対応する。
Furthermore, cycle charging and discharging was performed under the same conditions as in Use Example 1. The charging/discharging curve becomes stable from the third time of charging and discharging. FIG. 12 shows the third charge/discharge curve, and FIG. 13 shows the cycle stability (the numbers in the figure correspond to the synthesis numbers).

以下同様)。Same below).

使用例6 比較例3で得られたフェノール系活性炭素繊維を用い、
電解液としてLiBF4のプロピレンカーボネー) 1
mol/を溶液を用いた以外は使用例1と同様にして二
次電池セルを作製し測定を行った。サイクル安定性を第
13図に示した。
Use Example 6 Using the phenolic activated carbon fiber obtained in Comparative Example 3,
Propylene carbonate with LiBF4 as electrolyte) 1
A secondary battery cell was prepared and measured in the same manner as in Use Example 1 except that a solution with mol/ was used. The cycle stability is shown in FIG.

電解質としてLiBF4を用いた場合にはフェノール系
活性炭素繊維を電極として用いたリチウム二次電池は電
荷効率が極めて低かったのに対し、主として非品性構造
よりなる活性炭素繊維を用いた場合には安定的なサイク
ル充放電が可能であつは使用例7 負極として金属アルミニウムを用いた以外は使用例1と
同様にして二次電池セルを作製し、使用例1と同様な条
件で測定を行つ喪。二次電池セルを組み立て後1時間充
電を行った後にサイクル充放電を行った。第14図に3
回目の充放電曲線を示し、第15図にサイクル安定性を
示した。
When LiBF4 was used as the electrolyte, the charge efficiency of lithium secondary batteries using phenolic activated carbon fibers as electrodes was extremely low, whereas when activated carbon fibers mainly having a non-standard structure were used, If stable cycle charging and discharging is possible, use example 7. A secondary battery cell is prepared in the same manner as in use example 1 except that metal aluminum is used as the negative electrode, and measurements are performed under the same conditions as in use example 1. mourning. After assembling the secondary battery cell, it was charged for 1 hour and then cycled for charging and discharging. 3 in Figure 14
The second charge/discharge curve is shown, and the cycle stability is shown in FIG.

使用例8 〔主として非品性構造よりなる活性炭木繊m/Li二次
電池の最大出力密度〕 実施例1で得られた主として非晶性構造よりなる活性炭
素繊維(合成実験番号l)を正極に用い、厚さ0.5■
のガラス繊維セパレータでリチウム電極と対向させ、1
 mol/lのLiαOa 、’pc電解液中での最大
出力密度の測定を行った。内部抵抗は20〜30Ωであ
ってそれに等しい外部抵抗を取シ付け、Pm= Vm 
−1m (Vm ;放電電圧、Im;放電電流、Pm;
最大出力密度)の関係より最大出力密度を測定した〔ジ
ャーナルオプケミカルソサエティー、7アラデ)う:/
ス7クションズl (J、 Chem、 Soc、。
Usage Example 8 [Maximum output density of activated carbon wood fiber m/Li secondary battery mainly consisting of a non-porous structure] The activated carbon fiber mainly consisting of an amorphous structure obtained in Example 1 (synthesis experiment number 1) was used as a positive electrode. Used for, thickness 0.5■
facing the lithium electrode with a glass fiber separator of 1
The maximum power density was measured in mol/l LiαOa,'pc electrolyte. The internal resistance is 20 to 30Ω, and an external resistance equal to it is installed, Pm = Vm
-1m (Vm; discharge voltage, Im; discharge current, Pm;
The maximum power density was measured from the relationship between the maximum power density and the maximum power density.
S7ctions l (J, Chem, Soc,.

Faraday Tranr、  1 ) 、78(1
982)、3417〜3429)。その結果を表3に示
した。
Faraday Tranr, 1), 78(1
982), 3417-3429). The results are shown in Table 3.

表3  主として非品性構造よシ活性炭素/Li二次電
池の最大出力密度 注)Voc;開放端電圧、R1;内部抵抗本発明の主と
して、非品性構造よりなる活性炭素繊維/Li二次電池
の最大出力密度は電池の開放端電圧にも依存するが約l
θ〜20 kW/klであった。
Table 3 Maximum output density of activated carbon fiber/Li secondary battery mainly with a non-standard structure Note) Voc: open circuit voltage, R1: internal resistance Mainly with the activated carbon fiber/Li secondary battery with a non-standard structure The maximum output density of a battery depends on the open circuit voltage of the battery, but is approximately l.
θ~20 kW/kl.

鉛二次電池の最大出力密度が1.2 kW/kfである
ことを考慮すれば本発明の二次電池は極めて扁い出力密
度を有していた。
Considering that the maximum output density of a lead secondary battery is 1.2 kW/kf, the secondary battery of the present invention had an extremely low output density.

使用例9 〔フェノール系活性炭素繊維を出発原料とした主として
非品性構造よりなる活性炭素繊維を正極に用い負極に金
属リチウ^を用いた二次電池〕実施例2で得られた主と
して非品性構造よりなる活性炭素繊維を用い使用例1と
同様にして二次電池セルを作製し使用例1と同様な条件
でサイクル充放゛電の試験を行った(イオンの吸脱着レ
ベル6モルelI)ところ電荷効率80チ以上で100
回以上の安定的な充放電が行えた。
Usage Example 9 [Secondary battery using activated carbon fiber with a mainly non-grade structure made from phenolic activated carbon fiber as a positive electrode and metal lithium as a negative electrode] The mainly non-grade structure obtained in Example 2 A secondary battery cell was prepared in the same manner as in Usage Example 1 using activated carbon fibers having an active carbon fiber structure, and a cycle charge/discharge test was conducted under the same conditions as in Usage Example 1 (ion adsorption/desorption level: 6 mol elI). ) However, the charge efficiency is 100 when it is over 80 cm.
Stable charging and discharging could be performed more than once.

使用例10 〔主として非品性構造よシなる活性炭粉床を正極に用い
負極に金属リチウムを用いた二次電池〕実施例3で得ら
れた主として非品性構造よりなる活性炭粉床に8wt%
のテフロン結着剤を加え170℃の温度で圧縮しペレッ
ト状に成形した。(直径1 cm )。これを正極に用
い負極に金属リチウムを用いた二次電池を使用例1と同
様な方法で作製した。さらに使用例1と同様な条件でサ
イクル充放電を行ったところ電荷効率5Oqb以上で1
00回以上の安定的な充放電が行えた。
Usage Example 10 [Secondary battery using an activated carbon powder bed with a mainly non-standard structure as the positive electrode and using metallic lithium as the negative electrode] 8 wt % was added to the activated carbon powder bed with a mainly non-standard structure obtained in Example 3.
A Teflon binder was added thereto, and the mixture was compressed at a temperature of 170°C to form a pellet. (1 cm in diameter). A secondary battery using this as a positive electrode and metallic lithium as a negative electrode was produced in the same manner as in Use Example 1. Furthermore, when cycle charging and discharging was performed under the same conditions as in usage example 1, the charge efficiency was 1 with a charge efficiency of 5 Oqb or more.
Stable charging and discharging could be performed over 00 times.

使用例11 〔主として非品性構造よりなる活性炭素繊維を用いた電
気二重層キャパシタ〕 実施例1で得られたポリビニルアルコール系活性炭素繊
維シー) (II)/1o−0,07,2300nli
ll/g)を正負両極に用いることにより電気二重層キ
ャパシタを作製した。活性炭素繊維シートは厚さ0.5
簡のガラス繊維フィルタを介して両極に設置された。電
解液にはプロピレンカーボネートに過塩素酸リチウムを
1モル/lの濃度で溶解させたものを用いた。集電用の
電極として正負極とも白金メツシュを用いた。用いた活
性炭素繊維シートの大きさは1 cm X 1 cmで
あって重量は約6キであった。
Use example 11 [Electric double layer capacitor using activated carbon fiber mainly having a non-standard structure] Polyvinyl alcohol-based activated carbon fiber sheet obtained in Example 1) (II)/1o-0,07,2300nli
An electric double layer capacitor was manufactured by using 11/g) for both positive and negative electrodes. Activated carbon fiber sheet has a thickness of 0.5
A simple glass fiber filter was installed at both poles. The electrolytic solution used was one in which lithium perchlorate was dissolved in propylene carbonate at a concentration of 1 mol/l. Platinum mesh was used for both the positive and negative electrodes for current collection. The size of the activated carbon fiber sheet used was 1 cm x 1 cm, and the weight was about 6 kg.

またキャパシタの組み立てはアルゴン雰囲気下であった
Furthermore, the capacitor was assembled under an argon atmosphere.

このキャパシタの容量を測定した。電圧2vにおいて定
電圧充電を1時間行った後に定電流放電を行いグラフの
傾きより容量C)を求めた(Q=CVの関係より算定し
た)。セル電圧はほぼ直線的に減少した。合成番号1〜
3tでの試料について容量を求めた。それについて表4
に示した。
The capacitance of this capacitor was measured. After performing constant voltage charging at a voltage of 2 V for 1 hour, constant current discharging was performed, and the capacitance C) was determined from the slope of the graph (calculated from the relationship Q=CV). Cell voltage decreased almost linearly. Synthesis number 1~
The capacity was determined for the sample at 3t. Table 4 about it
It was shown to.

表4  ip/loと容量との関係 本発明の活性炭素繊維を用いることにより容量の大きな
キャパシタを作製することができた。またサイクル安定
性は上記いずれの試料を用いたキャパシタとも200回
以上充放電が可能であつ九
Table 4 Relationship between ip/lo and capacity A capacitor with a large capacity could be manufactured by using the activated carbon fiber of the present invention. In addition, the cycle stability is as follows: capacitors using any of the above samples can be charged and discharged more than 200 times.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のアクリル系活性炭素繊維のX線強度曲線
図、第2図〜第4図はそれぞれ本発明の活性炭素繊維の
X線回折強度曲線図、固体高分解能NMRスペクトル図
及び表面反射赤外スペクトル図である。また第5図及び
第6図はそれぞれ、従来の7エノール系活性炭素繊維の
固体高分解能NMRスペク)3図及び表面反射赤外スペ
クトル図である。 更に第7図〜第15図は各種炭素材料のイオン吸脱着能
及びその安定性を示すための図であり、第7図、第11
図、第12図及び第14図は充放電曲線図であシ、第8
図、第9図、第10図、第13図及び第15図はサイク
ル安定性を示す図である。
Figure 1 is an X-ray intensity curve diagram of a conventional acrylic activated carbon fiber, and Figures 2 to 4 are X-ray diffraction intensity curve diagrams, solid-state high-resolution NMR spectrum diagrams, and surface reflection diagrams of activated carbon fibers of the present invention, respectively. It is an infrared spectrum diagram. Further, FIGS. 5 and 6 are a solid-state high-resolution NMR spectrum and a surface reflection infrared spectrum, respectively, of a conventional 7-enol-based activated carbon fiber. Furthermore, Fig. 7 to Fig. 15 are diagrams for showing the ion adsorption/desorption ability of various carbon materials and their stability.
Figures 12 and 14 are charge/discharge curve diagrams.
9, 10, 13, and 15 are diagrams showing cycle stability.

Claims (5)

【特許請求の範囲】[Claims] (1)X線回折強度曲線の(002)面の回折ピークに
おける黒鉛的結晶性構造パラメーターIp/Ioが0.
3以下である活性炭。 ここでIpとは(002)面の回折ピークの両裾に接線
を引き、その接線から上の部分の強度の最大値であり、
IoとはIpを示す回折角2θにおける実測回折強度か
ら空気の散乱強度を差し引いた残りのX線強度である。
(1) The graphitic crystalline structure parameter Ip/Io at the diffraction peak of the (002) plane of the X-ray diffraction intensity curve is 0.
Activated carbon that is 3 or less. Here, Ip is the maximum value of the intensity above the tangent line drawn on both sides of the diffraction peak of the (002) plane,
Io is the X-ray intensity remaining after subtracting the air scattering intensity from the measured diffraction intensity at the diffraction angle 2θ indicating Ip.
(2)活性炭の形態が繊維状である特許請求の範囲第1
項記載の活性炭。
(2) Claim 1, in which the activated carbon has a fibrous form.
Activated carbon as described in section.
(3)ポリビニルアルコール系樹脂を出発原料とするこ
とを特徴とする特許請求の範囲第1項記載の活性炭。
(3) Activated carbon according to claim 1, characterized in that a polyvinyl alcohol resin is used as a starting material.
(4)ポリビニルアルコール繊維を出発原料とする特許
請求の範囲第1項記載の活性炭。
(4) Activated carbon according to claim 1, which uses polyvinyl alcohol fiber as a starting material.
(5)Ip/Ioが0.2以下である特許請求の範囲第
1項、第2項、第3項又は第4項記載の活性炭。
(5) The activated carbon according to claim 1, 2, 3, or 4, wherein Ip/Io is 0.2 or less.
JP61244719A 1986-10-14 1986-10-14 Activated carbon Expired - Lifetime JP2502986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61244719A JP2502986B2 (en) 1986-10-14 1986-10-14 Activated carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61244719A JP2502986B2 (en) 1986-10-14 1986-10-14 Activated carbon

Publications (2)

Publication Number Publication Date
JPS63100009A true JPS63100009A (en) 1988-05-02
JP2502986B2 JP2502986B2 (en) 1996-05-29

Family

ID=17122886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61244719A Expired - Lifetime JP2502986B2 (en) 1986-10-14 1986-10-14 Activated carbon

Country Status (1)

Country Link
JP (1) JP2502986B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000150318A (en) * 1998-11-18 2000-05-30 Okamura Kenkyusho:Kk Electric double layer capacitor
JP2005000903A (en) * 2003-05-19 2005-01-06 Kuraray Chem Corp Recovery method for organochlorine solvent
JP2005021851A (en) * 2003-07-01 2005-01-27 Kuraray Chem Corp Method for recovering mixed solvent
JP2007227797A (en) * 2006-02-24 2007-09-06 Nippon Oil Corp Carbon material for electric double-layer capacitor electrode, and electric double-layer capacitor using same
US7564676B2 (en) 2003-10-17 2009-07-21 Nippon Oil Corporation Electric double layer capacitor, activated carbon for electrode therefor and method for producing the same
CN112473501A (en) * 2020-10-26 2021-03-12 宁波大学 Dry mixing device for preparing energy storage electrode and preparation method of energy storage electrode

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123064A1 (en) * 2007-03-29 2008-10-16 Kuraray Co., Ltd. Electrode and actuator using the electrode
JP1519037S (en) 2014-07-16 2018-02-26
JP1518722S (en) 2014-07-16 2018-02-26
JP1518723S (en) 2014-07-16 2018-02-26

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835881A (en) * 1981-08-27 1983-03-02 Kao Corp Electrochemical cell
JPS59149654A (en) * 1983-02-15 1984-08-27 Kao Corp Secondary battery
JPS59187624A (en) * 1983-04-04 1984-10-24 Kuraray Co Ltd Preparation of active carbon fiber
JPS60167280A (en) * 1984-02-09 1985-08-30 Matsushita Electric Ind Co Ltd Electrochemical device capable of recharging
JPS60182670A (en) * 1984-02-28 1985-09-18 Toray Ind Inc Rechangeable battery
JPS61163562A (en) * 1985-01-11 1986-07-24 Bridgestone Corp Secondary cell
JPS6391956A (en) * 1986-10-06 1988-04-22 Kuraray Co Ltd Battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835881A (en) * 1981-08-27 1983-03-02 Kao Corp Electrochemical cell
JPS59149654A (en) * 1983-02-15 1984-08-27 Kao Corp Secondary battery
JPS59187624A (en) * 1983-04-04 1984-10-24 Kuraray Co Ltd Preparation of active carbon fiber
JPS60167280A (en) * 1984-02-09 1985-08-30 Matsushita Electric Ind Co Ltd Electrochemical device capable of recharging
JPS60182670A (en) * 1984-02-28 1985-09-18 Toray Ind Inc Rechangeable battery
JPS61163562A (en) * 1985-01-11 1986-07-24 Bridgestone Corp Secondary cell
JPS6391956A (en) * 1986-10-06 1988-04-22 Kuraray Co Ltd Battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000150318A (en) * 1998-11-18 2000-05-30 Okamura Kenkyusho:Kk Electric double layer capacitor
JP2005000903A (en) * 2003-05-19 2005-01-06 Kuraray Chem Corp Recovery method for organochlorine solvent
JP4509523B2 (en) * 2003-05-19 2010-07-21 クラレケミカル株式会社 Recovery method for organic chlorinated solvents
JP2005021851A (en) * 2003-07-01 2005-01-27 Kuraray Chem Corp Method for recovering mixed solvent
JP4509502B2 (en) * 2003-07-01 2010-07-21 クラレケミカル株式会社 Recovery method of mixed solvent
US7564676B2 (en) 2003-10-17 2009-07-21 Nippon Oil Corporation Electric double layer capacitor, activated carbon for electrode therefor and method for producing the same
JP2007227797A (en) * 2006-02-24 2007-09-06 Nippon Oil Corp Carbon material for electric double-layer capacitor electrode, and electric double-layer capacitor using same
CN112473501A (en) * 2020-10-26 2021-03-12 宁波大学 Dry mixing device for preparing energy storage electrode and preparation method of energy storage electrode

Also Published As

Publication number Publication date
JP2502986B2 (en) 1996-05-29

Similar Documents

Publication Publication Date Title
Yang et al. Graphitic carbon balanced between high plateau capacity and high rate capability for lithium ion capacitors
Yan et al. Understanding the charge storage mechanism to achieve high capacity and fast ion storage in sodium‐ion capacitor anodes by using electrospun nitrogen‐doped carbon fibers
Zhou et al. Combined effect of nitrogen and oxygen heteroatoms and micropores of porous carbon frameworks from Schiff-base networks on their high supercapacitance
CN111320172B (en) Directional synthesis method and application of biomass activated carbon-based electrode material containing micropore-mesoporous pore canal
JP2018523623A (en) Method for preparing graphene from coal
Ratnaji et al. Hierarchical porous carbon derived from tea waste for energy storage applications: Waste to worth
WO2006019053A1 (en) Raw material carbon composition for carbon material for electrode of electric double layer capacitor
Jiang et al. Synthesis of biomass-based porous graphitic carbon combining chemical treatment and hydrothermal carbonization as promising electrode materials for supercapacitors
JP4420381B2 (en) Activated carbon, manufacturing method thereof and polarizable electrode
KR101790234B1 (en) Ultra-thin hollow carbon nanospheres for sodium ion storing and manufacturing method thereof
Shao et al. Replacing “Alkyl” with “Aryl” for inducing accessible channels to closed pores as plateau‐dominated sodium‐ion battery anode
CN110429282B (en) Novel nano carbon sphere negative electrode material for lithium ion battery
Nie et al. Hierarchical Porous Carbon Anode Materials Derived from Rice Husks with High Capacity and Long Cycling Stability for Sodium‐Ion Batteries
WO2006137323A1 (en) Raw oil composition for carbon material for electric double layer capacitor electrode
CN113135568A (en) Nitrogen-doped porous carbon material and preparation method and application thereof
JPH09320906A (en) Activated carbon for electric double layer capacitor electrode, its manufacture, and electric double layer capacitor electrode
JPS63100009A (en) Activated carbon
Xu et al. Self-template/activation nitrogen-doped porous carbon materials derived from lignosulfonate-based ionic liquids for high performance supercapacitors
Yu et al. O-doped porous carbon derived from biomass waste for high-performance zinc-ion hybrid supercapacitors
JP2023154069A (en) Carbon electrode material and redox battery
Jeong et al. Relationship between microstructure and electrochemical properties of 2lignin-derived carbon nanofibers prepared by thermal treatment
Tan et al. Highly graphitic porous carbon prepared via K 2 FeO 4-assisted KOH activation for supercapacitors
Huang et al. Revealing the effect of hard carbon structure on the sodium storage behavior by using a model hard carbon precursor
JP2006024747A (en) Carbon material for electric double-layer capacitor electrode, and its production method
JPS63168973A (en) Electric cell

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term