JPS63168973A - Electric cell - Google Patents

Electric cell

Info

Publication number
JPS63168973A
JPS63168973A JP61310915A JP31091586A JPS63168973A JP S63168973 A JPS63168973 A JP S63168973A JP 61310915 A JP61310915 A JP 61310915A JP 31091586 A JP31091586 A JP 31091586A JP S63168973 A JPS63168973 A JP S63168973A
Authority
JP
Japan
Prior art keywords
activated carbon
iodine
bromine
secondary battery
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61310915A
Other languages
Japanese (ja)
Inventor
Kiyoto Otsuka
清人 大塚
Takuji Okaya
岡谷 卓司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP61310915A priority Critical patent/JPS63168973A/en
Publication of JPS63168973A publication Critical patent/JPS63168973A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To realize a compact, lightweight, and thin-type cell, and to make the flatness of the voltage excellent, by adding iodine or bromine to an active carbon and/or organic nonaqueous type polar solvent. CONSTITUTION:In a cell composed by soaking an active carbon positive electrode and a metallic negative electrode in an organic nonaqueous type polar solvent, iodine or bromine is added to either the active carbon or the organic nonaqueous polar solvent, or to both of them. The adding amount of the iodine or bromine to the active carbon is 10wt.% or more, preferably 50wt.% or more. On the other hand, the content amount of the element in the polar solvent is most preferably to dissolve 0.5M/l or more of the iodine (I2) or the bromine (Br2). And when the iodine or bromine is contained in both the polar solvent and the active carbon, especially the voltage flatness of the cell is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は充放電特性と繰シ返し充放電に対する耐久性が
大幅に向上した電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a battery that has significantly improved charging and discharging characteristics and durability against repeated charging and discharging.

〔従来の技術〕[Conventional technology]

ニッケル・カドミウム蓄電池や鉛蓄電池などで代表され
る水溶液系二次電池では電解液の分解電圧が低いために
高い電圧がとれないことあるいは充放電反応中にガスが
発生することなどの難点を有していた。これらの欠点を
根本的に改良するために有機非水系極性溶媒(以下非水
溶媒と略する)を使用する二次電池が提案されている。
Aqueous secondary batteries, such as nickel-cadmium storage batteries and lead-acid batteries, have drawbacks such as the inability to obtain high voltage due to the low decomposition voltage of the electrolyte, and the generation of gas during charging and discharging reactions. was. In order to fundamentally improve these drawbacks, a secondary battery using an organic non-aqueous polar solvent (hereinafter abbreviated as non-aqueous solvent) has been proposed.

非水溶媒を用いることにょシ高い端子電圧を有しガス発
生の起こらない二次電池が期待されている。
There are expectations for a secondary battery that uses a non-aqueous solvent, has a high terminal voltage, and does not generate gas.

特に電解質に対する接触面積の大きな炭素繊維は多くの
イオンを取シ込めることがら最近活発に研究が行われて
いる。該炭素繊維に対するイオンの吸着量を増加させる
ために大きく二つの方向から検討が行われている。一つ
の方向は炭素繊維の黒鉛化度を高めることによって層状
化合物である黒鉛の層間に電気化学的に種々のイオンを
蓄えようとする方法である(特開6O−36315)。
In particular, carbon fibers, which have a large contact area with electrolytes, have been actively researched recently because they can absorb many ions. In order to increase the amount of ions adsorbed onto the carbon fibers, studies are being conducted from two main directions. One approach is to electrochemically store various ions between the layers of graphite, which is a layered compound, by increasing the degree of graphitization of carbon fibers (Japanese Patent Laid-Open No. 6O-36315).

さらにもう一方の方向としては炭素繊維の比表面積を極
めて大きくすることKよって(100d19以上)、界
面現象である電気二重層の形成に基づく蓄電容量を増加
させようとする手法である。比表面積の大きな活性炭素
繊維を用いることによシ、蓄電容量が増大した電気二重
層キャパシタ(特開58−206116%特開55−9
9714 )あるいは二次電池(特開59−14616
5%特開60−25152 )停機々なものが提案され
ている。
In the other direction, the specific surface area of carbon fibers is made extremely large (100d19 or more), thereby increasing the storage capacity based on the formation of an electric double layer, which is an interfacial phenomenon. Electric double layer capacitor with increased storage capacity by using activated carbon fiber with a large specific surface area (JP 58-206116% JP 55-9
9714) or secondary battery (JP 59-14616
5% Japanese Patent Publication No. 60-25152) Various methods have been proposed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

炭素材料の中でも炭素繊維は非水系の有機電解液を用い
る電池の正極として特に高性能化が期待されている材料
である。
Among carbon materials, carbon fiber is a material that is expected to have particularly high performance as a positive electrode for batteries using non-aqueous organic electrolytes.

炭素材料には粉末状、Ill状状フィルム状勢様々な形
態が存在するが、電解液との接触面積が大きくできるこ
とを考慮すれば繊維状の形態が電極としては特に優れて
いる。繊維状の形態にした場合には直径約10μmのも
のも得ることができる。
Carbon materials exist in various forms such as powder, Ill-like, and film forms, but the fibrous form is particularly excellent as an electrode, considering that the contact area with the electrolyte can be increased. When it is made into a fibrous form, it can also have a diameter of about 10 μm.

しかし実際には炭素繊維に対し安定に吸脱着可能なイオ
ンの量は通常の炭素繊維を用いる場合には極めて少ない
。この場合の安定に吸脱着可能とは、イオンが吸着(イ
ンターカレーション反応も含むンすることによって炭素
繊維のイオンの吸脱着機構が破壊される事なく電荷効率
において少なくとも80チ以上の領域でイオンの吸脱着
が可能な事を言う。
However, in reality, the amount of ions that can be stably adsorbed and desorbed to carbon fibers is extremely small when ordinary carbon fibers are used. In this case, being able to stably adsorb and desorb ions means that ions can be adsorbed (including intercalation reactions) without destroying the ion adsorption and desorption mechanism of carbon fibers, and that ions can be adsorbed in a region of at least 80 or more in terms of charge efficiency. This means that it is possible to adsorb and desorb.

炭素繊維電極の性能を改良するうえで炭素繊維の黒鉛化
度を上げる方法が提案されている(例えば特開昭60−
36315号)。しかし電解液中において電気化学的な
手法で黒鉛にイオンを吸脱着(この場合にはインターカ
レーション反応プさせた場合には安定に吸脱着可能なイ
オンの量は黒鉛の炭素原子あたり高々1モルチであって
、イオンの吸着量を1モルチ以上に上げた場合には黒鉛
のイオンの吸脱着機構が破壊される〔デンキカガク、4
6、隘a (1978)438〜441〕。このような
ことから炭素繊維の電極性能を向上させる手法として黒
鉛に近づけるべく検討を行った場合でも安定に吸脱着可
能なレベルは高々1モルチであった。
In order to improve the performance of carbon fiber electrodes, methods of increasing the degree of graphitization of carbon fibers have been proposed (for example, in Japanese Patent Application Laid-Open No. 1983-1999).
No. 36315). However, when ions are adsorbed and desorbed to graphite using an electrochemical method in an electrolytic solution (in this case, an intercalation reaction is performed), the amount of ions that can be stably adsorbed and desorbed is at most 1 mol terres per carbon atom of graphite. However, if the amount of ion adsorption is increased to 1 molti or more, the ion adsorption/desorption mechanism of graphite is destroyed [Denki Kagaku, 4
6, A (1978) 438-441]. For this reason, even when studies were conducted to improve the electrode performance of carbon fibers in order to bring them closer to graphite, the level at which carbon fibers could be stably adsorbed and desorbed was at most 1 mol.

比表面積の大きな炭素繊維(活性炭素繊維)を正極に用
い、負極に金属リチウムを用いることによシリチウム二
次電池が作製可能である〔シンセテイツクメタル(S)
’nthetic Metals)、10 (1985
)222〜234、第26回電池討論会(1985)講
演要旨集57頁(IA−15) )。活性炭素繊維を用
いた場合には高黒鉛化炭素繊維を用いた場合よシ安定な
イオンの吸着量は多くすることができるが従来検討され
ている活性炭素繊維の場合はそれでも。
A silium secondary battery can be produced by using carbon fiber (activated carbon fiber) with a large specific surface area for the positive electrode and metallic lithium for the negative electrode [Synthetic Metal (S)]
'nthetic Metals), 10 (1985
) 222-234, 26th Battery Symposium (1985) Lecture Abstracts, p. 57 (IA-15)). When activated carbon fibers are used, the amount of stable ion adsorption can be increased compared to when highly graphitized carbon fibers are used, but this is not the case with activated carbon fibers that have been studied in the past.

高々1〜4モルチ程度であった。また活性炭素繊維の充
放電機構は電気二重層に基づくとされているが、リチウ
ム二次電池の正極として用いた場合にはインターカレー
ション反応を伴うことが指摘されている〔第26回電池
討論会(1985)講演要旨集57 (IA−15))
It was about 1 to 4 molt at most. Furthermore, although the charging and discharging mechanism of activated carbon fiber is said to be based on an electric double layer, it has been pointed out that when used as a positive electrode in a lithium secondary battery, an intercalation reaction occurs [26th Battery Discussion (1985) Lecture Abstracts 57 (IA-15))
.

さらに正極に活性炭を用いたリチウム二次電池は放電時
に電圧平担部分を持たない(つま多、開放端電圧が蓄電
電荷量に依存する)という欠点があった(第26回電池
討論会講演要旨集2A−05およびIA−15)。また
端子電圧が3.8v以上の高電圧部分が一部に存在する
ために非水溶媒であっても電気分解が発生し自己放電が
大きくな!l11だガスが発生するという欠点があった
Furthermore, lithium secondary batteries that use activated carbon for the positive electrode have the disadvantage that they do not have a voltage leveling part during discharge (the open circuit voltage depends on the amount of stored charge) (Summary of the 26th Battery Symposium) Collection 2A-05 and IA-15). Also, because there are some high-voltage parts where the terminal voltage is 3.8V or more, electrolysis occurs even in non-aqueous solvents, resulting in large self-discharge! The disadvantage was that gas was generated.

また二次電池として使用した場合に放電電圧が平担でな
い事は用途的な制限を受ける。例えばマイクロコンピュ
ータあるいは小型モーター等の電気回路の駆動用に使用
する場合には放電電圧が平担でない事は大きな欠点とな
る。
Furthermore, when used as a secondary battery, the fact that the discharge voltage is not flat is subject to usage limitations. For example, when used to drive an electric circuit such as a microcomputer or a small motor, the fact that the discharge voltage is not flat is a major drawback.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らの研究によれば有機非水系極性溶媒に活性炭
正極及び金属負極を浸漬してなる電池において、活性炭
又は有機非水系極性溶媒のどちらか一方か或いは双方に
ヨウ素又は臭素を添加することにより上記の目的が達成
できることが認められた。
According to research conducted by the present inventors, in a battery formed by immersing an activated carbon positive electrode and a metal negative electrode in an organic non-aqueous polar solvent, it is possible to add iodine or bromine to either or both of the activated carbon and the organic non-aqueous polar solvent. It was recognized that the above objectives could be achieved.

本発明において活性炭にヨウ素又は臭素(以下ヨウ素等
ということがある)を添加する方法は特には限定されな
い。例えば、(り活性炭をヨウ素等の蒸気等と接触させ
る方法、(2)活性炭をヨウ素等を含有する溶液に浸す
等の方法により活性炭にヨウ素等を吸着させるのが最も
簡便である。臭素のように液体である場合には直接臭素
液体中へ活性炭を投入して吸着させてもよく、またヨウ
素のように固体であれば活性炭にヨウ素を練シ込んだシ
、各種バインダーを用いて活性体成形物に含有させるこ
とも良い。極性溶媒中にヨウ素等を添加する方法も特に
は限定されない。ヨウ素等が極性溶媒に対して十分に溶
解すればヨウ素等を添加し均一溶液としてもよく、一方
、一部面体のヨウ素(通常は粉末)が未溶解のまま分離
した状態であってもよい。活性炭及び/又は溶媒に添加
されるヨウ素等は反応してヨウ素等を生成する物質(ヨ
ウ素又は臭素源)であってもよい。またヨウ素と臭素を
混合して添加してもよい。
In the present invention, the method of adding iodine or bromine (hereinafter sometimes referred to as iodine etc.) to activated carbon is not particularly limited. For example, it is easiest to adsorb iodine, etc. to activated carbon by (2) contacting activated carbon with vapor of iodine, etc., or (2) soaking activated carbon in a solution containing iodine, etc. If the bromine is in liquid form, activated carbon can be directly added to the bromine liquid to adsorb it, or if it is solid like iodine, iodine can be kneaded into activated carbon or molded into an active substance using various binders. It is also good to include it in a product.The method of adding iodine etc. to a polar solvent is not particularly limited.If the iodine etc. is sufficiently dissolved in the polar solvent, it is possible to add iodine etc. to make a homogeneous solution.On the other hand, One-hedral iodine (usually powder) may be in a separated state without being dissolved.Iodine, etc. added to activated carbon and/or solvent may be a substance that reacts to produce iodine (iodine or bromine source). ).Also, a mixture of iodine and bromine may be added.

活性炭及び/又は極性溶媒中へのヨウ素等の添加量は特
には限定されない。一般に含有量が増大するにつれ添加
効果は顕著となる。活性炭に対する含有量で規定すると
、ヨウ素等の含有量は10重量%以上、好ましくは20
重量−以上、特に好ましくは50重量%以上である。一
方、極性溶媒中の含有量は0.1M/A+以上が好まし
く、通常0.2M/II以上が使用され、特に好ましく
は0.5M/1以上のヨウ素(工2)又は臭素(Br2
)を溶解させることである。本発明においては極性溶媒
中及び活性炭中の双方へヨウ素等が含有されている場合
に特に電池の電圧平担性が大きい。
The amount of iodine etc. added to the activated carbon and/or the polar solvent is not particularly limited. Generally, the effect of addition becomes more significant as the content increases. The content of iodine, etc. is 10% by weight or more, preferably 20% by weight, based on the content of activated carbon.
weight - or more, particularly preferably 50% by weight or more. On the other hand, the content in the polar solvent is preferably 0.1M/A+ or more, usually 0.2M/II or more, particularly preferably 0.5M/1 or more of iodine (Process 2) or bromine (Br2).
) is dissolved. In the present invention, when iodine or the like is contained in both the polar solvent and the activated carbon, the voltage flatness of the battery is particularly large.

本発明により正極又は極性溶媒中へ添加させるべきハロ
ゲンはヨウ素(工2)又は臭素(Br2)であシ、イオ
ンではない。本発明者らの研究によれば、ヨウ素イオン
(ニー)又は臭素イオン(Bシを極性溶媒中及び/又は
活性炭に吸着させた場合と比べると、ヨウ素等を添加し
た場合には特に放電時の電圧平担性が極めて良好となる
ことが確認された。例えば臭素イオン(Br−)を電気
化学的な手法で活性炭の炭素原子あたシラ0モル係吸着
(約60 wj%増加)させた活性炭を正極に用いた場
合においてもこれを用いた二次電池では電圧の平担性は
まったく得られなかった。一方臭素(Br2) ’e活
性炭に吸着させたものを正極に使用した場合には放電電
圧は極めて平担なものと々つだ。また同様な比較として
電解質としてLi Brを用いた場合と電解質と一般的
に考えられるもの(陽イオンと陰イオンからなる塩)を
まったく使用せず溶媒中に単に臭素(Brz)のみ添加
した場合を検討すれば両者の相違は極めて明瞭なものと
なる。すなわち電解質としてLiBrを用いた場合にお
いてはLiBrがいかなる濃度においても電圧の平担性
は発現できないが臭素を添加した場合には臭素の濃度が
少なくとも0.1M/n以上程度、好ましくは1M/1
以上あれば放電電圧は完全に平担なものとなった。
According to the present invention, the halogen to be added to the positive electrode or the polar solvent is iodine (2) or bromine (Br2), and is not an ion. According to the research of the present inventors, compared to the case where iodine ions (Ni) or bromine ions (B) are adsorbed in a polar solvent and/or on activated carbon, when iodine etc. are added, the It has been confirmed that the voltage flatness is extremely good. For example, activated carbon in which bromine ions (Br-) are adsorbed by an electrochemical method at a rate of 0 mole per carbon atom (approximately 60 wj% increase) Even when bromine (Br2) was used as the positive electrode, no voltage flatness was obtained in the secondary battery using this.On the other hand, when bromine (Br2) adsorbed on activated carbon was used as the positive electrode, the discharge The voltages are quite flat.Also, for a similar comparison, there is a case where LiBr is used as an electrolyte and a case where a solvent is used without using anything generally considered to be an electrolyte (salt consisting of cations and anions). If we consider the case where only bromine (Brz) is added in the electrolyte, the difference between the two becomes extremely clear.In other words, when LiBr is used as the electrolyte, voltage flatness cannot be expressed at any concentration of LiBr. When bromine is added, the concentration of bromine is at least about 0.1 M/n or more, preferably 1 M/1
If it is above that, the discharge voltage becomes completely flat.

臭素について記載した上記の結果はヨウ素の場合につい
ても同様である。ヨウ素イオンを使用する場合とは具体
的には、a、電解質としてヨウ素イオンを含むもの(例
えばLiI)を用いた場合、b。
The above results described for bromine are also similar for iodine. Specifically, the case where iodine ions are used is a, and the case where an electrolyte containing iodine ions (for example LiI) is used is b.

ヨウ素イオン(■ジを電気化学的な手法で活性炭に吸着
させたものを正極として使用する場合およびa、bの両
方を用いた場合の三種に分類される。
It is classified into three types: when iodine ions (1) are adsorbed onto activated carbon by an electrochemical method and are used as the positive electrode, and when both a and b are used.

例えば上記すの手法を用いた場合においてもその傾向は
変わらず、あらかじめ20モルチ程度のヨウ素イオンを
電気化学的な手法にょシ吸着させた活性炭を正極として
使用した場合においても充放電時の電圧平担部分は極め
てわずかであって、ヨウ素イオンを吸着させた効果はま
ったく観察されなかった。一方あらかじめヨウ素(工2
)を吸着させた活性炭を正極に用いた場合には、使用す
る活性炭の構造によっても結果は相違するが、10モル
チ程度の吸脱着レベルにおいても放電電圧が平担な充放
電が可能であって、このような高い性能はヨウ素イオン
を活性炭に吸着させた場合においてはまったく得られな
いものであった。
For example, even if the method described above is used, this tendency does not change, and even if activated carbon, on which about 20 molti of iodine ions are adsorbed in advance by an electrochemical method, is used as the positive electrode, the voltage level during charging and discharging does not change. The supported portion was extremely small, and no effect of adsorbing iodine ions was observed. On the other hand, in advance, iodine
) adsorbed on activated carbon is used as the positive electrode, it is possible to charge and discharge with a flat discharge voltage even at an adsorption/desorption level of about 10 molti, although the results will vary depending on the structure of the activated carbon used. Such high performance could not be obtained at all when iodine ions were adsorbed on activated carbon.

ヨウ素イオンあるいは臭素イオンを用いた場合と比較し
ヨウ素(■2)あるいは臭素(Br2)を吸着させた場
合に電池性能が格段に向上する理由は必ずしも明確では
ないが、ヨウ素イオンあるいはAXイオンを吸着させた
場合にはその構造は単に活性炭にイオンが吸着したもの
であるのに対し、ヨウ素あるいは臭素を吸着させた場合
には活性炭とこれらのハロゲンが一体の構造となシもと
の活性炭とはまったく別の構造体となっているためでは
ないかと思われる。
It is not necessarily clear why battery performance is significantly improved when iodine (■2) or bromine (Br2) is adsorbed compared to when iodine ions or bromine ions are used, but it is When iodine or bromine is adsorbed, the structure is simply activated carbon with ions adsorbed, whereas when iodine or bromine is adsorbed, the activated carbon and these halogens are integrated into one structure. I think this is because they have completely different structures.

本発明で用いられる電解液としての有機溶媒は有機非水
溶媒であシ、非プロトン性でかつ高誘電率のものが好ま
しい。具体例としてはプロピレンカーホネート、γ−ブ
チロラクトン、ジメチルスル7オキシド、ジメチルフォ
ルムアミド、アセトニトリル、エチレンカーボネート、
テトラヒドロ7ラン、ジメトキシエタン、ジクロロエタ
ン等を挙げることができるがこれらに限定されるもので
はない。これらの溶媒の中で、ヨウ素又は臭素との反応
性が低いものが好ましい。またこれらの有機溶媒は一種
又は二種以上の混合溶媒として用いてもよい。
The organic solvent as the electrolytic solution used in the present invention is an organic non-aqueous solvent, preferably an aprotic one and a high dielectric constant. Specific examples include propylene carbonate, γ-butyrolactone, dimethylsulf7oxide, dimethylformamide, acetonitrile, ethylene carbonate,
Examples include, but are not limited to, tetrahydro-7rane, dimethoxyethane, dichloroethane, and the like. Among these solvents, those having low reactivity with iodine or bromine are preferred. Further, these organic solvents may be used alone or as a mixed solvent of two or more.

本発明における二次電池においては電解質は特に必要な
ものではないが補助電解質を添加してもよい。添加する
補助電解質としては特に限定はされないが、例えば金属
の陽イオン、4級アンモニウム、カルボニウムカチオン
、オキソニウムカブ以下余白 (1リ オン及びピリジニウムカチオン等の陽イオンと陰イオン
の塩を挙げることができる。ここで用いられる陰イオン
としてはCl0a−1BF4−1SbF6−1sb c
 x;、AgF2−1PF6−1HF2−、ニー、Br
−等を挙げることができるが特に好ましい陰イオンとし
てはニー、Br−が挙げられる。具体的な電解質として
はLiCIO4、Li BF4、LiAsF6. Na
BF4. NaClO4,Bu4N’ClO4、KBF
4%LiI、Li Br等を挙げることができる。特に
好ましいものとしてはLiI%Li Brが挙げられる
Although an electrolyte is not particularly necessary in the secondary battery of the present invention, an auxiliary electrolyte may be added. The auxiliary electrolyte to be added is not particularly limited, but examples include salts of cations and anions such as metal cations, quaternary ammonium, carbonium cations, oxonium cations and pyridinium cations. The anion used here is Cl0a-1BF4-1SbF6-1sb c
x;, AgF2-1PF6-1HF2-, Ni, Br
-, etc., and particularly preferred anions include Ni and Br-. Specific electrolytes include LiCIO4, LiBF4, LiAsF6. Na
BF4. NaClO4, Bu4N'ClO4, KBF
Examples include 4% LiI, LiBr, and the like. Particularly preferred is LiI%LiBr.

補助電解質としてLiI%Li Brを使用した場合に
は他の補助電解質を使用した場合と比較し電圧平担性が
良好であってさらに充放電可能なイオンの吸脱着レベル
の高い二次電池を得ることができる。
When LiI%Li Br is used as an auxiliary electrolyte, a secondary battery with good voltage flatness and a high level of ion adsorption and desorption that can be charged and discharged is obtained compared to when other auxiliary electrolytes are used. be able to.

溶媒中の補助電解質の濃度は特に限定はされないが通常
はo、1M/n〜2M/It程度である。
The concentration of the auxiliary electrolyte in the solvent is not particularly limited, but is usually about 1 M/n to 2 M/It.

本発明の二次電池は組み立て直後でも電池性能がちシ、
−次電池としても有用であるという特徴を有する。
The secondary battery of the present invention has poor battery performance even immediately after assembly.
- It has the characteristic of being useful as a secondary battery.

本発明の負極として用いられる金属は特に限定されない
が、アルカリ金属、アルカリ土類金属、周期律表第3族
および第4族の金属等が好ましく、例えば、Li、 N
a%に、 Rh、 Cs%Be%Mg、Ca%Sr。
The metal used as the negative electrode of the present invention is not particularly limited, but alkali metals, alkaline earth metals, metals of Group 3 and Group 4 of the periodic table, etc. are preferable, such as Li, N, etc.
a%, Rh, Cs%Be%Mg, Ca%Sr.

Ba % Se b Y %La 、Tt s Zr 
−Al s Pb %Bx %豫、Ni等を用いること
ができる。あるいは上記の金属の合金、例えばLi−均
合金、Li −AI −Mg合金、Li −Hg合金、
Li−Al合金、Li−Pb合金等が挙げられる。
Ba % Se b Y % La , Tt s Zr
-AlsPb%Bx%Y, Ni, etc. can be used. Or alloys of the above metals, such as Li-homogeneous alloys, Li-AI-Mg alloys, Li-Hg alloys,
Examples include Li-Al alloy and Li-Pb alloy.

また炭素繊維や活性炭素繊維、ポリアセチレン、ポリフ
ェニレン等の導電性高分子に上記金属を担持させたもの
を用いることもできる。
It is also possible to use conductive polymers such as carbon fibers, activated carbon fibers, polyacetylene, polyphenylene, etc., on which the metals are supported.

上記の金属および合金の中でも高電圧および電池の軽量
化のうえで特にリチウム系の金属を用いるのがよい。リ
チウム系の金属を含むものとしては金属リチウムの他に
金属リチウムを含む合金あるいは表面に金属リチウムを
担持させた材料を例示することができる。
Among the above-mentioned metals and alloys, lithium-based metals are particularly preferably used in view of high voltage and weight reduction of the battery. Examples of materials containing lithium-based metals include, in addition to metallic lithium, alloys containing metallic lithium or materials in which metallic lithium is supported on the surface.

本発明で用いられる活性炭は特に限定されず、その原料
は天然有機高分子、合成有機高分子またはピッチなるも
のが挙げられる。天然有機高分子にはやしから、しるが
し等が挙げられる。合成有機高分子にはポリビニルアル
コール、フェノール樹脂、ポリアクリロニトリル等のよ
うな純合成高分子の他繊維素置導体等のような半合成高
分子を包含する。
The activated carbon used in the present invention is not particularly limited, and raw materials include natural organic polymers, synthetic organic polymers, and pitch. Natural organic polymers include palm oil, shirugashi, and the like. Synthetic organic polymers include purely synthetic polymers such as polyvinyl alcohol, phenolic resin, polyacrylonitrile, etc., as well as semi-synthetic polymers such as fiber-based conductors.

本発明において用いられる“活性”とはその比表面積が
大きいことを意味する。一般にBET法による比表面積
が100 d19以上である。該比表面積は大きい程電
解質との接触面積が大きくなるため、電池性能は向上す
る。好ましい比表面積は、500 d/Q以上、更に好
ましくは1000 d19以上である。
"Activity" as used in the present invention means that the specific surface area is large. Generally, the specific surface area measured by the BET method is 100 d19 or more. The larger the specific surface area is, the larger the contact area with the electrolyte becomes, and thus the battery performance improves. A preferable specific surface area is 500 d/Q or more, more preferably 1000 d19 or more.

さらに本発明で用いられる活性炭は黒鉛的結晶構造が未
発達な程良好な電池性能を与えることを我々は種々の検
討の結果見い出した。活性炭の構造の研究にはBET法
における比表面積と同時にX線回折法が主な実験手段と
して用いられているが我々は黒鉛的結晶構造の度合をお
しはかる尺度としてIp/Ioというパラメータを最も
適当なものとして選定した。
Further, as a result of various studies, we have found that the less developed the graphitic crystal structure of the activated carbon used in the present invention is, the better the battery performance is. In researching the structure of activated carbon, the X-ray diffraction method is used as the main experimental method along with the specific surface area in the BET method. It was selected as appropriate.

炭素繊維も含め炭素材料の微視的構造の研究にはX線回
折法が主な実験手段であって黒鉛やカーr1A) ポンプラックだけではなく非晶質炭素(無定形炭素)に
ついても詳細に検討が行われている〔炭素材料(材料科
学シリーズ、共立出版)、第4章〕。
X-ray diffraction is the main experimental method used to study the microscopic structure of carbon materials, including carbon fibers (graphite and Kerr 1A). A study is underway [Carbon Materials (Materials Science Series, Kyoritsu Publishing), Chapter 4].

黒鉛結晶の(002)面に相当する炭素材料のX線回折
ピークの高さは芳香放縮金環に起因する結晶化度を示し
、半価幅は結晶子の大きさおよび均一性を示している(
日本化学会誌、1975、(9)、1551〜1554
頁)。
The height of the X-ray diffraction peak of the carbon material corresponding to the (002) plane of graphite crystal indicates the degree of crystallinity caused by the aromatic condensed ring, and the half-width indicates the size and uniformity of the crystallites. (
Journal of the Chemical Society of Japan, 1975, (9), 1551-1554
page).

実際のX線回折強度曲線(CuKα)から(002)面
の回折を用いた炭素の構造解析法について述べる。第1
図はポリアクリロニトリル系活性炭素繊維(比表面積的
1000rd/9)のX線回折強度曲線である。(00
2)面のX線回折ピークの両すそのに接線βを引き実測
曲線と接線との差をベースライン上に書き直し曲線工を
得る。曲線工の最大値IpおよびIpを示す回折角2θ
さらにその回折角2θにおける実測曲線の強度から空気
の散乱強度を差し引き強度IOを求める。空気の散乱強
度は試料のない状態で同一条件で走査して得られたもの
である。ここでIpは黒鉛的な結晶性構造に起因するX
線回折ピーク強度であり、(Io−IP)は非品性構造
に起因するX線散乱強度である。一般に回折ピーク強度
は結晶子の結晶サイズ、結晶化度の大きい程大きくなシ
結晶の発達の程度を示す。結晶サイズはピークのシャー
プさによシ定量(X−ray Diff、 Proce
dures+ P 537 (1954) )され多く
の活性炭の場合、(002)面の垂直方向の微結晶子の
サイズは10〜16Aであった。結晶化度は一般に全結
晶散乱強度の全散乱強度に対する割合であって、X線照
射体積中の結晶の体積分率を意味する〔繊維学会誌、3
1 (1975)、P2O3〜p214)。
A method for analyzing the structure of carbon using diffraction of the (002) plane from an actual X-ray diffraction intensity curve (CuKα) will be described. 1st
The figure shows an X-ray diffraction intensity curve of polyacrylonitrile activated carbon fiber (specific surface area: 1000rd/9). (00
2) Draw a tangent line β to both sides of the X-ray diffraction peak of the surface, and rewrite the difference between the measured curve and the tangent line on the baseline to obtain a curved line. Diffraction angle 2θ showing maximum value Ip and Ip of curved line
Furthermore, the intensity IO is determined by subtracting the air scattering intensity from the intensity of the measured curve at the diffraction angle 2θ. The air scattering intensity was obtained by scanning under the same conditions without a sample. Here, Ip is X due to the graphitic crystalline structure.
It is the line diffraction peak intensity, and (Io-IP) is the X-ray scattering intensity due to the defective structure. In general, the diffraction peak intensity indicates the degree of development of crystals, which increases as the crystal size and crystallinity of crystallites increases. The crystal size is determined by the sharpness of the peak (X-ray Diff, Process
In many activated carbons, the microcrystallite size in the direction perpendicular to the (002) plane was 10-16A. Crystallinity is generally the ratio of the total crystal scattering intensity to the total scattering intensity, and means the volume fraction of crystals in the X-ray irradiation volume [Journal of the Japan Textile Science Society, 3
1 (1975), P2O3-p214).

しかし炭素材料の場合、結晶部分と非晶部分とは構造的
に明確にわかれているものではなく〔J。
However, in the case of carbon materials, the crystalline portion and the amorphous portion are not clearly separated structurally [J.

Appl、 Phy、 13 (1942) 、P 3
64〜P371 、炭素化工学の基礎(オーム社)第1
章、炭素材料(共立出版)第4章〕、通常の結晶性高分
子の場合のように単純に結晶部分と非晶部分から成る二
相構造として内部構造をとらえるわけにはいかない。活
性炭の場合、非晶の海の中に極めて完全度の低い微結晶
子が分散し〔活性炭工業(共立出版)第2章〕、それら
の集合組織の黒鉛的結晶性領域からの干渉性散乱がIp
でsb、非品性領域からの非干渉性散乱が(Io−Ip
)である。
Appl, Phy, 13 (1942), P 3
64-P371, Basics of Carbonization Engineering (Ohmsha) No. 1
Chapter, Carbon Materials (Kyoritsu Publishing) Chapter 4], the internal structure cannot simply be understood as a two-phase structure consisting of a crystalline part and an amorphous part, as is the case with ordinary crystalline polymers. In the case of activated carbon, microcrystallites with extremely low degree of perfection are dispersed in an amorphous sea [Chapter 2 of Activated Carbon Industry (Kyoritsu Publishing)], and coherent scattering from graphitic crystalline regions of their texture occurs. IP
sb, the incoherent scattering from the non-quality region is (Io-Ip
).

本発明で用いられるパラメーターであるIP/I。IP/I is a parameter used in the present invention.

は黒鉛的結晶性構造の発達度合を示すものであシ、Ip
/Ioを黒鉛的結晶性構造パラメーターと呼ぶ。
indicates the degree of development of graphitic crystalline structure, Ip
/Io is called the graphitic crystalline structure parameter.

しかし活性炭の場合の結晶性構造の発達度合と通常の高
分子材料の場合のいわゆる結晶化度とは大きく相違する
のは前述したとうシであるが、活性炭の場合結晶部分と
非晶部分とは構造的に明確にわかれてはいない。充分に
発達した完全に近い黒鉛結晶ではIp/Ioは0.96
以上である。
However, as mentioned above, there is a big difference between the degree of development of the crystalline structure in activated carbon and the so-called degree of crystallinity in the case of ordinary polymer materials. It is not clearly defined structurally. For a fully developed, nearly perfect graphite crystal, Ip/Io is 0.96.
That's all.

Ip/Ioと比表面積とは詳細な検討によれば明確な相
関関係にはない。例えば市販の比表面積26004gの
フェノール系活性炭素繊維のIp/Ioは0.37であ
るのに対してほぼ同じ比表面積を有するポリビニルアル
コール系の活性炭素繊維のIp/Ioは0.07と極め
て小さかった。即ち、Ip/Ioは活性炭素繊維の出発
原料の影響を大きく受けていることが認められている。
According to a detailed study, there is no clear correlation between Ip/Io and specific surface area. For example, the Ip/Io of a commercially available phenolic activated carbon fiber with a specific surface area of 26,004 g is 0.37, whereas the Ip/Io of a polyvinyl alcohol-based activated carbon fiber with almost the same specific surface area is 0.07, which is extremely small. Ta. That is, it is recognized that Ip/Io is greatly influenced by the starting material of activated carbon fiber.

ポリビニルアルコール−1t料とした場合にはIp/I
oを極めて小さくする事が可能であるが、この場合でも
比表面積とIp/Ioとは明確な相関関係はなく比表面
積が2000 d19以上 上であるにもかかわらすIp/Ioが0.4以lのもの
も存在している。
When used as polyvinyl alcohol-1t material, Ip/I
It is possible to make o extremely small, but even in this case there is no clear correlation between the specific surface area and Ip/Io, and even though the specific surface area is 2000 d19 or more, Ip/Io is 0.4 or more. There are also 1.

本発明で用いられる活性炭は特に限定はされないが好ま
しくはIp/IOが0.5以下よシ好ましくは0.4以
下特に好ましくは0635以下のものを用いるのがよい
。このような活性炭を用いることにより特に優れた性能
の二次電池を得ることができる。
The activated carbon used in the present invention is not particularly limited, but preferably has an Ip/IO of 0.5 or less, preferably 0.4 or less, particularly preferably 0635 or less. By using such activated carbon, a secondary battery with particularly excellent performance can be obtained.

外吸収スペクトルによシCHの吸収が観察されない。No CH absorption is observed in the external absorption spectrum.

Ip/I oが0.35以下の場合電池性能はさらに大
幅に向上し放電電圧がヨウ素系の場合6.0■でほぼ一
定でちゃながらイオンの吸脱着レベルは12モルチとい
う極めて高いレベルにおいても安定な充放電が行えた。
When Ip/Io is 0.35 or less, the battery performance further improves significantly, and even though the discharge voltage is almost constant at 6.0 ■ for iodine-based batteries, the ion adsorption/desorption level remains at an extremely high level of 12 mol. Stable charging and discharging was possible.

Ip/Ioが0.5以上の場合においてもイオンの吸脱
着レベルが5モルチ程度において安定な充放電が行えた
。活性炭特に活性炭素繊維を用いた二次電池は従来から
様々報告されているが一般的に用いられる活性炭を用い
た場合には安定に吸脱着が行えるレベルが高々1モルチ
程度であるのを考慮すれば本発明によシイオンの吸脱着
レベルが大幅に向上したと言える。
Even when Ip/Io was 0.5 or more, stable charging and discharging could be performed at an ion adsorption/desorption level of about 5 mol. There have been various reports on secondary batteries using activated carbon, especially activated carbon fibers, but it should be taken into consideration that when using commonly used activated carbon, the level at which stable adsorption and desorption can be achieved is at most about 1 molt. It can be said that the present invention has significantly improved the adsorption/desorption level of ions.

Np/Ioが特に小さい活性炭の製法は同一出願人によ
る特願昭61−244719号に記載されている。
A method for producing activated carbon with a particularly low Np/Io is described in Japanese Patent Application No. 61-244719 by the same applicant.

本発明に用いる活性炭は繊維状、粉末状等その形状は任
意であるが、一般には繊維状であることが好ましい。そ
の形状が粉末である場合には各種のバインダー、例えば
フッ素樹脂の水性分散液によシ結合させ、シート状、フ
ィルム状等の任意の形状に成形して利用できる。また活
性炭が繊維状である場合は、フェルト状、布状、紙状等
の任意の形状であってもよい。これらは、公知の任意の
処理、例えばアルミニウム、チタイなどのネットや蒸着
膜による集電体を付与して電池の正極として用いられる
The activated carbon used in the present invention may have any shape, such as fibrous or powder, but is generally preferably fibrous. When the powder is in the form of powder, it can be used by binding it with various binders, such as an aqueous dispersion of fluororesin, and molding it into any shape such as a sheet or film. Moreover, when the activated carbon is fibrous, it may be in any shape such as felt, cloth, or paper. These are used as positive electrodes of batteries after being subjected to any known treatment, for example, by providing a current collector with a net or vapor-deposited film of aluminum, titanium, etc.

本発明による電池は従来の活性炭を用いた二次電池と比
較しより高いイオンの吸脱着レベルで充放電行うことが
できる。例えばアクリル系とかレーヨン系の活性炭素繊
維を正極としたリチウム二次電池において電解質として
一般的に用いられるLiCl0a とかLiBF4を使
用した場合には安定に吸脱着可能なレベルは炭素原子あ
たシ高々1〜2モルチであったが(第26回電池討論会
講演要旨集IA−15)、本発明の手法を用いることに
より安定に充放電可能なレベルを4〜6モル%まで上ケ
ることができた。またさらに放電電圧が平担化できると
いう効果もあった。
The battery according to the present invention can be charged and discharged at a higher level of ion adsorption and desorption than conventional secondary batteries using activated carbon. For example, when using LiCl0a or LiBF4, which are commonly used as electrolytes in lithium secondary batteries with acrylic or rayon activated carbon fiber as the positive electrode, the level at which they can be stably adsorbed and desorbed is at most 1 carbon atom. ~2 mol% (26th Battery Symposium Abstracts Collection IA-15), but by using the method of the present invention, it is possible to increase the level at which stable charging and discharging is possible to 4 to 6 mol%. Ta. Furthermore, there was also the effect that the discharge voltage could be leveled out.

Ip/Ioが0.3以下の主として非晶構造よりなる活
性炭素繊維を使用した場合には本発明の手法を用いるこ
とにより放電時の電圧を平担化しさらに充放電時の高電
圧部分を消失させることができた。
When using activated carbon fibers with an Ip/Io of 0.3 or less and mainly consisting of an amorphous structure, the method of the present invention can be used to flatten the voltage during discharge and further eliminate the high voltage portion during charging and discharging. I was able to do it.

本発明の二次電池において特に負極に金属リチウムを用
いヨウ素を使用した場合の放電時の電圧は約3.Ovで
一定であった。また臭素を使用した場合には放電時の電
圧は約6.5vで一定であった。
In the secondary battery of the present invention, especially when metallic lithium is used as the negative electrode and iodine is used, the voltage during discharge is approximately 3. It was constant at Ov. Further, when bromine was used, the voltage during discharge was constant at about 6.5V.

本発明の二次電池において電解質あるいは溶媒中に存在
する酸素や水分が電池の性能を低下させる場合があるた
めあらかじめ十分に精製しておくのがよい。
In the secondary battery of the present invention, oxygen and moisture present in the electrolyte or solvent may reduce the performance of the battery, so it is best to sufficiently purify it in advance.

本発明において、必要ならば例えばポリエチレン、ポリ
プロピレン、テフロン等の合成樹脂製の多孔質膜や天然
繊維を両極の間の隔膜として使用してもよい。また電池
は密閉式にして外界からの酸素や水分の混入を防止する
のがよい。
In the present invention, if necessary, a porous membrane made of synthetic resin such as polyethylene, polypropylene, Teflon, etc. or natural fiber may be used as a diaphragm between the two electrodes. It is also preferable that the battery be sealed to prevent oxygen and moisture from entering the battery from the outside world.

〔実施例〕〔Example〕

以下実施例により本発明をよシ具体的に説明する。 The present invention will be explained in more detail below using Examples.

合成例1 〔ポリビニルアルコール系繊維を出発原料とした活性炭
素繊維の合成〕 出発原料として平均重合度1700のPVA(ポリビニ
ルアルコール)水溶液よ多湿式紡糸法によシ紡糸したP
VA繊維(デニール1800d、フィラメント数100
Of、強度10.5 g/d 、伸度7%)から得た織
布を用いた。次に脱水・炭化剤として/Q4 s (NH4)2 SO4と(NH4)2HPO4の各50
9を1000gの水に溶解し、この水溶液を60°に加
温しその中に織布を5分間浸漬し、その後マングルで絞
液し、105°Cで3分間乾燥させた。脱水剤の付着率
は重量法で10チであった。この脱水剤の付着した織布
を210℃で30分間加熱する際に織布の1a幅当Bs
o gの低張力をかけることにより繊維の収縮率を制御
し40%とした。さらに炭化条件である630℃×10
分間とその後400℃X20分間の2段階で加熱する際
にも織布の1cI1幅当夛30qの低張力をかけて繊維
の収縮率を出発PVA繊維から見て60チとした。なお
その時の重量減少率は55チであった。以上の様に脱水
・炭化を行性炭素繊維シートを得た。N2ガスによるB
ET法の比表面積は2300 vf/Qであった。この
活性炭素繊維のX線回折強度曲線を理学電機株製回転対
陰極型X線回折装置T)’pe RAD−rAを用いて
測定した。測定条件は40 kV  100mA 、 
CuKa線(λ=1.5418人)、スリット1/2°
、0.15m、走査速度1°/−i、フルスケール80
0 cpsにおいて透過法で測定した。このようにして
求めたグラフを第2図に示した。2θが25°付近に存
在する筈の(002)面に基づくピークがほとんど消失
しておシ、主として非品性構造よシなる炭素繊維が生成
していることがわかった( Ip/Io = 0.07
 )。固体高分解能NMRを使用しMAS GATE法
によシ内部の微細構造の測定を行った。データーポイン
トは8K、サンプリングポイント1.5に、スキャン数
10000回、の条件で測定を行った。この結果を第3
図に示した。140 ppm付近にピークを有する曲線
が得られた事からグラファイト的六員環骨格を中心とす
る構造である事が確認された。
Synthesis Example 1 [Synthesis of activated carbon fiber using polyvinyl alcohol fiber as a starting material] P was spun by a high-humidity spinning method from a PVA (polyvinyl alcohol) aqueous solution with an average degree of polymerization of 1700 as a starting material.
VA fiber (denier 1800d, number of filaments 100
A woven fabric obtained from a fabric with a strength of 10.5 g/d and an elongation of 7% was used. Next, as a dehydration/carbonizing agent /Q4 s (NH4)2 SO4 and (NH4)2HPO4 each 50%
9 was dissolved in 1000 g of water, this aqueous solution was heated to 60°, the woven fabric was immersed in it for 5 minutes, and then the liquid was squeezed out with a mangle and dried at 105°C for 3 minutes. The adhesion rate of the dehydrating agent was 10% by weight. When heating the woven fabric with this dehydrating agent attached at 210°C for 30 minutes, Bs per 1a width of the woven fabric
The shrinkage rate of the fiber was controlled to 40% by applying a low tension of 0 g. Furthermore, the carbonization condition is 630℃×10
During heating in two steps: 1 minute and then 400° C. for 20 minutes, a low tension of 30 q per 1 cI 1 width of the woven fabric was applied to make the shrinkage rate of the fiber 60 cm as seen from the starting PVA fiber. The weight reduction rate at that time was 55 inches. As described above, a dehydrated and carbonized carbon fiber sheet was obtained. B with N2 gas
The specific surface area of the ET method was 2300 vf/Q. The X-ray diffraction intensity curve of this activated carbon fiber was measured using a rotating anode cathode type X-ray diffractometer T)'pe RAD-rA manufactured by Rigaku Denki Co., Ltd. The measurement conditions were 40 kV 100 mA,
CuKa line (λ = 1.5418 people), slit 1/2°
, 0.15m, scanning speed 1°/-i, full scale 80
Measured in transmission at 0 cps. The graph obtained in this manner is shown in FIG. It was found that the peak based on the (002) plane that should exist near 2θ of 25° almost disappeared, and carbon fibers with a non-standard structure were mainly produced (Ip/Io = 0 .07
). The internal fine structure was measured by the MAS GATE method using solid-state high-resolution NMR. Measurements were performed under the following conditions: 8K data points, 1.5 sampling points, and 10,000 scans. This result is the third
Shown in the figure. Since a curve having a peak around 140 ppm was obtained, it was confirmed that the structure was centered on a graphite-like six-membered ring skeleton.

表面反射赤外の結果を第4図に示したがC−Hの吸収は
まったく観察されずほぼ完全に炭素化している事が確認
された。また賦活条件を変化させることにより Ip/
Ioの異った数種の試料を合成した(表1)。
The surface reflection infrared results are shown in Figure 4, and no C-H absorption was observed, confirming almost complete carbonization. In addition, by changing the activation conditions, Ip/
Several samples with different Io were synthesized (Table 1).

合成例2 〔フェノール系繊維、アクリル系繊維、レーヨン系繊維
を原料とした活性炭素繊維の合成〕繊維化したフェノー
ル樹脂からなる織物を作シこれを炭素質とした後にスチ
ーム中1000°Cの条件で1時間賦活を行った。得ら
れた活性炭素繊維の比表面積は2300醗tであって、
Ip/Ioはo、37.2θは23.7°であった。ま
たさらに微細な構造を検討するために固体高分解能NM
Rおよび表面反射赤外の測定も行った(第5図および第
6図)。
Synthesis Example 2 [Synthesis of activated carbon fibers using phenolic fibers, acrylic fibers, and rayon fibers as raw materials] Fabrics made of fibrous phenol resin were made, and after making them carbonaceous, they were heated at 1000°C in steam. I activated it for 1 hour. The specific surface area of the obtained activated carbon fiber was 2300 tons,
Ip/Io was o and 37.2θ was 23.7°. In addition, solid-state high-resolution NM is used to examine even finer structures.
R and surface reflection infrared measurements were also carried out (Figures 5 and 6).

フェノール系活性炭素繊維はIp/Ioが大きい以外は
ポリビニルアルコール系のものとの構造的な違いはなか
った。
There was no structural difference between the phenol-based activated carbon fiber and the polyvinyl alcohol-based fiber except for a larger Ip/Io.

レーヨン繊維よシなる紡績糸からの織布を作シこの織布
をリン酸アンモニウム((NH4)2PO4)水溶液に
浸し、しぼシ後乾燥させリン酸アンモニウムを10チ含
浸させた後270°CのN2ガス中で30分間加熱し、
つづいて270℃から850°Cまで90分間を要して
昇温した。さらに水蒸気を40チ含むN2ガス中で10
00°Cで60分間賦活した。
A woven fabric was made from a spun yarn such as rayon fiber, and this woven fabric was soaked in an aqueous solution of ammonium phosphate ((NH4)2PO4), dried, impregnated with 10 grams of ammonium phosphate, and then heated at 270°C. Heat in N2 gas for 30 minutes,
Subsequently, the temperature was raised from 270°C to 850°C over a period of 90 minutes. 10 in N2 gas containing 40 ml of water vapor.
Activation was performed at 00°C for 60 minutes.

これによシ表面積が1650 vf/9でIP/Ioが
0.54の活性炭素繊維が得られた。
This resulted in activated carbon fibers having a surface area of 1650 vf/9 and an IP/Io of 0.54.

アクリル繊維の紡績糸からの織物にリン酸アンモニウム
((NH4)2804 )を10%付着させ270°C
の空気中で2時間、自由収縮を与えながら十分に酸化さ
せた後に1000℃で1時間賦活することによシ比表面
積1080m/gでIp/Ioが0.66の活性炭素繊
維が得られた。上記の試料の賦活条件と得られたものの
構造との関係を表2に示した。また賦活条件を変化させ
ることによシ比表面積の小さく25) 合成例3 〔フェノール系繊維を出発原料とし、主として非品性構
造よシなる活性炭素繊維の合成〕繊維化したフェノール
樹脂からなる織物を作シこれを炭素質とした後にスチー
ム中1000℃の条件で1時間賦活を行った。得られた
活性炭素繊維の比表面積は2300 vl/9であって
II)/Ioが0.37の活性炭素繊維を得た。この時
の収率は14%であった。さらにこれをスチーム900
℃の条件で1時間50分賦活を行った。得られた活性炭
素繊維のIp/Ioは0.20であった。この時の収率
は3チであった。
10% ammonium phosphate ((NH4)2804) was attached to a fabric made from spun acrylic fiber yarn at 270°C.
By fully oxidizing the fibers in air for 2 hours with free shrinkage and then activating them at 1000°C for 1 hour, activated carbon fibers with a specific surface area of 1080 m/g and Ip/Io of 0.66 were obtained. . Table 2 shows the relationship between the activation conditions of the above sample and the structure of the obtained product. In addition, by changing the activation conditions, the specific surface area can be reduced25) Synthesis Example 3 [Synthesis of activated carbon fibers with a mainly non-structural structure using phenolic fibers as a starting material] Fabrics made of fibrous phenolic resin After making it into carbonaceous material, it was activated in steam at 1000° C. for 1 hour. The obtained activated carbon fiber had a specific surface area of 2300 vl/9 and II)/Io of 0.37. The yield at this time was 14%. Furthermore, steam 900
Activation was performed for 1 hour and 50 minutes at ℃. Ip/Io of the obtained activated carbon fiber was 0.20. The yield at this time was 3.

合成例4 〔活性炭粉末の作製〕 合成例1(合成実験番号1)で得られた主として非品性
構造よシなる活性炭素繊維をボールミルで24時間粉砕
し主として非品性構造よりなる粉末状活性炭を得た。粒
度分布は350メツシユ下が99.6チであった。
Synthesis Example 4 [Preparation of Activated Carbon Powder] The activated carbon fibers obtained in Synthesis Example 1 (Synthesis Experiment No. 1), which mainly have a non-virtual structure, are ground in a ball mill for 24 hours to produce powdered activated carbon, which mainly has a non-virtual structure. I got it. The particle size distribution was 99.6 inches below 350 mesh.

実施例1 〔正極にヨウ素を吸着させた活性炭素繊維を用い、負極
に金属リチウムを用いた二次電池〕合成例1で得られた
ポリビニルアルコール系活性炭素繊維シート(Ip/I
o = o、 o 7.2600醗g)を真空ライン中
に入れ真空引きした後にヨウ素蒸気にさらしヨウ素の吸
着を行った。室温において40分間ヨウ素蒸気にさらす
ことによ、り60wt%の増量増加があった。このよう
にして得られたヨウ素を吸着させた活性炭素繊維を正極
に用い、負極側に金属リチウムを用いた二次電池をアル
ゴン雰囲気下で作製した。活性炭素繊維と金属リチウム
は厚さ0.5nのガラス繊維フィルタを介して両極に設
置された。電解液にはプロピレンカーボネートに過塩素
リチウムを1M/IIの濃度で溶解しさらにヨウ素(工
2)を0.2モル/lの濃度で溶解させたものを用いた
。集電用の電極として正負極とも白金メツシュを用いた
。用いたヨウ素吸着活性炭素繊維シートの大きさは1J
×1cIlであって重量は約9.5%+(活性炭素繊維
6岬9であった。
Example 1 [Secondary battery using activated carbon fibers with iodine adsorbed on the positive electrode and metallic lithium on the negative electrode] Polyvinyl alcohol-based activated carbon fiber sheet obtained in Synthesis Example 1 (Ip/I
o = o, o 7.2600 g) was placed in a vacuum line, evacuated, and then exposed to iodine vapor to adsorb iodine. Exposure to iodine vapor for 40 minutes at room temperature resulted in a weight increase of 60 wt%. A secondary battery was fabricated in an argon atmosphere using the activated carbon fibers adsorbed with iodine thus obtained as a positive electrode and metallic lithium as a negative electrode. Activated carbon fiber and metallic lithium were placed on both electrodes via a glass fiber filter with a thickness of 0.5 nm. The electrolytic solution used was one in which lithium perchlorate was dissolved in propylene carbonate at a concentration of 1 M/II and iodine (Process 2) was dissolved at a concentration of 0.2 mol/l. Platinum mesh was used for both the positive and negative electrodes for current collection. The size of the iodine adsorption activated carbon fiber sheet used was 1J.
x 1 cIl and the weight was approximately 9.5% + (activated carbon fiber 6 cape 9).

この二次電池の定電流充放電特性を測定した。The constant current charging and discharging characteristics of this secondary battery were measured.

二次電池セル組み立て直後のVoc (開放端電圧〕は
3.0■であった。電流密度を活性炭素繊維に対しQ、
Q677A/9として2時間充電を行った後回−電流で
放電させた(活性炭素繊維がすべて炭素原子からなると
仮定すると2時間充電あるいは放電を行うことによシ炭
素原子に対し6モ/l/俤に相当するイオンの吸脱着が
発生する)、放電は1時間55分行った。また放電時の
セル電圧が2Vtで低下した場合にはその時点で放電を
止め充電にうつった。
The Voc (open circuit voltage) immediately after the secondary battery cell was assembled was 3.0■.The current density was Q for the activated carbon fiber,
Q677A/9 was charged for 2 hours and then discharged with a current. The adsorption and desorption of ions corresponding to the amount of ions occurred), and the discharge was carried out for 1 hour and 55 minutes. Further, when the cell voltage during discharging decreased to 2 Vt, discharging was stopped at that point and charging started.

繰り返し充放電3回目から充放電曲線が安定した。第7
図に5回目の充放電曲線を示した。また電荷効率と繰り
返し回数との関係を第8図に示した。また充放電の繰シ
返しは200回程度まで行いそれ以上充放電可能なこと
も確認した。
The charging/discharging curve became stable from the third time of repeated charging/discharging. 7th
The figure shows the charge/discharge curve for the fifth time. Moreover, the relationship between charge efficiency and number of repetitions is shown in FIG. It was also confirmed that charging and discharging could be repeated up to about 200 times and that it was possible to charge and discharge for more than 200 times.

比較例1 〔正極に活性炭素繊維を使用し負極に金属リチウムを用
いた二次電池〕 合成例1で得られたポリビニルアルコール系活性炭素繊
維シート(Ip/Io = 0.07.250On?/
Q)を正極に使用し電解液には過塩素酸リチウムのプロ
ピレンカーボネート1M/II溶液を使用しその他の条
件は実施例1と同様にして二次電池セルを作製した。さ
らに実施例1と同様な条件で充放電曲線を測定し、この
結果を第7図に示した。
Comparative Example 1 [Secondary battery using activated carbon fiber for the positive electrode and metallic lithium for the negative electrode] Polyvinyl alcohol-based activated carbon fiber sheet obtained in Synthesis Example 1 (Ip/Io = 0.07.250On?/
A secondary battery cell was produced using Example 1 as the positive electrode and a 1M/II solution of lithium perchlorate in propylene carbonate as the electrolyte, with the other conditions being the same as in Example 1. Further, a charge/discharge curve was measured under the same conditions as in Example 1, and the results are shown in FIG.

実施例2 〔イオンの吸脱着レベルが12モルチの場合における充
放電実験〕 実施例1と同様な手法(同一試料、同一試料作製条件)
を用いイオンの吸脱着レベルが12モルチの場合におけ
る充放電実験を行った。電流密度を活性炭素繊維に対し
0.0677 A/gとして4時間充電を行った後回−
電流にて放電を行った。放電は3時間50分行った。ま
た放電時のセル電圧が2vまで低下した場合にはその時
点で放電を止め充電にうつった。
Example 2 [Charging and discharging experiment when the ion adsorption/desorption level is 12 molti] Same method as Example 1 (same sample, same sample preparation conditions)
A charging/discharging experiment was conducted using the ion adsorption/desorption level of 12 mol. After charging the activated carbon fiber for 4 hours at a current density of 0.0677 A/g -
Discharge was performed using electric current. Discharge was performed for 3 hours and 50 minutes. Further, when the cell voltage during discharging decreased to 2V, discharging was stopped at that point and charging started.

充放電曲線を第9図に示し、また電荷効率と繰シ返し回
数との関係を第8図に示した。
The charge/discharge curve is shown in FIG. 9, and the relationship between the charge efficiency and the number of repetitions is shown in FIG.

比較例2 〔正極に活性炭素繊維を使用し負極に金属リチウムを用
いた二次電池〕 比較例1と同様な手法を用いイオンの吸脱着レベルが1
2モルチの場合の充放電曲線を第9図に示した。
Comparative Example 2 [Secondary battery using activated carbon fiber for the positive electrode and metallic lithium for the negative electrode] Using the same method as Comparative Example 1, the ion adsorption/desorption level was 1.
The charge/discharge curve in the case of 2 molti is shown in FIG.

ヨウ素を吸着させた活性炭素繊維を正極に使用する事に
より放電電圧の平担化が行えた。また充放電時の電圧が
3.8v以上のいわゆる高電圧部分もなくすことができ
た。
By using activated carbon fiber with iodine adsorbed as the positive electrode, it was possible to level out the discharge voltage. Also, the so-called high voltage part where the voltage during charging and discharging is 3.8V or more could be eliminated.

実施例3 〔正極に臭素を吸着させた活性炭素繊維を用い、負極に
金属リチウムを用いた二次電池〕合成例1で得られたポ
リビニルアルコール系活性炭素繊維シート(IP/Io
= 0.07.2500d/9)を5M/lの濃度の臭
素のプロピレンカーボネート溶液に1時間浸し活性炭素
繊維に臭素を吸着させた。このようにして得られた臭素
を吸着させた活性炭素繊維を正極に用い負極側に金属リ
チウムを用いた二次電池をアルゴン雰囲気下で作製した
Example 3 [Secondary battery using activated carbon fibers with bromine adsorbed as the positive electrode and metallic lithium as the negative electrode] Polyvinyl alcohol-based activated carbon fiber sheet obtained in Synthesis Example 1 (IP/Io
= 0.07.2500d/9) was immersed in a propylene carbonate solution of bromine at a concentration of 5M/l for 1 hour to adsorb bromine onto the activated carbon fiber. A secondary battery was fabricated in an argon atmosphere using the activated carbon fibers adsorbed with bromine thus obtained as a positive electrode and metallic lithium as a negative electrode.

電解液にはプロピレンカーボネートに臭素を5M/lの
濃度で溶解しさらに臭化リチウムをIMAの濃度で溶解
したものを用い、その他の条件は実施例1と同様にして
セルを作製した。さらに実施例1と同様な条件で測定を
行った充放電曲線を第10図に示し繰シ返し安定性を第
11図に示した。
A cell was prepared in the same manner as in Example 1 except that an electrolytic solution containing bromine dissolved in propylene carbonate at a concentration of 5 M/l and lithium bromide dissolved at a concentration of IMA was used. Further, the charge/discharge curve measured under the same conditions as in Example 1 is shown in FIG. 10, and the cyclic stability is shown in FIG. 11.

臭素を用いた場合もヨウ素の場合と同様に放電電圧の平
担化を行うことができた。しかし臭素の場合には放電電
圧(負極リチウムを使用)が3.5■(開放端電圧)と
ヨウ素よシも0.5v高いところで一定なものとなった
。さらにイオンの吸脱着レベルが12モルチにおいても
充放電試験を行ったが、第10図に示すものとほぼ同一
な充放電曲線を示した。またサイクル充放電も安定に行
えた。
Even when bromine was used, the discharge voltage could be leveled as in the case of iodine. However, in the case of bromine, the discharge voltage (using negative electrode lithium) was 3.5V (open circuit voltage), which was constant at 0.5V higher than that of iodine. Furthermore, a charge/discharge test was also conducted at an ion adsorption/desorption level of 12 molti, and a charge/discharge curve almost identical to that shown in FIG. 10 was shown. In addition, cycle charging and discharging could be performed stably.

比較例3 〔電解質としてヨウ化リチウムを用いた活性炭素繊維リ
チウム二次電池〕 電解液として1M/lの濃度のヨウ化リチウムのプロピ
レンカーボネート溶液を用いた以外は比較例1と同様に
して二次電池セルを作製した。さらに実施例1と同様な
条件で充放電曲線を測定した。充放電曲線を第12図に
示しサイクル安定性を第11図に示した。
Comparative Example 3 [Activated carbon fiber lithium secondary battery using lithium iodide as the electrolyte] A secondary battery was produced in the same manner as in Comparative Example 1, except that a propylene carbonate solution of lithium iodide with a concentration of 1 M/l was used as the electrolyte. A battery cell was produced. Further, a charge/discharge curve was measured under the same conditions as in Example 1. The charge/discharge curve is shown in FIG. 12, and the cycle stability is shown in FIG. 11.

比較例4 〔電解質として臭化リチウムを用いた活性炭素繊維リチ
ウム二次電池〕 電解液として1M/IIの濃度の臭化リチウムのプロピ
レンカーボネート溶液を用いた以外は比較例1と同様に
して二次電池セルを作製した。さらに実施例1と同様な
条件で充放電曲線を測定した。
Comparative Example 4 [Activated carbon fiber lithium secondary battery using lithium bromide as the electrolyte] A secondary battery was produced in the same manner as in Comparative Example 1, except that a propylene carbonate solution of lithium bromide with a concentration of 1M/II was used as the electrolyte. A battery cell was produced. Further, a charge/discharge curve was measured under the same conditions as in Example 1.

充放電曲線を第12図に示しサイクル安定性を第11図
に示した。
The charge/discharge curve is shown in FIG. 12, and the cycle stability is shown in FIG. 11.

比較例5 〔ヨウ素イオン(I’−)を吸着させた活性炭素繊維を
正極として用いたリチウム二次電池〕 ヨウ化リチウムのプロピレンカーボネート溶液(IM#
)中において実施例1で使用したと同様の活性炭素繊維
シートを正極側として定電流条件これを溶液から取シ出
した。
Comparative Example 5 [Lithium secondary battery using activated carbon fiber adsorbed with iodide ions (I'-) as a positive electrode] Propylene carbonate solution of lithium iodide (IM#
), an activated carbon fiber sheet similar to that used in Example 1 was used as the positive electrode, and the sheet was taken out from the solution under constant current conditions.

このようにして得られたものを正極とし負極に(3す 金属リチウムを用いた二次電池を作製した。また電解液
にはヨウ化リチウムのグロピレンカーボネートI M/
l溶液を用いた。これを充放電曲線を実施例1と同様な
方法で測定した。充放電曲線は比較例3のものとほぼ同
一であって、電圧の平担な部分は極めてわずかであって
、ヨウ素イオンを吸着させたことによる効果はほとんど
認められなかった。
A secondary battery was fabricated using the thus obtained material as a positive electrode and a negative electrode (3 metal lithium).Also, as an electrolyte, lithium iodide glopylene carbonate IM/
l solution was used. The charge-discharge curve was measured in the same manner as in Example 1. The charge/discharge curve was almost the same as that of Comparative Example 3, and the voltage level portion was extremely small, and almost no effect of adsorbing iodine ions was observed.

実施例4 〔補助電解質を用いないヨウ素系リチウム二次電池〕 溶媒中に過塩素酸リチウムを添加しない以外は実施例1
と同様にして二次電池を作製した。この二次電池の充放
電曲線は実施例1で示したもの(第7図)とまったく同
一であって、またサイクル安定性も実施例1の場合と同
様に極めて良好であった。
Example 4 [Iodine-based lithium secondary battery without using auxiliary electrolyte] Example 1 except that lithium perchlorate is not added to the solvent
A secondary battery was produced in the same manner as above. The charge/discharge curve of this secondary battery was exactly the same as that shown in Example 1 (FIG. 7), and the cycle stability was also very good as in Example 1.

実施例5 実施例3と同様にして二次電池を作製した。この二次電
池の充放電曲線は実施例6で示したもの(第10図)と
まったく同一であった。またサイクル安定性も実施例3
の場合と同様に極めて良好であった。
Example 5 A secondary battery was produced in the same manner as in Example 3. The charge/discharge curve of this secondary battery was exactly the same as that shown in Example 6 (FIG. 10). In addition, the cycle stability was also measured in Example 3.
As in the case of , the results were extremely good.

実施例6 〔二次電池の耐媒としてγ−ブチロラクトンを使用した
場合の二次電池性能〕 電池溶媒としてγ−ブチロラクトンを使用した以外は実
施例1と同様な手法でリチウム二次電池を作製し、充放
電特性を測定した。
Example 6 [Secondary battery performance when γ-butyrolactone is used as a secondary battery resistance medium] A lithium secondary battery was produced in the same manner as in Example 1 except that γ-butyrolactone was used as a battery solvent. , the charge-discharge characteristics were measured.

充放電曲線は実施例1の場合と同一であってまたサイク
ル安定性も極めて良好であった。
The charge/discharge curve was the same as in Example 1, and the cycle stability was also very good.

実施例7 補助電解質としてホウフッ化すチウム(Li BF4 
)を使用した以外は実施例1と同様な手法でリチウム二
次電池を作製し、充放電特性を測定した。
Example 7 Li borofluoride (Li BF4) as an auxiliary electrolyte
) was used, but a lithium secondary battery was produced in the same manner as in Example 1, and the charge/discharge characteristics were measured.

充放電曲線は実施例1の場合と同一であってまたサイク
ル安定性も極めて良好であった。
The charge/discharge curve was the same as in Example 1, and the cycle stability was also very good.

比較例6 〔比表面積が100 vl/9よシ小さい炭素繊維を用
いた二次電池〕 合成番号6で得られた比表面積が100 trilQよ
シ小さい炭素繊維を用い実施例1と同様にしてヨウ素を
吸着させた、しかしこの場合には炭素繊維へのヨウ素の
吸着量は高々5wt4程度のものであって、それ以上ヨ
ウ素を吸着させることはできなかった。その他の条件は
まったく同一にしてリチウム二次電池を作製し、この充
放電曲線(充放電2回目)を第15図に示した。電荷効
率はわずか30%程度であシ、また安定な充放電はまっ
たく行えなかった。
Comparative Example 6 [Secondary battery using carbon fibers with a specific surface area smaller than 100 vl/9] Using the carbon fibers obtained in Synthesis No. 6 with a specific surface area smaller than 100 trilQ, iodine was added in the same manner as in Example 1. However, in this case, the amount of iodine adsorbed onto the carbon fiber was at most about 5wt4, and no more iodine could be adsorbed. A lithium secondary battery was produced under exactly the same conditions except for the above, and the charge/discharge curve (second charge/discharge) is shown in FIG. The charge efficiency was only about 30%, and stable charging and discharging could not be performed at all.

合成番号7.11.12の試料についても同様な実験を
行ったが、結果は合成番号6の場合とまったく同様であ
った。
Similar experiments were conducted on samples with synthesis numbers 7, 11, and 12, and the results were exactly the same as in the case of synthesis number 6.

上記の実験結果より比表面積が1o o vf/fよシ
小さい炭素繊維ではヨウ素を吸着させても良好な二次電
池を得られないことがわかった。
From the above experimental results, it was found that a carbon fiber having a specific surface area smaller than 1 o vf/f cannot produce a good secondary battery even if it adsorbs iodine.

実施例8 合成例1で得られたポリビニルアルコール系活性炭素に
代えて合成例2〜5及び8〜10によシ得られた活性炭
素繊維を用いる以外は実施例1に準じてヨウ素を60重
量%程度吸着させた活性炭素繊維を得た。次いで実施例
1と全く同様にして電池を組み立て、実施例1と同様に
繰シ返し充放電試験を行った。
Example 8 60 weight of iodine was added according to Example 1 except that the activated carbon fibers obtained in Synthesis Examples 2 to 5 and 8 to 10 were used in place of the polyvinyl alcohol-based activated carbon obtained in Synthesis Example 1. % adsorbed activated carbon fibers were obtained. Next, a battery was assembled in exactly the same manner as in Example 1, and a repeated charge/discharge test was conducted in the same manner as in Example 1.

いずれの場合もサイクル充放電の回数が3回目には安定
した。そのときの充放電曲線は実施例1の場合とほぼ同
一であった。放電電圧は開放端電圧3.0■の値で平担
化していた。サイクル安定性の結果を第14図及び第1
5図に示した。
In either case, the number of cycles of charging and discharging became stable after the third cycle. The charge/discharge curve at that time was almost the same as in Example 1. The discharge voltage leveled off at an open end voltage of 3.0 .mu.m. The cycle stability results are shown in Figure 14 and Figure 1.
It is shown in Figure 5.

以上の結果よシ、本発明の電池では、用いられた活性炭
素繊維の比表面積と電池性能との間には、明確な相関関
係はなく、むしろ、ポリビニルアルコールを原料とする
活性炭素がサイクル安定性を含めた電池性能に優れてい
ることが認められた。
According to the above results, in the battery of the present invention, there is no clear correlation between the specific surface area of the activated carbon fiber used and the battery performance.In fact, activated carbon made from polyvinyl alcohol has a stable cycle stability. It was recognized that the battery performance including battery performance was excellent.

実施例9 実施例8で組み立てた電池において、イオンの吸脱着レ
ベルを12モルチまで増大させて充放電を行ったところ
、合成番号2の活性炭素繊維シートでは放電電圧が平担
であり、且つ100回のサイクル充放電に対してはぼ8
0チ以上の電荷効率で安定に充放電が行えた。
Example 9 When the battery assembled in Example 8 was charged and discharged with the ion adsorption/desorption level increased to 12 molti, the activated carbon fiber sheet with synthesis number 2 showed a flat discharge voltage and 100 ml of activated carbon fiber sheet. Approximately 8 times the charge/discharge cycle
Stable charging and discharging was possible with a charge efficiency of 0 or more.

一方、その他の電池では、Ip/Ioが大きくなるに従
って、充放電に対する安定性の低下が大きくなった。
On the other hand, in other batteries, as Ip/Io increased, the stability against charging and discharging increased.

実施例10 合成例1で得られたポリビニルアルコール系活性炭に代
えて1合成例2〜5及び8〜10によシ得られた活性炭
素繊維を用いる以外は実施例3と全く同様な条件で臭素
を吸着させた活性炭素繊維を得た。次いで実施例5と全
く同様にして電池を組み立て、実施例3と同様に繰り返
し充放電試験を行った。
Example 10 Bromine was added under exactly the same conditions as in Example 3, except that activated carbon fibers obtained in Synthesis Examples 2 to 5 and 8 to 10 were used in place of the polyvinyl alcohol-based activated carbon obtained in Synthesis Example 1. Activated carbon fibers adsorbed were obtained. Next, a battery was assembled in exactly the same manner as in Example 5, and repeated charging and discharging tests were conducted in the same manner as in Example 3.

イオンの吸脱着レベルを6モルチとした場合、放電時の
開放端電圧は3.5Vであシ、放電期間を通してこの値
は安定であった。また、サイクル充放電に対する安定性
は、ヨウ素を吸着させた場合の実施例8とほぼ同一であ
って、極めて安定であった。
When the ion adsorption/desorption level was set to 6M, the open circuit voltage during discharge was 3.5V, and this value was stable throughout the discharge period. Further, the stability against cycle charging and discharging was almost the same as that of Example 8 in which iodine was adsorbed, and was extremely stable.

合成番号2の活性炭素繊維を用いた電池について、イオ
ンの吸脱着レベルを12モルチにして充放電を行ったが
、繰シ返し充放電に対し、3.5Vの開放端電圧を示し
、電圧が平担化した充放電が行えた。
A battery using activated carbon fiber of synthesis number 2 was charged and discharged at an ion adsorption/desorption level of 12 molti, but after repeated charging and discharging, it showed an open circuit voltage of 3.5V, and the voltage Even charging and discharging was possible.

比較例7 合成番号8〜10で得られた活性炭素繊維を正極とし、
電解液として過塩素酸リチウムのj M/1溶液を用い
た以外は実施例1と同様にしてリチウム二次電池を作製
した。イオンの吸脱着レベルが6モルチにおけるサイク
ル安定性を第16図に示した。
Comparative Example 7 Activated carbon fibers obtained in synthesis numbers 8 to 10 were used as a positive electrode,
A lithium secondary battery was produced in the same manner as in Example 1 except that a jM/1 solution of lithium perchlorate was used as the electrolyte. The cycle stability at an ion adsorption/desorption level of 6 molti is shown in FIG.

実施例8との対比により、活性炭にヨウ素を吸着させる
ことによシ、電極性能が格段に向上することが確認でき
る。
By comparison with Example 8, it can be confirmed that the electrode performance is significantly improved by adsorbing iodine to activated carbon.

実施例11 合成例4で得られた活性炭粉床に1owt%のテフロン
結着剤を加え、170°Cの温度で圧縮し、ペレット状
に成形した(直径1cM)。次いでこれに、実施例1に
準じてヨウ素を60重量%吸着さく4り せ、これを正極としてリチウム二次電池を作製した。実
施例1の場合と同様に6モルチの吸脱着レベルにおいて
、電荷効率90チ以上にて安定な充放電が行えた。
Example 11 1 wt % of Teflon binder was added to the activated carbon powder bed obtained in Synthesis Example 4, and the mixture was compressed at a temperature of 170°C to form a pellet (diameter 1 cM). Next, 60% by weight of iodine was adsorbed onto this as in Example 1, and a lithium secondary battery was produced using this as a positive electrode. As in the case of Example 1, stable charging and discharging could be performed at a charge efficiency of 90 cm or higher at an adsorption/desorption level of 6 molar.

実施例12 合成例1で得られた活性炭素繊維に約60vrt%のヨ
ウ素を吸着させた後これを正極として用いたコイン型リ
チウム二次電池をアルゴン置換のグローボックス中で組
み立てた、またこの時使用した電解液にはヨウ素を含ま
せない過塩素酸リチウムのプロピレンカーボネート溶液
を用いた(AM/11)。
Example 12 About 60vrt% of iodine was adsorbed onto the activated carbon fiber obtained in Synthesis Example 1, and a coin-type lithium secondary battery using this as a positive electrode was assembled in an argon-substituted glow box. The electrolytic solution used was a propylene carbonate solution of lithium perchlorate that did not contain iodine (AM/11).

この充放電性能を測定したが、実施例1の場合と同一の
充放電曲線およびサイクル安定性を得ることができた。
The charging/discharging performance was measured, and the same charging/discharging curve and cycle stability as in Example 1 could be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明の電池は小型・軽量・薄型化が容易であり、また
エネルギー密度が高いために電力針鼠用の二次電池とし
て工業的に非常に重要である。また本発明の電池は電圧
の平担性が極めて良いという特徴を有する。
The battery of the present invention can be easily made small, lightweight, and thin, and has a high energy density, so it is industrially very important as a secondary battery for power needle mice. Further, the battery of the present invention is characterized by extremely good voltage uniformity.

本発明の二次電池のサイクル安定性および電荷効率は、
イオンの吸脱着率が炭素原子あたシ6モルチの場合には
94〜100%という極めて高い効率において少なくと
も200回以上のサイクル充放電が可能である。また1
2モルチの場合でも100回以上のサイクル充放電が可
能である。
The cycle stability and charge efficiency of the secondary battery of the present invention are as follows:
When the adsorption/desorption rate of ions is 6 mol/carbon atom, charging/discharging cycles can be performed at least 200 times at extremely high efficiency of 94 to 100%. Also 1
Even in the case of 2 molti, it is possible to charge and discharge the battery 100 times or more.

このように本発明の電池の大きな特徴は高いイオンの吸
脱着率における高い電荷効率とサイクル安定性が良好な
事でありさらに電圧平担性が優れている。また本発明の
電池は出力密度が10〜20KW/#と鉛二次電池(1
,2KW/# ) 0:)約10〜20倍と極めて大き
い。
As described above, the major features of the battery of the present invention are high charge efficiency and good cycle stability at a high ion adsorption/desorption rate, and furthermore, excellent voltage flatness. In addition, the battery of the present invention has an output density of 10 to 20 KW/# and a lead secondary battery (1
, 2KW/#) 0:) It is extremely large, about 10 to 20 times.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第6図は本発明において好適に用いられる活性
炭の構造を確認するための図であシ、第1図はアクリル
系活性炭素繊維のX線回折強度曲線、第2図は主として
非品性構造よりなる活性炭素繊維のX線回折強度曲線、
第3図は主として非品性構造よりなる活性炭素繊維の固
体高分解能NMRスペクトル、第4図は表面反射赤外ス
ペクトル、第5図はフェノール系活性炭素繊維の固体高
分解能NMRスペクトル、第6図は表面反射赤外スペク
トルである。 第7図〜第16図は本発明の実施例と比較例における電
池の性能を比較するための図であり、第7図、第9図、
第10図、第12図、第13図は二次電池の充放電曲線
を示し、第8図、第11図、第14図〜第16図は二次
電池のサイクル安定性を示す図である。
Figures 1 to 6 are diagrams for confirming the structure of activated carbon suitably used in the present invention. Figure 1 is an X-ray diffraction intensity curve of acrylic activated carbon fiber, and Figure 2 is mainly a X-ray diffraction intensity curve of activated carbon fiber consisting of quality structure,
Figure 3 is a solid-state high-resolution NMR spectrum of an activated carbon fiber mainly consisting of a non-standard structure, Figure 4 is a surface reflection infrared spectrum, Figure 5 is a solid-state high-resolution NMR spectrum of a phenolic activated carbon fiber, and Figure 6 is the surface reflection infrared spectrum. FIGS. 7 to 16 are diagrams for comparing the performance of batteries in examples of the present invention and comparative examples, and FIGS.
Figures 10, 12, and 13 show the charge/discharge curves of the secondary battery, and Figures 8, 11, and 14 to 16 show the cycle stability of the secondary battery. .

Claims (5)

【特許請求の範囲】[Claims] (1)有機非水系極性溶媒に活性炭正極及び金属負極を
浸漬してなる電池において、活性炭及び/又は有機非水
系極性溶媒にヨウ素又は臭素を添加したことを特徴とす
る電池。
(1) A battery comprising an activated carbon positive electrode and a metal negative electrode immersed in an organic non-aqueous polar solvent, characterized in that iodine or bromine is added to the activated carbon and/or the organic non-aqueous polar solvent.
(2)活性炭の形態が繊維状である特許請求の範囲第1
項記載の電池。
(2) Claim 1, in which the activated carbon has a fibrous form.
Batteries listed in section.
(3)該活性炭としてポリビニルアルコール系樹脂を出
発原料とするものを用いる特許請求の範囲第1項又は第
2項記載の電池。
(3) The battery according to claim 1 or 2, in which the activated carbon is made from polyvinyl alcohol resin as a starting material.
(4)負極としてリチウム系の金属を用いる特許請求の
範囲第1項、第2項又は第3項記載の電池。
(4) The battery according to claim 1, 2, or 3, in which a lithium-based metal is used as the negative electrode.
(5)該活性炭のX線回折強度曲線の(002)面の回
折ピークにおける黒鉛的結晶性構造パラメーターIp/
Ioが0.35以下であることを特徴とする特許請求の
範囲第1項〜第5項記載の電池。
(5) Graphitic crystalline structure parameter Ip/at the diffraction peak of the (002) plane of the X-ray diffraction intensity curve of the activated carbon
The battery according to claims 1 to 5, characterized in that Io is 0.35 or less.
JP61310915A 1986-12-29 1986-12-29 Electric cell Pending JPS63168973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61310915A JPS63168973A (en) 1986-12-29 1986-12-29 Electric cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61310915A JPS63168973A (en) 1986-12-29 1986-12-29 Electric cell

Publications (1)

Publication Number Publication Date
JPS63168973A true JPS63168973A (en) 1988-07-12

Family

ID=18010911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61310915A Pending JPS63168973A (en) 1986-12-29 1986-12-29 Electric cell

Country Status (1)

Country Link
JP (1) JPS63168973A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002352855A (en) * 2001-05-25 2002-12-06 Yuasa Corp Lithium cell
WO2005029632A1 (en) 2003-09-19 2005-03-31 Lg Chem, Ltd. Nonaqueous lithium secondary battery with cyclability and/or high temperature safety improved
EP2146388A1 (en) * 2006-07-01 2010-01-20 The Gilette Company Lithium cell
JP2010020960A (en) * 2008-07-09 2010-01-28 Toyota Central R&D Labs Inc Nonaqueous electrolyte battery
EP2398094A1 (en) * 2007-12-05 2011-12-21 The Gillette Company Lithium cell
US8415074B2 (en) 2007-09-04 2013-04-09 Kabushiki Kaisha Toyota Chuo Kenkyusho Nonaqueous electrolyte battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835881A (en) * 1981-08-27 1983-03-02 Kao Corp Electrochemical cell
JPS61277156A (en) * 1985-06-03 1986-12-08 Mitsui Toatsu Chem Inc Zinc iodine secondary cell
JPS63110561A (en) * 1986-10-29 1988-05-16 Mitsubishi Petrochem Co Ltd Battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835881A (en) * 1981-08-27 1983-03-02 Kao Corp Electrochemical cell
JPS61277156A (en) * 1985-06-03 1986-12-08 Mitsui Toatsu Chem Inc Zinc iodine secondary cell
JPS63110561A (en) * 1986-10-29 1988-05-16 Mitsubishi Petrochem Co Ltd Battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002352855A (en) * 2001-05-25 2002-12-06 Yuasa Corp Lithium cell
WO2005029632A1 (en) 2003-09-19 2005-03-31 Lg Chem, Ltd. Nonaqueous lithium secondary battery with cyclability and/or high temperature safety improved
EP1671393A1 (en) * 2003-09-19 2006-06-21 LG Chem, Ltd. Nonaqueous lithium secondary battery with cyclability and/or high temperature safety improved
EP1671393A4 (en) * 2003-09-19 2009-11-11 Lg Chemical Ltd Nonaqueous lithium secondary battery with cyclability and/or high temperature safety improved
EP2146388A1 (en) * 2006-07-01 2010-01-20 The Gilette Company Lithium cell
US8415074B2 (en) 2007-09-04 2013-04-09 Kabushiki Kaisha Toyota Chuo Kenkyusho Nonaqueous electrolyte battery
EP2398094A1 (en) * 2007-12-05 2011-12-21 The Gillette Company Lithium cell
JP2010020960A (en) * 2008-07-09 2010-01-28 Toyota Central R&D Labs Inc Nonaqueous electrolyte battery

Similar Documents

Publication Publication Date Title
Tang et al. In-situ synthesis of carbon@ Ti4O7 non-woven fabric as a multi-functional interlayer for excellent lithium-sulfur battery
JP3541387B2 (en) Battery electrode, secondary battery using the same, and method of manufacturing battery electrode
US8900755B2 (en) Lithium super-battery with a chemically functionalized disordered carbon cathode
US5436092A (en) Non-aqueous secondary liquid battery
JPH087885A (en) Lithium secondary battery
US10388956B2 (en) Carbonaceous molded article for electrodes and method of manufacturing the same
JP3509050B2 (en) Lithium secondary battery and method of manufacturing the same
JPH04237971A (en) Nonaqueous electrolyte secondary battery
US11223064B2 (en) Multivalent metal ion battery having a cathode layer of protected graphitic carbon and manufacturing method
US10553873B2 (en) Graphitic carbon-based cathode for aluminum secondary battery and manufacturing method
US6623889B2 (en) Nonaqueous electrolyte secondary battery, carbon material for negative electrode, and method for manufacturing carbon material for negative electrode
JPH0282466A (en) Lithium secondary battery in which carbon fiber is used for both electrodes
JP2005209498A6 (en) Non-aqueous electrolyte secondary battery
CN114944476A (en) MoS 2 /Fe 2 O 3 Heterostructure @ porous carbon fiber composite material and preparation method and application thereof
JP2502986B2 (en) Activated carbon
KR102522173B1 (en) Anode active material coated with nitrogen-doped carbon for sodium ion secondary battery and method of preparing the same
JPS63168973A (en) Electric cell
JPH09153359A (en) Manufacture of lithium secondary battery negative electrode material and its negative electrode material
JP3402656B2 (en) Non-aqueous electrolyte battery
Wu et al. Research and application of carbon nanofiber and nanocomposites via electrospinning technique in energy conversion systems
JP2001035493A (en) Manufacture of secondary battery electrode carrier
JPS6391956A (en) Battery
JPS63164177A (en) Chargable and dischargable cell
JP3445906B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery using positive electrode active material
JP3973170B2 (en) Lithium ion secondary battery and method for producing electrode for lithium secondary battery