JPH0282466A - Lithium secondary battery in which carbon fiber is used for both electrodes - Google Patents

Lithium secondary battery in which carbon fiber is used for both electrodes

Info

Publication number
JPH0282466A
JPH0282466A JP63233759A JP23375988A JPH0282466A JP H0282466 A JPH0282466 A JP H0282466A JP 63233759 A JP63233759 A JP 63233759A JP 23375988 A JP23375988 A JP 23375988A JP H0282466 A JPH0282466 A JP H0282466A
Authority
JP
Japan
Prior art keywords
carbon
graphitization
lithium
degree
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63233759A
Other languages
Japanese (ja)
Other versions
JP2612320B2 (en
Inventor
Takashi Iijima
孝 飯島
Maki Sato
真樹 佐藤
Kenichi Fujimoto
研一 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Corp
Priority to JP63233759A priority Critical patent/JP2612320B2/en
Publication of JPH0282466A publication Critical patent/JPH0282466A/en
Application granted granted Critical
Publication of JP2612320B2 publication Critical patent/JP2612320B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To boost discharge capacity, improve charge/discharge stability, and reduce self-discharge by using an individually specific carbon fiber for a positive and negative electrodes. CONSTITUTION:For a positive electrode, to retain a large quantity of electricity quantity, the following pitch-system carbon fiber is used: one having high graphitization, that is, the pitch-system carbon fiber having the mean surface interval of a carbon layer surface of 3.40A or below and the size of a crystallite in the c-axis and a-axis derections of 200-800A and 200-1000A respectively. For a negative electrode, the following carbon fiber is used: one having a so- called disordered layer structure in which suitable turbulence exists and suitably graphitized, that is, the one having the mean surface interval of a carbon layer surface of 3.45-3.37A, the size of a crystallite in the c-axis and a-axis directions of 40-500A and 40-700A respectively, and the ratio of a pitch strength of 1360cm<-1> to a peak strength of 1580cm<-1> is 0.2 or more and 1.0 or below in the Raman spectrum using an argon laser. This enables discharge capacity to be boosted, the stability for repeated chargedischarge high, and self-discharge reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、黒鉛構造を有する炭素繊維を負極と正極の両
方の電極に用いた有機電解液リチウム二次電池に関する
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an organic electrolyte lithium secondary battery using carbon fibers having a graphite structure for both the negative and positive electrodes.

従来の技術 近年の電子機器の小型軽量化に伴って、放電容量が大き
く高電圧、即ち高エネルギー密度であり、且つ、長時間
安定して使用できる充放電可能な二次電池に対する要求
が高まってきている。
BACKGROUND OF THE INVENTION As electronic devices have become smaller and lighter in recent years, there has been an increasing demand for rechargeable and dischargeable secondary batteries that have a large discharge capacity, high voltage, or high energy density, and can be used stably for long periods of time. ing.

これらの要求を満足するものとして、炭素材を電極に用
いた様々な電池が報告されている0例えIf、活性炭、
或は、活性炭素tataを正極に用いたものがある(特
開昭55−99714号公報、特開昭58−22252
00号公報、特開昭58−138327号公報、特開昭
62−2285131号公報)、これらの電池はアニオ
ンの静電機的吸説着反応を活性炭、或は、活性炭素緻維
の広い表面積を利用して行うもので、一種の電気二重層
キャパシタであり、充放電に対する耐久性の高さが特徴
である。
Various batteries using carbon materials as electrodes have been reported to meet these requirements.
Alternatively, there are those using activated carbon tata for the positive electrode (Japanese Patent Application Laid-open No. 55-99714, Japanese Patent Application Laid-open No. 58-22252).
00, JP-A No. 58-138327, and JP-A No. 62-2285131), these batteries utilize the large surface area of activated carbon or activated carbon fibers to carry out the electrostatic adsorption reaction of anions. It is a type of electric double layer capacitor, and is characterized by its high durability against charging and discharging.

しかし、その放電容量は必ずしも大きくなく、また、キ
ャパシタであるから起電力は、Q=CV(Q:蓄Tjf
fi、C:静電容量、V:起電力)に表されるように蓄
Ml量に依存し、電池としては良好な放電特性を持つも
のではなかった。また、電気二重層キャパシタは、自己
放電が大きく電圧が経ll?的に減少するという欠点が
あった。
However, its discharge capacity is not necessarily large, and since it is a capacitor, the electromotive force is Q=CV (Q: storage Tjf
fi, C: capacitance, V: electromotive force) depends on the amount of stored Ml, and the battery did not have good discharge characteristics. Also, electric double layer capacitors have a large self-discharge and a high voltage. The disadvantage was that it decreased.

黒鉛、或は、黒鉛化度の発達した炭素材や炭素!a!a
を正極に用いた電池(特開昭58−135581号公報
、特開昭Eft−10882号公報、特開昭62−15
4584号公報、特開昭82−1851157号公報、
特開昭63−58783号公報)、負極に用いた電池(
特開昭EIO−182870号公報、特開昭82−82
869号公報、特開昭133−24555号公報)、更
に、両極に用いた電池(特開昭62−103991号公
報)が検討されている。これらは、いずれも結晶構造の
発達した炭素材の層間に負極であればリチウムイオンを
、正極であればアニオンをドープ、脱ドープする反応、
即ち、電気化学的な黒鉛層間化合物の生成分解反応を電
極に利用したものである。
Graphite or carbon material or carbon with a developed degree of graphitization! a! a
Batteries using as the positive electrode (JP-A-58-135581, JP-A-10882, JP-A-62-15
No. 4584, JP-A-82-1851157,
JP-A No. 63-58783), the battery used for the negative electrode (
JP-A No. 182870, JP-A No. 82-82
No. 869, Japanese Patent Application Laid-Open No. 133-24555), and a battery used for both electrodes (Japanese Patent Laid-Open No. 62-103991) has been studied. These are all reactions in which lithium ions are doped and dedoped between layers of a carbon material with a developed crystal structure in the case of a negative electrode, and anions in the case of a positive electrode.
That is, the electrochemical production and decomposition reaction of a graphite intercalation compound is utilized in the electrode.

正極の場合には、次の反応を利用する。In the case of a positive electrode, the following reaction is used.

nC+X   −−−+  CnX+e−(x:アニオ
ン種) ここで、nの値は電極中に収容できる電気量に対応し、
nの値が小さいほど電極として望ましい。
nC+X −−−+ CnX+e− (x: anion species) Here, the value of n corresponds to the amount of electricity that can be accommodated in the electrode,
The smaller the value of n, the more desirable the electrode is.

一般にnは、用いる炭素材の黒鉛化度に依存する。黒鉛
化度とは、炭素材の結晶構造がどの程度黒鉛に近いかを
表す概念であり、例えば、X線回折図形や、ラマン散乱
スペクトルに基づく定量化が一般的に利用されている。
In general, n depends on the degree of graphitization of the carbon material used. The degree of graphitization is a concept expressing how close the crystal structure of a carbon material is to graphite, and for example, quantification based on an X-ray diffraction pattern or a Raman scattering spectrum is generally used.

そして上の電極反応の場合には、黒鉛化度が高いほどn
は小さくなり、即ち放電容量は大きくなる事が知られて
いる。
In the case of the above electrode reaction, the higher the degree of graphitization, the more n
It is known that the discharge capacity becomes smaller, that is, the discharge capacity becomes larger.

黙しながら、単に黒鉛化度だけで電極に対する適合性を
判断することは出来ない、黒鉛化度の非常に高い黒鉛粉
末は、充放電に対する安定性が悪く実用には適さない、
これは、アニオンがドープすることで炭素層の面11I
IwAが増大するが、黒鉛粉末は構造的安定性に乏しく
、このC軸方向の膨張に耐えられず崩壊するためである
However, it is not possible to judge suitability for electrodes simply by the degree of graphitization. Graphite powder with a very high degree of graphitization has poor stability against charging and discharging, making it unsuitable for practical use.
This is because the surface 11I of the carbon layer is doped with anions.
This is because although IwA increases, graphite powder has poor structural stability and cannot withstand expansion in the C-axis direction and collapses.

そこで、高黒鉛化度、構造的安定性という観点から炭素
繊維が注目される。
Therefore, carbon fiber is attracting attention from the viewpoint of high graphitization degree and structural stability.

炭素繊維の中では、ピッチ系炭素繊維が最も適当である
。PAN系炭素mmは機械的強度ではピッチ系炭素繊維
と同等であるが黒鉛化度に於いて劣り、事実、アニオン
を殆どドープせず、正極には適さない。
Among carbon fibers, pitch-based carbon fibers are most suitable. PAN-based carbon mm is equivalent to pitch-based carbon fiber in mechanical strength, but is inferior in graphitization degree, and in fact is hardly doped with anions, making it unsuitable for positive electrodes.

然しながら、従来検討されてきたピッチ系炭素繊維は、
黒鉛層間化合物を電極に利用するという観点からすると
必ずしも最適化が追求されきれておらず、放電容量が小
さいという問題があった。
However, the pitch-based carbon fibers that have been studied so far are
From the perspective of using graphite intercalation compounds in electrodes, optimization has not necessarily been pursued, and there has been a problem that the discharge capacity is small.

負極の場合には、次の反応を利用する。In the case of a negative electrode, the following reaction is used.

nC+Li”+e−−−+  CnLinの大きさが負
極に用いる炭素材に依存するのは正極と同じであるが、
負極に適する炭素材の構造は正極とは全く異なる。即ち
、正極では高い黒鉛化度が要求されるのに対して、負極
では乱層構造と言われるような適度に乱れ、適度に黒鉛
化した炭素材が要求されるのである。これはリチウムを
ドープした黒鉛W 171化合物の電解液中での安定性
に起因するものである。この安定性は炭素材の結晶構造
に強く依存し、積層構造の整った、即ち、高い黒鉛化度
を持った炭素材の黒鉛層間化合物は電解液中で不安定で
あり、従って自己放電がはげしく、更に放電容量が小さ
いのに対し、乱層構造を持った炭素材の黒鉛層間化合物
は非常に安定性が高く、放電容量も大きくすることが出
来る。
nC+Li"+e----+ The size of CnLin depends on the carbon material used for the negative electrode, as in the positive electrode,
The structure of the carbon material suitable for the negative electrode is completely different from that of the positive electrode. That is, while the positive electrode requires a high degree of graphitization, the negative electrode requires a carbon material that is moderately disordered and appropriately graphitized, such as having a turbostratic structure. This is due to the stability of the lithium-doped graphite W 171 compound in the electrolyte. This stability strongly depends on the crystal structure of the carbon material, and the graphite intercalation compound of a carbon material with a well-ordered layered structure, that is, a high degree of graphitization, is unstable in the electrolyte, and therefore self-discharge is severe. Furthermore, the discharge capacity is small, whereas the carbon material graphite intercalation compound having a turbostratic structure has very high stability and can increase the discharge capacity.

このような乱層構造をもった炭素材としてCvD技術を
利用して製造した炭素薄膜を黒鉛化した熱分解黒鉛が報
告されている(特開昭62−202809号公報、特開
昭83−24555号公報)、熱分解黒鉛は非常に炭素
層面の配向性の高いのが特徴で、しかも適度な乱F9構
造を持ち、高い充放電安定性を示す、然しなから、薄膜
状であるが故に高い″W流密度で充放電することは出来
ず、またドープに伴うC軸方向への膨張に依る極材の変
形等の問題点を有している。
As a carbon material with such a turbostratic structure, pyrolytic graphite, which is obtained by graphitizing a carbon thin film produced using CvD technology, has been reported (Japanese Patent Laid-Open No. 62-202809, Japanese Patent Laid-open No. 83-24555). Pyrolytic graphite is characterized by a highly oriented carbon layer, and has a moderately disordered F9 structure, and exhibits high charge/discharge stability. "Charging and discharging cannot be performed at the W flow density, and there are problems such as deformation of the electrode material due to expansion in the C-axis direction due to doping.

これに対し表面植の広さや力学的強度の強さから乱層構
造を持った炭素m維を負極に用いたものも検討されてい
るが、必ずしも乱層41i造に対する制御がなされてお
らず、また、最適化の条件も掴みきれていなかった。従
って、放電容量や自己放電に関して問題点を残していた
On the other hand, carbon fibers with a turbostratic structure have been considered for the negative electrode due to their wide surface area and strong mechanical strength, but the turbostratic structure has not necessarily been controlled. Furthermore, the conditions for optimization were not fully understood. Therefore, problems remain regarding discharge capacity and self-discharge.

発明が解決しようとする課題 本発明は、上記のごとき現状を鑑みてなされたもので、
正極、負極ともに炭素繊維を用い放電容量が大きく、緑
り返し充放電に対する安定性が高く、自己放電が少ない
、リチウム二次電池を提供することを目的とする。
Problems to be Solved by the Invention The present invention has been made in view of the current situation as described above.
The object of the present invention is to provide a lithium secondary battery that uses carbon fibers for both the positive and negative electrodes, has a large discharge capacity, has high stability against green charging and discharging, and has little self-discharge.

課題を解決するための手段 本発明は、正極、負極に、各々特定の炭素繊維を使用す
ると、放電容量が大きく、充放電安定性にも優れ、自己
放電が少ない、非常に優れたリチウム二次電池が得られ
るとの発見をもとに完成されたものである。
Means for Solving the Problems The present invention provides an extremely excellent lithium secondary battery that has a large discharge capacity, excellent charging/discharging stability, and little self-discharge by using specific carbon fibers for the positive and negative electrodes. It was completed based on the discovery that batteries could be obtained.

本発明は、リチウム塩を有機溶媒に溶解した有機電解液
を用いたリチウム二次電池に於いて、正極には、黒鉛化
度が高く、且つ、機械的強度に優れた炭素繊維を活物質
として用い、アニオンのドーピング、脱ドーピング反応
を電極反応に利用し、負極には、適度な黒鉛化度と適度
な乱れとを併せ持った乱層構造の炭素m維を活物質とし
て用い、リチウムイオンのドーピング、脱ドーピング反
応を電極反応に利用することを特徴とする炭素繊維を両
極に用いたリチウム二次電池である。
The present invention provides a lithium secondary battery using an organic electrolyte in which lithium salt is dissolved in an organic solvent, in which the positive electrode uses carbon fiber with a high degree of graphitization and excellent mechanical strength as an active material. Anion doping and dedoping reactions are used in the electrode reaction, and carbon fibers with a turbostratic structure with an appropriate degree of graphitization and appropriate disorder are used as the active material in the negative electrode, and lithium ion doping is carried out. This is a lithium secondary battery using carbon fiber for both electrodes, which is characterized by utilizing a dedoping reaction in the electrode reaction.

すなわち、正極には、多量の電気量を収容できるように
黒鉛化度の高いピッチ系炭素繊維、つまり炭素層面の平
均面間隔が3.40A以下で、C軸方向及び、a軸方向
の結晶子の大きさが、各々。
That is, the positive electrode is made of pitch-based carbon fiber with a high degree of graphitization, that is, the average interplanar spacing of the carbon layer planes is 3.40A or less, and crystallites in the C-axis direction and the a-axis direction so as to accommodate a large amount of electricity. The size of each.

200〜800 A、  200〜1000Aであるピ
ッチ系炭素1alaを用い、負極には、乱層構造と言わ
れるような適度に乱れ、適度に黒鉛化した炭素繊維、つ
まり炭素層面の平均面間隔が3.45〜3.37A、C
軸方向及び、a軸方向の結晶子の大きさが、各々、40
〜500 A、 40〜700 Aで、且つ、アルゴン
レーザーを用いたラマンスペクトルにおける1580c
m−’のピーク強度に対する1380cm−’のピーク
強度の比が0.2以上1.0以下である炭素繊維を用い
たことを4.1F徴とする炭素m維を両極に用いたリチ
ウム二次電池である。
200-800 A, 200-1000 A pitch-based carbon 1ala is used, and the negative electrode is made of moderately disordered and moderately graphitized carbon fibers with a so-called turbostratic structure, that is, the average interplanar spacing of the carbon layer planes is 3. .45~3.37A,C
The crystallite sizes in the axial direction and the a-axis direction are each 40
~500 A, 1580c in the Raman spectrum at 40-700 A and using an argon laser
A lithium secondary battery using carbon m-fibers for both electrodes, with carbon fibers having a ratio of 0.2 to 1.0 as the ratio of the peak intensity at 1380cm-' to the peak intensity at m-' being 4.1F. It's a battery.

以下、正極、負極の順に電極に用いる炭素繊維に関する
詳細を説明する。
Hereinafter, details regarding the carbon fibers used for the electrodes will be explained in the order of the positive electrode and the negative electrode.

正極に用いる黒鉛化度が高く、且つ機械的強度に優れた
炭素m維とは、石炭ピッチ、或は1石油ピッチを原料と
したピッチ系炭素繊維を、不活性ガス中で2000℃以
上、好ましくは2500℃以上で黒鉛化処理を施したと
ころのものである・ここで正極に適する黒鉛化度、機械
的強度とは以下に規定されるものでる。
Carbon fibers with a high degree of graphitization and excellent mechanical strength used in the positive electrode are pitch-based carbon fibers made from coal pitch or petroleum pitch, preferably at 2000°C or higher in an inert gas. is one that has been subjected to graphitization treatment at 2500° C. or higher. The degree of graphitization and mechanical strength suitable for the positive electrode are defined below.

一般に炭素材の黒鉛化度を表す指標としてX線回折法に
依る績層の面間隔d、:a軸方向の結晶子の大きさLa
、a軸方向の結晶子の大きさLcという三種のパラメー
タを用いることができる。そしてこれらの指標を用いれ
ば、理想的な黒鉛は、d =3.354 Aテ、La、
Lcは無限大であり、黒鉛化度が低下するに従ってdは
大きくなり、La。
In general, as an index expressing the degree of graphitization of carbon materials, the interplanar spacing d of the layers is determined by X-ray diffraction method: The size of crystallites in the a-axis direction La
, and the crystallite size Lc in the a-axis direction. Using these indicators, ideal graphite has d = 3.354 Ate, La,
Lc is infinite, d increases as the degree of graphitization decreases, and La.

Lcは小さくなる。Lc becomes smaller.

本発明に用いる正極の炭素m維は、上記のX線回折法に
よる黒鉛化度のパラメータが、d = 3.40A以下
、Lc= 200〜800 A、 La= 200〜1
000Aで規定されるもので、更に詳しくは、上記黒鉛
化度の規定範囲の中で、面間隔dが小さくLaが大きい
、且つ、Lcが小さいような炭素m維が好ましい。
The carbon m-fiber of the positive electrode used in the present invention has graphitization degree parameters determined by the above-mentioned X-ray diffraction method: d = 3.40 A or less, Lc = 200-800 A, La = 200-1
000A, and more specifically, carbon m fibers having a small interplanar spacing d, a large La, and a small Lc within the above specified range of graphitization degree are preferable.

また、一般に機械的強度と言えば、引張試験、曲げ試験
などに依る強度を指すが、ここに表現される機械的強度
とは必ずしも引張強度、曲げ強度に対応するような機械
力学的な強度ではなく、アニオンのドープ、脱ドープに
伴う炭素層の積層面間隔の膨張収縮に対しての炭素Fa
維の強度を意味する。そして、上記の黒鉛化度を持った
前記ピッチ系炭素mMkは、この意味での十分な機械的
強度を有するのである。
In addition, mechanical strength generally refers to strength determined by tensile tests, bending tests, etc., but the mechanical strength expressed here does not necessarily mean mechanical strength that corresponds to tensile strength or bending strength. Carbon F
It means the strength of fibers. The pitch-based carbon mMk having the above graphitization degree has sufficient mechanical strength in this sense.

上記の黒鉛化度、機械的強度を有する炭素m維を、特に
正極に選択するのは以下の理由に因る。
The reason why carbon fibers having the above graphitization degree and mechanical strength are particularly selected for the positive electrode is as follows.

即ち、正極では1例えばC1! 04−のようなイオン
半径のかなり大きなアニオンの炭素層間でのドープ、脱
ドープ反応が行われるが、この反応が完全に可逆的に行
われるためには、アニオンの巨大性の故に堅固な構造を
持つ結晶性の高い炭素層が要求される。これは、Laが
大きいこと、そして、その結果としてdが小さいことを
要求するものである。
That is, at the positive electrode, 1, for example, C1! Doping and dedoping reactions occur between carbon layers of anions with a fairly large ionic radius such as 04-, but in order for this reaction to occur completely reversibly, it is necessary to have a rigid structure due to the huge size of the anion. A carbon layer with high crystallinity is required. This requires that La be large and, as a result, that d be small.

他方、イオン半径のかなり大きなアニオンの炭素層間へ
のドープ、脱ドープ反応は炭素層の面間隔の大きな変化
を伴いC軸方向の歪みを生じる。
On the other hand, doping and dedoping reactions between carbon layers with an anion having a considerably large ionic radius cause distortion in the C-axis direction accompanied by a large change in the interplanar spacing of the carbon layers.

反応の可逆性を高めるにはこの歪みの影響を小さくする
必要があり、従ってLcが小さい事が要求される0以上
まとめると、正極に用いる炭素材に要求される黒鉛化度
は、 d:小さい、La:大きい、LC:小さいとなる。
In order to increase the reversibility of the reaction, it is necessary to reduce the influence of this strain, and therefore Lc is required to be small.To summarize, the degree of graphitization required for the carbon material used for the positive electrode is: d: small , La: large, LC: small.

ところで、これら三種の指標は、実は相互に独立ではな
く次の相関を持つ、即ち、dが小さければ、黒鉛構造が
発達していることを意味するから、当然La、Lcは大
きくなる。従って、正極に要求される上の条件は本来相
反するものである0本発明の特徴の一つは、以下に示す
ように、石炭ピッチ、或は、石油ピッチを原料とした特
定のピッチ系炭素繊維を用いることでこの条件を実現し
たことである。
By the way, these three types of indicators are actually not independent from each other but have the following correlation. That is, if d is small, it means that the graphite structure is developed, so naturally La and Lc become large. Therefore, the above conditions required for the positive electrode are originally contradictory. One of the features of the present invention is that, as shown below, a specific pitch-based carbon made from coal pitch or petroleum pitch is used as a raw material. This condition was achieved by using fibers.

一般にピッチ系炭素m維は種々の炭素amの中でも特に
黒鉛化度を高くすることが可能である。
In general, pitch-based carbon m fibers can have a particularly high degree of graphitization among various carbon ams.

それは、ピッチは元来多環芳香族性に富み、炭素層面の
成長、及び、積層構造の発達が容易な為である。更に、
黒鉛化した際の結晶子の大きさに関しても製造過程に依
って成る程度制御することができる。即ち、d、La、
Lcを制御することが可能である。
This is because pitch is originally rich in polycyclic aromaticity, and the growth of the carbon layer surface and the development of the laminated structure are easy. Furthermore,
The size of crystallites upon graphitization can also be controlled to a certain extent depending on the manufacturing process. That is, d, La,
It is possible to control Lc.

従って、正極に適する黒鉛化度を持った炭素繊維を得る
には、例えば、以下の手段を採用すればよい、即ち、高
い黒鉛化性ピッチを原料に用い、結晶子の大きさ、特に
Lcの大きさを小さくするように制御すれば、正極に要
求される黒鉛化度が正に実現できるのである。
Therefore, in order to obtain carbon fibers with a degree of graphitization suitable for positive electrodes, for example, the following method may be adopted: using a highly graphitizable pitch as a raw material, and controlling the crystallite size, especially Lc. If the size is controlled to be small, the degree of graphitization required for the positive electrode can be achieved exactly.

更に、ピッチ系炭素m維は、その断面における炭素層面
の配向に関して制御することが出来る。
Furthermore, the orientation of the carbon layer plane in the cross section of the pitch-based carbon m-fiber can be controlled.

即ち、断面に於ける炭素層面の配向が、オニオン構造、
放射状構造、ランダム構造のものを自由に制御すること
が出来る。アニオンのドープ、脱ドープは、炭素層の端
面を反応の場とするのであるから、反応を容易に行わせ
るためには炭素層端面と電解液との接触する面積が大き
くなければならない、従って、電極に用いる炭素m維は
、上記の黒鉛化度を持ったピッチ系炭素繊維の中で、特
に断面に於ける炭素層面の配向が、放射状構造、或は、
ランダム構造のものが好ましい。
That is, the orientation of the carbon layer plane in the cross section has an onion structure,
Radial structures and random structures can be freely controlled. In doping and dedoping of anions, the end face of the carbon layer is used as the reaction site, so in order to facilitate the reaction, the contact area between the end face of the carbon layer and the electrolyte must be large. Among pitch-based carbon fibers having the above-mentioned degree of graphitization, the carbon fibers used in the electrode have a radial structure or
A random structure is preferred.

このような他の炭素繊維には無いピッチ系炭素繊維の自
由度の広さ、即ち、黒鉛化度の制御、断面に於ける配向
構造の制御などに着目し、これを利用して正極に最適な
炭素繊維を得るということが、本発明に於て非常に重要
な点である。
We focused on the wide degree of freedom of pitch-based carbon fibers that other carbon fibers do not have, that is, the control of the degree of graphitization and the control of the orientation structure in the cross section, and utilized this to create the ideal material for positive electrodes. It is a very important point in the present invention to obtain a carbon fiber with a high quality.

負極に用いる適度な黒鉛化度と適度な乱れとを併せ持っ
た乱層構造の炭素繊維とは、正極と同じく石炭ピッチ、
或は、石油ピッチを原料としたピッチ系炭素m維や、ポ
リアクリロニトリルを原料としたポリアクリロニトリル
系炭素#a維(PAN系炭素jam> 、  レーヨン
系炭素繊維、或はフェノール系炭素繊維など種々の原料
を基にした炭素繊維を、不活性ガス中で2000℃以上
、好ましくは2500℃以上で黒鉛化処理を施したとこ
ろのものである。
The carbon fiber with a turbostratic structure, which has both an appropriate degree of graphitization and appropriate disorder, is used for the negative electrode, and is made of coal pitch,
Alternatively, various types of fibers such as pitch-based carbon m fibers made from petroleum pitch, polyacrylonitrile-based carbon #a fibers made from polyacrylonitrile (PAN-based carbon jam>, rayon-based carbon fibers, or phenol-based carbon fibers) may be used. Carbon fibers based on raw materials are subjected to graphitization treatment at 2000° C. or higher, preferably 2500° C. or higher in an inert gas.

ここで、負極に適する適度な黒鉛化度、適度な乱れとを
持った乱層構造とは以下に規定されるものである。
Here, the turbostratic structure having an appropriate degree of graphitization and appropriate disorder suitable for a negative electrode is defined below.

一般に黒鉛化度を規定する指標として、正極の黒鉛化度
の規定に用いたようにXli回折法による三種のパラメ
ータの他に、ラマン分光法に於けるスペクトル形状を採
ることが出来る。一般にアルゴンレーザー(波長: 5
145A)を光源として炭素材のラマンスペクトルを測
定すると、1580c層−11360cm−’付近に二
つのピークが現れる。前者は。
In general, as an index for defining the degree of graphitization, in addition to the three parameters determined by the Xli diffraction method used to define the degree of graphitization of the positive electrode, the spectral shape determined by Raman spectroscopy can be used. Generally, argon laser (wavelength: 5
When the Raman spectrum of the carbon material is measured using 145A) as a light source, two peaks appear near the 1580c layer - 11360 cm-'. The former.

黒鉛構造に由来するもので、後者は、炭素材の乱層構造
に由来するものである。従って、この二つのピークの相
対的な強度比に依って炭素材の黒鉛化度を知ることが出
来る。このラマンスペクトルに依る乱層構造の評価は、
乱層構造に対応するピークが直vi1360c■′″1
のピークとして現れるので、非常に有効である。
The latter is derived from the graphite structure, and the latter is derived from the turbostratic structure of the carbon material. Therefore, the degree of graphitization of the carbon material can be determined by the relative intensity ratio of these two peaks. The evaluation of the turbostratic structure based on this Raman spectrum is
The peak corresponding to the turbostratic structure is straight vi1360c■'''1
It is very effective because it appears as a peak.

本発明における負極に適する炭素繊維の黒鉛化度は、X
線回折法に於ける指標が、d = 3.45〜3.3?
A、 Lc=40〜500 A、 La=40〜700
 Aテ規定されるものであり、且つ、上記の1580c
m−’のピーク強度に対する1 360 c m−’の
ピーク強度の比が、0.2以上1.0以下のものである
The graphitization degree of carbon fiber suitable for the negative electrode in the present invention is
The index in the line diffraction method is d = 3.45 to 3.3?
A, Lc=40-500 A, La=40-700
1580c above.
The ratio of the peak intensity at 1 360 cm-' to the peak intensity at m-' is 0.2 or more and 1.0 or less.

このように規定される乱層構造を持った炭素繊維を特に
負極に選択するのは以下の理由に因る。
The reason why the carbon fiber having the turbostratic structure defined in this manner is particularly selected for the negative electrode is as follows.

即ち、リチウムをドープした黒鉛層間化合物は木質的に
有機溶媒を用いた電解液中で不安定であり、この安定性
を母結晶である炭素材を乱層化することで高めているの
である。
That is, the graphite intercalation compound doped with lithium is unstable in an electrolytic solution using an organic solvent due to its woody nature, and this stability is increased by turbostratizing the carbon material that is the mother crystal.

リチウム金属を負極に用いたリチウム二次電池の負極反
応の研究で知られているように、リチウム金属は非常に
反応性が高い、これまでに、様々な有機溶媒が電解液と
して検討されているにも拘らず、未だにリチウム金属に
対して完全に安定な有機溶媒は見いだされていない、更
に、有機溶媒ばかりでなく、電解質であるリチウム塩も
負極反応で分解することが明らかにされている。
As is known from research on the negative electrode reaction of lithium secondary batteries using lithium metal as the negative electrode, lithium metal is extremely reactive, and various organic solvents have been studied as electrolytes so far. Despite this, no organic solvent has yet been found that is completely stable for lithium metal, and furthermore, it has been revealed that not only organic solvents but also lithium salts, which are electrolytes, are decomposed by negative electrode reactions.

このようなリチウム金属の持つ反応性の高さは、リチウ
ムをドープした黒鉛層間化合物に関してもそのままあて
はまる。リチウム金属の反応性の高さは、リチウムの原
子構造そのものに由来するものであり、金属状態である
ことは木質的に重要ではない、つまり、リチウム原子が
高い反応性を持つのである。従って黒鉛の層間に存在す
るリチウムは、金属状態のようにリジッドな結晶格子こ
そ組まないが、基本的には同等の反応性の高さを有する
と考えられる。
The high reactivity of lithium metal also applies to graphite intercalation compounds doped with lithium. The high reactivity of lithium metal originates from the atomic structure of lithium itself, and being in a metallic state is not important in terms of wood quality; in other words, lithium atoms have high reactivity. Therefore, although the lithium present between the layers of graphite does not form a rigid crystal lattice as in the metallic state, it is thought that it basically has the same high reactivity.

例えば、L i Ci 04を炭酸プロピレンに溶解し
た電解液中で、キッシュ黒鉛にリチウムを電気化学的に
挿入しようとすると、初期に黒鉛の膨張を伴った挿入反
応は認められるが、その後、リチウムの挿入は進行せず
電解液の分解反応に伴って気泡が発生するという状態に
定常化する。この定常状態は、黒鉛層間へのリチウムの
挿入反応と、分解による黒鉛層間からのリチウムの放出
反応との平衡によるものであり、リチウムをドープした
黒鉛層間化合物の電解液中での不安定性を反映するもの
である。
For example, when attempting to electrochemically insert lithium into Quisch graphite in an electrolytic solution in which L i Ci 04 is dissolved in propylene carbonate, an insertion reaction accompanied by expansion of graphite is initially observed, but after that, lithium The insertion does not proceed and the state becomes steady in which bubbles are generated as a result of the decomposition reaction of the electrolytic solution. This steady state is due to the equilibrium between the insertion reaction of lithium between the graphite layers and the release reaction of lithium from the graphite layers due to decomposition, and reflects the instability of the lithium-doped graphite intercalation compound in the electrolyte. It is something to do.

リチウムをドープした黒鉛層間化合物の安定性の程度、
即ち1分解の速度は、用いる黒鉛母結晶の構造を反映す
る。黒鉛の結晶性が高いほど分解速度は大きく、黒鉛の
結晶性が低く乱層構造が発達したものほど分解速度は小
さく安定性は高い。
Degree of stability of lithium-doped graphite intercalation compound,
That is, the rate of 1 decomposition reflects the structure of the graphite host crystal used. The higher the crystallinity of graphite, the higher the decomposition rate, and the lower the crystallinity of graphite and the more developed the turbostratic structure, the lower the decomposition rate and the higher the stability.

この事実に対する完全な解釈は必ずしも明確にされてい
ないが、定性的には以下のように考えられる。
Although the complete interpretation of this fact is not necessarily clear, it can be qualitatively considered as follows.

黒鉛構造が発達した層間のリチウム原子は非常に移動度
が高く、電解液と接した黒鉛層端部のリチウム原子が分
解反応に因って黒鉛から放出されると、隣接した層内部
の新たなリチウム原子が、すぐに端面に移動し再び分解
に寄与する。このように居間でのリチウム原子の移動度
が高いために、次々に端面でのリチウム原子と電解液と
の分解反応が進行し、最終的には居間に挿入されたリチ
ウム原子は全て分解に依って放出してしまう。
Lithium atoms between layers with a developed graphite structure have extremely high mobility, and when the lithium atoms at the edge of the graphite layer in contact with the electrolyte are released from the graphite due to a decomposition reaction, new atoms inside the adjacent layer are generated. Lithium atoms immediately move to the end face and again contribute to decomposition. Because of the high mobility of lithium atoms in the living room, the decomposition reaction between the lithium atoms and the electrolyte at the end surfaces progresses one after another, and eventually all the lithium atoms inserted in the living room are decomposed. and release it.

即ち、高黒鉛化度の炭素材を用いたリチウム黒鉛層間化
合物は、電解液中で安定に存在できないと考えちる。こ
こで注目すべきは、いわゆる電解液の「安定に存在でさ
る電位の窓」の範囲外に、リチウムを挿入した炭素材の
電位が位置するために1分解が生じるのではなく、純粋
に居間のリチウム原子の反応性の高さによるものだとい
うことである。このことは、リチウム黒鉛層間化合物の
分解が、リチウム金属の電位付近から炭素材自身の電位
付近まで一様に進行することから確認できる。
That is, it is considered that a lithium graphite intercalation compound using a carbon material with a high degree of graphitization cannot exist stably in an electrolytic solution. What should be noted here is that 1 decomposition does not occur because the potential of the carbon material into which lithium is inserted is located outside the range of the so-called "stably existing potential window" of the electrolyte; This is due to the high reactivity of lithium atoms. This can be confirmed from the fact that the decomposition of the lithium graphite intercalation compound uniformly progresses from near the potential of the lithium metal to near the potential of the carbon material itself.

他方、乱層構造の炭素材は、リチウム原子の反応性とい
う点では黒鉛構造が発達した場合と全く変わりが無いが
、乱層構造のためにリチウム原子の層間での移動度が極
端に低い、この移動度の低さが、リチウム原子の高い反
応性にも拘らず、リチウム黒鉛層間化合物を電解液中で
安定に存在せしめているのである。即ち、端面の電解液
に接したリチウム原子が、電解液との分解反応に依って
居間から放出された後、内部のリチウム原子は乱層構造
のために端面になかなか移動できず、従って、居間のリ
チウム原子と電解液とが新たに接することがなく、乱層
構造の黒鉛層間化合物は安定に存在することが出来るの
である。
On the other hand, carbon materials with a turbostratic structure are no different from those with a developed graphite structure in terms of the reactivity of lithium atoms, but due to the turbostratic structure, the interlayer mobility of lithium atoms is extremely low. This low mobility allows the lithium graphite intercalation compound to exist stably in the electrolyte despite the high reactivity of lithium atoms. In other words, after the lithium atoms in contact with the electrolyte on the end face are released from the living room due to a decomposition reaction with the electrolyte, the lithium atoms inside cannot easily move to the end face due to the turbostratic structure, and therefore, the lithium atoms in the living room There is no new contact between the lithium atoms and the electrolyte, and the graphite intercalation compound with the turbostratic structure can exist stably.

ここで、金属リチウムとリチウム黒鉛層間化合物の電解
液中での安定性の木質的な違いに注魅すべきである。金
属リチウムの場合には、リチウム原子と有機溶媒、或は
電解質とが反応した結果生じる生成物が被膜を形成し、
金属リチウムの表面を覆うためにリチウムと電解液とは
直に接触することがなくなり、安定化する。つまり、リ
チウムが金属という堅固な結晶を組んでいることが、被
膜の形成を回部にしているのでる。
Here, we should pay attention to the woody difference in the stability of metallic lithium and lithium graphite intercalation compounds in electrolytes. In the case of metallic lithium, the product formed as a result of the reaction between lithium atoms and an organic solvent or electrolyte forms a film,
Since the surface of metallic lithium is covered, lithium and the electrolyte no longer come into direct contact with each other, resulting in stabilization. In other words, the fact that lithium is made up of solid metal crystals makes the formation of the film easy.

これに対して、リチウムのアマルガムなど完全に液体状
のリチウムや、黒鉛層間化合物における層間のリチウム
原子のように、層間で液体のように比較的自由に動ける
状態で存在し、堅固な結晶構造を取らない場合には、分
解反応の生成物は被膜を形成することが出来ず、分解は
何処までも進行し安定化しない、そこで、黒鉛層間化合
物の場合には被膜の形成ではなく、乱層構造によるリチ
ウム原子の層間への成る程度の固定によって、安定化を
実現しているのである。
On the other hand, lithium that is completely liquid, such as lithium amalgam, and lithium atoms between layers in graphite intercalation compounds, exist in a state where they can move relatively freely like a liquid between layers, and have a rigid crystal structure. If it is not removed, the products of the decomposition reaction will not be able to form a film, and the decomposition will proceed forever and will not be stabilized. Therefore, in the case of graphite intercalation compounds, the formation of a turbostratic structure does not occur, but rather the formation of a film. Stabilization is achieved by fixing lithium atoms between the layers to a certain extent.

上に述べたような乱層構造を持った炭素材に、特に炭素
繊維を用いる理由は、本質的には正極と同じであり、例
えばピッチやポリアクリロニトリルなど、原料の持つ元
来の黒鉛化度の高さと、炭素繊維に紡糸することに因る
黒鉛化度の制御範囲の広さにある。乱層構造と言っても
居間にリチウム原子を挿入できる程度の層面の発達は要
求される。そのために炭素繊維の原料には、ある程度の
黒鉛化度を持ったものを用いる。乱層構造を実現するに
は、原料段階で黒鉛化を抑制するか、もしくは、製造過
程で黒鉛化度を制御すれば良い。
The reason for using carbon fiber, especially carbon fiber, as a carbon material with a turbostratic structure as mentioned above is essentially the same as that for the positive electrode. For example, the original degree of graphitization of raw materials such as pitch and polyacrylonitrile and the wide control range of the degree of graphitization due to spinning into carbon fibers. Even though it is called a turbostratic structure, the layer plane must be developed to the extent that lithium atoms can be inserted into the living room. For this purpose, carbon fiber raw materials with a certain degree of graphitization are used. In order to achieve a turbostratic structure, graphitization can be suppressed at the raw material stage, or the degree of graphitization can be controlled during the manufacturing process.

黒鉛化に関しては正極と全く同様である。即ち、不活性
雰囲気下、2000℃以上、好ましくは。
Regarding graphitization, it is exactly the same as the positive electrode. That is, under an inert atmosphere at 2000° C. or higher, preferably.

2500℃以上1時間以上黒鉛化処理する。乱層構造は
一般的に熱処理温度を低くすれば実現するが、層間化合
物を形成し、しかもドープ、脱ドープに対しての安定性
を得るためには、成る程度黒鉛化処理温度を高くし、堅
固な炭素層を形成する必要があり、そのための最低の温
度が2000℃である。
Graphitization treatment at 2500°C or higher for 1 hour or more. A turbostratic structure can generally be achieved by lowering the heat treatment temperature, but in order to form intercalation compounds and to obtain stability against doping and dedoping, the graphitization temperature must be raised as much as possible. It is necessary to form a firm carbon layer, and the minimum temperature for this is 2000°C.

本発明は、正極及び負極に、各々、最適な黒鉛化度の炭
素繊維を用いることを特徴とした二次電池システムに関
するものであり、炭素繊維を用いた電極であれば、電極
の形状に関して特に制限するものではない。
The present invention relates to a secondary battery system characterized by using carbon fibers with an optimal degree of graphitization for each of the positive electrode and the negative electrode. It is not a restriction.

本発明に用いることができる電解質としては。Examples of electrolytes that can be used in the present invention are:

以下のリチウム塩を挙げることが出来る。The following lithium salts may be mentioned.

リチウムバークロレート:LiCIO4,リチウムへキ
サフロロアンチモネート: LiSbFg、リチウムへ
キサフロロアセネート: LiAsF6、リチウムテト
ラフロロポレート:LiBF4.リチウムへキサクロロ
アンチモネート: Li5bCi6、リチウムへキサフ
ロロホスフェ−):LiPFに れらの中で特に好ましいのは、LiBF、、L i P
 F6である。
Lithium barchlorate: LiCIO4, lithium hexafluoroantimonate: LiSbFg, lithium hexafluoroacenate: LiAsF6, lithium tetrafluoroporate: LiBF4. Lithium hexachloroantimonate: Li5bCi6, lithium hexafluorophosphate): LiPF Among these, particularly preferred are LiBF, , LiP
It is F6.

電解質として用いるリチウム塩に要求されるのは、アニ
オンに関する次の条件である。即ち、基本的には電気化
学的反応におけるアニオンの安定性が要求される0本発
明に於いては、炭素繊維に於けるアニオンの挿入放出が
正極反応に利用されるので、電気化学的反応に於ける安
定性に加えて更に、炭素繊維に於ける挿入放出反応を生
じるようなアニオンであることが要求される。
The following conditions regarding the anion are required for the lithium salt used as an electrolyte. That is, basically stability of anions in electrochemical reactions is required. In the present invention, insertion and release of anions in carbon fibers is utilized for positive electrode reactions, so stability of anions in electrochemical reactions is required. In addition to stability in carbon fibers, it is also required that the anion be capable of intercalating and releasing reactions in carbon fibers.

炭素繊維に於ける挿入放出反応に適するアニオンの条件
は、現段階では必ずしも明確にされていないが、−価の
7ニオンとしての安定性が基本的に重要であって、従来
言われていたような挿入放出反応に関与するアニオンの
原子、或は2分子の大きさなどの幾何学的な形状は重要
ではない、上に挙げた一連のリチウム塩は、正にこの二
つの条件を満足するものである。即ち、これらのリチウ
ム11工は、TI!敲度が非常に高く電離した結果生じ
るアニオンは、電気化学的に非常に安定であり、更に一
価の7ニオンとして非常に高い安定性を有する。
The conditions for anions suitable for intercalation and desorption reactions in carbon fibers are not necessarily clear at this stage, but stability as a -valent 7 anion is fundamentally important, and as has been said in the past. The geometric shape of the anion atoms or the size of the two molecules involved in the insertion/extraction reaction is not important; the series of lithium salts listed above satisfy exactly these two conditions. It is. In other words, these 11 lithium products are TI! The anion produced as a result of ionization with a very high degree of strength is electrochemically very stable, and further has very high stability as a monovalent 7 anion.

ここで注意すべきは、ハロゲンのアニオンである。ハロ
ゲンは、電子親和力が大きく、従って一価のアニオンと
しての高安定性が期待できる。更に、電気化学的にも高
い安定性を持つため、炭素材に於ける挿入放出反応には
ハロゲンの7ニオンは最適と思われる。しかしながら、
例えば気相法で合成されたヨウ素、臭素の黒鉛層間化合
物の研究で知られるように、その安定性は非常に乏しく
、ハロゲンガスの圧力下で無ければそのMIJ造を保て
ず、減圧することで容易に一度挿入されたハロゲン原子
は層外へ放出する。この様なハロゲンの黒鉛層間化合物
の低い安定性を反映し、電気化学的にはハロゲンの黒鉛
層間化合物を合成することは困難であり、′Q!極反応
には適していないと考えられる。
What should be noted here is the halogen anion. Halogen has a large electron affinity and can therefore be expected to have high stability as a monovalent anion. Furthermore, since it has high electrochemical stability, halogen 7-ion is considered to be optimal for insertion/extraction reactions in carbon materials. however,
For example, as is known from research on graphite intercalation compounds of iodine and bromine synthesized by the gas phase method, their stability is extremely poor, and their MIJ structure cannot be maintained unless they are under the pressure of halogen gas, so it is necessary to reduce the pressure. Once inserted, the halogen atoms are easily released out of the layer. Reflecting the low stability of such a halogen graphite intercalation compound, it is difficult to electrochemically synthesize a halogen graphite intercalation compound, and 'Q! It is considered not suitable for polar reactions.

本発明に用いられる電解液としての有機溶媒は、非プロ
トン性有機溶媒であり、従来、二次電池に用いられてい
た有機溶媒であれば、特にこれを制限するものではない
が、その中で、誘電率が大きい、双極子俺率が大きい、
酸化還元に対する安定性が高く電位窓が広い、粘度の低
い等の特性を有した有機溶媒が特に好ましい。
The organic solvent as the electrolyte used in the present invention is an aprotic organic solvent, and is not particularly limited to organic solvents that have been conventionally used in secondary batteries. , large permittivity, large dipole constant,
Particularly preferred are organic solvents having characteristics such as high stability against redox, wide potential window, and low viscosity.

具体的には、炭酸プロピレン、炭酸エチレン、スルホラ
ン、γ−ブチロラクトン、!、2−ジメトキシエタン、
テトラヒドロフラン、2メチル−テトラヒドロフラン、
アセトニトリル、ジメチルスルホキシド、ジメチルホル
ムアミド等の溶媒や、これらの混合溶媒を用いることが
出来る。
Specifically, propylene carbonate, ethylene carbonate, sulfolane, γ-butyrolactone,! , 2-dimethoxyethane,
Tetrahydrofuran, 2methyl-tetrahydrofuran,
Solvents such as acetonitrile, dimethylsulfoxide, dimethylformamide, and mixed solvents thereof can be used.

また、電解液の濃度は、溶媒や電解質の種類。The concentration of the electrolyte also depends on the type of solvent and electrolyte.

電極材に依存するため一概に規定することは出来ないが
、通常0.1〜10mol/立の範囲である0Ml解液
中の微量の酸素や水分が電池の性能を低下させるので、
溶媒や電解質は予め常法に従い十分に精製しておく必要
がある0本発明に於て、必要ならばポリエチレン、ポリ
プロピレン、テフロン等の合成樹脂性の多孔質膜や、天
然m維を両極の間の隔膜として使用してもよい。
Although it cannot be specified unconditionally as it depends on the electrode material, trace amounts of oxygen and moisture in the 0Ml solution, which is usually in the range of 0.1 to 10 mol/vertical, degrade the performance of the battery.
The solvent and electrolyte must be sufficiently purified in advance according to conventional methods. In the present invention, if necessary, a porous membrane made of synthetic resin such as polyethylene, polypropylene, Teflon, etc., or natural m fibers may be used between the two electrodes. It may also be used as a diaphragm.

実施例 実施例1 第1図のように2900℃で熱処理したピッチ系炭素m
維1の10mgを、直径0.1麿■の白金線2で束ねた
ものを正極4とした。
Examples Example 1 Pitch-based carbon m heat treated at 2900°C as shown in Figure 1
A positive electrode 4 was prepared by bundling 10 mg of the fiber 1 with a platinum wire 2 having a diameter of 0.1 mm.

充放電特性の測定は、f1m2図のように10〜20m
gの金属リチウムのシートをニッケル網に圧着したもの
を対極(負極)3、対極(負極)と同じ金属リチウムシ
ートの小片をニッケル線に接続したものを基準極5、L
iBFaを炭酸プロピレンに2鵬01/文の濃度に溶か
した溶液を電解液6に用いた三極セルをガラス容器7に
入れ、全体を、アルゴン(Ar)ガス8を導入し、不活
性雰囲気にした密閉容器内に設置し、定電流で充放電を
繰返した際の基準極に対する正極の電位を測定した。
Measurement of charge/discharge characteristics is carried out at a distance of 10 to 20 m as shown in the f1m2 diagram.
Counter electrode (negative electrode) 3 is a sheet of lithium metal crimped onto a nickel mesh; reference electrode 5 is a small piece of the same lithium metal sheet as the counter electrode (negative electrode) connected to a nickel wire;
A triode cell using a solution of iBFa dissolved in propylene carbonate at a concentration of 2 Peng 01/m as the electrolyte 6 was placed in a glass container 7, and the whole was placed in an inert atmosphere by introducing argon (Ar) gas 8. The potential of the positive electrode with respect to the reference electrode was measured when charging and discharging were repeated at a constant current.

正極に用いた炭素繊維は、原料段階及び製造過程に於て
黒鉛化を制御し、正極に要求される黒鉛化度を実現した
ものであり、この炭素繊維のX線回折法による黒鉛化度
の指標は、第1表に示した。充放電の電流値は、10m
A/炭素材1gで、充電の際に通電する電気量は300
ク一ロン/炭素材1gである。
The graphitization of the carbon fiber used in the positive electrode was controlled during the raw material stage and manufacturing process to achieve the degree of graphitization required for the positive electrode. The indicators are shown in Table 1. The charging/discharging current value is 10m
A/1g of carbon material generates 300 watts of electricity when charging.
The amount of carbon material is 1g.

このような条件で充放電させた結果、放電の電気量効率
は、1回目のサイクルは高々50%であるが、2回目の
サイクル以降は安定して、はぼ95%であった。充放電
の電位は非常に貴であり、リチウム基準に対して4.8
〜4.7vから充電を開始し充71iffiの増加に伴
って電位は上昇し、充電完了時の最終電位は5vに達す
る。放電の際に電位変化は、充電時とほぼ同じであり放
電が進行するに従って、電位は徐々に減少し4Vで急激
に落ち込み放電を終了する。従って、放電の利用できる
電位は4〜5vの範囲である。第3図に充放電の際の電
位カーブを示す。
As a result of charging and discharging under such conditions, the electrical efficiency of discharge was at most 50% in the first cycle, but stabilized from the second cycle onwards to approximately 95%. The charging and discharging potential is very noble, 4.8 against the lithium standard.
Charging is started from ~4.7V, and the potential rises as the charge 71iffi increases, and the final potential reaches 5V when charging is completed. The potential change during discharging is almost the same as that during charging, and as discharging progresses, the potential gradually decreases and suddenly drops to 4 V, ending discharging. Therefore, the available potential for discharge is in the range of 4-5V. Figure 3 shows the potential curve during charging and discharging.

比較例1 黒鉛化度の異なる三種の炭素材:キッシュ黒鉛、TOR
AY社製PAN系炭素m維M40、UCC社製ピッチ系
炭素@@P75Sを実施例1と同じ条件で測定した。
Comparative Example 1 Three types of carbon materials with different degrees of graphitization: Quiche graphite, TOR
PAN-based carbon fiber M40 manufactured by AY Corporation and pitch-based carbon @@P75S manufactured by UCC Corporation were measured under the same conditions as in Example 1.

各々の炭素材のX線回折法による黒鉛化度は、第1表に
示した。キッシュ黒鉛は、d=3.354 Aで、はぼ
理想的な黒鉛構造を持つ、TORAY社製PAN系炭素
taiM40(i、PAN系炭t、mMl)中では最も
高い黒鉛化度の炭素m維に属する。UCC社製ピッチ系
炭素繊JIP75Sは、ピッチ系炭素m維の中でも、実
施例1に用いた炭素繊維に比較すると黒鉛化度の低いも
のである。
The degree of graphitization of each carbon material determined by X-ray diffraction method is shown in Table 1. Quiche graphite is a carbon fiber with d = 3.354 A and the highest degree of graphitization among the PAN-based carbon taiM40 (i, PAN-based carbon t, mMl) manufactured by TORAY, which has an almost ideal graphite structure. belongs to Among pitch-based carbon fibers, the pitch-based carbon fiber JIP75S manufactured by UCC has a lower degree of graphitization than the carbon fiber used in Example 1.

PAN系炭素m維は、4.8vから充電を開始し充tt
utの増加に伴って電位は急激に増加し最終的には8.
1■に達する。放電に切り換えると電位は急激に低下し
充電量に対して殆ど放電しない、これはPAN系炭素炭
素繊維者中最も黒鉛化度が低く、黒鉛化度の低さのため
にアニオンのドーピング反応がほとんど生じないことを
表している。
PAN-based carbon m-fiber starts charging from 4.8V.
As ut increases, the potential increases rapidly and finally reaches 8.
Reach 1 ■. When switching to discharge, the potential drops rapidly and there is almost no discharge compared to the amount of charge.This is due to the lowest degree of graphitization among PAN-based carbon fibers, and due to the low degree of graphitization, there is almost no doping reaction of anions. It means that it will not occur.

P75Sは4.8vから充電を開始し電位は充電量の増
加に伴ってゆっくりと増加し、最終的には5、lVに達
する。放電量は充電量に対して約25%であった。P7
5Sは乱層構造が発達し、やはり。
P75S starts charging from 4.8V, and the potential increases slowly as the amount of charge increases, eventually reaching 5.1V. The amount of discharge was about 25% of the amount of charge. P7
5S has developed a turbostratic structure, as expected.

黒鉛化度の低さのために電気量効率は低い。The electrical efficiency is low due to the low degree of graphitization.

キッシュ黒鉛は4.7vから充電を開始し、充電量の増
加に伴って階段状に電位は増加し、最終的にはS、OV
に達する。放電効率は約50%であった。この階段状の
電位の変化は、いわゆる黒鉛層間化合物のステージ構造
に対応するものであり、キッシュ黒鉛の黒鉛化度の高さ
故に現れる現象である。キッシュ黒鉛は理想的とも言え
る黒鉛化度をもつが、La、Lcが共に大きすぎるため
ドープ、脱ドープ反応という可逆的な電極反応には適当
ではない、可逆反応に供するにはLa、Lcは大きすぎ
てはならないのである。これら三者の充放電カーブを第
3図に実施例1とともに示した。
Quiche graphite starts charging from 4.7V, and as the amount of charge increases, the potential increases stepwise, and eventually S, OV
reach. The discharge efficiency was about 50%. This step-like change in potential corresponds to the so-called stage structure of a graphite intercalation compound, and is a phenomenon that appears due to the high degree of graphitization of Quiche graphite. Quiche graphite has a degree of graphitization that can be said to be ideal, but because both La and Lc are too large, it is not suitable for reversible electrode reactions such as doping and dedoping reactions.La and Lc are too large to be used for reversible reactions. It must not be too much. The charge/discharge curves of these three are shown in FIG. 3 along with Example 1.

実施例1、及び、比較例1の結果から、本発明のように
正極に適した特定の黒鉛化度を持ったピッチ系炭素繊維
を用いることによって、優れた充放電特性が得られるこ
とが分る。
The results of Example 1 and Comparative Example 1 show that excellent charge-discharge characteristics can be obtained by using pitch-based carbon fiber with a specific degree of graphitization suitable for the positive electrode as in the present invention. Ru.

実施例2 実施例1と同様に、2900℃で熱処理したピッチ系炭
素M&維を白金線で束ねたものを試料極(負極)4とし
、金属リチウムを対極3と基準極5に用い、また実施例
1と同じ電解液6に依ってa成された三極セルを用いて
、定電流で充放電を繰返した際の基準極に対する負極の
電位を測定した。
Example 2 As in Example 1, pitch-based carbon M&fibers heat-treated at 2900°C and bundled with platinum wire were used as the sample electrode (negative electrode) 4, and metallic lithium was used as the counter electrode 3 and reference electrode 5. Using a three-electrode cell made up of the same electrolytic solution 6 as in Example 1, the potential of the negative electrode with respect to the reference electrode was measured when charging and discharging were repeated at a constant current.

負極に用いた炭素繊維は、原料段階及び製造過程に於て
黒鉛化を制御し、負極に要求される黒鉛化度を実現した
ものである。この炭素繊維のX線回折に依る黒鉛化度の
指標は、第2表に示した。
The graphitization of the carbon fiber used in the negative electrode was controlled during the raw material stage and manufacturing process to achieve the degree of graphitization required for the negative electrode. The graphitization degree index determined by X-ray diffraction of this carbon fiber is shown in Table 2.

また、用いた炭素繊維のアルゴンレーザー(波長: 5
145A)を光源としたラマンスペクトルは第4図に示
すように黒鉛構造を反映する1580cm−’と乱層構
造を反映する1360c層−1の二つのピークが共存し
ており、1580c鳳−電のピーク強度に対する136
0C1l”のピーク強度の比は、0.5〜0.8である
In addition, the carbon fiber argon laser (wavelength: 5
As shown in Figure 4, the Raman spectrum using 145A) as a light source has two peaks coexisting: 1580cm-', which reflects the graphite structure, and 1360c layer-1, which reflects the turbostratic structure. 136 for peak intensity
The ratio of the peak intensities of 0C11'' is 0.5 to 0.8.

充放電の電流値は、5mA/炭素材1gであり、充電の
際に通電した電気量は1300ク一ロン/炭素材1gで
ある。
The current value for charging and discharging was 5 mA/g of carbon material, and the amount of electricity applied during charging was 1300 corons/g of carbon material.

放電の電気量効率は、1回目のサイクルは70〜80%
であるが、2回目のサイクル以降は、93%以上に安定
する。また、その電位は、充電に関しては、リチウム基
準に対して0.5v付近から充電を開始し0.2 V付
近から非常に電位の変化は緩やかになり、最終的にはリ
チウム金属とほぼ同じ電位にまでに達する。放電に関し
ては、リチウム基準で0.3 V付近までは非常にゆっ
くりと電位は上昇し、0.6〜0.8Vから急激に電位
は上昇を始め。
The electrical efficiency of discharge is 70-80% in the first cycle.
However, after the second cycle, it stabilizes at 93% or more. In addition, regarding charging, the potential starts charging from around 0.5V with respect to the lithium standard, and the change in potential becomes very gradual from around 0.2V, and eventually reaches almost the same potential as lithium metal. reach up to. Regarding discharge, the potential rises very slowly up to around 0.3 V based on lithium, and then starts to rise rapidly from 0.6 to 0.8 V.

放電を終了する。従って、放電で使用する電位の範囲を
0.5Vに採れば、かなり平坦性のある電位カーブを得
ることが出来る。充放電の際の負極の電位の変化を第5
図に示す。
Finish discharging. Therefore, if the potential range used for discharge is set to 0.5V, a fairly flat potential curve can be obtained. The change in the potential of the negative electrode during charging and discharging is
As shown in the figure.

比較例2 黒鉛構造の発達した炭素材であるキッシュ黒鉛を実施例
2と同じ条件下で測定した。
Comparative Example 2 Quiche graphite, which is a carbon material with a developed graphite structure, was measured under the same conditions as in Example 2.

キッシュ黒鉛のX線回折による黒鉛化度の指標は、第2
表に併せて示した。また、アルゴンレーザーラマンスペ
クトルによる二つのピーク強度比は、はぼ0である。こ
れらの指標から、キッシュ黒鉛の黒鉛化度の高さが分る
The index of graphitization degree by X-ray diffraction of Quisch graphite is the second
It is also shown in the table. Moreover, the two peak intensity ratios in the argon laser Raman spectrum are approximately 0. These indicators indicate the high degree of graphitization of Quiche graphite.

理想的な黒鉛構造を持ったキッシュ黒鉛は、基準極に対
して1.OVで充電を開始し充電が進行してもその7ヒ
位は殆ど変化せず、リチウムイオンのドープに伴う電位
の下降が見られない、また、殆ど放電しない。
Quiche graphite with an ideal graphite structure is 1. Even if charging is started at OV and charging progresses, the 7H position hardly changes, no drop in potential due to lithium ion doping is observed, and almost no discharge occurs.

この結果は、充電の電気量は黒鉛化度が高いが故に殆ど
副反応に費やされ、リチウムのドーピングはキッシュ黒
鉛では殆ど進行していないことを示している。一方、乱
層構造の実施例2の炭素繊維は、C,、、) L iに
相当する充電量のところで負極の電位はほぼリチウムと
同じ電位になり、炭素m維の層間がリチウムで飽和した
ことが分かるし、また、放電効率も高い、これは、副反
応が殆ど生じていないことを示している。充放電の際の
負極の電位の変化は、実施例2の結果とともに第5図に
示す。
This result shows that most of the charging electricity is spent on side reactions due to the high degree of graphitization, and that lithium doping hardly progresses in Quiche graphite. On the other hand, in the case of the carbon fiber of Example 2 having a turbostratic structure, the potential of the negative electrode became almost the same potential as lithium at the charge amount corresponding to C,...,) Li, and the interlayers of the carbon m fibers were saturated with lithium. It can be seen that the discharge efficiency is also high, which indicates that almost no side reactions occur. Changes in the potential of the negative electrode during charging and discharging are shown in FIG. 5 together with the results of Example 2.

比較例3 PAN系炭素炭素繊維るTORAY社製T300と、ピ
ッチ系炭素m維を1000℃で熱処理した二種の炭素繊
維を実施例2と同じ条件下で測定した。
Comparative Example 3 Two types of carbon fibers, PAN-based carbon fiber T300 manufactured by TORAY and pitch-based carbon fiber heat-treated at 1000° C., were measured under the same conditions as in Example 2.

この二種の炭素繊維のX線回折による黒鉛化度の指標を
第3表に示した。ラマン分光による黒鉛化度の指標は、
前者が0.9〜1.0、後者が1.0〜1.1である0
両者共に乱層構造を持つことが分かる。
Table 3 shows the index of graphitization degree of these two types of carbon fibers by X-ray diffraction. The index of graphitization degree by Raman spectroscopy is
0 where the former is 0.9 to 1.0 and the latter is 1.0 to 1.1
It can be seen that both have a turbostratic structure.

定電流充放電を測定した結果、Ta2Oは、〜1vから
充電を開始し、充電の進行に伴って電位の低下は認めら
れるが、その変化は滑らかではなくしばしば不連続であ
る。最終的には0.1vに達するがその放電効率は10
%以下であった。
As a result of measuring constant current charging and discharging, Ta2O starts charging from ~1 V, and a decrease in potential is observed as charging progresses, but the change is not smooth and often discontinuous. Eventually it reaches 0.1v, but the discharge efficiency is 10
% or less.

この現象は、Ta2Oに対してリチウムのドーピングが
生じ難い、或は、生じないことを示している。また5縁
り返しに対する安定性に欠ける。
This phenomenon indicates that lithium doping is difficult to occur or does not occur in Ta2O. Also, it lacks stability against 5-edge turning.

また、低温で熱処理したピッチ系炭素m維は実施例2と
同じような電位カーブを描き、リチウムのドーピングが
進行するが、放電効率が極端に悪く、充放電の繰り返し
に対する安定性に欠ける。
In addition, the pitch-based carbon m-fiber heat-treated at a low temperature draws a potential curve similar to that of Example 2, and lithium doping progresses, but the discharge efficiency is extremely poor and stability against repeated charging and discharging is lacking.

ここでは、他の乱層構造を持った炭素繊維と本発明が主
張するところの乱層構造を持った炭素繊維との比較をす
るために、実施例2と同じ条件下で上の二種の炭素m維
を測定したものである。
Here, in order to compare other carbon fibers with a turbostratic structure and the carbon fiber with a turbostratic structure claimed by the present invention, the above two types were tested under the same conditions as in Example 2. Carbon fibers were measured.

実施例2で用いた炭素繊維は、2900℃という非常に
高い温度で熱処理した上で第2表に示すような乱層構造
を実現したものである。一般にピッチ系の炭素繊維は熱
処理温度を低くするだけでも乱層構造を実現出来ること
が知られている。
The carbon fibers used in Example 2 were heat-treated at a very high temperature of 2900° C. to achieve a turbostratic structure as shown in Table 2. It is generally known that pitch-based carbon fibers can achieve a turbostratic structure simply by lowering the heat treatment temperature.

また、PAN系の炭素m維も乱層構造を持つことが知ら
れている。実施例2、及び、比較的3の実験結果は、以
下の事を示している。即ち、PAN系の炭素繊維T30
0は、炭素層面の発達の程度が低いためにリチウムをド
ープせず、低温で熱処理したピッチ系炭素繊維は、原料
に用いたピッチの持つ黒鉛化性の高さから炭素層面は十
分発達しており、そのためドーピングはスムーズに行わ
れるが、熱処理温度が低いためにドープφ脱ドープに対
するa層構造の安定性に欠けるのである。
Furthermore, PAN-based carbon m-fibers are also known to have a turbostratic structure. The experimental results of Example 2 and Comparison 3 show the following. That is, PAN-based carbon fiber T30
0 indicates that the degree of development of the carbon layer surface is low, so pitch-based carbon fibers that are not doped with lithium and are heat-treated at low temperatures have a carbon layer surface that is sufficiently developed due to the high graphitizability of the pitch used as a raw material. Therefore, doping is carried out smoothly, but because the heat treatment temperature is low, the a-layer structure lacks stability against dedoping.

以上、実施例2.比較例2、比較例3の結果から以下の
ことが示された。即ち、負極に用いる炭素材には、結晶
構造が非常に発達した炭素材は、その高い黒鉛化度故に
不適当であり、乱層構造と言われるように適度に乱れ、
適度に黒鉛化した炭素材が適する。更に、乱層構造の中
でも本発明に於て規定したところの乱層構造を持った炭
素繊維が最も適当であり、黒鉛化の程度が低すぎるもの
は不適当であることが示された。
Above, Example 2. The results of Comparative Examples 2 and 3 showed the following. In other words, a carbon material with a highly developed crystal structure is not suitable for use in the negative electrode due to its high degree of graphitization, and it has a moderately disordered structure called a turbostratic structure.
A moderately graphitized carbon material is suitable. Furthermore, it has been shown that among the turbostratic structures, carbon fibers having the turbostratic structure defined in the present invention are the most suitable, and those with a too low degree of graphitization are unsuitable.

実施例3 ピッチ系炭素繊維、及びPAN系炭素m雑の負極特性を
、スルホランを有機溶媒に用いた電解液中で調べた。
Example 3 The negative electrode properties of pitch-based carbon fibers and PAN-based carbon fibers were investigated in an electrolytic solution using sulfolane as an organic solvent.

実施例1と同様に、炭素m維を白金線で束ねたものを試
料極(負極)4とし、金属リチウムを対極3と基準極5
に用い、LiB F4をスルホランに1+wol/文の
濃度に溶かした電解液6によって構成された三極セルを
用いて、定Tff[で充放電を繰り返した際の2&準極
に対する負極の電位を測定した。
As in Example 1, carbon fibers bound with platinum wire were used as the sample electrode (negative electrode) 4, and metallic lithium was used as the counter electrode 3 and the reference electrode 5.
Using a three-electrode cell configured with electrolyte 6 in which LiB F4 was dissolved in sulfolane at a concentration of 1+wol/mon, the potential of the negative electrode with respect to the 2 & quasi-electrode was measured when charging and discharging were repeated at a constant Tff[. did.

負極に用いたピッチ系炭素m雑は、UCC社製P75S
とP120X、PAN系炭素炭素繊維。
The pitch-based carbon material used for the negative electrode was P75S manufactured by UCC.
and P120X, PAN-based carbon fiber.

RAY社製M40である。三種の炭素m維は、全て本発
明で規定される負極の黒鉛化度の範囲に居するものであ
る。これらの炭素m、mのX線回折に依る黒鉛化度の指
標は、第4表に示した。また、アルゴンレーザーラマン
スペクトルによる二つのピーク強度比は、P120X:
0.2〜0.3 、P75 S : 0.5〜O,fi
 、 M40 + 0.9〜1.0である。
It is M40 manufactured by RAY. All three types of carbon fibers are within the graphitization degree range of the negative electrode defined in the present invention. Table 4 shows the index of graphitization degree based on X-ray diffraction of these carbons m and m. In addition, the two peak intensity ratios from the argon laser Raman spectrum are P120X:
0.2~0.3, P75 S: 0.5~O, fi
, M40 + 0.9 to 1.0.

充放電の電流値は、10mA/炭素材tgであり、充電
の際に通電した電気量は1300ク一ロン/炭素材1g
である。
The current value for charging and discharging is 10 mA/tg of carbon material, and the amount of electricity passed during charging is 1300 corons/1 g of carbon material.
It is.

放電の電気量効率は、  l−回目のサイクルは、P1
20X:50〜60%、P75S:80〜70%、M2
O:50〜80%であるが、数回のサイクルの後、王者
ともに〜90%以上に安定する。また、充放電の際の電
位変化は、王者ともに、炭酸プロピレンを有機溶媒に用
いた電解液中での測定である実施例2とほぼ同様である
。即ち、基準極に対して0.5v付近から充電を開始し
、0.2〜0.3Vまで比較的急に電位は低下し、そこ
から電位の変化は非常に緩やかになり、最終的にはリチ
ウム金属とほぼ同じ電位にまで到達する。
The electrical efficiency of discharge is as follows: The l-th cycle is P1
20X: 50-60%, P75S: 80-70%, M2
O: 50-80%, but after several cycles, both the champions stabilized at ~90% or higher. Further, the potential changes during charging and discharging are almost the same as in Example 2, which was measured in an electrolytic solution using propylene carbonate as an organic solvent. That is, charging starts from around 0.5V with respect to the reference electrode, the potential drops relatively suddenly to 0.2 to 0.3V, and from there, the change in potential becomes very gradual, and eventually It reaches almost the same potential as lithium metal.

放電の際の電位の変化も実施例2とほぼ同様であった。The change in potential during discharge was also almost the same as in Example 2.

王者ともに放電開始後体々に電位は上昇し、o、e −
o、a vから急激に電位は上昇する。但し、放電カー
ブには、王者の炭素m維の黒鉛化度の違いが、僅かに見
られた。即ち、黒鉛化度の高いピッチ系炭素縁fir 
120Xは、放電終了電位が比較的低く、放電開始電位
と放電終了電位の差が小さいのに対し、黒鉛化度の低い
PAN系炭素m維M40は、放電終了電位が高く、この
差が大きい、充放電の際の負極の電位の変化を第6図に
示す。
After the start of discharge, the potential of both champions increases, and o, e −
The potential rises rapidly from o, av. However, in the discharge curves, there was a slight difference in the degree of graphitization of the champion carbon m-fibers. That is, pitch-based carbon rim fir with a high degree of graphitization
120X has a relatively low discharge end potential and a small difference between the discharge start potential and the discharge end potential, whereas PAN-based carbon m-fiber M40 with a low degree of graphitization has a high discharge end potential and a large difference. FIG. 6 shows changes in the potential of the negative electrode during charging and discharging.

ここでは、炭素m維の原料、及び、炭素m維の黒鉛化度
の違いが負極特性に与える影響を調べるために、本発明
に規定した負極に適する炭素繊維の黒鉛化度の範囲に含
まれる原料の異なった三種の炭素iamの負極特性を調
べたものである。その結果、負極に用いる炭素繊維の原
料の違いは重要ではなく、原料に拘らず本発明に規定す
る炭素繊維の黒鉛化度の指標で負極に適するかどうかの
判断ができることが示された。
Here, in order to investigate the influence of the raw material of carbon m-fibers and the graphitization degree of carbon m-fibers on the negative electrode characteristics, we will examine the effects of the graphitization degree of carbon fibers within the range of carbon fibers suitable for negative electrodes specified in the present invention. This study investigated the negative electrode characteristics of three types of carbon iam made from different raw materials. As a result, it was shown that the difference in the raw material of the carbon fiber used for the negative electrode is not important, and that regardless of the raw material, it is possible to judge whether carbon fiber is suitable for the negative electrode using the index of the degree of graphitization of the carbon fiber specified in the present invention.

また1本発明に於て規定するところの負極に適する炭素
繊維はその黒鉛化度に於て、ある程度の幅を持つが、こ
の黒鉛化度の範囲に属する炭素繊維であれば全て負極と
して優れた性(2)を示し、黒鉛化度の違いは、放電カ
ーブの違いとして現れることが判明した。即ち、黒鉛化
度の高い炭素繊維はど放電カーブは平坦であり、放電の
進行に伴う負極の電位の変化が小さいのに対して、黒鉛
化度の低い炭素繊維はど放電カーブは傾きを持ち、放電
の進行に伴う負極の電位の変化は大きい。
Furthermore, carbon fibers suitable for negative electrodes as defined in the present invention have a certain degree of graphitization degree, but all carbon fibers that fall within this range of graphitization degree are excellent as negative electrodes. It was found that the difference in the degree of graphitization appears as a difference in the discharge curve. In other words, carbon fibers with a high degree of graphitization have a flat discharge curve, and the change in negative electrode potential as discharge progresses is small, whereas carbon fibers with a low degree of graphitization have a discharge curve with a slope. , the potential of the negative electrode changes significantly as the discharge progresses.

実施例4 実施例1で用いた炭素繊維を正極に、実施例?で用いた
炭素uamを負極に、電解液に実施例1と同じものを用
いて電池を作成し、定電流で充放電を行った。
Example 4 Using the carbon fiber used in Example 1 as the positive electrode, Example? A battery was prepared using the carbon uam used in Example 1 as a negative electrode and the same electrolyte as in Example 1, and charged and discharged at a constant current.

正極の炭素m維は40mg、負極の炭素繊維は10mg
である。電流値は、tamA/炭素材1g、充電量は、
負極が1000クーロン/炭素材tg、正極が250ク
一ロン/炭素材1gである。
The carbon fiber of the positive electrode is 40 mg, and the carbon fiber of the negative electrode is 10 mg.
It is. The current value is tamA/1g of carbon material, and the charge amount is:
The negative electrode is 1000 coulombs/tg of carbon material, and the positive electrode is 250 coulombs/g of carbon material.

3.8vから充電を開始し4.6vまで電圧は上昇する
。放電の電圧は4.3vから3,5vまで変化した。1
00回充放電の繰り返しを行ったが、充放電の電圧カー
ブに顕著な変化は認められなかった。
Charging starts from 3.8v and the voltage rises to 4.6v. The voltage of the discharge varied from 4.3v to 3.5v. 1
Although charging and discharging were repeated 00 times, no significant change was observed in the charging and discharging voltage curve.

また、電気量効率も高く、90%以上で安定していた。In addition, the electricity efficiency was high and stable at 90% or more.

!’G7図に充放電を100回繰り返した際の測定結果
を示す。
! Figure G7 shows the measurement results when charging and discharging were repeated 100 times.

第1表 第2表 第3表 第4表 発明の効果 以上、詳細に説明してきたように、本発明は正極、負極
共に炭素材を用いた各々、アニオン、リチウムイオンの
ドーピング反応を電極反応に利用したリチウム二次電池
に関するものである0本発明の最大の特徴は、正極、負
極の反応に最適な炭素材の特性を見極め、これを黒鉛化
度の指標を用いて表現したこと、更に、この特性を、正
極の場合には石炭ピッチ或は石油ピッチを原料としたピ
ッチ系炭素m維に依って、負極の場合には乱層構造を持
った炭素繊維に依って、実現したことにある。この二次
電池システムは、金属リチウムを電極として使わなくと
も非常に高電圧で、しかも軽量な充放電可能な二次電池
を可能としたものであり、極めて利用価値の高いもので
ある。
Table 1 Table 2 Table 3 Table 4 Effects of the Invention As explained above in detail, the present invention uses carbon materials for both the positive and negative electrodes, and the doping reaction of anions and lithium ions is applied to the electrode reaction. The greatest feature of the present invention, which relates to the lithium secondary battery utilized, is that the characteristics of the carbon material optimal for the reaction of the positive electrode and the negative electrode were determined, and this was expressed using an index of the degree of graphitization. This characteristic is achieved by using pitch-based carbon fibers made from coal pitch or petroleum pitch in the case of the positive electrode, and by using carbon fibers with a turbostratic structure in the case of the negative electrode. . This secondary battery system makes it possible to create a very high-voltage, lightweight, chargeable and dischargeable secondary battery without using metallic lithium as an electrode, and has extremely high utility value.

【図面の簡単な説明】[Brief explanation of the drawing]

t51図は炭素#amの電極の概略図である。 第2図は炭素繊維の電極特性測定のための装器の概略図
である。 第3図は本発明に係わる炭素繊維、及び既存の炭素材の
正極に関する定電流充放電の特性図である。 第4図は本発明に係わる炭素繊維のラマンスペクトルを
示す特性図である。 第5図、第6図は本発明に係わる炭素m維、及び既存の
炭素材の負極に関する定電流充放電の特性図である。 第7図は本発明に係わる炭素m維を両極に用いた電池の
定電流充放電の特性図である。 1・・・炭素繊維、2曇・・白金線、3−・・対極、4
0番・試料極、5#・・基準極、6・・・電解液、71
1金・ガラス容器、8・−・Arガス。
The t51 diagram is a schematic diagram of a carbon #am electrode. FIG. 2 is a schematic diagram of an apparatus for measuring electrode properties of carbon fibers. FIG. 3 is a constant current charging/discharging characteristic diagram of the carbon fiber according to the present invention and the existing carbon material positive electrode. FIG. 4 is a characteristic diagram showing the Raman spectrum of the carbon fiber according to the present invention. FIGS. 5 and 6 are constant current charging and discharging characteristics diagrams of the carbon m-fiber according to the present invention and the negative electrode of the existing carbon material. FIG. 7 is a constant current charging/discharging characteristic diagram of a battery using carbon m-fibers in both electrodes according to the present invention. 1... Carbon fiber, 2 Cloudy... Platinum wire, 3-... Counter electrode, 4
No. 0・Sample electrode, 5#・Reference electrode, 6・Electrolyte, 71
1. Gold/glass container, 8.--Ar gas.

Claims (1)

【特許請求の範囲】[Claims]  炭素層面の平均面間隔が3.40A以下で、c軸方向
及び、a軸方向の結晶子の大きさが、各々、200〜8
00A、200〜1000Aであるピッチ系炭素繊維を
正極に用い、炭素層面の平均面間隔が3.37〜3.4
5A、c軸方向及び、a軸方向の結晶子の大きさが、各
々、40〜500A、40〜700Aで、且つ、アルゴ
ンレーザーを用いたラマンスペクトルにおける1580
cm^−^1のピーク強度に対する1360cm^−^
1のピーク強度の比が0.2以上1.0以下である炭素
繊維を負極に用いたことを特徴とする炭素繊維を両極に
用いたリチウム二次電池。
The average interplanar spacing of the carbon layer planes is 3.40A or less, and the crystallite sizes in the c-axis direction and the a-axis direction are each 200 to 8
00A, 200-1000A pitch-based carbon fiber is used for the positive electrode, and the average interplanar spacing of the carbon layer surfaces is 3.37-3.4.
5A, the crystallite size in the c-axis direction and the a-axis direction is 40-500A and 40-700A, respectively, and 1580A in the Raman spectrum using an argon laser.
1360cm^-^ for peak intensity of cm^-^1
A lithium secondary battery using carbon fibers for both electrodes, characterized in that carbon fibers having a peak intensity ratio of 0.2 or more and 1.0 or less are used for the negative electrodes.
JP63233759A 1988-09-20 1988-09-20 Lithium secondary battery using carbon fiber for both electrodes Expired - Lifetime JP2612320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63233759A JP2612320B2 (en) 1988-09-20 1988-09-20 Lithium secondary battery using carbon fiber for both electrodes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63233759A JP2612320B2 (en) 1988-09-20 1988-09-20 Lithium secondary battery using carbon fiber for both electrodes

Publications (2)

Publication Number Publication Date
JPH0282466A true JPH0282466A (en) 1990-03-23
JP2612320B2 JP2612320B2 (en) 1997-05-21

Family

ID=16960130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63233759A Expired - Lifetime JP2612320B2 (en) 1988-09-20 1988-09-20 Lithium secondary battery using carbon fiber for both electrodes

Country Status (1)

Country Link
JP (1) JP2612320B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0461747A (en) * 1990-06-28 1992-02-27 Nippon Steel Corp Negative electrode for lithium secondary battery
WO1993000717A1 (en) * 1991-06-20 1993-01-07 Mitsubishi Petrochemical Co., Ltd. Electrode for secondary battery
JPH05275077A (en) * 1992-03-24 1993-10-22 Agency Of Ind Science & Technol Negative electrode for lithium secondary battery
WO1993023889A1 (en) * 1992-05-15 1993-11-25 Yuasa Corporation Secondary cell and its manufacture method
WO1993024967A1 (en) * 1992-05-25 1993-12-09 Nippon Steel Corporation Negative electrode material for lithium secondary cell, its manufacture method, and lithium secondary cell
WO1994014205A1 (en) * 1992-12-04 1994-06-23 Sony Corporation Secondary cell of nonaqueous electrolyte
US5340670A (en) * 1992-06-01 1994-08-23 Kabushiki Kaisha Toshiba Lithium secondary battery and method of manufacturing carbonaceous material for negative electrode of the battery
US5344724A (en) * 1992-04-10 1994-09-06 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
JPH06310144A (en) * 1993-04-23 1994-11-04 Yuasa Corp Secondary battery
EP0627776A2 (en) * 1993-05-14 1994-12-07 Sharp Kabushiki Kaisha Lithium secondary battery
WO1995018467A1 (en) * 1992-04-30 1995-07-06 Sony Corporation Material for cathode and method of its manufacture
WO1995028011A1 (en) * 1994-04-08 1995-10-19 Sony Corporation Nonaqueous-electrolyte secondary cell
EP0688057A1 (en) 1994-06-15 1995-12-20 Kabushiki Kaisha Toshiba Lithium ion secondary battery
EP0698934A2 (en) 1994-07-29 1996-02-28 SHARP Corporation A method of manufacturing a negative electrode for lithium secondary battery
EP0713256A1 (en) 1994-10-27 1996-05-22 Sharp Kabushiki Kaisha Lithium secondary battery and process for preparing negative-electrode active material for use in the same
US5591545A (en) * 1991-11-20 1997-01-07 Honda Giken Kogyo Kabushiki Kaisha Carbon material and method for producing same
US5639575A (en) * 1992-12-04 1997-06-17 Sony Corporation Non-aqueous liquid electrolyte secondary battery
US5643426A (en) * 1993-12-28 1997-07-01 Sony Corporation Anode material and method of manufacturing the same
US5716732A (en) * 1992-04-30 1998-02-10 Imoto; Hiroshi Anode material and method of manufacturing the same
WO1999063612A1 (en) * 1998-06-04 1999-12-09 Mitsubishi Chemical Corporation Secondary battery having nonaqueous electrolyte solution
JPWO2011027503A1 (en) * 2009-09-01 2013-01-31 日立ビークルエナジー株式会社 Nonaqueous electrolyte secondary battery

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0461747A (en) * 1990-06-28 1992-02-27 Nippon Steel Corp Negative electrode for lithium secondary battery
WO1993000717A1 (en) * 1991-06-20 1993-01-07 Mitsubishi Petrochemical Co., Ltd. Electrode for secondary battery
US5591545A (en) * 1991-11-20 1997-01-07 Honda Giken Kogyo Kabushiki Kaisha Carbon material and method for producing same
JPH05275077A (en) * 1992-03-24 1993-10-22 Agency Of Ind Science & Technol Negative electrode for lithium secondary battery
US5344724A (en) * 1992-04-10 1994-09-06 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
WO1995018467A1 (en) * 1992-04-30 1995-07-06 Sony Corporation Material for cathode and method of its manufacture
US5716732A (en) * 1992-04-30 1998-02-10 Imoto; Hiroshi Anode material and method of manufacturing the same
WO1993023889A1 (en) * 1992-05-15 1993-11-25 Yuasa Corporation Secondary cell and its manufacture method
US5851697A (en) * 1992-05-25 1998-12-22 Nippon Steel Corporation Negative electrode material for lithium secondary cell, method for its production, and lithium secondary cell
US5622793A (en) * 1992-05-25 1997-04-22 Nippon Steel Corporation Method for preparing negative electrode material for a lithium secondary cell
EP0643431A1 (en) * 1992-05-25 1995-03-15 Nippon Steel Corporation Negative electrode material for lithium secondary cell, its manufacture method, and lithium secondary cell
EP0643431A4 (en) * 1992-05-25 1995-05-24 Nippon Steel Corp Negative electrode material for lithium secondary cell, its manufacture method, and lithium secondary cell.
WO1993024967A1 (en) * 1992-05-25 1993-12-09 Nippon Steel Corporation Negative electrode material for lithium secondary cell, its manufacture method, and lithium secondary cell
US5340670A (en) * 1992-06-01 1994-08-23 Kabushiki Kaisha Toshiba Lithium secondary battery and method of manufacturing carbonaceous material for negative electrode of the battery
US5639575A (en) * 1992-12-04 1997-06-17 Sony Corporation Non-aqueous liquid electrolyte secondary battery
WO1994014205A1 (en) * 1992-12-04 1994-06-23 Sony Corporation Secondary cell of nonaqueous electrolyte
JPH06310144A (en) * 1993-04-23 1994-11-04 Yuasa Corp Secondary battery
EP0627776A2 (en) * 1993-05-14 1994-12-07 Sharp Kabushiki Kaisha Lithium secondary battery
US5432029A (en) * 1993-05-14 1995-07-11 Sharp Kabushiki Kaisha Lithium secondary battery
EP0627776A3 (en) * 1993-05-14 1994-12-28 Sharp Kk
US5643426A (en) * 1993-12-28 1997-07-01 Sony Corporation Anode material and method of manufacturing the same
WO1995028011A1 (en) * 1994-04-08 1995-10-19 Sony Corporation Nonaqueous-electrolyte secondary cell
US6623888B1 (en) * 1994-04-08 2003-09-23 Sony Corporation Non-aqueous electrolyte secondary cell
EP0688057A1 (en) 1994-06-15 1995-12-20 Kabushiki Kaisha Toshiba Lithium ion secondary battery
EP0698934A2 (en) 1994-07-29 1996-02-28 SHARP Corporation A method of manufacturing a negative electrode for lithium secondary battery
EP0713256A1 (en) 1994-10-27 1996-05-22 Sharp Kabushiki Kaisha Lithium secondary battery and process for preparing negative-electrode active material for use in the same
WO1999063612A1 (en) * 1998-06-04 1999-12-09 Mitsubishi Chemical Corporation Secondary battery having nonaqueous electrolyte solution
US6664008B1 (en) 1998-06-04 2003-12-16 Mitsubishi Chemical Corporation Secondary battery having nonaqueous electrolyte solution
JPWO2011027503A1 (en) * 2009-09-01 2013-01-31 日立ビークルエナジー株式会社 Nonaqueous electrolyte secondary battery
JP5554780B2 (en) * 2009-09-01 2014-07-23 日立ビークルエナジー株式会社 Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2612320B2 (en) 1997-05-21

Similar Documents

Publication Publication Date Title
JPH0282466A (en) Lithium secondary battery in which carbon fiber is used for both electrodes
US7993780B2 (en) Process for producing carbon anode compositions for lithium ion batteries
US8900755B2 (en) Lithium super-battery with a chemically functionalized disordered carbon cathode
Tan et al. Understanding potassium ion storage mechanism in pitch-derived soft carbon and the consequence on cyclic stability
US7465519B2 (en) Lithium-ion battery incorporating carbon nanostructure materials
US9634329B2 (en) Method of preparing graphene and anode mixture for lithium secondary battery including graphene prepared thereby
KR102281034B1 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
US20120196193A1 (en) Composite graphite particles and lithium secondary battery using the same
US20130059174A1 (en) Partially surface-mediated lithium ion-exchanging cells and method for operating same
KR20130012583A (en) Composite of metal oxide nanoparticles and carbon, method for producing said composite, electrode using said composite, and electrochemical element
JP2012049142A (en) Power storage device and power storage system
US11223064B2 (en) Multivalent metal ion battery having a cathode layer of protected graphitic carbon and manufacturing method
KR101790234B1 (en) Ultra-thin hollow carbon nanospheres for sodium ion storing and manufacturing method thereof
WO2016031977A1 (en) Negative electrode material for power storage device, manufacturing method thereof, and lithium ion power storage device
Xie et al. A stable carbon host engineering surface defects for room-temperature liquid NaK anode
EP3948909A1 (en) Supercapacitor
US6245460B1 (en) Negative electrode active material for lithium-based secondary battery and method of preparing same
KR100693397B1 (en) Negative electrodes for rechargeable batteries
JPH0821375B2 (en) Negative electrode for lithium secondary battery
WO2022118443A1 (en) Electrolyte and dual ion battery
JP2002093420A (en) Nonaqueous electrolyte secondary battery
JPH08180868A (en) Carbon material for lithium secondary battery negative electrode, its manufacture, carbon electrode and nonaqueous electrolytic lithium secondary battery
JPH09106818A (en) Manufacture of negative electrode for non-aqueous electrolyte secondary battery
KR101473816B1 (en) Method for manufacturing negative electrode material of core-shell type for hybrid capacitor
KR20230123021A (en) Composite anode active material including fullerene nanorod, and secondary battery using the same