JPH0461747A - Negative electrode for lithium secondary battery - Google Patents

Negative electrode for lithium secondary battery

Info

Publication number
JPH0461747A
JPH0461747A JP2168434A JP16843490A JPH0461747A JP H0461747 A JPH0461747 A JP H0461747A JP 2168434 A JP2168434 A JP 2168434A JP 16843490 A JP16843490 A JP 16843490A JP H0461747 A JPH0461747 A JP H0461747A
Authority
JP
Japan
Prior art keywords
carbon fiber
lithium
fiber
negative electrode
crystallite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2168434A
Other languages
Japanese (ja)
Other versions
JPH0821375B2 (en
Inventor
Takashi Iijima
孝 飯島
Teruo Iwashita
岩下 輝雄
Kimihito Suzuki
公仁 鈴木
Maki Sato
真樹 佐藤
Kenichi Fujimoto
研一 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Corp
Priority to JP2168434A priority Critical patent/JPH0821375B2/en
Publication of JPH0461747A publication Critical patent/JPH0461747A/en
Publication of JPH0821375B2 publication Critical patent/JPH0821375B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To enhance the stability of the discharge capacity for repeated charging/discharging by using carbon fiber made from mesophase pitch as starting material, and therefrom selecting specific carbon fiber. CONSTITUTION:A neg. electrode concerned uses an active substance which is carbon fiber of specific structure. That is, the carbon fiber has properties such that the lattice surface spacing (d002) as crystallite parameter due to X-ray diffraction method ranged 0.338-0.343nm, the size (Lc) of the crystallite in the c-axis direction ranges 10-30nm, the orientation factor (FWHM) ranges 7-20deg., and the mean length in fiber cross-section direction of the graphite crystallite stretching long in the fiber axis direction ranges 20-100nm. In this carbon fiber, the graphite crystallite is surrounded by amorphous portion, which absorbs expansion/contraction of the graphite crystallite elastically, so that macro- structural destruction of carbon fiber will not generated. This provides a large discharge capacity and ensures high stability of discharge capacity for repeated charging/discharging.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非水電解液リチウム二次電池用の負極材料に
関する。更に詳しくは、長寿命、高エネルギー密度が要
求される高性能非水電解液リチウム二次電池に適した負
極材料に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to negative electrode materials for non-aqueous electrolyte lithium secondary batteries. More specifically, the present invention relates to a negative electrode material suitable for high-performance non-aqueous electrolyte lithium secondary batteries that require long life and high energy density.

従来の技術 ・般にアルカリ金属を負極活物質に用いた電池は、高エ
ネルギー密度、軽量小型、非水電解液を用いるため長期
保存性に優れるなど多くの利点を有し、既に、リチウム
に関しては、リチウム−次゛屯池として実用化され広く
普及している。
Conventional technology: Batteries using alkali metals as negative electrode active materials have many advantages, such as high energy density, light weight, small size, and excellent long-term storage stability due to the use of non-aqueous electrolytes. It has been put into practical use as a lithium secondary battery and is widely used.

しかじながら、この負極活物質を二次゛電池の負極とし
て使用した場合、−次電池にはない新たな問題か生じる
。即ち、リチウムを負極とした二次電池は充放電のサイ
クル寿命か短く、また、放゛屯効率か低いなどの問題で
ある。これは充電の際負極に析出するリチウムがいわゆ
るテントライト(樹枝状晶)を形成することに起因する
However, when this negative electrode active material is used as a negative electrode of a secondary battery, new problems arise that do not exist in secondary batteries. That is, secondary batteries using lithium as a negative electrode have short charge/discharge cycle life and low discharge efficiency. This is because lithium deposited on the negative electrode during charging forms so-called tentolites (dendrites).

これらリチウムの二次電池化↓こおける問題点に対する
解決策として、以下の方法が検討されている。即ち、電
解液を改善すること、リチウムを含む合金を負極に用い
ること、導電性高分子を負極に用いること、炭素材料を
負極に用いることである。
As a solution to these problems in turning lithium into secondary batteries, the following methods are being considered. That is, improving the electrolyte, using an alloy containing lithium for the negative electrode, using a conductive polymer for the negative electrode, and using a carbon material for the negative electrode.

mM液の改善として、有機溶媒の枚合化、微敬の溶媒の
添加(例えば、vt気化学と工業物理化学、57,52
3(1989))が検討されている。これらの方法は、
有機溶媒によって充電時のリチウムの析出状態が変化す
るという点を依り処としているが、現状ではデンドライ
トの発生を完全に排除できるような電解液は見い出され
ていない。
To improve the mM solution, the combination of organic solvents and the addition of small amounts of solvents (e.g., VT vapor chemistry and industrial physical chemistry, 57, 52
3 (1989)) is being considered. These methods are
This method relies on the fact that the state of lithium precipitation during charging changes depending on the organic solvent, but at present no electrolytic solution has been found that can completely eliminate the formation of dendrites.

リチウムを含む合金として、例えば、Li−M合金、ウ
ッド合金などが検討されている(NationalTe
ch、 Report、 Vol、 32. No、 
5 (19813))、これらの合金を負極に用いるこ
とで、析出したリチウムは合金化して電極内部に取り込
まれるため、原理的にデンドライトの成長を排除できる
。しかしながら、リチウムの濃度によって合金の結晶構
造が変化するなどの理由で電極の膨張収縮が生じるため
、リチウムのC度変化が大きい充放電をさせることがで
きないこと、合金内部へのリチウムの拡散が律速となっ
て電流密度を高くできないことなどの問題がある。
As alloys containing lithium, for example, Li-M alloys, wood alloys, etc. are being studied (National Te
ch, Report, Vol, 32. No,
5 (19813)), and by using these alloys in the negative electrode, the precipitated lithium is alloyed and incorporated into the electrode, so that in principle, the growth of dendrites can be eliminated. However, expansion and contraction of the electrode occurs due to changes in the crystal structure of the alloy depending on the concentration of lithium, so charging and discharging with a large change in C degree of lithium is not possible, and diffusion of lithium into the interior of the alloy is the rate determining factor. Therefore, there are problems such as the inability to increase the current density.

また、導電性高分子は、リチウムのドーピング・脱ドー
ピングを負極反応に応用するもので、リチウムは析出せ
ずに高分子内にドープされるので原理的にデンドライト
の発生を排除できる(固体物理、17.793(198
2))。しかしながら、リチウムをドープした高分子の
電位が1.2 V (リチウム基準)とリチウムに比較
して大幅に責なこと、充放電のサイクル寿命の劣化のた
めリチウムのドープ品を多くすることができないなどの
問題が残されている。
In addition, conductive polymers apply lithium doping and dedoping to negative electrode reactions, and since lithium is doped into the polymer without being precipitated, the generation of dendrites can be theoretically eliminated (solid-state physics, 17.793 (198
2)). However, the potential of lithium-doped polymers is 1.2 V (lithium standard), which is significantly lower than lithium, and it is not possible to increase the number of lithium-doped products because of the deterioration of the charge/discharge cycle life. Other issues remain.

上述のように三種の手段は、必ずしも負極の欠点の解決
には成功していないのが現状である。これらの方法に代
わる新たな手段として近年注目されているのが、炭素材
料を負極活物質に用いる方法である。炭素材料を負極に
用いることで、充電の際リチウムは炭素層間に取り込ま
れ(インターカレーション反応)、いわゆる黒鉛層間化
合物を形成する。この為、原理的にデンドライトの発生
を排除することができる。
As mentioned above, the current situation is that the three types of means have not necessarily succeeded in solving the drawbacks of the negative electrode. A new method that has recently attracted attention as an alternative to these methods is the use of carbon materials as negative electrode active materials. By using a carbon material for the negative electrode, lithium is incorporated between the carbon layers during charging (intercalation reaction), forming a so-called graphite intercalation compound. Therefore, in principle, the generation of dendrites can be eliminated.

また、炭素材料を用いた負極は、リチウム含有合金、導
電性高分子を用いた場合と比較して、リチウム金属に対
して化学的に安定であること、理論的に−Liまでリチ
ウムを取り込むことが可能であり、炭素材料の軽量性、
良導電性とあいまって負極材料のエネルギー密度を高め
られることなどの優位性を持つ、更に、インターカレー
ション反応の特徴である本質的な反応の易可逆性の為、
充放電の繰り返しに対して長寿命であり二次電池の負極
として期待されている。
In addition, negative electrodes made of carbon materials are chemically more stable with respect to lithium metal than those made of lithium-containing alloys or conductive polymers, and are theoretically capable of incorporating lithium up to -Li. is possible, and the lightweight nature of carbon materials
It has advantages such as being able to increase the energy density of the negative electrode material in combination with good conductivity, and also because of the easy reversibility of the essential reaction, which is a characteristic of intercalation reactions.
It has a long life even after repeated charging and discharging, and is expected to be used as a negative electrode for secondary batteries.

上記のような特徴を有したリチウム二次電池の負極に適
した炭素材料として、本願発明者らは、X線回折法、並
びに、ラマン分光法によって規定したピッチを原料とし
た炭素繊維が優れた性能を示すことを明かにし、既に特
許出願(特開平2−8248Ei号公報参照)した、し
かしながら、負極としてこのピッチ系炭素繊維を用いて
充放電を繰り返すと、サイクルに伴う放電容量に減少の
傾向が認められることがあり、容量のサイクル安定性を
改善することが必要であった。
As a carbon material suitable for the negative electrode of a lithium secondary battery having the above-mentioned characteristics, the inventors of the present application have found that carbon fiber made from a pitch defined by X-ray diffraction and Raman spectroscopy is excellent. However, when charging and discharging are repeated using this pitch-based carbon fiber as a negative electrode, the discharge capacity tends to decrease with cycles. was sometimes observed, and it was necessary to improve the cycling stability of the capacity.

発明が解決しようとする課題 本発明は上記のごとき現状を鑑みてなされたもので、繰
り返し充放電に対する放電容量の安定性が高い、非水電
解液系リチウム二次電池用の負極に適したピッチ系炭素
繊維を提供することを目的とする。
Problems to be Solved by the Invention The present invention has been made in view of the current situation as described above, and provides a pitch suitable for negative electrodes for nonaqueous electrolyte-based lithium secondary batteries, which has a highly stable discharge capacity against repeated charging and discharging. The purpose is to provide carbon fibers based on carbon fibers.

課題を解決するための手段 本発lJI者らは、前記のような諸問題を解決すべくピ
ッチ系炭素繊維の構造に関し鋭意検討を重ねた結果、適
当な大きさの黒鉛結晶子とそれを取り巻く非晶質部分の
集合体という複合構造がリチウム二次電池のサイクル安
定性に本質的に重要であることを見い出した。更に、こ
の複合構造の規定の目的には、従来電池用の炭素材の規
定に用いられていたX線回折法による指標の他に、結晶
子の大きさを規定する配向係数とTEM写真による炭素
m維横断面方向の黒鉛結晶子の大きさという二つの指標
が、炭素繊維の規定に最適であることを見い出し、本発
明に至ったものである。
Means to Solve the Problems In order to solve the above-mentioned problems, the authors of the IJI have conducted extensive studies on the structure of pitch-based carbon fibers, and as a result, they have created graphite crystallites of an appropriate size and their surroundings. We have discovered that the composite structure, which is an aggregate of amorphous parts, is essentially important for the cycle stability of lithium secondary batteries. Furthermore, for the purpose of specifying this composite structure, in addition to the X-ray diffraction index used to specify carbon materials for batteries, orientation coefficients that specify the size of crystallites and carbon It has been discovered that two indicators, the size of graphite crystallites in the cross-sectional direction of m-fibers, are optimal for specifying carbon fibers, leading to the present invention.

即ち、本発明はリチウム塩を有機溶媒に溶解した有機電
解液を用いたリチウム二次電池であって、以下に規定す
る炭素繊維を活物質に用いることを特徴とした負極に関
するものである。即ち、X線回折法による結晶子パラメ
ータである格子面間隔(d002)が0.338 nm
以上0.343 n鵬以下、C軸方向の結晶子の大きさ
(Lc )がIQam以上3(lnm以下、配向係数(
FWHM)が7°以上20°以下であり、且つ、繊維軸
方向に長く伸びた黒鉛結晶子の繊維横断面方向での平均
の長さが20n層以上100 nm以下である炭素繊維
である。
That is, the present invention relates to a lithium secondary battery using an organic electrolyte in which a lithium salt is dissolved in an organic solvent, and a negative electrode characterized in that carbon fiber defined below is used as an active material. That is, the lattice spacing (d002), which is a crystallite parameter determined by X-ray diffraction, is 0.338 nm.
0.343 or more, the crystallite size in the C-axis direction (Lc) is IQam or more and 3 (lnm or less), and the orientation coefficient (
FWHM) is 7° or more and 20° or less, and the average length of graphite crystallites elongated in the fiber axis direction in the fiber cross-sectional direction is 20n layers or more and 100 nm or less.

炭素繊維の規定に用いたト述の種々の物性値の表現方法
に関し、以下に説明する: (1)X線回折法 CuKαをX線源、標準物質に高純度シリコンを使用し
、炭素材に対し002回折パターンを測定し、そのピー
ク位置、半価幅から、各々、格子面間隔d。02.黒鉛
結晶子のC軸方向の平均的長さLcを算出する。算出方
法は、例えば、「炭素繊維」 (近代編集社、昭和61
年3月発行)第733〜742頁に記載されている。
The method of expressing the various physical property values mentioned above used in the specification of carbon fibers is explained below: (1) X-ray diffraction method Using CuKα as the X-ray source, high-purity silicon as the standard material, and The 002 diffraction pattern was measured, and the lattice spacing d was determined from the peak position and half-value width. 02. The average length Lc of graphite crystallites in the C-axis direction is calculated. The calculation method is, for example, "Carbon Fiber" (Kaidai Editsha, 1988)
Published in March 2016), pages 733-742.

(2)炭素繊維のX線回折による配向係数真直に張った
炭素m維束を含む平面に垂直にX線を照射し、その透過
回折光を002面回折が最大となる方向にセットした検
出器で検出する。この条件にX線回折測定系を固定した
状m;で、mwr束を入射X&9に垂直な平面内で回転
させて回折光を測定すると回折パターンは繊維の回転角
180”の周期関数となり、−周期毎にひとつのピーク
を71<す、配向係数は、このピークの半価幅(FWH
M)として定義される。
(2) Orientation coefficient based on X-ray diffraction of carbon fibers A detector that irradiates X-rays perpendicularly to a plane containing straight carbon fibers and sets the transmitted diffracted light in the direction where the 002 plane diffraction is maximized. Detect with. With the X-ray diffraction measurement system fixed under these conditions, when the mwr bundle is rotated in a plane perpendicular to the incident X & 9 and the diffracted light is measured, the diffraction pattern becomes a periodic function of the fiber rotation angle of 180'', and - One peak per period is 71<, and the orientation coefficient is the half width (FWH) of this peak.
M) is defined as

(3)繊維軸方向に伸ている黒鉛結晶子の横断面方向で
のモ均の長さ 以ドに記述するように透過型電子1[鏡(TEM)によ
って測定する。
(3) Measurement is made using a transmission electron mirror (TEM) as described below.

炭素繊維を樹脂に埋め込んだ後、例えばダイアモンドカ
ッター等を用いて薄片を得る。この際、薄片の表面と炭
素繊維軸とは平行にする。透過型電子顕微鏡を用いて薄
片の002暗視野像を観察すると、繊維軸に平行な白い
帯と黒い帯の格子縞が観察される。格子縞の平均的な間
隔Δと像の拡大倍率AからmMI軸方向に伸びているメ
ンフェース領域の横断面方向での平均の長さ見は、次式
で求められる: 又=Δ/A 以下1本発明のピッチ系炭素繊維を用いた負極に関し詳
細に説明する。
After embedding the carbon fibers in the resin, thin pieces are obtained using, for example, a diamond cutter. At this time, the surface of the thin piece and the carbon fiber axis are made parallel. When observing a 002 dark-field image of a thin section using a transmission electron microscope, a lattice pattern of white bands and black bands parallel to the fiber axis is observed. The average length in the cross-sectional direction of the membrane region extending in the mmI axis direction from the average spacing Δ of the lattice fringes and the image magnification A is determined by the following formula: Also = Δ/A Below 1 The negative electrode using the pitch-based carbon fiber of the present invention will be explained in detail.

本発明に用いる紡糸用の原料ピー7チは、配向し易い分
子種が形成されており、光学的に異方性のピッチ、即ち
、メンフェースピッチを与えるものであれば何ら制限は
なく、種々のメンフェースピッチを使用することができ
る。これらのメンフェースピッチを得るための炭素質原
料としては、例えば、石炭系のコールタールピッチ、石
油系の重質油、ピッチ等が挙げられる0本発明における
紡糸用ピッチは、基本的に易黒鉛化性のものが望ましく
、メンフェース含有量が70%以上、好ましくは80%
以上、最適には、85%以上のメンフェースを含有する
ピッチが適当である。
The raw material peach for spinning used in the present invention has molecular species that are easily oriented and is not limited in any way as long as it provides an optically anisotropic pitch, that is, a membrane pitch. Menface pitch can be used. Carbonaceous raw materials for obtaining these membrane pitches include, for example, coal-based coal tar pitch, petroleum-based heavy oil, pitch, etc. The pitch for spinning in the present invention is basically a material that is easily graphitized. It is desirable that the membrane content is 70% or more, preferably 80%.
As described above, optimally, a pitch containing 85% or more of membrane is suitable.

本発明者らは、充放電の繰り返しに対するサイクル安定
性の高いリチウム二次電池負極に適したピッチ系炭素繊
維を得るため、炭素繊維の製造工程、並びに、評価方法
に関し詳細に検討した。その結果、炭素繊維の構造にお
いて本質的に重要な点は、紡糸過程等の製造工程におい
て、易黒鉛化性のメンフェースピッチを細分化すること
により、黒鉛結晶構造の発達を抑制することであること
が判明した。細分化されたメソフェースを内部組織とし
た繊維は、黒鉛結晶構造の発達した領域(以下、黒鉛結
晶子と呼ぶ)と、これら黒鉛結晶子を相互に結合する非
晶質部分とから構成されるものである。即ち、黒鉛結晶
子とそれらを結合する非晶質部分とからなる複合構造が
、リチウム二次電池用負極として最適な構造であること
が判明した。
In order to obtain a pitch-based carbon fiber suitable for a lithium secondary battery negative electrode that has high cycle stability against repeated charging and discharging, the present inventors conducted a detailed study on the manufacturing process and evaluation method of carbon fiber. As a result, the essential point in the structure of carbon fiber is to suppress the development of graphite crystal structure by subdividing the easily graphitizable membrane pitch during manufacturing processes such as spinning. It has been found. Fibers with an internal structure of subdivided mesophases are composed of regions with a developed graphite crystal structure (hereinafter referred to as graphite crystallites) and amorphous parts that interconnect these graphite crystallites. It is. That is, it has been found that a composite structure consisting of graphite crystallites and an amorphous portion that connects them is the optimal structure for a negative electrode for a lithium secondary battery.

本発明が主張するところのリチウム二次電池用負極にお
ける結晶子と非晶質部分との複合構造を持った炭素繊維
がリチウム二次電池負極活物質として優れた特性を有す
る理由を以下に説明する。
The reason why the carbon fiber having a composite structure of crystallites and an amorphous part in the negative electrode for lithium secondary batteries as claimed by the present invention has excellent characteristics as a negative electrode active material for lithium secondary batteries will be explained below. .

充電時、電解液中から負極である炭素繊維の巾へリチウ
ムが挿入される。そして、炭素繊維内のリチウムは、エ
ネルギー的に安定な結晶構造の発達した黒鉛結晶子内に
選択的に挿入される。リチウムの挿入によって黒鉛結晶
子を構成する炭素層面の面間隔は拡大し、同時に黒鉛結
晶子が膨張することになるが、この膨張は、結晶子を取
り巻く非晶質部分が弾性的に吸収するため、炭素繊維の
マクロな構造の破壊には至らない。
During charging, lithium is inserted from the electrolyte into the width of the carbon fiber that serves as the negative electrode. Lithium within the carbon fiber is selectively inserted into graphite crystallites that have developed energetically stable crystal structures. By inserting lithium, the interplanar spacing of the carbon layer planes that make up the graphite crystallite expands, and at the same time, the graphite crystallite expands, but this expansion is elastically absorbed by the amorphous part surrounding the crystallite. , it does not lead to destruction of the macroscopic structure of carbon fiber.

放電時、炭素繊維中のリチウムは、電解液中へ放出され
る。リチウムを層間から放出する際には、層間の収縮が
生じるが、黒鉛結晶子を取り巻く非晶質部分が弾性的に
結晶子を元の状態に戻す働きをするため、炭素繊維は何
等結晶の破壊を伴うことはない。
During discharge, the lithium in the carbon fiber is released into the electrolyte. When lithium is released from between the layers, contraction occurs between the layers, but since the amorphous part surrounding the graphite crystallites elastically returns the crystallites to their original state, carbon fiber does not cause any crystal breakage. It is not accompanied by

即ち、黒鉛結晶子へのリチウムの挿入反応は、黒鉛結晶
子の膨張という本来であれば非可逆な結晶構造の破壊を
生じせしめるが、本発明が主張するところの炭素繊維は
、黒鉛結晶子を非晶質部分が取り囲み、この非晶質部分
が弾性的に黒鉛結晶子の膨張収縮を吸収することに依っ
て、可逆性を発現せしめているのである。また、黒鉛結
晶子からのリチウムの放出反応においては、膨張した黒
鉛結晶子が元の状態へ収縮するが、この収縮は、非晶質
部分の弾性によって、マクロな炭素繊維の構造の破壊に
は至らない。
In other words, the insertion reaction of lithium into graphite crystallites causes expansion of the graphite crystallites, which is normally an irreversible destruction of the crystal structure, but the carbon fiber claimed by the present invention It is surrounded by an amorphous portion, and this amorphous portion elastically absorbs the expansion and contraction of graphite crystallites, thereby achieving reversibility. In addition, in the release reaction of lithium from graphite crystallites, the expanded graphite crystallites contract back to their original state, but this contraction occurs due to the elasticity of the amorphous portion, and the macroscopic carbon fiber structure is not destroyed. Not enough.

即ち、安定な充放電の繰り返しに適した炭素繊維の条件
は、次の二点である。一つは、反応の場である黒鉛構造
の発達した部分が存在すること、一つは、膨張収縮を弾
性的に吸収する非晶質部分が存在することである。
That is, the following two conditions are suitable for carbon fibers to be repeatedly charged and discharged stably. One is that there is a part with a developed graphite structure that is a reaction site, and the other is that there is an amorphous part that elastically absorbs expansion and contraction.

」−述のように本発明において重要な点は、黒鉛結晶子
の発達を抑制すること、即ち、メソフェースピッチを細
か〈分割することで強制的に炭素繊維内に結晶子とそれ
を取り巻く非晶質部分という複合構造を導入することに
ある。
- As mentioned above, an important point in the present invention is to suppress the development of graphite crystallites, that is, by dividing the mesoface pitch finely, the crystallites and the non-containing particles surrounding them are forced into the carbon fiber. The aim is to introduce a complex structure called a crystalline part.

このような構造の炭素繊維を物性値で表現すると、以下
のようになる; (1)X線回折法による結晶子パラメータにおいて、格
子面間隔(doo2)が、0.338 nm以上0.3
43 n1以下で、且つ、C軸方向の結晶子の大きさ(
Lc)が10nm以上30nm以下。
When carbon fibers with such a structure are expressed in terms of physical properties, they are as follows: (1) In terms of crystallite parameters determined by X-ray diffraction, the lattice spacing (doo2) is 0.338 nm or more and 0.3
43 n1 or less and the crystallite size in the C-axis direction (
Lc) is 10 nm or more and 30 nm or less.

(2)X線回折法に於ける配向係数(FWHM)が、7
°以上20′以下。
(2) Orientation coefficient (FWHM) in X-ray diffraction method is 7
More than ° and less than 20'.

(3)繊維軸方向に長く伸びている黒鉛結晶子の横断面
方向での平均の長さが、 20ngg以上100ni<
以下。
(3) The average length in the cross-sectional direction of the graphite crystallites extending in the fiber axis direction is 20 ngg or more and 100 ni <
below.

上記の条件の内、(1)は、炭素繊維の平均的な黒鉛化
度において、負極に適した範囲を規定、(2)は、繊維
軸方向に伸びた黒鉛結晶子の長さに対応する。即ち、黒
鉛結晶子の長さが長ければ、黒鉛結晶子はm#I軸に平
行に揃う傾向が強くなり、そのため結晶子の配向は発達
し配向角は小さくなる。(3)は、黒鉛結晶子の横断面
方向の大きさを規定するものである。 (2) 、 (
3)は、即ち、黒鉛結晶子の大きさに関する規定である
。この様に炭素繊維をその内部構造に焦点を当て、Li
二次電池負極に最適な構造の本質が、黒鉛結晶子と非晶
質部分からなる複合構造であることを見い出し、x&1
回折によるd。o2.Lc、黒鉛結晶子の配向角、黒鉛
結晶子の繊維断面方向の大きさによって、その複合構造
の規定を可能にしたことが本発明の最大の特徴である。
Among the above conditions, (1) defines the range suitable for a negative electrode in terms of the average degree of graphitization of carbon fibers, and (2) corresponds to the length of graphite crystallites extending in the fiber axis direction. . That is, the longer the length of the graphite crystallites, the stronger the tendency for the graphite crystallites to be aligned parallel to the m#I axis, so that the orientation of the crystallites develops and the orientation angle becomes smaller. (3) defines the size of the graphite crystallite in the cross-sectional direction. (2) , (
3) is a regulation regarding the size of graphite crystallites. In this way, focusing on the internal structure of carbon fiber, Li
We discovered that the essence of the optimal structure for secondary battery negative electrodes is a composite structure consisting of graphite crystallites and amorphous parts.
d by diffraction. o2. The greatest feature of the present invention is that the composite structure can be defined by Lc, the orientation angle of the graphite crystallites, and the size of the graphite crystallites in the fiber cross-sectional direction.

この様にして規定された炭素繊維を用いることで、繰り
返し充放電に対して安定な負極を提供することができる
By using carbon fibers defined in this way, it is possible to provide a negative electrode that is stable against repeated charging and discharging.

本発明に規定するところの炭素繊維は、以下の方法を単
独もしくは組み合わせることによって製造することが好
ましい。
The carbon fibers defined in the present invention are preferably produced by the following methods alone or in combination.

(1)極細繊維 原料ピッチを細く紡糸すればするほど、一般に炭素繊維
の断面方向の結晶子の発達を抑制し、同時に、結晶子の
配向を乱すことが出来る。そして、両者の効果によって
、X線回折による炭素繊維のモ均的な黒鉛化度を抑制す
ることが出来る。
(1) The thinner the ultrafine fiber raw material pitch is spun, the more it is possible to generally suppress the growth of crystallites in the cross-sectional direction of the carbon fiber, and at the same time, to disturb the orientation of the crystallites. Both effects make it possible to suppress the uniform degree of graphitization of carbon fibers as determined by X-ray diffraction.

具体的な炭素繊維の物性値は炭素繊維の直径だけで決ま
るのではなく、原料ピッチの性状、紡糸時のピッチの粘
度、紡糸ノズルの形状等に依存して変化するが、本発明
に適する炭素繊維の直径は、8終m以下である。
The physical properties of specific carbon fibers are not determined only by the diameter of the carbon fibers, but also vary depending on the properties of the raw material pitch, the viscosity of the pitch during spinning, the shape of the spinning nozzle, etc. The diameter of the fibers is 8 m or less.

(2)メツシュフィルターによるメンフェースの細分化 紡糸工程において、原料ピッチが紡糸ノズルから吐出す
るまでのビー7チの流路に予め網(メツシュフィルター
)を設置し、ピッチがフィルターの1」に応じて細分割
されるようにする。この様にして紡糸した炭素繊維は、
その断面内において、メンフェースがメツシュフィルタ
ーに応じて細分化されているため、黒鉛結晶子の発達が
抑制され、且つ、結晶子の配向も抑制することが出来る
。そして、両者の効果によって、X線回折による炭素繊
維の平均的な黒鉛化度を抑制することが出来る。
(2) In the spinning process where mesh filters are used to finely divide membranes, a net (mesh filter) is installed in advance in the flow path of the bead until the raw material pitch is discharged from the spinning nozzle. so that it is subdivided accordingly. The carbon fiber spun in this way is
Within the cross section, the membrane is subdivided according to the mesh filter, so that the development of graphite crystallites is suppressed, and the orientation of the crystallites can also be suppressed. Both effects can suppress the average degree of graphitization of carbon fibers determined by X-ray diffraction.

(3)攪拌によるメンフェースの細分化紡糸工程におい
て、原料ピッチが紡糸ノズルから吐出するまでのピッチ
流路に予め攪拌子を設置し、攪拌子の回転に依ってビー
2チが細分化されるようにする。このように紡糸してな
る炭素繊維は、その断面方向、並びに、繊維軸方向にメ
ンフェースが細分化されているため黒鉛結晶子の発達が
抑制され、且つ、結晶子の配向も抑制される。そして、
両者の効果によって、X線回折による炭素繊維の平均的
な黒鉛化度を抑制することが出来る。
(3) Fragmentation of Memface by Stirring In the spinning process, a stirrer is installed in advance in the pitch flow path until the raw material pitch is discharged from the spinning nozzle, and the beech is divided into smaller pieces by the rotation of the stirrer. Do it like this. The carbon fibers spun in this manner have finely divided membranes in the cross-sectional direction and in the fiber axis direction, so that the development of graphite crystallites is suppressed, and the orientation of the crystallites is also suppressed. and,
Both effects can suppress the average degree of graphitization of carbon fibers as determined by X-ray diffraction.

炭素繊維の黒鉛化処理は、不活性雰囲気下で行われるが
、その温度は2000℃以上、好ましくは、2600℃
以上が適当である。炭素繊維の充放電サイクルに対する
安定性は、基本的に発達した炭素層面が要求されるため
、ある程度高い温度での黒鉛化処理が望ましい。
The graphitization treatment of carbon fibers is carried out under an inert atmosphere at a temperature of 2000°C or higher, preferably 2600°C.
The above is appropriate. Since the stability of carbon fibers against charge/discharge cycles basically requires a well-developed carbon layer surface, graphitization treatment at a somewhat high temperature is desirable.

本発明は、上述したようにリチウムを挿入放出する反応
に適した構造の炭素繊維を用いることを特徴としたリチ
ウム二次電池用の負極に関するものであり、本発明の炭
素繊維を用いた電極であれば、電極の形状に関し何らこ
れを制限するものではない。
The present invention relates to a negative electrode for a lithium secondary battery characterized by using carbon fiber having a structure suitable for the reaction of inserting and releasing lithium as described above, and an electrode using the carbon fiber of the present invention. If there is, there is no restriction on the shape of the electrode.

本発明に於けるリチウム二次電池の電解質として、過塩
素酸リチウム(L i Ci 04 ) 、ホウフッ化
リチウム(LiBF+ ) 、六フッ化アンチモン酸リ
チウム(LiSbFG) 、六塩化アンチモン酩リチウ
ム(LiSbCijb ) 、六7−/化ひそ酸リチウ
ム(LiAsF6)、六フッ化リン酸リチウム(LiP
Fr、 ) 、リチウムトリフロロメチルスルホネート
(LiCF3SO3) 等のリチウム塩が好適に使用さ
れる。電解質として用いるリチウム塩に要求されるのは
、基本的には電気化学的反応に於けるアニオンの安定性
であるから、この条件さえ満足されていれば、特に上記
のリチウム塩に限定されるものではない。
As the electrolyte for the lithium secondary battery in the present invention, lithium perchlorate (L i Ci 04 ), lithium borofluoride (LiBF+), lithium hexafluoroantimonate (LiSbFG), lithium antimony hexachloride (LiSbCijb), 67-/Lithium hexafluoride (LiAsF6), Lithium hexafluorophosphate (LiP
Lithium salts such as Fr, ), lithium trifluoromethylsulfonate (LiCF3SO3) are preferably used. What is basically required of the lithium salt used as an electrolyte is the stability of the anion in electrochemical reactions, so as long as this condition is satisfied, the lithium salt used as an electrolyte is limited to the above-mentioned lithium salt. isn't it.

本発明が提供するところの炭素繊維を用いた負極は、通
常の方法によって、リチウム二次電池に負極として組み
込まれて実用化される。即ち、正極として、例えば、遷
移金属のカルコゲン化合物、共役高分子化合物、または
、活性炭等を使用し得る。これらの負極と正極との間に
、合成繊維製の不織布、または、織布、ガラス繊維製の
不織布、または、織布などが、セパレーターとして使用
することができる。これらの負極、正極、及び、セパレ
ーターは、電解液に浸漬されるか、或は、セパレーター
に電解液を含浸させて電池となる。
The negative electrode using carbon fiber provided by the present invention is put into practical use by being incorporated into a lithium secondary battery as a negative electrode by a conventional method. That is, as the positive electrode, for example, a chalcogen compound of a transition metal, a conjugated polymer compound, or activated carbon can be used. A nonwoven or woven fabric made of synthetic fibers, a nonwoven fabric or woven fabric made of glass fiber, or the like can be used as a separator between the negative electrode and the positive electrode. These negative electrodes, positive electrodes, and separators are immersed in an electrolytic solution, or the separator is impregnated with an electrolytic solution to form a battery.

本発明におけるリチウム二次電池の電解液に用いる有機
溶媒は、リチウム塩を溶解し得るものであればよいが、
好ましくは、非プロトン性有機溶奴であり、誘電率が大
きい、酸化還元に対する安定性が高く、いわゆる、電気
化学的な電位の窓が広い、粘度が低い1等の特性を有し
たものが望まれる。
The organic solvent used in the electrolyte of the lithium secondary battery in the present invention may be any organic solvent as long as it can dissolve the lithium salt.
Preferably, it is an aprotic organic melt having the following properties: high dielectric constant, high stability against redox, wide electrochemical potential window, and low viscosity. It will be done.

具体的には、炭酸プロピレン、炭酸エチレン、スルホラ
ン、γ−ブチロラクトン、1.2−ジメトキシエタン、
テトラヒドロフラン、2メチル−テトラヒドロフラン、
アセトニトリル、ジメチルスルホキシド等の溶媒や、こ
れらの混合溶媒を用いることができる。また、電解液の
C度は、溶媒や電解質の種類、電極材に依存するが、0
.1〜lOモル/リットルの範囲が好ましい。
Specifically, propylene carbonate, ethylene carbonate, sulfolane, γ-butyrolactone, 1,2-dimethoxyethane,
Tetrahydrofuran, 2methyl-tetrahydrofuran,
Solvents such as acetonitrile, dimethyl sulfoxide, and mixed solvents thereof can be used. In addition, the C degree of the electrolytic solution depends on the type of solvent, electrolyte, and electrode material, but it is 0.
.. A range of 1 to 10 mol/liter is preferred.

実施例 以上の実施例により、本発明を更に具体的に説明する。Example The present invention will be explained more specifically using the above examples.

実施例1 メソフェース含有琶が95%のピッチを原料として、直
径6.2uLmのピッチ繊維を紡糸し、更に2800℃
で黒鉛化処理し炭素繊維を得た。この炭素繊維を長さ2
0鳳諺〜30膳鳳1重量lO鳳gとし、直径0.1腸層
のニッケル線で束ねたものを負極とした。」−記の炭素
繊維は、黒鉛化後の直径は、約4.5#Lmであった。
Example 1 Pitch fibers with a diameter of 6.2 uLm were spun using pitch containing 95% mesophase as a raw material, and further heated at 2800°C.
Graphitization treatment was performed to obtain carbon fiber. This carbon fiber has a length of 2
A negative electrode was prepared by binding 1 weight of 0 to 30 g of nickel wire with a nickel wire having a diameter of 0.1 layer. The diameter of the carbon fiber after graphitization was approximately 4.5 #Lm.

この炭素繊維のX線回折法による結晶パラメータは、 
 d(102=0.339ins、  Lc =21.
1nmであった。配向係数は、8.2″″、TEM写真
による繊維横断面方向の黒鉛結晶子の大きさは、約45
1!IIであった・ 測定には、0.1g程度の金属リチウムシートをニッケ
ル網に圧着したものを対極、対極と同じく金属リチウム
シートの小片をニッケル線に接続したものを基準極、L
iAsF6を炭酸プロピレンに1.5モル/リットルの
濃度に溶かした溶液を電解液に用いた三極セルをアルゴ
ンガスを雰囲気ガスとした密閉ガラス容器内に設置した
ものを用いた。定電流の充放電を繰り返した際の負極の
電位変化を基準極を基準として測定した。
The crystal parameters of this carbon fiber determined by X-ray diffraction method are:
d(102=0.339ins, Lc=21.
It was 1 nm. The orientation coefficient is 8.2″″, and the size of graphite crystallites in the fiber cross-sectional direction according to the TEM photograph is approximately 45
1! II. For measurements, a 0.1g metal lithium sheet crimped onto a nickel mesh was used as the counter electrode, a small piece of the metal lithium sheet was connected to a nickel wire, similar to the counter electrode, as the reference electrode, and L
A three-electrode cell using a solution of iAsF6 dissolved in propylene carbonate at a concentration of 1.5 mol/liter as an electrolytic solution was used, and the cell was placed in a closed glass container with argon gas as an atmosphere gas. The change in potential of the negative electrode when constant current charging and discharging was repeated was measured using the reference electrode as a reference.

定Ti、流充放電のサイクル試験を行った。充電電流、
放電′frA、流共に、0.3mAとした。充電、即ち
A constant Ti, current charge/discharge cycle test was conducted. charging current,
Both the discharge 'frA and current were set at 0.3 mA. Charging, ie.

リチウムの挿入反応は、基準極に対する試験極の電位が
O■で、リチウム金属と同電位になったところで終了し
、30分間の開放状態の後、放電、即ち、リチウムの放
出反応に切り付えた。放電反応は、基準極に対する試験
極の電位が1■になったところで終了し、30分間の開
放状態の後、再び充電させた。
The lithium insertion reaction ended when the potential of the test electrode with respect to the reference electrode became O■, the same potential as the lithium metal, and after 30 minutes of open state, discharge, that is, the lithium release reaction started. . The discharging reaction was terminated when the potential of the test electrode with respect to the reference electrode became 1.sup., and after being left open for 30 minutes, the battery was charged again.

炭素繊維の自然電位は、約3■であった。このような条
件で充放電させた結果、放電効率は、第1回11のサイ
クルは、80%程度であるが、5S2回[I以降は、9
6%以1−88%以下で安定していた。充放電の繰り返
しに対する放電曲線の変化は小さく、放電容量は180
 mAhr/gで安定していた。
The natural potential of the carbon fiber was about 3 . As a result of charging and discharging under these conditions, the discharge efficiency was approximately 80% for the first 11 cycles, but for 5S2 cycles [I and subsequent cycles, 9
It was stable at 6% or more and 1-88% or less. The change in the discharge curve due to repeated charging and discharging is small, and the discharge capacity is 180
It was stable at mAhr/g.

実施例2 実施例1と同一のピッチ原料、紡糸条件で、ピッチm1
liで直径4gmに紡糸し、2800℃で黒鉛化処理し
、炭素繊維を得た。黒鉛化後の炭素繊維の直径は、約3
#Lmであった。
Example 2 Using the same pitch raw material and spinning conditions as Example 1, pitch m1
The fibers were spun to a diameter of 4 gm using Li, and graphitized at 2800°C to obtain carbon fibers. The diameter of carbon fiber after graphitization is approximately 3
It was #Lm.

この炭素繊維のX線回折法による結晶パラメータは、d
 662  = 0.340in鵬、  Lc =17
.7nmであった。配向係数は、11.3°、TEM写
真による繊維横断面方向の黒鉛結晶子の大きさは、約3
2n厘であった。
The crystal parameters of this carbon fiber according to the X-ray diffraction method are d
662 = 0.340in Peng, Lc = 17
.. It was 7 nm. The orientation coefficient is 11.3°, and the size of graphite crystallites in the cross-sectional direction of the fiber according to the TEM photograph is approximately 3
It was 2n.

実施例1と同一の条件で試験した結果、第1回[1のサ
イクルの放電効率は、86%、第2回目以降のサイクル
の放電効率は、96%以上100%以下であった。放電
容量は、210 mAhr/gであり、容量の減少もな
く安定してサイクルした。
As a result of testing under the same conditions as in Example 1, the discharge efficiency in the first cycle was 86%, and the discharge efficiency in the second and subsequent cycles was 96% or more and 100% or less. The discharge capacity was 210 mAh/g, and the battery was cycled stably without any decrease in capacity.

第1図に、実施例1、実施例2における負極として用い
た炭素繊維の放電容量のサイクル変化を示す。
FIG. 1 shows cycle changes in the discharge capacity of the carbon fibers used as the negative electrodes in Examples 1 and 2.

実施例3 メンフェース含有量が96%の原料ピッチを用い、40
0 メツシュのメツシュフィルターを用いて紡糸し、ピ
ッチ繊維で直径8.5gmとし、その後、2800℃で
熱処理した。熱処理後の炭素繊維の直径は、約6.4終
mであった。
Example 3 Using raw material pitch with a menface content of 96%, 40
The fibers were spun using a mesh filter of 0.0 mesh to a diameter of 8.5 gm with pitch fibers, and then heat-treated at 2800°C. The diameter of the carbon fiber after heat treatment was approximately 6.4 m.

この炭素繊維のX線回折法による黒鉛化度の指標は、d
(、(B =0.3395m鳳、  Lc =22.I
nsであった。配向係数は、9.2°であった。TEM
写真によるm維横断面方向の黒鉛結晶子の大きさは、約
40nmであった。
The graphitization degree index of this carbon fiber by X-ray diffraction method is d
(, (B = 0.3395m, Lc = 22.I
It was ns. The orientation factor was 9.2°. TEM
The size of the graphite crystallites in the cross-sectional direction of the m-fibers in the photograph was approximately 40 nm.

電解液にL i (Jj 04を1.5モル/リットル
の濃度で炭酸プロピレンに溶解した溶液を用い、他の条
件は実施例1と同一にして試験した結果、放電容量が1
70 mAhr/gで安定した充放電を繰り返した。
As a result of testing using a solution of Li (Jj 04 dissolved in propylene carbonate at a concentration of 1.5 mol/liter as the electrolytic solution and using the same conditions as in Example 1, the discharge capacity was 1.
Stable charging and discharging was repeated at 70 mAh/g.

実施例4 実施例3と同一のピッチを原料として、3000メツシ
ユのメツシュフィルターを用いてピッチ繊維で直径4g
mに紡糸したものを2800℃で熱処理した炭素繊維を
負極として試験した。熱処理後の炭素繊維の直径は、約
3pmであった。
Example 4 Using the same pitch as in Example 3 as a raw material, a pitch fiber with a diameter of 4 g was prepared using a 3000 mesh filter.
The test was conducted using a carbon fiber that was spun into a carbon fiber and heat-treated at 2800° C. as a negative electrode. The diameter of the carbon fibers after heat treatment was about 3 pm.

この炭素繊維のXMA回折法による黒鉛化度の指標は、
d 002 = 3.413A、L C= 133A、
であった。
The graphitization degree index of this carbon fiber by XMA diffraction method is:
d 002 = 3.413A, L C = 133A,
Met.

配向係数は、 17.2@であった。TEM写真による
繊維横断面方向の黒鉛結晶子の大きさは、約25nmで
あった・ 実施例1と同様の条件で充放電試験した結果、放電容量
180腸Ahr/gで安定してサイクルした。
The orientation coefficient was 17.2@. The size of graphite crystallites in the cross-sectional direction of the fiber according to a TEM photograph was approximately 25 nm. As a result of a charge/discharge test under the same conditions as in Example 1, stable cycling was achieved with a discharge capacity of 180 Ahr/g.

第2図に実施例3と実施例4の放電容量のサイクル変化
を示す。
FIG. 2 shows cycle changes in discharge capacity in Examples 3 and 4.

実施例5 メンフェース含有量が96%の原料ピッチを、攪はん棒
を備えた紡糸器の中に入れ、攪はん棒を3゜rpmで回
転させながら、ピッチ繊維で直径約8井mに紡糸した。
Example 5 Raw pitch with a membrane content of 96% was put into a spinning machine equipped with a stirring rod, and while the stirring rod was rotated at 3° rpm, pitch fibers were spun to a diameter of about 8 wells. Spun into yarn.

その後、2800℃で熱処理して炭素FI1.維を得た
。炭素繊維の直径は、約6ルmであった。
Thereafter, heat treatment was performed at 2800°C to form carbon FI1. I got the answer. The diameter of the carbon fibers was approximately 6 lumens.

この炭素繊維のX線回折法による黒鉛化度の指標は、d
 002 : 0.3396m+*、 L C= 20
.8nm、であった、配向係数は、11.2°であった
。TEM写真による繊維横断面方向の黒鉛結晶子の大き
さは、約3Or1Mであった。
The graphitization degree index of this carbon fiber by X-ray diffraction method is d
002: 0.3396m+*, L C= 20
.. 8 nm, and the orientation coefficient was 11.2°. The size of the graphite crystallites in the cross-sectional direction of the fiber was approximately 3 Or1M as determined by a TEM photograph.

実施例1と同様の条件で充放電試験した結果、放電容量
180容量脂Ahr/gで安定したサイクル挙動を示し
た。
As a result of a charge/discharge test under the same conditions as in Example 1, stable cycle behavior was exhibited with a discharge capacity of 180 Ahr/g.

比較例1 メンフェース含有量が96%のピッチを原料として、ピ
ー7チ繊維で、直径15JLmに紡糸し後、2900℃
で熱処理した炭素amを試験した。この炭素繊維の直径
は、約11.4pmであった。
Comparative Example 1 Using pitch with a membrane content of 96% as a raw material, peach fiber was spun to a diameter of 15 JLm, and then spun at 2900°C.
A heat-treated carbon am was tested. The diameter of this carbon fiber was approximately 11.4 pm.

X線回折法による黒鉛化度の指標は、d002=0−3
379ni+、  L c = 39.7n厘、であっ
た、配向係数は、 5.6°であった。TEM写真によ
る繊維横断面方向の黒鉛結晶子の大きさは、約180n
mであった。
The index of graphitization degree by X-ray diffraction method is d002=0-3
379 ni+, L c = 39.7 n rin, and the orientation factor was 5.6°. The size of graphite crystallites in the fiber cross-sectional direction according to a TEM photograph is approximately 180n.
It was m.

実施例1と同様の試験を行なった結果、初期容量は15
0 mAhr/gであったが、充放電のサイクルを繰り
返すとその容量はサイクル数にほぼ比例して減少した。
As a result of conducting the same test as in Example 1, the initial capacity was 15
The capacity was 0 mAh/g, but as the charge/discharge cycles were repeated, the capacity decreased approximately in proportion to the number of cycles.

第2図に実施例3.実施例4と併せて放電6是のサイク
ル変化を示す。
FIG. 2 shows Example 3. In conjunction with Example 4, the cycle changes of six discharge cycles are shown.

発明の効果 木発IJ]に依れば、放電6是が大きく、1&り返し充
放電に対する放電6是の安定性が高い、非水電解液系リ
チウム二次電池用の負極に適した炭素材ネ4を提供する
ことを可能とした。
Effects of the Invention According to Kihatsu IJ], a carbon material suitable for negative electrodes for non-aqueous electrolyte lithium secondary batteries, which has a large discharge rate and high discharge rate stability against repeated charging and discharging. This made it possible to provide the following information:

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例1と実施例2の放電客間のサイクル変
化を示したものである。第2図は、実施例3、実施例4
と比較例1の放電6是のサイクル変化を示したものであ
る。
FIG. 1 shows the cycle changes between the discharge customers in Example 1 and Example 2. Figure 2 shows Example 3 and Example 4.
This shows the cycle change of six discharges in Comparative Example 1.

Claims (1)

【特許請求の範囲】[Claims]  メソフェースピッチを原料とした炭素繊維であって、
X線回折法による結晶子パラメータである格子面間隔(
d_0_0_2)が0.338nm以上0.343nm
以下、c軸方向の結晶子の大きさ(Lc)が10nm以
上30nm以下、配向係数(FWHM)が7°以上20
°以下であり、且つ、繊維軸方向に長く伸びた黒鉛結晶
子の繊維横断面方向での平均の長さが20nm以上10
0nm以下である炭素繊維を用いたことを特徴とするリ
チウム二次電池用負極。
A carbon fiber made from mesoface pitch,
The lattice spacing (
d_0_0_2) is 0.338 nm or more 0.343 nm
Below, the crystallite size (Lc) in the c-axis direction is 10 nm or more and 30 nm or less, and the orientation coefficient (FWHM) is 7° or more and 20
° or less, and the average length in the cross-sectional direction of the fiber of graphite crystallites elongated in the fiber axis direction is 20 nm or more 10
A negative electrode for a lithium secondary battery characterized by using carbon fiber having a diameter of 0 nm or less.
JP2168434A 1990-06-28 1990-06-28 Negative electrode for lithium secondary battery Expired - Fee Related JPH0821375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2168434A JPH0821375B2 (en) 1990-06-28 1990-06-28 Negative electrode for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2168434A JPH0821375B2 (en) 1990-06-28 1990-06-28 Negative electrode for lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH0461747A true JPH0461747A (en) 1992-02-27
JPH0821375B2 JPH0821375B2 (en) 1996-03-04

Family

ID=15868048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2168434A Expired - Fee Related JPH0821375B2 (en) 1990-06-28 1990-06-28 Negative electrode for lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH0821375B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5340670A (en) * 1992-06-01 1994-08-23 Kabushiki Kaisha Toshiba Lithium secondary battery and method of manufacturing carbonaceous material for negative electrode of the battery
EP0691803A1 (en) 1994-07-06 1996-01-10 Matsushita Electric Industrial Co., Ltd. Heat radiating member made of highly oriented graphite
US5556723A (en) * 1993-09-17 1996-09-17 Kabushiki Kaisha Toshiba Negative electrode for use in a secondary battery
US5795678A (en) * 1994-04-01 1998-08-18 Kabushiki Kaisha Toshiba Negative electrode for use in lithium secondary battery and process for producing the same
US5824245A (en) * 1994-09-29 1998-10-20 Petoca, Ltd. Processes for preparing milled graphite fibers
US6040092A (en) * 1995-12-25 2000-03-21 Sharp Kabushiki Kaisha Nonaqueous secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62165857A (en) * 1986-01-17 1987-07-22 Sankomu Kk Nonaqueous electrolyte secondary cell
JPH01292753A (en) * 1988-05-18 1989-11-27 Mitsubishi Gas Chem Co Inc Secondary battery
JPH0282466A (en) * 1988-09-20 1990-03-23 Nippon Steel Corp Lithium secondary battery in which carbon fiber is used for both electrodes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62165857A (en) * 1986-01-17 1987-07-22 Sankomu Kk Nonaqueous electrolyte secondary cell
JPH01292753A (en) * 1988-05-18 1989-11-27 Mitsubishi Gas Chem Co Inc Secondary battery
JPH0282466A (en) * 1988-09-20 1990-03-23 Nippon Steel Corp Lithium secondary battery in which carbon fiber is used for both electrodes

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5340670A (en) * 1992-06-01 1994-08-23 Kabushiki Kaisha Toshiba Lithium secondary battery and method of manufacturing carbonaceous material for negative electrode of the battery
US5556723A (en) * 1993-09-17 1996-09-17 Kabushiki Kaisha Toshiba Negative electrode for use in a secondary battery
EP0644603B1 (en) * 1993-09-17 1999-03-17 Kabushiki Kaisha Toshiba Negative electrode for use in a secondary battery
US5795678A (en) * 1994-04-01 1998-08-18 Kabushiki Kaisha Toshiba Negative electrode for use in lithium secondary battery and process for producing the same
EP0691803A1 (en) 1994-07-06 1996-01-10 Matsushita Electric Industrial Co., Ltd. Heat radiating member made of highly oriented graphite
US5824245A (en) * 1994-09-29 1998-10-20 Petoca, Ltd. Processes for preparing milled graphite fibers
US6040092A (en) * 1995-12-25 2000-03-21 Sharp Kabushiki Kaisha Nonaqueous secondary battery

Also Published As

Publication number Publication date
JPH0821375B2 (en) 1996-03-04

Similar Documents

Publication Publication Date Title
US5340670A (en) Lithium secondary battery and method of manufacturing carbonaceous material for negative electrode of the battery
JP3541387B2 (en) Battery electrode, secondary battery using the same, and method of manufacturing battery electrode
JP5561232B2 (en) Method for producing negative electrode material for lithium secondary battery
EP0742295B1 (en) Carbon fibre for secondary battery and process for producing the same
JP2612320B2 (en) Lithium secondary battery using carbon fiber for both electrodes
JP3509050B2 (en) Lithium secondary battery and method of manufacturing the same
JP7050348B2 (en) Positive electrode active material manufacturing method and positive electrode active material
EP0848440B1 (en) Nonaqueous electrolyte secondary cell cathode material and nonaqueous electrolyte secondary cell employing the cathode material
JP3311104B2 (en) Lithium secondary battery
JP4354723B2 (en) Method for producing graphite particles
JP3624270B2 (en) Method for producing negative electrode material for lithium secondary battery and negative electrode material thereof
JPH0461747A (en) Negative electrode for lithium secondary battery
JP3617550B2 (en) Negative electrode for lithium secondary battery, lithium secondary battery including the negative electrode, and method for producing the negative electrode for lithium secondary battery
JPH10247495A (en) Carbon material for secondary battery negative electrode, its manufacture, and nonaqueous electrolyte secondary battery using carbon material
JP3679220B2 (en) Carbon material for secondary battery negative electrode and method for producing the same
JP2709864B2 (en) Non-aqueous electrolyte secondary battery
JPH08162097A (en) Nonaqueous electrolytic secondary battery
JP2002063902A (en) Carbon material manufacturing method and lithium ion secondary battery
JPH09306488A (en) Negative electrode material for nonaqueous electrolyte secondary battery, manufacture of this negative electrode material and nonaqueous electrolyte secondary battery using this negative electrode material
JP5001977B2 (en) Graphite particles, lithium ion secondary battery and negative electrode material thereof
JP3344081B2 (en) Carbonaceous negative electrode material for lithium secondary battery and method for producing the same
JP2002093420A (en) Nonaqueous electrolyte secondary battery
JPH08241715A (en) Negative electrode material for lithium secondary battery, its manufacture, and lithium secondary battery using it
JPH10270080A (en) Nonaqueous electrolyte secondary battery
JPH08180868A (en) Carbon material for lithium secondary battery negative electrode, its manufacture, carbon electrode and nonaqueous electrolytic lithium secondary battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees