JPH10247495A - Carbon material for secondary battery negative electrode, its manufacture, and nonaqueous electrolyte secondary battery using carbon material - Google Patents

Carbon material for secondary battery negative electrode, its manufacture, and nonaqueous electrolyte secondary battery using carbon material

Info

Publication number
JPH10247495A
JPH10247495A JP9062458A JP6245897A JPH10247495A JP H10247495 A JPH10247495 A JP H10247495A JP 9062458 A JP9062458 A JP 9062458A JP 6245897 A JP6245897 A JP 6245897A JP H10247495 A JPH10247495 A JP H10247495A
Authority
JP
Japan
Prior art keywords
carbon material
carbon
secondary battery
electrolyte secondary
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9062458A
Other languages
Japanese (ja)
Inventor
Hiroshi Abe
浩史 阿部
Tadahiro Kobayashi
忠裕 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP9062458A priority Critical patent/JPH10247495A/en
Publication of JPH10247495A publication Critical patent/JPH10247495A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Fibers (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery having a large discharge capacity and high charging/discharging efficiency and not deteriorating the cycle characteristics even when the charging/discharging current is a large current in particular by using a carbon material specified with the spin concentration, specific surface area, carbon lattice plane interval, and the size of a crystal in the C-axis direction for the negative electrode of the nonaqueous electrode secondary battery. SOLUTION: A carbon material having the spin intensity of 1×10<18> -3×10<18> spins/g at 25 deg.C, the specific surface area of 0.2-5m<2> /g, the carbon lattice plane interval d002 of 0.3354-0.3374nm, and the size of a crystal in the C-axis direction Lc of 50-2,000nm is used. Vapor phase epitaxy carbon fibers having the diameter of 1-4μm and the length of 3-30μm are preferably used. In manufacture, the graphitization process is applied to a raw material, then the high-shock process is preferably applied. The graphitization process is applied to the carbon fibers generated from the vapor phase for 30min at 2,800 deg.C in the inactive gas atmosphere. The carbon fibers are cut off by a hybridizer in the high-shock process.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解液二次電
池の負極用炭素材料及びその製造方法並びにその炭素材
料を用いた非水電解液二次電池に関する。
The present invention relates to a carbon material for a negative electrode of a non-aqueous electrolyte secondary battery, a method for producing the same, and a non-aqueous electrolyte secondary battery using the carbon material.

【0002】[0002]

【従来の技術】非水電解液二次電池は、エネルギー密度
が高く、また、充放電サイクル特性や負荷特性、安全性
などに優れるため、近年脚光を浴びている。この電池
は、既にビデオカメラやノート型パソコンあるいは携帯
電話などに大量の需要が見込まれ、今後は電気自動車用
の電池としての応用も期待される。
2. Description of the Related Art Non-aqueous electrolyte secondary batteries have been spotlighted in recent years because of their high energy density and excellent charge / discharge cycle characteristics, load characteristics, and safety. This battery is already expected to be in large demand for video cameras, notebook computers, mobile phones, and the like, and is expected to be applied as a battery for electric vehicles in the future.

【0003】一般に非水電解液二次電池は、正極と負極
をセパレータを介して対向配置すると共に、これらを非
水電解液の中に浸漬した構成を有する。この非水電解液
としてはリチウム塩を有機溶媒に溶解したものが用いら
れる。そして、例えば、正極にはリチウム含有複合酸化
物が用いられ、負極には炭素材料が用いられる。
In general, a non-aqueous electrolyte secondary battery has a configuration in which a positive electrode and a negative electrode are opposed to each other with a separator interposed therebetween, and these are immersed in a non-aqueous electrolyte. As this non-aqueous electrolyte, a solution in which a lithium salt is dissolved in an organic solvent is used. For example, a lithium-containing composite oxide is used for the positive electrode, and a carbon material is used for the negative electrode.

【0004】この負極用炭素材料としては、黒鉛材料
(天然黒鉛及び人造黒鉛)や易黒鉛化性炭素(気相成長
炭素繊維など)、難黒鉛化性炭素(PAN系炭素繊維な
ど)、無定形炭素(コークスなど)が使用可能である。
これらの炭素材料は、通常、粉体状のものが使用される
が、粉体の形状は粒子状であったり繊維状であったりす
る。また、上記黒鉛材料以外のものは、程度の差はあ
れ、黒鉛化処理された上で用いられる。この黒鉛化処理
は、炭素材料を高温に保持することによって材料内に黒
鉛結晶を成長させるために行う。
Examples of the carbon material for the negative electrode include graphite materials (natural graphite and artificial graphite), graphitizable carbon (vapor-grown carbon fiber, etc.), non-graphitizable carbon (PAN-based carbon fiber, etc.), amorphous Carbon (such as coke) can be used.
These carbon materials are usually used in the form of powder, but the shape of the powder may be particulate or fibrous. In addition, materials other than the above-mentioned graphite materials are used after being subjected to a graphitization treatment to some extent. This graphitization treatment is performed to grow graphite crystals in the carbon material by maintaining the carbon material at a high temperature.

【0005】さて、上記非水電解液二次電池において
は、黒鉛結晶の炭素網面間に非水電解液中のリチウムイ
オンが挿入されたりあるいは脱離したりすることにより
充放電が行われると考えられている。従って、この炭素
網面間にリチウムイオンが大量にしかも迅速に挿入・脱
離すれば充放電容量が大きくなり、その挿入・脱離が可
逆的であるほど、充放電効率、即ち充電容量に対する放
電容量の割合が高いことになる。従来、この充放電容量
をより大きくし、また、充放電効率をより高めるため
に、様々な炭素材料が負極材料として検討されて来た。
In the non-aqueous electrolyte secondary battery, it is considered that charging and discharging are performed by inserting or removing lithium ions in the non-aqueous electrolyte between the carbon mesh surfaces of the graphite crystals. Have been. Therefore, if a large amount of lithium ions are inserted and desorbed between the carbon net surfaces in a large amount and quickly, the charge / discharge capacity becomes large. The percentage of capacity will be high. Conventionally, various carbon materials have been studied as negative electrode materials in order to further increase the charge / discharge capacity and further enhance the charge / discharge efficiency.

【0006】本出願人により出願された特開平6−73
615号公報記載の黒鉛化された気相成長炭素繊維もそ
の一例である。この公報には、直径2.2μm、長さ1
4.6μm、スピン濃度3.7×1018spins/g
の黒鉛化された気相成長炭素繊維を用いて3電極セルを
組み立て、それを用いて充放電量(mAh/g)とクー
ロン効率(%)を測定した結果が記載されている。
JP-A-6-73 filed by the present applicant
The graphitized vapor-grown carbon fiber described in Japanese Patent No. 615 is one example. This publication states that the diameter is 2.2 μm and the length is 1
4.6 μm, spin concentration 3.7 × 10 18 spins / g
Describes the results of assembling a three-electrode cell using the graphitized vapor-grown carbon fiber of Example 1 and measuring the charge / discharge amount (mAh / g) and Coulomb efficiency (%) using the cell.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、従来の
炭素材料は、一般に、放電容量がまだ必ずしも十分満足
できるものではなかった。しかも、そのような炭素材料
の中で放電容量が最大の部類に属するものは、それより
放電容量が小さいものに比べて充放電効率が低いという
問題もあった。また、そのような炭素材料は、充放電効
率が低いためにサイクル特性が悪くなるという問題もあ
った。そして、このサイクル特性は、特に充放電電流が
大電流の場合に悪くなる傾向があった。ここで、サイク
ル特性とは、充放電を繰り返したときの放電容量の変化
の仕方を意味する。
However, the conventional carbon materials generally do not always have a sufficiently satisfactory discharge capacity. Moreover, among such carbon materials, those having the largest discharge capacity have a problem that the charge / discharge efficiency is lower than those having a smaller discharge capacity. Further, such a carbon material has a problem that the cycle characteristics are deteriorated due to low charge / discharge efficiency. The cycle characteristics tended to deteriorate especially when the charge / discharge current was large. Here, the cycle characteristics refer to the manner in which the discharge capacity changes when charge and discharge are repeated.

【0008】本発明は、このような事情に鑑みてなされ
たもので、その目的は、大きな放電容量を有すると共
に、放電容量が大きくても充放電効率が高く、またサイ
クル特性が良好で、特に充放電電流が大電流の場合でも
サイクル特性が悪化しないような負極用炭素材料及びそ
の製造方法を提供すること、並びにその炭素材料を用い
た非水電解液二次電池を提供することにある。
The present invention has been made in view of such circumstances, and has as its object to have a large discharge capacity, high charge / discharge efficiency even if the discharge capacity is large, and good cycle characteristics. An object of the present invention is to provide a carbon material for a negative electrode and a method for producing the same, in which the cycle characteristics do not deteriorate even when the charge / discharge current is large, and to provide a non-aqueous electrolyte secondary battery using the carbon material.

【0009】本発明者らは、上記課題を解決するために
鋭意研究した結果、炭素材料中の不対電子の数が多けれ
ば、炭素材料表面での反応性が活性化されるから、炭素
材料中へのリチウムイオンの挿入及び脱離が容易にな
り、その結果として充放電容量が大きくなる可能性があ
ることを見いだした。一方、炭素材料中の不対電子の数
は、電子スピン共鳴分析法(ESR)により測定される
スピン濃度によって知ることができる。そして、本発明
者らは、各種炭素材料のスピン濃度と充放電容量の関係
などを詳しく調べることにより、本発明に到達した。
The present inventors have conducted intensive studies to solve the above-mentioned problems. As a result, if the number of unpaired electrons in the carbon material is large, the reactivity on the surface of the carbon material is activated. It has been found that lithium ions can be easily inserted and desorbed therein, and as a result, the charge / discharge capacity can be increased. On the other hand, the number of unpaired electrons in the carbon material can be known from the spin concentration measured by electron spin resonance analysis (ESR). The present inventors have reached the present invention by examining the relationship between the spin concentration of various carbon materials and the charge / discharge capacity in detail.

【0010】[0010]

【課題を解決するための手段】そこで、本発明のうち請
求項1記載の発明は、非水電解液二次電池の負極に用い
られる炭素材料において、電子スピン共鳴分析法(ES
R)により測定される25℃におけるスピン濃度が1×
1018〜3×1018spins/gであることを特徴と
する。
SUMMARY OF THE INVENTION Therefore, the present invention according to claim 1 of the present invention relates to a method for preparing a carbon material used for a negative electrode of a non-aqueous electrolyte secondary battery using an electron spin resonance (ES) method.
R) is 1 × at 25 ° C.
It is characterized by being 10 18 to 3 × 10 18 spins / g.

【0011】スピン濃度がこの範囲の炭素材料は、請求
項4記載のように、炭素材料の素材に黒鉛化処理を施し
た後で高衝撃処理を施すことにより製造される。また、
この炭素材料としては、請求項2記載のように、比表面
積が0.2〜5m2 /g、炭素格子面間隔d002 が0.
3354〜0.3374nm、c軸方向の結晶の大きさ
Lcが50〜2000nmであるものが好ましい。
A carbon material having a spin concentration in this range is produced by subjecting a carbon material to a high impact treatment after a graphitization treatment. Also,
The carbon material has a specific surface area of 0.2 to 5 m 2 / g and a carbon lattice spacing d 002 of 0.2.
A crystal having a crystal size Lc of 3354 to 0.3374 nm and a c-axis direction of 50 to 2000 nm is preferable.

【0012】上記炭素材料の形状については、特に制限
はないが、繊維状であるのが好ましく、特に、請求項3
記載のように、直径が1〜4μm、長さが3〜30μm
の気相成長炭素繊維であるのが好ましい。
The shape of the carbon material is not particularly limited, but is preferably fibrous.
As described, the diameter is 1-4 μm and the length is 3-30 μm
Is preferable.

【0013】そして、この気相成長炭素繊維は、請求項
5記載のように、気相から生成された状態の気相成長炭
素繊維を、不活性ガス雰囲気下において2800℃で3
0分保持することにより黒鉛化処理し、次に、その炭素
繊維同士を、ハイブリダイザーを使用して10〜30m
/secの線速度で0.5〜5分間ぶつけ合って切断さ
せる高衝撃処理を施してなるものがより好ましい。
[0013] The vapor-grown carbon fiber is produced by converting the vapor-grown carbon fiber produced from the vapor phase into an inert gas atmosphere at 2800 ° C for 3 hours.
Graphitization treatment is carried out by holding for 0 minutes, and then the carbon fibers are separated by a hybridizer for 10 to 30 m.
More preferably, it is subjected to a high-impact treatment in which it is cut by colliding at a linear speed of / sec for 0.5 to 5 minutes.

【0014】請求項6記載の発明は、請求項1〜3のい
ずれか1項に記載の炭素材料を負極に用いた非水電解液
二次電池を提供する。また、請求項7記載の発明は、請
求項4又は5に記載の製造方法により製造された炭素材
料を負極に用いた非水電解液二次電池を提供する。これ
らの非水電解液二次電池は、本発明の炭素材料を負極材
料として用いる点以外は、従来公知の材料を用い、従来
公知の製造方法により製造することができる。
According to a sixth aspect of the present invention, there is provided a non-aqueous electrolyte secondary battery using the carbon material according to any one of the first to third aspects for a negative electrode. According to a seventh aspect of the present invention, there is provided a non-aqueous electrolyte secondary battery using a carbon material produced by the production method according to the fourth or fifth aspect for a negative electrode. These non-aqueous electrolyte secondary batteries can be manufactured by a conventionally known manufacturing method using a conventionally known material except that the carbon material of the present invention is used as a negative electrode material.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態を詳し
く説明する。まず、本発明の負極用炭素材料は、電子ス
ピン共鳴分析法(ESR)により測定される25℃にお
けるスピン濃度が1×1018〜3×1018spins/
gの範囲内にある。
Embodiments of the present invention will be described below in detail. First, the carbon material for a negative electrode of the present invention has a spin concentration at 25 ° C. of 1 × 10 18 to 3 × 10 18 spins / s measured by electron spin resonance analysis (ESR).
g.

【0016】この範囲内の負極用炭素材料は、充放電容
量が大きくかつ充放電効率が高い。その理由としては次
のように考えられる。スピン濃度は炭素材料中の不対電
子の数を表す。従って、このスピン濃度が高くなると炭
素材料表面での反応性が高くなり、その結果として充放
電容量が大きくなる。
The carbon material for a negative electrode in this range has a large charge / discharge capacity and a high charge / discharge efficiency. The reason is considered as follows. The spin concentration indicates the number of unpaired electrons in the carbon material. Therefore, as the spin concentration increases, the reactivity on the surface of the carbon material increases, and as a result, the charge / discharge capacity increases.

【0017】スピン濃度が1×1018spins/g未
満の場合には、炭素材料表面における反応性が低いた
め、リチウムイオンの炭素材料中への挿入及び脱離が不
活発となり、充放電容量が小さい。また、この場合に大
きな電流値で充放電を行うと、小さな電流値での放電容
量よりも更に容量が低下し、またサイクル特性の悪化が
著しくなる。
When the spin concentration is less than 1 × 10 18 spins / g, the reactivity on the surface of the carbon material is low, so that the insertion and desorption of lithium ions into the carbon material become inactive, and the charge / discharge capacity is reduced. small. In this case, when charging and discharging are performed at a large current value, the capacity is further reduced as compared with the discharge capacity at a small current value, and the cycle characteristics are significantly deteriorated.

【0018】また、スピン濃度が高くなって3×1018
spins/gを越えた場合には、炭素材料表面での反
応性が過剰に活性化されるため、炭素材料は電解液と副
反応を起こしやすくなる。その結果、充放電効率は著し
く低下し、それに伴ってサイクル特性が悪化する。ま
た、このような炭素材料を負極にした電池は、万一くぎ
さし試験と同様の内部短絡が起きれば、電解液との反応
が活発化しているので、電解液の急激な分解によりガス
が発生し、電池が破損してしまう恐れがある。
Further, the spin concentration is increased to 3 × 10 18
When the value exceeds spins / g, the reactivity on the surface of the carbon material is excessively activated, so that the carbon material is likely to cause a side reaction with the electrolytic solution. As a result, the charging / discharging efficiency is significantly reduced, and the cycle characteristics are accordingly deteriorated. Also, in the case of a battery using such a carbon material as the negative electrode, if an internal short circuit occurs in the same way as in the piercing test, the reaction with the electrolytic solution is activated, and the gas is rapidly decomposed by the electrolytic solution. Occurs and the battery may be damaged.

【0019】上記本発明のスピン濃度を有する炭素材料
の中でも、比表面積が0.2〜5m2 /g、炭素格子面
間隔d002 が0.3354〜0.3374nm、c軸方
向の結晶の大きさLcが50〜2000nmであるもの
が好ましい。
Among the carbon materials having a spin concentration according to the present invention, the specific surface area is 0.2 to 5 m 2 / g, the carbon lattice spacing d 002 is 0.3354 to 0.3374 nm, and the crystal size in the c-axis direction is It is preferable that Lc is 50 to 2000 nm.

【0020】比表面積が0.2m2 /g未満の場合は、
粉体の炭素材料を構成する個々の繊維あるいは粒子が大
きくなり過ぎた場合で、この場合には、負極を作製する
過程で、繊維同士が絡まったときに、あるいは粒子の大
きさそのものによって表面が凸凹になったり、集電体に
付着させた後、ロールプレス機で圧縮しても密実にでき
なかったりする可能性がある。
When the specific surface area is less than 0.2 m 2 / g,
In the case where the individual fibers or particles constituting the carbon material of the powder become too large, in this case, in the process of manufacturing the negative electrode, when the fibers are entangled with each other, or the surface of the particles is changed due to the size of the particles themselves. There is a possibility that the film may not be dense even if it becomes uneven, or is compressed by a roll press after being attached to the current collector.

【0021】反対に、比表面積が5m2 /gを越える場
合には、炭素材料と非水電解液との接触面積が増加する
ため、その間の反応性が高くなり、その副反応により不
可逆容量(充電容量と放電容量の差)が増大して充放電
効率が低下する。
On the other hand, if the specific surface area exceeds 5 m 2 / g, the contact area between the carbon material and the non-aqueous electrolyte increases, so that the reactivity between them increases, and the irreversible capacity ( The difference between the charge capacity and the discharge capacity) increases, and the charge / discharge efficiency decreases.

【0022】上記d002 及びLcはX線回折法で測定さ
れる値である。d002 が0.3354nmというのは黒
鉛の単結晶の場合であり、また、d002 の最小値であ
る。d002 が0.3374nmを越える場合は黒鉛化が
不十分な場合であり、そのため充放電容量が小さくな
る。
The above d 002 and Lc are values measured by the X-ray diffraction method. The case where d 002 is 0.3354 nm is the case of a graphite single crystal, and is the minimum value of d 002 . When d 002 exceeds 0.3374 nm, the graphitization is insufficient, and the charge / discharge capacity decreases.

【0023】Lcが50nm未満の場合も、黒鉛化が不
十分な場合であり、そのため充放電容量が小さくなる。
反対に、Lcが2000nmを越えると、粉体状の炭素
材料を構成する個々の繊維あるいは粒子が大きくなり過
ぎ、前記の比表面積が0.2m2 /g未満の場合と同様
に、負極を作製する際に問題が生じる可能性がある。
The case where Lc is less than 50 nm is also the case where graphitization is insufficient, so that the charge / discharge capacity is reduced.
On the other hand, when Lc exceeds 2000 nm, individual fibers or particles constituting the powdery carbon material become too large, and a negative electrode is produced as in the case where the specific surface area is less than 0.2 m 2 / g. Can cause problems when doing so.

【0024】上記本発明の炭素材料としては、更に、直
径が1〜4μm、長さが3〜30μmの気相成長炭素繊
維であることが好ましい。これは、気相成長炭素繊維が
易黒鉛化性炭素であり、また、炭素網面が同心円状に積
み重なった極めて安定な構造を有するため高サイクル寿
命が期待できるなどの理由による。
The carbon material of the present invention is preferably a vapor grown carbon fiber having a diameter of 1 to 4 μm and a length of 3 to 30 μm. This is because the vapor-grown carbon fiber is easily graphitizable carbon and has a very stable structure in which carbon net surfaces are stacked concentrically, so that a high cycle life can be expected.

【0025】但し、直径が1μm未満の場合及び4μm
を越える場合は、いずれも十分に黒鉛化することができ
ないため、充放電容量が小さくなる。また、長さが3μ
m未満の場合は比表面積が大きくなり過ぎ、そのため前
記のように充放電効率が低下する。反対に、30μmを
越える場合には、粉体状の炭素材料を構成する個々の繊
維が長くなり過ぎ、前記の比表面積が0.2m2 /g未
満の場合と同様に、負極を作製する際に問題が生じる可
能性がある。
However, if the diameter is less than 1 μm or 4 μm
In the case where the ratio exceeds 1, the graphitization cannot be sufficiently performed, so that the charge / discharge capacity decreases. In addition, the length is 3μ
If it is less than m, the specific surface area becomes too large, and therefore the charging / discharging efficiency is reduced as described above. Conversely, if it exceeds 30 μm, the individual fibers constituting the powdery carbon material are too long, and as in the case where the specific surface area is less than 0.2 m 2 / g, when producing the negative electrode, Can cause problems.

【0026】上記本発明の炭素材料を製造する場合に
は、炭素材料の素材に黒鉛化処理を施した後で高衝撃処
理を施すのが好ましい。ここで重要なことは、黒鉛化処
理と高衝撃処理を施す順番である。尚、炭素材料の素材
とは、例えば気相成長炭素繊維の場合には、気相から生
成された状態のものを指す。この製造方法によりスピン
濃度が本発明の範囲内となる炭素材料が製造される。
In the case of producing the carbon material of the present invention, it is preferable to perform a high impact treatment after the carbon material is subjected to a graphitization treatment. What is important here is the order in which the graphitization treatment and the high impact treatment are performed. The material of the carbon material, for example, in the case of a vapor-grown carbon fiber, refers to a material generated from a gas phase. By this manufacturing method, a carbon material having a spin concentration within the range of the present invention is manufactured.

【0027】更に、この黒鉛化処理は、炭素材料の素材
を不活性ガス雰囲気下において2800℃以上で保持
し、その保持時間を少なくとも30分とするものが好ま
しい。但し、この保持時間は、30分を越えて余り長く
してもそれに比例して効果が上がるものではない。尚、
不活性ガスとしては例えばアルゴンガスを用いることが
できる。
Further, in the graphitization treatment, it is preferable that the carbon material is held at 2800 ° C. or more in an inert gas atmosphere and the holding time is at least 30 minutes. However, even if the holding time is excessively longer than 30 minutes, the effect is not increased in proportion thereto. still,
As the inert gas, for example, an argon gas can be used.

【0028】また、高衝撃処理とは、炭素材料を高衝撃
力をもって適切な長さに切断する処理のことである。こ
の場合、単に炭素繊維の長さを短くするだけでなく、炭
素繊維の端部を切断面にし、更に、炭素繊維に衝撃を与
えることにより内部構造が変化することを期待する意味
もある。
The high impact treatment is a treatment for cutting a carbon material into an appropriate length with a high impact force. In this case, it is meaningful not only to shorten the length of the carbon fiber but also to expect that the internal structure is changed by making the end of the carbon fiber a cut surface and further giving an impact to the carbon fiber.

【0029】この高衝撃処理を例えば気相成長炭素繊維
に施すには、ハイブリダイザーを使用し、10〜30m
/secの線速度で0.5〜5分間、炭素繊維同士をぶ
つけ合って切断させるのが好ましい。尚、この場合の線
速度は、ハイブリダイザーにおける回転羽根の最も外側
の部分の線速度を意味する。ただ、気相成長炭素繊維な
どの炭素繊維の切断は、このような高衝撃処理以外の切
断方法によっても特に支障があるわけではなく、例えば
ボールミルやスタンプミルなど、通常の手段による切断
も可能である。
In order to apply this high impact treatment to, for example, a vapor grown carbon fiber, a hybridizer is used, and
It is preferable to cut the carbon fibers by hitting each other at a linear speed of / sec for 0.5 to 5 minutes. The linear velocity in this case means the linear velocity of the outermost part of the rotating blade in the hybridizer. However, cutting of carbon fibers such as vapor-grown carbon fibers is not particularly hindered by cutting methods other than such high impact treatment, and cutting by ordinary means such as a ball mill or stamp mill is also possible. is there.

【0030】次に、上記製造方法によって製造された炭
素材料又は前記本発明の炭素材料を用いた本発明の非水
電解液二次電池の例を説明する。
Next, an example of the non-aqueous electrolyte secondary battery of the present invention using the carbon material manufactured by the above-described manufacturing method or the carbon material of the present invention will be described.

【0031】本発明の非水電解液二次電池は、正極と負
極をセパレータを介して対向配置すると共に、これらを
非水電解液の中に浸漬した構成を有するものとすること
ができる。この非水電解液は有機溶媒にリチウム塩を溶
解してなるものである。リチウム塩としては、例えばL
iClO4 ,LiPF6 ,LiBF4 ,LiAsF6
どが用いられ、これらの2種以上を併用することもでき
る。
The non-aqueous electrolyte secondary battery of the present invention may have a configuration in which a positive electrode and a negative electrode are opposed to each other with a separator interposed therebetween, and these are immersed in a non-aqueous electrolyte. This non-aqueous electrolyte is obtained by dissolving a lithium salt in an organic solvent. As the lithium salt, for example, L
iClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 and the like are used, and two or more of these can be used in combination.

【0032】また、上記有機溶媒としては、例えばプロ
ピレンカーボネート(PC),エチレンカーボネート
(EC),ジメチルカーボネート(DMC),ジエチル
カーボネート(DEC),エチルメチルカーボネート
(EMC)などが用いられ、これらの2種以上からなる
混合溶媒を使用することもできる。
Examples of the organic solvent include propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC). It is also possible to use a mixed solvent composed of more than one kind.

【0033】正極は、金属箔からなる集電体に正極材料
(正極活物質)を付着させてなる。集電体としては、通
常、帯状のアルミニウム箔が使用される。この集電体の
両面に正極材料としてリチウム含有複合酸化物と導電材
料などの混合物が付着せしめられる。
The positive electrode is obtained by attaching a positive electrode material (positive electrode active material) to a current collector made of a metal foil. As the current collector, a belt-like aluminum foil is usually used. A mixture of a lithium-containing composite oxide and a conductive material as a positive electrode material is attached to both surfaces of the current collector.

【0034】リチウム含有複合酸化物としては、例えば
コバルト酸リチウム(LiCoO2),マンガン酸リチ
ウム(LiMn2 4 ),ニッケル酸リチウム(LiN
iO2 )などが用いられる。導電材料は正極活物質の導
電性を高めるために加えられるもので、これにはアセチ
レンブラックを代表とするカーボンブラック、黒鉛粉
末、炭素繊維などを用いることができる。
Examples of the lithium-containing composite oxide include lithium cobalt oxide (LiCoO 2 ), lithium manganate (LiMn 2 O 4 ), and lithium nickel oxide (LiN
iO 2 ) is used. The conductive material is added to increase the conductivity of the positive electrode active material, and for example, carbon black represented by acetylene black, graphite powder, carbon fiber, or the like can be used.

【0035】上記リチウム含有複合酸化物と導電材料と
は、通常、粉体状のものが使用される。これらの粉体
は、バインダー溶液に混合・分散され、その混合物が集
電体の表面に塗布される。これはその後、乾燥され、次
いでロールプレス機などで圧縮されて正極となる。
The lithium-containing composite oxide and the conductive material are usually used in the form of powder. These powders are mixed and dispersed in a binder solution, and the mixture is applied to the surface of the current collector. This is then dried and then compressed by a roll press or the like to form a positive electrode.

【0036】上記バインダー溶液とは、バインダー(結
着材)を有機溶剤中に溶解してなるものである。このバ
インダーにより、粉体状のリチウム含有複合酸化物と導
電材料の相互間や、それらと集電体との間が結着され
る。バインダーとしては例えばポリフッ化ビニリデン
(PVDF)が用いられ、有機溶剤としては例えばN−
メチル−2−ピロリドン(NMP)が用いられる。
The binder solution is obtained by dissolving a binder (binder) in an organic solvent. The binder binds between the powdery lithium-containing composite oxide and the conductive material and between them and the current collector. As the binder, for example, polyvinylidene fluoride (PVDF) is used, and as the organic solvent, for example, N-
Methyl-2-pyrrolidone (NMP) is used.

【0037】負極は、金属箔からなる集電体に負極材料
(負極活物質)を付着させてなる。集電体としては、通
常、帯状の銅箔が使用される。この集電体の両面に負極
材料として本発明の炭素材料が付着せしめられる。
The negative electrode is obtained by attaching a negative electrode material (negative electrode active material) to a current collector made of a metal foil. Usually, a strip-shaped copper foil is used as the current collector. The carbon material of the present invention is adhered to both surfaces of the current collector as a negative electrode material.

【0038】この炭素材料としては、通常、粉体状のも
のが使用される。粉体の形状としては、一般に粒子状の
ものや繊維状のものがある。炭素材料は一般に黒鉛化処
理された上で用いられる。黒鉛化処理は、炭素材料の素
材に加熱処理を施すことによって内部に黒鉛結晶を成長
させる処理である。
As the carbon material, a powdery material is usually used. The shape of the powder generally includes a particulate shape and a fibrous shape. The carbon material is generally used after being graphitized. Graphitization is a process in which a carbon material is heated to grow graphite crystals inside.

【0039】粉体状の炭素材料は、正極の場合と同様に
バインダー溶液に混合・分散され、その混合物が集電体
の表面に塗布される。そして、それが乾燥され、次いで
ロールプレス機などで圧縮されて負極となる。この場合
も、バインダーとしては例えばポリフッ化ビニリデン
(PVDF)が用いられ、有機溶剤としては例えばN−
メチル−2−ピロリドン(NMP)が用いられる。
The powdery carbon material is mixed and dispersed in a binder solution as in the case of the positive electrode, and the mixture is applied to the surface of the current collector. Then, it is dried and then compressed by a roll press or the like to become a negative electrode. Also in this case, for example, polyvinylidene fluoride (PVDF) is used as the binder, and N-
Methyl-2-pyrrolidone (NMP) is used.

【0040】セパレーターとしては、帯状の微多孔性フ
ィルムが用いられる。このフィルムは例えばポリプロピ
レン製である。上記正極には正極リードが溶接され、負
極には負極リードが溶接される。この正極と負極をセパ
レーターを介して渦巻き状に巻き取り、この渦巻き状の
正負電極を例えば円筒形の電池缶内に収納する。そし
て、負極リードを電池缶に溶接し、正極リードを正極キ
ャップに溶接する。次に、電池缶の中に前記非水電解液
を注入し、その後、正極キャップを電池缶にかしめて電
池缶を密封する。これにより非水電解液二次電池が完成
する。
A strip-shaped microporous film is used as the separator. This film is made of, for example, polypropylene. A positive electrode lead is welded to the positive electrode, and a negative electrode lead is welded to the negative electrode. The positive electrode and the negative electrode are spirally wound via a separator, and the spiral positive and negative electrodes are housed in, for example, a cylindrical battery can. Then, the negative electrode lead is welded to the battery can, and the positive electrode lead is welded to the positive electrode cap. Next, the nonaqueous electrolyte is poured into the battery can, and then the positive electrode cap is crimped on the battery can to seal the battery can. Thereby, the non-aqueous electrolyte secondary battery is completed.

【0041】[0041]

【実施例】以下、本発明の炭素材料及び非水電解液二次
電池を、実施例により更に具体的に説明する。実施例は
本発明を例示的に示したものであって、本発明を制限す
るものではない。
EXAMPLES Hereinafter, the carbon material and the nonaqueous electrolyte secondary battery of the present invention will be described more specifically with reference to Examples. The examples are illustrative of the invention and do not limit the invention.

【0042】実施例1 1.炭素材料について (1) 炭素繊維の作製 気相から生成された直径2μm、長さ50μmの気相成
長炭素繊維を、アルゴンガス雰囲気下において2800
℃で30分かけて黒鉛化処理し、黒鉛化炭素繊維を得
た。この黒鉛化炭素繊維をハイブリダイザーに充填し
て、線速度20m/secで2分間、高衝撃処理をし
た。処理後の炭素繊維は、平均直径が2μm、平均長さ
が15μm、比表面積が1.4m2 /g、d002 が0.
3361nm、Lcが100nmであった。
Embodiment 1 1. About carbon material (1) Production of carbon fiber A vapor-grown carbon fiber having a diameter of 2 μm and a length of 50 μm generated from the vapor phase was subjected to 2800 in an argon gas atmosphere.
Graphitization was performed at 30 ° C. for 30 minutes to obtain graphitized carbon fibers. This graphitized carbon fiber was filled in a hybridizer and subjected to a high impact treatment at a linear velocity of 20 m / sec for 2 minutes. The carbon fiber after the treatment has an average diameter of 2 μm, an average length of 15 μm, a specific surface area of 1.4 m 2 / g, and a d 002 of 0.2.
3361 nm and Lc were 100 nm.

【0043】(2) ESR測定 (1) で作製した炭素繊維4mgと塩化カリウム100m
gとを乳鉢中で混合し、この混合物を直径5mm、長さ
270mmの石英の試料管に充填した。この試料管を真
空脱気した後、アルゴンガスを封入してESR測定を行
った。ESR装置はES−10(日機装株式会社の製品
名)を使用した。磁場掃引範囲335.5±15mT、
磁場変調100kHz(0.2mT)、マイクロ波出力
8mW、掃引時間2minで行い、測定温度は25℃と
した。以上の結果を表1に示す。
(2) ESR measurement 4 mg of carbon fiber prepared in (1) and 100 m of potassium chloride
g was mixed in a mortar, and the mixture was filled into a quartz sample tube having a diameter of 5 mm and a length of 270 mm. After the sample tube was evacuated under vacuum, an argon gas was sealed therein and ESR measurement was performed. The ESR device used was ES-10 (a product name of Nikkiso Co., Ltd.). Magnetic field sweep range 335.5 ± 15 mT,
The magnetic field modulation was performed at 100 kHz (0.2 mT), the microwave output was 8 mW, the sweep time was 2 min, and the measurement temperature was 25 ° C. Table 1 shows the above results.

【0044】(3) 充放電試験による評価 まず、3電極式ビーカーセルを作製するため、バインダ
ーであるPVDF0.1gを有機溶剤であるNMP0.
8mlに溶解した。これに(1) で作製した炭素繊維0.
9gを加え、乳鉢中で十分混合した。この混合物を1×
5cmのニッケルメッシュに塗布面積が1×1cmとな
るように塗布した後、110℃で24時間乾燥させ、作
用極を得た。この作用極と、金属リチウムよりなる対極
と、金属リチウムよりなる参照極とを用いて、3電極式
ビーカーセルを作製した。
(3) Evaluation by Charge / Discharge Test First, in order to produce a three-electrode beaker cell, 0.1 g of PVDF as a binder was added to an organic solvent, NMP 0.1.
Dissolved in 8 ml. The carbon fiber prepared in (1) was added to
9 g was added and mixed well in a mortar. This mixture is 1 ×
After coating on a 5 cm nickel mesh so that the coating area was 1 × 1 cm, the coating was dried at 110 ° C. for 24 hours to obtain a working electrode. Using this working electrode, a counter electrode made of metallic lithium, and a reference electrode made of metallic lithium, a three-electrode beaker cell was produced.

【0045】これに用いる非水電解液としては、エチレ
ンカーボネート(EC)とジエチルカーボネート(DE
C)の混合溶媒(EC:DEC=1:1、体積比)に、
LiClO4 を1mol/lの濃度となるように溶解し
たものを用いた。そして、電流密度を25mA/gと
し、作用極と参照極の間の電位差が0〜2.5Vとなる
範囲で充放電試験をした。そして、1サイクル目の充電
容量、放電容量及び充放電効率を測定した。結果を表2
及び図5に示す。
The non-aqueous electrolyte used for this purpose is ethylene carbonate (EC) and diethyl carbonate (DE).
C) mixed solvent (EC: DEC = 1: 1, volume ratio)
LiClO 4 dissolved at a concentration of 1 mol / l was used. Then, the current density was set to 25 mA / g, and a charge / discharge test was performed in a range where the potential difference between the working electrode and the reference electrode was 0 to 2.5 V. Then, the charge capacity, discharge capacity and charge / discharge efficiency in the first cycle were measured. Table 2 shows the results
And FIG.

【0046】尚、図5のグラフではプロットした点間を
直線で結んであるが、これはプロットした点が分かりや
すいように結んだだけで、必ずしもプロットした点間が
直線的であることを意味するものではない。これについ
ては図1〜4、図6〜7でも同様である。
Although the plotted points are connected by a straight line in the graph of FIG. 5, this means that the plotted points are simply connected for easy understanding, and that the plotted points are not necessarily linear. It does not do. This is the same in FIGS. 1 to 4 and FIGS.

【0047】2.円筒型非水電解液二次電池について (1) 電極の作製 (a) 負極の作製 1.(1) で作製した炭素繊維90wt%とバインダーで
あるPVDF10wt%を有機溶剤であるNMP中で混
合し、この混合物を帯状の銅箔に塗布し、負極を得た。 (b) 正極の作製 LiCoO2 90wt%とアセチレンブラック5wt%
とバインダーであるPVDF5wt%を有機溶剤である
NMP中で混合し、この混合物を帯状のアルミニウム箔
に塗布し、正極を得た。
2. Cylindrical non-aqueous electrolyte secondary battery (1) Preparation of electrode (a) Preparation of negative electrode 90 wt% of the carbon fiber prepared in (1) and 10 wt% of PVDF as a binder were mixed in NMP as an organic solvent, and this mixture was applied to a strip-shaped copper foil to obtain a negative electrode. (b) Preparation of positive electrode 90% by weight of LiCoO 2 and 5% by weight of acetylene black
And 5 wt% of PVDF as a binder were mixed in NMP as an organic solvent, and this mixture was applied to a strip-shaped aluminum foil to obtain a positive electrode.

【0048】(2) 非水電解液の作製 EC+PC+DMC(EC:PC:DMC=3:3:
4、体積比)よりなる混合溶媒にLiPF6 を1.2m
ol/lの濃度となるように混合し、非水電解液を得
た。
(2) Preparation of non-aqueous electrolyte EC + PC + DMC (EC: PC: DMC = 3: 3:
4, a volume ratio of LiPF 6 of 1.2 m
The resulting mixture was mixed at a concentration of ol / l to obtain a non-aqueous electrolyte.

【0049】(3) 円筒型非水電解液二次電池の作製 2.(1) で作製した正極に正極リードを溶接し、負極に
負極リードを溶接した後、この正極と負極をポリプロピ
レン製の微多孔性セパレーターを介して渦巻き状に巻き
取った。この渦巻き状の正負電極を直径16mm、高さ
50mmの電池缶に収納し、負極リードを電池缶に溶接
し、正極リードを正極キャップに溶接した。その後、電
池缶内に2.(2) で作製した非水電解液を注入した。次
いで正極キャップを電池缶にかしめて電池缶を密封し、
円筒型非水電解液二次電池を得た。
(3) Production of cylindrical non-aqueous electrolyte secondary battery After the positive electrode lead was welded to the positive electrode produced in (1) and the negative electrode lead was welded to the negative electrode, the positive electrode and the negative electrode were spirally wound through a polypropylene microporous separator. The spiral positive and negative electrodes were housed in a battery can having a diameter of 16 mm and a height of 50 mm, the negative electrode lead was welded to the battery can, and the positive electrode lead was welded to the positive electrode cap. After that, 2. The non-aqueous electrolyte prepared in (2) was injected. Next, crimp the positive electrode cap to the battery can to seal the battery can,
A cylindrical non-aqueous electrolyte secondary battery was obtained.

【0050】(4) 円筒型非水電解液二次電池のサイクル
試験 次の条件で300サイクルまでの充放電試験を行い、1
サイクル目、100サイクル目及び300サイクル目の
放電容量を測定した。 充放電電流=800mA, 充放電電圧=2.5〜4.
1V. この結果を表3及び図6に示す。
(4) Cycling Test of Cylindrical Nonaqueous Electrolyte Secondary Battery A charge / discharge test was performed up to 300 cycles under the following conditions.
The discharge capacity at the 100th and 300th cycles was measured. Charge / discharge current = 800 mA, charge / discharge voltage = 2.5-4.
1V. The results are shown in Table 3 and FIG.

【0051】(5) 円筒型非水電解液二次電池の大電流で
のサイクル試験 次の条件で300サイクルまでの充放電試験を行い、1
サイクル目、100サイクル目及び300サイクル目の
放電容量を測定した。 充放電電流=1600mA, 充放電電圧=2.5〜
4.1V. この結果を表3及び図7に示す。
(5) Cycling Test of Cylindrical Nonaqueous Electrolyte Secondary Battery at High Current A charge / discharge test of up to 300 cycles was performed under the following conditions.
The discharge capacity at the 100th and 300th cycles was measured. Charge / discharge current = 1600 mA, charge / discharge voltage = 2.5-
4.1V. The results are shown in Table 3 and FIG.

【0052】(6) 円筒型非水電解液二次電池のくぎさし
試験 800mAの電流値で4.1Vまで充電した電池に、直
径3mm、長さ40mmのくぎを、5cm/minの速
度で貫通させた。その際の電池の正極キャップの破損の
有無を観察した。この結果を表7に示す。
(6) Nail test of cylindrical non-aqueous electrolyte secondary battery A battery having a diameter of 3 mm and a length of 40 mm was charged at a speed of 5 cm / min into a battery charged to 4.1 V at a current value of 800 mA. Penetrated. At that time, the presence or absence of damage to the positive electrode cap of the battery was observed. Table 7 shows the results.

【0053】実施例2 1.炭素繊維の作製 気相から生成された直径1μm、長さ50μmの気相成
長炭素繊維を、アルゴンガス雰囲気下において2800
℃で30分かけて黒鉛化処理し、黒鉛化炭素繊維を得
た。この黒鉛化炭素繊維をハイブリダイザーに充填し
て、線速度30m/secで0.5分間、高衝撃処理を
した。処理後の炭素繊維は、平均直径が1μm、平均長
さが5μm、比表面積が4.8m2 /g、d002 が0.
3362nm、Lcが100nmであった。
Embodiment 2 1. Production of Carbon Fiber A vapor-grown carbon fiber having a diameter of 1 μm and a length of 50 μm generated from the vapor phase was subjected to 2800 mm under an argon gas atmosphere.
Graphitization was performed at 30 ° C. for 30 minutes to obtain graphitized carbon fibers. The graphitized carbon fiber was filled in a hybridizer and subjected to a high impact treatment at a linear velocity of 30 m / sec for 0.5 minutes. The treated carbon fiber has an average diameter of 1 μm, an average length of 5 μm, a specific surface area of 4.8 m 2 / g, and a d 002 of 0.2.
3362 nm and Lc were 100 nm.

【0054】2.測定及び試験 この炭素繊維を用いて、実施例1と同様にESR測定、
充放電試験、及び円筒型非水電解液二次電池による充放
電試験とくぎさし試験を実施した。結果を表1〜3、表
7及び図5〜7に示す。
2. Measurement and Test Using this carbon fiber, ESR measurement was performed in the same manner as in Example 1.
A charge / discharge test, a charge / discharge test using a cylindrical nonaqueous electrolyte secondary battery, and a nail test were performed. The results are shown in Tables 1 to 3, Table 7 and FIGS.

【0055】実施例3 1.炭素繊維の作製 気相から生成された直径4μm、長さ50μmの気相成
長炭素繊維を、アルゴンガス雰囲気下において2800
℃で30分かけて黒鉛化処理し、黒鉛化炭素繊維を得
た。この黒鉛化炭素繊維をハイブリダイザーに充填し
て、線速度10m/secで5分間、高衝撃処理をし
た。処理後の炭素繊維は、平均直径が4μm、平均長さ
が30μm、比表面積が0.9m2 /g、d002 が0.
3363nm、Lcが100nmであった。
Embodiment 3 1. Production of Carbon Fiber A vapor-grown carbon fiber having a diameter of 4 μm and a length of 50 μm generated from the vapor phase was subjected to 2800 g in an argon gas atmosphere.
Graphitization was performed at 30 ° C. for 30 minutes to obtain graphitized carbon fibers. This graphitized carbon fiber was filled in a hybridizer and subjected to high impact treatment at a linear velocity of 10 m / sec for 5 minutes. The carbon fiber after the treatment has an average diameter of 4 μm, an average length of 30 μm, a specific surface area of 0.9 m 2 / g, and d 002 of 0.2.
3363 nm and Lc were 100 nm.

【0056】2.測定及び試験 この炭素繊維を用いて、実施例1と同様にESR測定、
充放電試験、及び円筒型非水電解液二次電池による充放
電試験とくぎさし試験を実施した。結果を表1〜3、表
7及び図5〜7に示す。
2. Measurement and Test Using this carbon fiber, ESR measurement was performed in the same manner as in Example 1.
A charge / discharge test, a charge / discharge test using a cylindrical nonaqueous electrolyte secondary battery, and a nail test were performed. The results are shown in Tables 1 to 3, Table 7 and FIGS.

【0057】[0057]

【表1】 [Table 1]

【0058】[0058]

【表2】 [Table 2]

【0059】[0059]

【表3】 [Table 3]

【0060】また、上記実施例1〜3の炭素材料におけ
るスピン濃度と放電容量の関係、及びスピン濃度と充放
電効率の関係を、それぞれ図1及び図2に示す。また、
このスピン濃度と円筒型非水電解液二次電池における1
サイクル目、100サイクル目及び300サイクル目の
放電容量との関係を図3及び図4に示す。
FIGS. 1 and 2 show the relationship between the spin concentration and the discharge capacity and the relationship between the spin concentration and the charge / discharge efficiency in the carbon materials of Examples 1 to 3, respectively. Also,
This spin concentration and 1 in the cylindrical non-aqueous electrolyte secondary battery
FIGS. 3 and 4 show the relationship between the discharge capacity at the 100th cycle, the 300th cycle, and the 300th cycle.

【0061】次に、上記実施例と比較するため、本発明
の範囲に含まれないものを作製し、試験した。比較例1 1.炭素繊維の作製 気相から生成された直径2μm、長さ50μmの気相成
長炭素繊維を、アルゴンガス雰囲気下において2800
℃で30分かけて黒鉛化処理し、黒鉛化炭素繊維を得
た。この黒鉛化炭素繊維をハイブリダイザーに充填し
て、線速度40m/secで10分間、高衝撃処理をし
た。処理後の炭素繊維は、平均直径が2μm、平均長さ
が5μm、比表面積が7.1m2 /g、d002 が0.3
363nm、Lcが100nmであった。
Next, for comparison with the above-mentioned examples, those not included in the scope of the present invention were produced and tested. Comparative Example 1 1. Production of Carbon Fiber A vapor-grown carbon fiber having a diameter of 2 μm and a length of 50 μm generated from a vapor phase was subjected to an argon gas atmosphere at 2800 μm.
Graphitization was performed at 30 ° C. for 30 minutes to obtain graphitized carbon fibers. The graphitized carbon fiber was filled in a hybridizer and subjected to a high impact treatment at a linear velocity of 40 m / sec for 10 minutes. The carbon fiber after the treatment has an average diameter of 2 μm, an average length of 5 μm, a specific surface area of 7.1 m 2 / g, and a d 002 of 0.3.
363 nm and Lc were 100 nm.

【0062】2.測定及び試験 この炭素繊維は、実施例1のものと比較すると、高衝撃
処理における線速度が2倍になり、かつその時間が5倍
になっている点が異なる。この炭素繊維を用いて、実施
例1と同様にESR測定、充放電試験、及び円筒型非水
電解液二次電池による充放電試験とくぎさし試験を実施
した。尚、円筒型非水電解液二次電池による大電流での
充放電試験は省略した。以上の結果を表4〜7、及び図
5〜6に示す。
[0062] 2. Measurement and Test The carbon fiber is different from that of Example 1 in that the linear velocity in the high impact treatment is doubled and the time is five times. Using this carbon fiber, an ESR measurement, a charge / discharge test, a charge / discharge test using a cylindrical nonaqueous electrolyte secondary battery, and a nail test were performed in the same manner as in Example 1. A charge / discharge test at a large current using a cylindrical nonaqueous electrolyte secondary battery was omitted. The above results are shown in Tables 4 to 7 and FIGS.

【0063】比較例2 1.炭素繊維の作製 気相から生成された直径2μm、長さ50μmの気相成
長炭素繊維を、ハイブリダイザーに充填して、線速度4
0m/secで2分間、高衝撃処理をした。この炭素繊
維をアルゴンガス雰囲気下において2800℃で30分
かけて黒鉛化処理し、黒鉛化炭素繊維を得た。処理後の
炭素繊維は、平均直径が2μm、平均長さが10μm、
比表面積が2.7m2 /g、d002 が0.3366n
m、Lcが80nmであった。
Comparative Example 2 1. Preparation of Carbon Fiber Vapor-grown carbon fiber having a diameter of 2 μm and a length of 50 μm generated from a gas phase was filled in a hybridizer, and a linear velocity of 4 μm was used.
High impact treatment was performed at 0 m / sec for 2 minutes. This carbon fiber was graphitized in an argon gas atmosphere at 2800 ° C. for 30 minutes to obtain a graphitized carbon fiber. The carbon fiber after the treatment has an average diameter of 2 μm, an average length of 10 μm,
Specific surface area is 2.7 m 2 / g, d 002 is 0.3366 n
m and Lc were 80 nm.

【0064】2.測定及び試験 この炭素繊維は、実施例1のものと比較すると、黒鉛化
処理と高衝撃処理の順番が逆になっている点と、線速度
が2倍になっている点が異なる。この炭素繊維を用い
て、実施例1と同様にESR測定、充放電試験、及び円
筒型非水電解液二次電池による充放電試験を実施した。
尚、円筒型非水電解液二次電池のくぎさし試験は省略し
た。以上の結果を表4〜6、及び図5〜7に示す。
2. Measurement and Test The carbon fiber differs from that of Example 1 in that the order of the graphitization treatment and the high impact treatment is reversed and that the linear velocity is doubled. Using this carbon fiber, an ESR measurement, a charge / discharge test, and a charge / discharge test using a cylindrical nonaqueous electrolyte secondary battery were performed in the same manner as in Example 1.
The nailing test of the cylindrical non-aqueous electrolyte secondary battery was omitted. The above results are shown in Tables 4 and 6 and FIGS.

【0065】比較例3 1.炭素材料の作製 平均直径20μm(比表面積0.7m2 /g)のメソカ
ーボンマイクロビーズを、アルゴンガス雰囲気下におい
て2800℃で30分かけて黒鉛化処理した。
Comparative Example 3 1. Preparation of Carbon Material Mesocarbon microbeads having an average diameter of 20 μm (specific surface area 0.7 m 2 / g) were graphitized at 2800 ° C. for 30 minutes in an argon gas atmosphere.

【0066】2.測定及び試験 この炭素材料は、実施例1〜3のものと比較すると、繊
維状でなく粒子状である点と、高衝撃処理が行われなか
った点が異なる。この炭素材料を用いて、実施例1と同
様にESR測定、充放電試験、及び円筒型非水電解液二
次電池による充放電試験を実施した。尚、円筒型非水電
解液二次電池のくぎさし試験は省略した。以上の結果を
表4〜6、及び図5〜7に示す。
2. Measurement and Test The carbon material is different from those of Examples 1 to 3 in that it is not fibrous but particulate, and that the high impact treatment is not performed. Using this carbon material, an ESR measurement, a charge / discharge test, and a charge / discharge test using a cylindrical nonaqueous electrolyte secondary battery were performed in the same manner as in Example 1. The nailing test of the cylindrical non-aqueous electrolyte secondary battery was omitted. The above results are shown in Tables 4 and 6 and FIGS.

【0067】[0067]

【表4】 [Table 4]

【0068】[0068]

【表5】 [Table 5]

【0069】[0069]

【表6】 [Table 6]

【0070】[0070]

【表7】 [Table 7]

【0071】また、上記比較例1〜3の炭素材料におけ
るスピン濃度と放電容量の関係、及びスピン濃度と充放
電効率の関係を、それぞれ図1及び図2に示す。また、
このスピン濃度と円筒型非水電解液二次電池における1
サイクル目、100サイクル目及び300サイクル目の
放電容量との関係を図3及び図4に示す。
FIGS. 1 and 2 show the relationship between the spin concentration and the discharge capacity and the relationship between the spin concentration and the charge / discharge efficiency in the carbon materials of Comparative Examples 1 to 3, respectively. Also,
This spin concentration and 1 in the cylindrical non-aqueous electrolyte secondary battery
FIGS. 3 and 4 show the relationship between the discharge capacity at the 100th cycle, the 300th cycle, and the 300th cycle.

【0072】図1及び図2から明らかなように、スピン
濃度が本発明の範囲よりも低い方に外れている比較例
2、3の炭素材料は、充放電効率が92〜93%と高い
けれども、放電容量は270〜280mAh/gと極端
に低く、また、スピン濃度が本発明の範囲よりも高い方
に外れている比較例1の炭素材料は、放電容量が320
mAh/gと比較的大きいけれども、充放電効率は82
%と極端に低い。
As is clear from FIGS. 1 and 2, the carbon materials of Comparative Examples 2 and 3, in which the spin concentration is out of the range of the present invention, have a high charge-discharge efficiency of 92 to 93%. The discharge capacity was extremely low at 270 to 280 mAh / g, and the carbon material of Comparative Example 1 having a spin concentration outside the range of the present invention had a discharge capacity of 320.
Although the charge / discharge efficiency is relatively large at mAh / g, it is 82%.
% And extremely low.

【0073】これに対し、上記各実施例の炭素材料は、
放電容量が320〜350mAh/gと比較例以上に大
きく、かつ充放電効率は91〜95%と十分に高い。
On the other hand, the carbon material of each of the above embodiments is:
The discharge capacity is 320 to 350 mAh / g, which is larger than that of the comparative example, and the charge / discharge efficiency is 91 to 95%, which is sufficiently high.

【0074】また、図3から明らかなように、充放電電
流が800mAの場合、スピン濃度が本発明の範囲より
も低い方に外れている炭素材料を用いた比較例2、3の
円筒型非水電解液二次電池は、1サイクル目、100サ
イクル目、及び300サイクル目の放電容量が、それぞ
れ760〜770mAh、680〜690mAh、及び
640〜650mAhと小さく、また、スピン濃度が本
発明の範囲よりも高い方に外れている炭素材料を用いた
比較例1の円筒型非水電解液二次電池は、1サイクル目
の放電容量は820mAhと大きいけれども、100サ
イクル目及び300サイクル目になると、それぞれ66
0mAh及び570mAhと著しく小さくなっている。
これは充放電効率が低いためサイクル特性が悪いことを
示す。
As is apparent from FIG. 3, when the charge / discharge current is 800 mA, the cylindrical non-conductive layers of Comparative Examples 2 and 3 using a carbon material whose spin concentration is out of the range of the present invention are used. In the water electrolyte secondary battery, the discharge capacity at the first cycle, the 100th cycle, and the 300th cycle is as small as 760 to 770 mAh, 680 to 690 mAh, and 640 to 650 mAh, respectively, and the spin concentration is within the range of the present invention. Although the cylindrical non-aqueous electrolyte secondary battery of Comparative Example 1 using a carbon material that is deviated to a higher side has a large discharge capacity of 820 mAh in the first cycle, at the 100th cycle and the 300th cycle, 66 each
It is remarkably small at 0 mAh and 570 mAh.
This indicates that the charge / discharge efficiency is low and the cycle characteristics are poor.

【0075】これに対し、上記各実施例の円筒型非水電
解液二次電池は、(充放電電流が800mAの場合)1
サイクル目の放電容量が820〜850mAhと大き
く、かつ100サイクル目、300サイクル目の放電容
量もそれぞれ740〜765mAh、720〜750m
Ahと非常に大きい値を維持している。即ち、上記各実
施例の円筒型非水電解液二次電池は、比較例のものより
サイクル特性に優れていることが分かる。
On the other hand, the cylindrical non-aqueous electrolyte secondary batteries of each of the above-described embodiments have a charge / discharge current of 800 mA.
The discharge capacity at the cycle is as large as 820 to 850 mAh, and the discharge capacity at the 100th cycle and the 300th cycle is also 740 to 765 mAh and 720 to 750 m, respectively.
Ah and a very large value are maintained. That is, it can be seen that the cylindrical non-aqueous electrolyte secondary batteries of each of the above Examples have better cycle characteristics than those of Comparative Examples.

【0076】また、図4から明らかなように、充放電電
流が大電流(1600mA)の場合、スピン濃度が本発
明の範囲よりも低い方に外れている炭素材料を用いた比
較例2、3の円筒型非水電解液二次電池は、1サイクル
目、100サイクル目、及び300サイクル目の放電容
量が、それぞれ660〜680mAh、480〜500
mAh、及び290〜320mAhと、充放電電流が8
00mAの場合に比べていずれも大幅に小さく、かつこ
の傾向はサイクル数が多くなるほど顕著になっている。
As is clear from FIG. 4, when the charge / discharge current is a large current (1600 mA), Comparative Examples 2 and 3 using a carbon material having a spin concentration outside the range of the present invention are used. Of the cylindrical non-aqueous electrolyte secondary batteries of the first cycle, the 100th cycle, and the 300th cycle have discharge capacities of 660 to 680 mAh and 480 to 500, respectively.
mAh, 290-320 mAh, and a charge / discharge current of 8
All are much smaller than the case of 00 mA, and this tendency becomes more remarkable as the number of cycles increases.

【0077】これに対し、上記各実施例の円筒型非水電
解液二次電池は、(充放電電流が大電流(1600m
A)の場合)1サイクル目、100サイクル目、及び3
00サイクル目の放電容量がそれぞれ800〜830m
Ah、720〜740mAh、及び700〜730mA
hで、充放電電流が800mAの場合とほぼ同様の大き
な値を維持している。即ち、上記各実施例の円筒型非水
電解液二次電池は、特に大電流で充放電した場合、非常
に優れたサイクル特性を示すことが分かる。
On the other hand, the cylindrical non-aqueous electrolyte secondary battery of each of the above embodiments has a large charge / discharge current (1600 m).
Case A) 1st cycle, 100th cycle, and 3
The discharge capacity at the 00th cycle is 800 to 830 m
Ah, 720-740 mAh, and 700-730 mA
At h, the same large value is maintained as in the case where the charge / discharge current is 800 mA. That is, it can be seen that the cylindrical non-aqueous electrolyte secondary batteries of each of the above examples exhibit extremely excellent cycle characteristics, particularly when charged and discharged with a large current.

【0078】また、表7から明らかなように、スピン濃
度が本発明の範囲よりも高い方に外れている炭素材料を
用いた比較例1の円筒型非水電解液二次電池は、くぎさ
し試験を行うと電解液の急激な分解によりガスが発生
し、正極キャップが破損してしまった。
Further, as is clear from Table 7, the cylindrical non-aqueous electrolyte secondary battery of Comparative Example 1 using a carbon material having a spin concentration outside the range of the present invention is the When the test was performed, gas was generated due to rapid decomposition of the electrolytic solution, and the positive electrode cap was damaged.

【0079】これに対し、上記各実施例の円筒型非水電
解液二次電池は、(表7に示す如く)くぎさし試験を行
っても正極キャップの破損は起きなかった。これは、上
記各実施例の電池に用いられた炭素材料が本発明の範囲
のスピン濃度を有しているため、電解液との反応性が低
く、そのため回路の短絡が起きてもガスが発生しにくい
からである。即ち、上記各実施例の非水電解液二次電池
は安全性がより一層高いものとなっている。
On the other hand, in the cylindrical non-aqueous electrolyte secondary batteries of each of the above examples, even when the nailing test was performed (as shown in Table 7), the positive electrode cap was not damaged. This is because the carbon material used in the batteries of the above embodiments has a spin concentration within the range of the present invention, and therefore has low reactivity with the electrolytic solution, so that gas is generated even if a short circuit occurs in the circuit. Because it is hard to do. That is, the non-aqueous electrolyte secondary batteries of each of the above embodiments have higher safety.

【0080】また、図5から明らかなように、比較例1
〜3の炭素材料は放電容量が270〜320mAh/g
と小さいのに対し、実施例1〜3の炭素材料は放電容量
が320〜350mAh/gであり、比較例以上に大き
くなっている。しかも、比較例の炭素材料は、放電容量
が270〜280mAh/gと小さい場合(比較例2、
3)には充放電効率が92〜93%と高いけれども、放
電容量が320mAh/gと比較的大きい場合(比較例
1)には充放電効率が82%と極端に低い。これに対
し、実施例1〜3の炭素材料は、放電容量が320〜3
50mAh/gと比較例以上に大きく、かつ充放電効率
は91〜95%と十分に高い。
As is clear from FIG. 5, Comparative Example 1
The carbon materials of Nos. 1 to 3 have a discharge capacity of 270 to 320 mAh / g
On the other hand, the carbon materials of Examples 1 to 3 have discharge capacities of 320 to 350 mAh / g, which are larger than those of the comparative examples. Moreover, the carbon material of Comparative Example has a discharge capacity as small as 270 to 280 mAh / g (Comparative Example 2,
In 3), the charge and discharge efficiency is as high as 92 to 93%, but when the discharge capacity is relatively large at 320 mAh / g (Comparative Example 1), the charge and discharge efficiency is extremely low as 82%. On the other hand, the carbon materials of Examples 1 to 3 have discharge capacities of 320 to 3
It is 50 mAh / g, which is larger than that of the comparative example, and the charge / discharge efficiency is 91 to 95%, which is sufficiently high.

【0081】また、表3、表6及び図6から明らかなよ
うに、充放電電流が800mAの場合、比較例1の円筒
型非水電解液二次電池は、1サイクル目の放電容量が8
20mAhと比較的大きいけれども、サイクル数が増え
ると急激に低下し、300サイクル目には570mAh
と著しく小さくなる。また、比較例2、3の円筒型非水
電解液二次電池は、1サイクル目の放電容量が760〜
770mAhとやや小さく、かつサイクル数が増えると
それに応じて放電容量も低下するため、300サイクル
目には640〜650mAhと極めて小さくなる。
As is clear from Tables 3, 6 and FIG. 6, when the charge / discharge current is 800 mA, the cylindrical non-aqueous electrolyte secondary battery of Comparative Example 1 has a discharge capacity of 8 in the first cycle.
Although it is relatively large at 20 mAh, it decreases rapidly as the number of cycles increases, and reaches 570 mAh at the 300th cycle.
And becomes significantly smaller. The cylindrical non-aqueous electrolyte secondary batteries of Comparative Examples 2 and 3 had a discharge capacity in the first cycle of 760 to 760.
Since the discharge capacity is slightly smaller at 770 mAh and the discharge capacity decreases as the number of cycles increases, the discharge capacity becomes extremely small at 640 to 650 mAh at the 300th cycle.

【0082】これに対し、実施例1〜3の円筒型非水電
解液二次電池は、1サイクル目の放電容量が820〜8
50mAhと比較例以上に大きく、かつ300サイクル
目の放電容量も720〜750mAhと、相当に大きな
値を維持している。即ち、実施例1〜3の円筒型非水電
解液二次電池は、比較例のものよりサイクル特性に優れ
ていることが分かる(前記図3の説明参照)。
On the other hand, the cylindrical nonaqueous electrolyte secondary batteries of Examples 1 to 3 had discharge capacities of 820 to 8 in the first cycle.
The discharge capacity at the 300th cycle is 50 mAh, which is larger than that of the comparative example, and the discharge capacity at the 300th cycle is maintained at a considerably large value of 720 to 750 mAh. That is, it can be seen that the cylindrical non-aqueous electrolyte secondary batteries of Examples 1 to 3 have better cycle characteristics than those of the comparative example (see the description of FIG. 3).

【0083】また、表3、表6及び図7から明らかなよ
うに、充放電電流が大電流(1600mA)の場合、比
較例2、3の円筒型非水電解液二次電池は、1サイクル
目の放電容量が660〜680mAhと、充放電電流が
800mAの場合よりもかなり小さくなっている。そし
て、サイクル数が増えるとそれに応じて放電容量が大幅
に低下するため、300サイクル目には290〜320
mAhと極めて小さくなる。
As is clear from Tables 3 and 6, and FIG. 7, when the charge / discharge current is a large current (1600 mA), the cylindrical nonaqueous electrolyte secondary batteries of Comparative Examples 2 and 3 have one cycle. The discharge capacity of the eye is 660 to 680 mAh, which is considerably smaller than the case where the charge / discharge current is 800 mA. When the number of cycles increases, the discharge capacity decreases drastically.
mAh, which is extremely small.

【0084】これに対し、実施例1〜3の円筒型非水電
解液二次電池は、1サイクル目の放電容量が800〜8
30mAhと、比較例のものよりかなり大きく、かつサ
イクル数が増えても放電容量はあまり低下しないため、
300サイクル目の放電容量も700〜730mAhと
相当に大きな値を維持している。即ち、上記各実施例の
円筒型非水電解液二次電池は、特に大電流で充放電した
場合、非常に優れたサイクル特性を示すことが分かる
(前記図4の説明参照)。
On the other hand, the cylindrical non-aqueous electrolyte secondary batteries of Examples 1 to 3 had discharge capacities in the first cycle of 800 to 8
30 mAh, which is considerably larger than that of the comparative example, and the discharge capacity does not decrease so much even when the number of cycles is increased.
The discharge capacity at the 300th cycle also maintains a considerably large value of 700 to 730 mAh. That is, it can be seen that the cylindrical non-aqueous electrolyte secondary batteries of each of the above examples show extremely excellent cycle characteristics especially when charged and discharged with a large current (see the description of FIG. 4).

【0085】[0085]

【発明の効果】以上詳述したように、請求項1記載の発
明によれば、非水電解液二次電池の負極に用いられる炭
素材料において、電子スピン共鳴分析法(ESR)によ
り測定される25℃におけるスピン濃度が1×1018
3×1018spins/gであるため、大きな放電容量
を有すると共に、放電容量が大きくても充放電効率が高
く、またサイクル特性が良好で、特に充放電電流が大電
流の場合でもサイクル特性が悪化しないような負極用炭
素材料が提供される。従って、この発明の炭素材料は、
特に、より大電流が必要とされる用途において好適に使
用される。
As described above in detail, according to the first aspect of the present invention, the carbon material used for the negative electrode of the nonaqueous electrolyte secondary battery is measured by electron spin resonance analysis (ESR). Spin concentration at 25 ° C. is 1 × 10 18 to
Since it is 3 × 10 18 spins / g, it has a large discharge capacity, high charge / discharge efficiency even if the discharge capacity is large, and good cycle characteristics. A negative electrode carbon material that does not deteriorate is provided. Therefore, the carbon material of the present invention
In particular, it is suitably used in applications requiring a larger current.

【0086】また、請求項2記載の発明によれば、比表
面積が0.2〜5m2 /g、炭素格子面間隔d002
0.3354〜0.3374nm、c軸方向の結晶の大
きさLcが50〜2000nmであるため、請求項1記
載の発明による効果を有する負極用炭素材料として好適
である。
According to the second aspect of the present invention, the specific surface area is 0.2 to 5 m 2 / g, the carbon lattice spacing d 002 is 0.3354 to 0.3374 nm, and the crystal size in the c-axis direction is Since Lc is 50 to 2000 nm, it is suitable as a carbon material for a negative electrode having the effect of the first aspect of the present invention.

【0087】また、請求項3記載の発明によれば、直径
が1〜4μm、長さが3〜30μmの気相成長炭素繊維
であるため、請求項1記載の発明による効果を有する負
極用炭素材料として好適である。
According to the third aspect of the present invention, since the vapor-grown carbon fiber has a diameter of 1 to 4 μm and a length of 3 to 30 μm, the carbon for a negative electrode having the effect of the first aspect of the present invention. It is suitable as a material.

【0088】また、請求項4記載の発明によれば、非水
電解液二次電池の負極に用いられる炭素材料の製造方法
において、炭素材料の素材に黒鉛化処理を施した後に高
衝撃処理を施すため、大きな放電容量を有すると共に、
放電容量が大きくても充放電効率が高く、またサイクル
特性が良好で、特に充放電電流が大電流の場合でもサイ
クル特性が悪化しないような負極用炭素材料を製造する
ことができる。
According to the fourth aspect of the present invention, in the method for producing a carbon material used for a negative electrode of a nonaqueous electrolyte secondary battery, a high impact treatment is performed after the carbon material is subjected to a graphitization treatment. To have a large discharge capacity,
Even if the discharge capacity is large, a charge-discharge efficiency is high, and the cycle characteristics are good. In particular, it is possible to produce a carbon material for a negative electrode whose cycle characteristics are not deteriorated even when the charge-discharge current is large.

【0089】また、請求項5記載の発明によれば、上記
黒鉛化処理が、気相から生成された状態の気相成長炭素
繊維を不活性ガス雰囲気下において2800℃で30分
保持する処理であり、上記高衝撃処理が、その炭素繊維
同士をハイブリダイザーを使用して10〜30m/se
cの線速度で0.5〜5分間ぶつけ合って切断させる処
理であるため、請求項4記載の製造方法として好適であ
る。
According to the fifth aspect of the present invention, the graphitization treatment is a treatment in which the vapor-grown carbon fiber produced from the vapor phase is maintained at 2800 ° C. for 30 minutes in an inert gas atmosphere. In the high impact treatment, the carbon fibers are separated from each other using a hybridizer for 10 to 30 m / sec.
Since the cutting is performed by hitting at a linear velocity of c for 0.5 to 5 minutes, the method is suitable as the manufacturing method according to the fourth aspect.

【0090】また、請求項6記載の発明によれば、請求
項1〜3のいずれか1項に記載の炭素材料を負極に用い
た非水電解液二次電池が提供される。
According to a sixth aspect of the present invention, there is provided a non-aqueous electrolyte secondary battery using the carbon material according to any one of the first to third aspects for a negative electrode.

【0091】また、請求項7記載の発明によれば、請求
項4又は5に記載の製造方法により製造された炭素材料
を負極に用いた非水電解液二次電池が提供される。
According to the invention of claim 7, a non-aqueous electrolyte secondary battery using a carbon material produced by the production method of claim 4 or 5 as a negative electrode is provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】炭素材料におけるスピン濃度と放電容量の関係
を示すグラフである。
FIG. 1 is a graph showing a relationship between a spin concentration and a discharge capacity in a carbon material.

【図2】炭素材料におけるスピン濃度と充放電効率の関
係を示すグラフである。
FIG. 2 is a graph showing a relationship between spin concentration and charge / discharge efficiency in a carbon material.

【図3】炭素材料におけるスピン濃度と、その炭素材料
を用いた円筒型非水電解液二次電池の放電容量(充放電
電流が800mAの場合)の関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the spin concentration of a carbon material and the discharge capacity of a cylindrical non-aqueous electrolyte secondary battery using the carbon material (when the charge / discharge current is 800 mA).

【図4】炭素材料におけるスピン濃度と、その炭素材料
を用いた円筒型非水電解液二次電池の放電容量(充放電
電流が1600mAの場合)の関係を示すグラフであ
る。
FIG. 4 is a graph showing the relationship between the spin concentration of a carbon material and the discharge capacity (when the charge / discharge current is 1600 mA) of a cylindrical non-aqueous electrolyte secondary battery using the carbon material.

【図5】3電極式ビーカーセルによって測定した、炭素
材料における1サイクル目の放電容量と充放電効率の関
係を示すグラフである。
FIG. 5 is a graph showing the relationship between the first cycle discharge capacity and charge / discharge efficiency of a carbon material, as measured by a three-electrode beaker cell.

【図6】円筒型非水電解液二次電池の充放電サイクル数
と放電容量(充放電電流が800mAの場合)の関係を
示すグラフである。
FIG. 6 is a graph showing the relationship between the number of charge / discharge cycles and the discharge capacity (when the charge / discharge current is 800 mA) of the cylindrical nonaqueous electrolyte secondary battery.

【図7】円筒型非水電解液二次電池の充放電サイクル数
と放電容量(充放電電流が1600mAの場合)の関係
を示すグラフである。
FIG. 7 is a graph showing the relationship between the number of charge / discharge cycles and the discharge capacity (when the charge / discharge current is 1600 mA) of the cylindrical nonaqueous electrolyte secondary battery.

フロントページの続き (51)Int.Cl.6 識別記号 FI H01M 10/40 H01M 10/40 Z Continued on the front page (51) Int.Cl. 6 Identification code FI H01M 10/40 H01M 10/40 Z

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】非水電解液二次電池の負極に用いられる炭
素材料において、電子スピン共鳴分析法(ESR)によ
り測定される25℃におけるスピン濃度が1×1018
3×1018spins/gであることを特徴とする炭素
材料。
A carbon material used for a negative electrode of a non-aqueous electrolyte secondary battery has a spin concentration of 1 × 10 18 to 25 ° C. measured by electron spin resonance analysis (ESR).
A carbon material having a density of 3 × 10 18 spins / g.
【請求項2】比表面積が0.2〜5m2 /g、炭素格子
面間隔d002 が0.3354〜0.3374nm、c軸
方向の結晶の大きさLcが50〜2000nmであるこ
とを特徴とする請求項1記載の炭素材料。
2. The specific surface area is 0.2 to 5 m 2 / g, the carbon lattice spacing d 002 is 0.3354 to 0.3374 nm, and the crystal size Lc in the c-axis direction is 50 to 2000 nm. The carbon material according to claim 1, wherein
【請求項3】直径が1〜4μm、長さが3〜30μmの
気相成長炭素繊維であることを特徴とする請求項1又は
2に記載の炭素材料。
3. The carbon material according to claim 1, wherein the carbon material is a vapor grown carbon fiber having a diameter of 1 to 4 μm and a length of 3 to 30 μm.
【請求項4】非水電解液二次電池の負極に用いられる炭
素材料の製造方法において、炭素材料の素材に黒鉛化処
理を施した後で高衝撃処理を施すことを特徴とする炭素
材料の製造方法。
4. A method for producing a carbon material for use in a negative electrode of a non-aqueous electrolyte secondary battery, wherein the carbon material is subjected to a high impact treatment after being subjected to a graphitization treatment. Production method.
【請求項5】上記黒鉛化処理が、気相から生成された状
態の気相成長炭素繊維を不活性ガス雰囲気下において2
800℃で30分保持する処理であり、上記高衝撃処理
が、その炭素繊維同士をハイブリダイザーを使用して1
0〜30m/secの線速度で0.5〜5分間ぶつけ合
って切断させる処理であることを特徴とする、請求項4
記載の炭素材料の製造方法。
5. The method according to claim 1, wherein the graphitization treatment comprises the step of: removing the vapor-grown carbon fiber produced from the vapor phase under an inert gas atmosphere.
The high impact treatment is performed by holding the carbon fibers at a temperature of 800 ° C. for 30 minutes using a hybridizer.
5. A process for cutting by hitting at a linear velocity of 0 to 30 m / sec for 0.5 to 5 minutes.
The method for producing a carbon material as described above.
【請求項6】請求項1〜3のいずれか1項に記載の炭素
材料を負極に用いた非水電解液二次電池。
6. A non-aqueous electrolyte secondary battery using the carbon material according to claim 1 for a negative electrode.
【請求項7】請求項4又は5に記載の製造方法により製
造された炭素材料を負極に用いた非水電解液二次電池。
7. A non-aqueous electrolyte secondary battery using a carbon material produced by the production method according to claim 4 for a negative electrode.
JP9062458A 1997-02-28 1997-02-28 Carbon material for secondary battery negative electrode, its manufacture, and nonaqueous electrolyte secondary battery using carbon material Pending JPH10247495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9062458A JPH10247495A (en) 1997-02-28 1997-02-28 Carbon material for secondary battery negative electrode, its manufacture, and nonaqueous electrolyte secondary battery using carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9062458A JPH10247495A (en) 1997-02-28 1997-02-28 Carbon material for secondary battery negative electrode, its manufacture, and nonaqueous electrolyte secondary battery using carbon material

Publications (1)

Publication Number Publication Date
JPH10247495A true JPH10247495A (en) 1998-09-14

Family

ID=13200792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9062458A Pending JPH10247495A (en) 1997-02-28 1997-02-28 Carbon material for secondary battery negative electrode, its manufacture, and nonaqueous electrolyte secondary battery using carbon material

Country Status (1)

Country Link
JP (1) JPH10247495A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020070842A (en) * 2001-02-28 2002-09-11 가부시키가이샤 페토카머티리얼즈 Graphite material for negative electrode of lithium ion secondary battery and process for producing the same
JP2007157734A (en) * 2007-02-08 2007-06-21 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2011216231A (en) * 2010-03-31 2011-10-27 Jx Nippon Oil & Energy Corp Carbon material for lithium ion secondary battery, and electrode using the same
US9099743B2 (en) 2008-02-21 2015-08-04 Sony Corporation Anode and secondary battery
JP2017079175A (en) * 2015-10-21 2017-04-27 トヨタ自動車株式会社 Negative electrode active material for solid state battery
CN111602274A (en) * 2018-02-26 2020-08-28 株式会社Lg化学 Negative electrode active material for lithium secondary battery, and negative electrode for lithium secondary battery and lithium secondary battery comprising same
US11380888B2 (en) * 2017-03-16 2022-07-05 Lg Energy Solution, Ltd. Electrode and lithium secondary battery comprising same
CN114835111A (en) * 2022-05-30 2022-08-02 中北大学 Nano spiral graphite fiber material and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673615A (en) * 1992-07-06 1994-03-15 Nikkiso Co Ltd Graphitized vapor-grown carbon fiber, its production, form and composite therefrom
JPH0684517A (en) * 1992-09-01 1994-03-25 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary cell
JPH07105936A (en) * 1993-10-08 1995-04-21 Nikkiso Co Ltd Negative electrode for secondary battery, secondary battery, lithium ion secondary battery, non-aqueous type lithium ion secondary battery and vapor growth carbon fiber
JPH09153359A (en) * 1995-09-28 1997-06-10 Osaka Gas Co Ltd Manufacture of lithium secondary battery negative electrode material and its negative electrode material
JPH09320590A (en) * 1996-05-30 1997-12-12 Petoca:Kk Lithium ton secondary battery negative electrode material and its manufacture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673615A (en) * 1992-07-06 1994-03-15 Nikkiso Co Ltd Graphitized vapor-grown carbon fiber, its production, form and composite therefrom
JPH0684517A (en) * 1992-09-01 1994-03-25 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary cell
JPH07105936A (en) * 1993-10-08 1995-04-21 Nikkiso Co Ltd Negative electrode for secondary battery, secondary battery, lithium ion secondary battery, non-aqueous type lithium ion secondary battery and vapor growth carbon fiber
JPH09153359A (en) * 1995-09-28 1997-06-10 Osaka Gas Co Ltd Manufacture of lithium secondary battery negative electrode material and its negative electrode material
JPH09320590A (en) * 1996-05-30 1997-12-12 Petoca:Kk Lithium ton secondary battery negative electrode material and its manufacture

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020070842A (en) * 2001-02-28 2002-09-11 가부시키가이샤 페토카머티리얼즈 Graphite material for negative electrode of lithium ion secondary battery and process for producing the same
JP2007157734A (en) * 2007-02-08 2007-06-21 Hitachi Maxell Ltd Nonaqueous secondary battery
US9099743B2 (en) 2008-02-21 2015-08-04 Sony Corporation Anode and secondary battery
US9748574B2 (en) 2008-02-21 2017-08-29 Sony Corporation Anode and secondary battery
JP2011216231A (en) * 2010-03-31 2011-10-27 Jx Nippon Oil & Energy Corp Carbon material for lithium ion secondary battery, and electrode using the same
JP2017079175A (en) * 2015-10-21 2017-04-27 トヨタ自動車株式会社 Negative electrode active material for solid state battery
US11380888B2 (en) * 2017-03-16 2022-07-05 Lg Energy Solution, Ltd. Electrode and lithium secondary battery comprising same
CN111602274A (en) * 2018-02-26 2020-08-28 株式会社Lg化学 Negative electrode active material for lithium secondary battery, and negative electrode for lithium secondary battery and lithium secondary battery comprising same
CN114835111A (en) * 2022-05-30 2022-08-02 中北大学 Nano spiral graphite fiber material and preparation method and application thereof
CN114835111B (en) * 2022-05-30 2024-04-30 中北大学 Nano spiral graphite fiber material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP3978881B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
CA2055305C (en) Nonaqueous electrolyte secondary battery
US20170092950A1 (en) Porous carbonized composite material for high-performing silicon anodes
KR100415810B1 (en) Non-aqueous electrolyte secondary battery
EP3683871B1 (en) Negative electrode active material for lithium secondary battery and lithium secondary battery comprising same
JPH087885A (en) Lithium secondary battery
JP2005123107A (en) Active material for electrochemical element, its manufacturing method, and the electrochemical element using the same
JPH11339850A (en) Lithium-ion secondary battery
KR100834053B1 (en) Cathode, and lithium secondary battery and hybrid capacitor comprising same
JP4752085B2 (en) Negative electrode for lithium secondary battery
JPH0785888A (en) Lithium secondary battery
JP4354723B2 (en) Method for producing graphite particles
JPH10247495A (en) Carbon material for secondary battery negative electrode, its manufacture, and nonaqueous electrolyte secondary battery using carbon material
JPH06111818A (en) Carbon negative electrode for nonaqueous electrolyte secondary battery
JP4345920B2 (en) Electrode for electrochemical device, method for producing the same, and electrochemical device using the electrode
JP3499739B2 (en) Lithium secondary battery and method of manufacturing lithium secondary battery
JP3140880B2 (en) Lithium secondary battery
JPH06215761A (en) Nonaqueous electrolyte secondary battery graphite electrode and nonaqueous electrolyte secondary battery using it
KR101713259B1 (en) -TiO LITHIUM TITANIUM OXIDE-TiO COMPLEX FOR SECONDARY BATTERY PREPARING METHOD OF THE SAME AND SECONDARY BATTERY INCLUDING THE SAME
WO2013061922A1 (en) Positive electrode active material for nonaqueous electrolyte rechargeable battery, manufacturing method for same, and nonaqueous electrolyte rechargeable battery
JP2000203817A (en) Composite carbon particle, its production, negative pole material, negative pole for lithium secondary battery or cell and lithium secondary battery or cell
JP2002241117A (en) Graphite based carbon material, manufacturing method therefor, negative electrode material for lithium secondary battery, and lithium secondary battery
JPH10261406A (en) Carbon electrode and nonaqueous electrolyte secondary battery using it for negative electrode
JPH0896852A (en) Nonaqueous electrolytic secondary battery
JP3679220B2 (en) Carbon material for secondary battery negative electrode and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050614