JPH09306488A - Negative electrode material for nonaqueous electrolyte secondary battery, manufacture of this negative electrode material and nonaqueous electrolyte secondary battery using this negative electrode material - Google Patents

Negative electrode material for nonaqueous electrolyte secondary battery, manufacture of this negative electrode material and nonaqueous electrolyte secondary battery using this negative electrode material

Info

Publication number
JPH09306488A
JPH09306488A JP8118005A JP11800596A JPH09306488A JP H09306488 A JPH09306488 A JP H09306488A JP 8118005 A JP8118005 A JP 8118005A JP 11800596 A JP11800596 A JP 11800596A JP H09306488 A JPH09306488 A JP H09306488A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
electrolyte secondary
electrode material
nonaqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8118005A
Other languages
Japanese (ja)
Inventor
Tokuo Komaru
篤雄 小丸
Naoyuki Nakajima
尚幸 中島
Masayuki Nagamine
政幸 永峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP8118005A priority Critical patent/JPH09306488A/en
Publication of JPH09306488A publication Critical patent/JPH09306488A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Inorganic Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode material of high capacity having a good cycle characteristic, and provide a secondary battery of high reliability having high energy density. SOLUTION: A nonaqueous electrolyte secondary battery is formed by having a negative/ positive electrode formed of carbon material capable of doping/dedoping lithium and a nonaqueous electrolyte formed by dissolving an electrolyte in a nonaqueous solvent. The negative electrode is a fiber-shaped carbon material, its sectional higher order structure is a random radial type structure, and a value of fractal dimension in the carbon material section is 1.1 or more and 1.8 or less, a negative electrode material for the nonaqueous electrolyte secondary battery is formed. In the case of delivery spinning a precursor of the carbon material by applying a pressure to a soft pitch, a forming method performing delivery spinning while applying an ultrasonic wave to a delivery hole or a forming method performing delivery spinning while applying a magnetic field to the delivery hole is used, the negative electrode material for the nonaqueous electrolyte secondary battery is manufactured. Further, the negative electrode material for the nonaqueous electrolyte secondary battery is used, the nonaqueous electrolyte secondary battery is constituted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はリチウムイオン二次
電池用負極材料とこれを用いた二次電池に関するもので
あり、更に詳しくは前記負極材料として繊維状炭素材料
を用いることに関するものである。
TECHNICAL FIELD The present invention relates to a negative electrode material for a lithium ion secondary battery and a secondary battery using the same, and more particularly to using a fibrous carbon material as the negative electrode material.

【0002】[0002]

【従来の技術】近年の電子技術のめざましい進歩は、電
子機器の小型、軽量化を次々と実現させている。それに
伴い、ポータブル用電源としての電池に対してもますま
す小型、軽量、且つ高エネルギー密度の要求が高まって
いる。
2. Description of the Related Art Recent remarkable advances in electronic technology have made electronic devices smaller and lighter one after another. Along with this, demands for batteries as portable power sources that are smaller, lighter, and have higher energy density are increasing.

【0003】従来、一般用途の二次電池としては鉛電
池、ニッケル・カドミウム電池等の水溶液系電池が主流
であった。これらの電池は、サイクル特性にはある程度
満足できるが、電池重量やエネルギー密度の点では満足
できる特性とは言えなかった。一方、リチウム或いはリ
チウム合金を負極に用いた非水電解液二次電池の研究開
発は近年盛んに行われている。この電池は高エネルギー
密度を有し、自己放電も少なく、軽量という優れた特性
を有するが、充放電サイクルの進行に伴い、リチウムが
充電時にデンドライト状に結晶成長し、正極に到達して
内部ショートに至る欠点があり、実用化への大きな障害
となっていた。
Conventionally, an aqueous solution type battery such as a lead battery or a nickel-cadmium battery has been mainly used as a secondary battery for general use. These batteries can satisfy the cycle characteristics to some extent, but cannot be said to be satisfactory in terms of battery weight and energy density. On the other hand, research and development of non-aqueous electrolyte secondary batteries using lithium or a lithium alloy for the negative electrode have been actively conducted in recent years. This battery has high energy density, low self-discharge, and excellent characteristics such as light weight, but as the charge and discharge cycle progresses, lithium grows into dendrite-like crystals during charging and reaches the positive electrode, causing an internal short circuit. However, it was a major obstacle to practical use.

【0004】そこでこのような問題を解消するものとし
て、負極に炭素材料を使用した非水電解液二次電池、い
わゆるリチウムイオン二次電池が注目されている。リチ
ウムイオン二次電池は、炭素層間へのリチウムのドープ
/脱ドープを負極反応に利用するもので、充放電サイク
ルが進行しても充電時のデンドライト状の析出は見られ
ず、良好な充放電サイクル特性を示すものである。
As a solution to such a problem, a non-aqueous electrolyte secondary battery using a carbon material for the negative electrode, that is, a so-called lithium ion secondary battery has been receiving attention. The lithium-ion secondary battery utilizes doping / dedoping of lithium between carbon layers for the negative electrode reaction, and no dendrite-like deposition is observed during charging even if the charging / discharging cycle progresses, and good charging / discharging It shows cycle characteristics.

【0005】ところで、負極として使用可能な炭素材料
としてはいくつかあるが、最初に実用化された材料はコ
ークスやガラス状炭素である。これらは有機材料を比較
的低温で熱処理することによって得られた結晶性が低い
材料であるが、PC(炭酸プロピレン)を主体とする電
解液を用いて実用電池として商品化された。更に最近で
は、PCを主溶媒に用いると、負極として使用不可能で
あった黒鉛類においても、EC(炭酸エチレン)を主体
とする電解液を用いることで使用可能なレベルに到達し
た。
By the way, although there are several carbon materials that can be used as the negative electrode, the first practical materials are coke and glassy carbon. These are materials having low crystallinity obtained by heat-treating an organic material at a relatively low temperature, but they have been commercialized as a practical battery using an electrolytic solution containing PC (propylene carbonate) as a main component. More recently, when PC was used as the main solvent, even graphites that could not be used as the negative electrode reached a level where they could be used by using an electrolytic solution containing EC (ethylene carbonate) as a main component.

【0006】黒鉛類は、鱗片状のものが比較的容易に入
手でき、従来よりアルカリ電池用導電材料として広く用
いられている。この黒鉛類は、難黒鉛化性炭素材料に比
べて結晶性が高く、真密度が高い。従って、これによっ
て負極を構成すれば、高い電極充填性が得られ、電池の
エネルギー密度が高められることになる。このことか
ら、黒鉛類は負極材料として期待の大きな材料であると
言える。
[0006] Graphites, which are scaly, are relatively easily available and have been widely used as conductive materials for alkaline batteries. These graphites have higher crystallinity and higher true density than the non-graphitizable carbon material. Therefore, if the negative electrode is constituted by this, a high electrode filling property is obtained and the energy density of the battery is increased. From this, it can be said that graphites are promising materials as negative electrode materials.

【0007】しかし、上記炭素材料のほとんどは、実際
電池に使用されている粒子サイズよりも大きいブロック
状等であり、粉砕することによって粉末とされ使用され
る。このため、物理的、或いは化学的な処理によってミ
クロに、或いはマクロに炭素構造を制御しても、粉砕に
よって構造が乱れ、充分その効果を得ることができなか
った。
However, most of the above-mentioned carbon materials are in the form of blocks having a particle size larger than that actually used in batteries, and are pulverized into powder to be used. Therefore, even if the carbon structure is controlled microscopically or macroscopically by physical or chemical treatment, the structure is disturbed by pulverization, and the effect cannot be sufficiently obtained.

【0008】これにたいして、繊維状の有機物を炭素化
する等して得られる繊維状炭素(カーボンファイバー)
は比較的炭素構造を制御しやすく、最近注目されてい
る。その構造は、前駆体である有機物繊維の構造を大き
く反映する。有機物繊維としてはポリアクリルニトリル
等のポリマーを原料としたものや、石油ピッチ等のピッ
チ、またさらに配向させたメソフェースピッチを原料と
したものがあり、紡糸されることによって繊維状とな
る。しかしながら、いずれも炭素化時に熱処理される
際、溶融し、繊維構造を破壊してしまうことが生じてい
た。
On the other hand, fibrous carbon (carbon fiber) obtained by carbonizing fibrous organic matter
Is relatively easy to control the carbon structure, and has recently attracted attention. The structure largely reflects the structure of the precursor organic fiber. As the organic fibers, there are fibers made from polymers such as polyacrylonitrile, pitches such as petroleum pitch, and fibers made from further oriented mesophase pitch. The fibers are spun into fibers. However, in all cases, when heat-treated during carbonization, they were melted and destroyed the fiber structure.

【0009】そのため、通常は繊維表面に酸化等により
不融化処理した後に炭素化を行っていた。このようにし
て得られた繊維状炭素は有機物繊維構造に由来する断面
構造を持ち、同心円状に配向したオニオンスキン型、放
射状に配向したラジアル型、等方的なランダム型等の高
次構造を示す。これらを黒鉛化処理した黒鉛繊維は真密
度が高く結晶性も比較的高いため、非水電解液二次電池
用の負極材料として有望なものである。
Therefore, carbonization is usually performed after the fiber surface is infusibilized by oxidation or the like. The fibrous carbon thus obtained has a cross-sectional structure derived from an organic fiber structure, and has a higher-order structure such as a concentrically oriented onion skin type, a radially oriented radial type, or an isotropic random type. Show. Graphite fibers obtained by subjecting these to graphitization have high true density and relatively high crystallinity, and thus are promising as a negative electrode material for non-aqueous electrolyte secondary batteries.

【0010】しかしながら、前記の繊維状炭素におい
て、負極反応の主なものとしてインターカレーション反
応があり、これによる容量は結晶性が高いほど大きくな
ることが知られている。その繊維構造においては、放射
状に配向したラジアル型構造が比較的結晶構造が発達し
やすく、高い容量が得られる。しかしながら、ラジアル
型は結晶性が高いことが災いし、繊維自身の強度が弱く
なり、充放電時の膨張収縮の際に、繊維軸に平行に割れ
が生じ、繊維構造が破壊されやすかった。
However, it is known that in the above-mentioned fibrous carbon, an intercalation reaction is a main negative electrode reaction, and the capacity due to this increases as the crystallinity increases. In the fiber structure, a radially oriented radial type structure relatively easily develops a crystal structure, and a high capacity can be obtained. However, since the radial type suffers from high crystallinity, the strength of the fiber itself becomes weak, and during expansion / contraction during charging / discharging, cracks occur parallel to the fiber axis and the fiber structure is easily destroyed.

【0011】これを改善するものとして、ランダムラジ
アル型構造の繊維状炭素が本発明者らによって提案さ
れ、充放電時の膨張収縮に伴う繊維軸に平行に生じる割
れは大きく減少し、充放電可逆性の向上を図ることがで
きた。しかしながら、このランダムラジアル型構造の繊
維状炭素の断面構造を評価する物性パラメータがなく、
均一な繊維状炭素を得ることが困難であった。
In order to improve this, a fibrous carbon having a random radial type structure has been proposed by the present inventors, and cracks generated in parallel with the fiber axis due to expansion and contraction during charging / discharging are greatly reduced, resulting in charge / discharge reversibility. It was possible to improve the sex. However, there is no physical property parameter to evaluate the cross-sectional structure of this fibrous carbon of random radial type structure,
It was difficult to obtain uniform fibrous carbon.

【0012】[0012]

【発明が解決しようとする課題】従って本発明の課題
は、ランダムラジアル型構造の繊維状炭素の断面構造を
正しく評価し、工業的にバラツキが少なく実用性の高い
負極材料の製造を可能とし、更に、これを負極に用いる
ことでエネルギー密度が高く、高信頼性の非水電解液二
次電池を提供しようとするものである。
Therefore, the object of the present invention is to correctly evaluate the cross-sectional structure of a fibrous carbon having a random radial type structure, and to enable the production of a highly practical negative electrode material with little industrial variation, Further, by using this as a negative electrode, it is intended to provide a highly reliable non-aqueous electrolyte secondary battery having high energy density.

【0013】[0013]

【課題を解決するための手段】本発明は上記課題に鑑み
なされたものであり、リチウムのドープ脱ドープ可能な
炭素材料よりなる負極と正極、および非水溶媒に電解質
が溶解された非水電解液を有してなる非水電解液二次電
池において、前記負極は、繊維状の炭素材料であって、
且つ前記炭素材料の断面の高次構造がランダムラジアル
型構造であり、更に、前記炭素材料の断面のフラクタル
ディメンションの値が1.1以上、1.8未満である非
水電解液二次電池用負極材料を形成する。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and a negative electrode and a positive electrode made of a carbon material capable of being doped with lithium and dedoped, and a nonaqueous electrolysis in which an electrolyte is dissolved in a nonaqueous solvent. In a non-aqueous electrolyte secondary battery comprising a liquid, the negative electrode is a fibrous carbon material,
For a non-aqueous electrolyte secondary battery in which the higher order structure of the cross section of the carbon material is a random radial type structure and the value of the fractal dimension of the cross section of the carbon material is 1.1 or more and less than 1.8. Form the negative electrode material.

【0014】前記炭素材料の前駆体を、軟化ピッチに圧
力を加え吐出紡糸する際に、吐出孔に超音波を加えなが
ら吐出紡糸を行って形成する方法、または吐出孔に磁場
をかけながら吐出紡糸を行って形成する方法を用いて非
水電解液二次電池用負極材料を製造する。
When the precursor of the carbon material is discharged and spun by applying a pressure to the softening pitch, a method of discharging and spinning while applying ultrasonic waves to the discharge hole, or a method of discharging and spinning while applying a magnetic field to the discharge hole A negative electrode material for a non-aqueous electrolyte secondary battery is manufactured using the method described above.

【0015】リチウムのドープ脱ドープ可能な炭素材料
よりなる負極、正極および非水溶媒に電解質が溶解され
た非水電解液を有してなる非水電解液二次電池におい
て、前記非水電解液二次電池用負極材料を用いて非水電
解液二次電池を構成し、上記課題を解決する。
A non-aqueous electrolyte secondary battery comprising a negative electrode made of a carbon material capable of being doped and dedoped with lithium, a positive electrode, and a non-aqueous electrolyte solution in which an electrolyte is dissolved in a non-aqueous solvent. A non-aqueous electrolyte secondary battery is constructed using a negative electrode material for a secondary battery to solve the above problems.

【0016】ランダムラジアル型断面構造を有する繊維
状炭素の断面構造を、フラクタル解析して求められるフ
ラクタルディメンションの値を最適な範囲に制御するこ
とができ、工業規模でバラツキの少ないサイクル特性を
有する繊維状炭素が実現できる。また、これを負極に用
いることで高エネルギー密度でサイクル寿命が長く信頼
性の高い二次電池を得ることができる。
A fractal dimension of a fibrous carbon having a random radial type cross-sectional structure can be controlled to a fractal dimension value determined by fractal analysis in an optimum range, and the fiber has cycle characteristics with little variation on an industrial scale. Form carbon can be realized. Further, by using this as a negative electrode, a secondary battery having high energy density, long cycle life and high reliability can be obtained.

【0017】[0017]

【発明の実施の形態】本発明の実施の形態について図1
ないし図6を参照して説明する。図1は本発明による繊
維状炭素の断面であり、図2は図1の一部拡大図であ
り、図3は図2を画像処理した図である。図4は本発明
による繊維状炭素を用いた筒形電池の側面断面図であ
る。図5は本発明による繊維状炭素の面間隔と容量の関
係を示す図であり、また、図6は本発明による繊維状炭
素のフラクタルディメンションと容量維持率の関係を示
す図である。
FIG. 1 shows an embodiment of the present invention.
It will be described with reference to FIGS. FIG. 1 is a cross section of a fibrous carbon according to the present invention, FIG. 2 is a partially enlarged view of FIG. 1, and FIG. 3 is a view obtained by performing image processing on FIG. FIG. 4 is a side sectional view of a tubular battery using fibrous carbon according to the present invention. FIG. 5 is a diagram showing the relationship between the interplanar spacing and the capacity of the fibrous carbon according to the present invention, and FIG. 6 is a view showing the relationship between the fractal dimension and the capacity retention rate of the fibrous carbon according to the present invention.

【0018】前述の課題を解決するために、本発明者ら
はランダムラジアル型繊維状炭素の断面高次構造のフラ
クタル解析により求められるフラクタルディメンション
の値が断面構造を評価する物性パラメータとして利用可
能であり、このフラクタルディメンションが特定の範囲
となるようにし、且つ結晶性を適当な範囲に制御するこ
とにより、充放電性能のバラツキが少なく、充放電サイ
クル可逆性の良好な高容量の繊維状炭素が実現可能であ
ることを見いだした。
In order to solve the above-mentioned problems, the present inventors can use the value of the fractal dimension obtained by fractal analysis of the higher-order structure of the cross section of random radial type fibrous carbon as a physical property parameter for evaluating the cross section structure. By controlling the fractal dimension within a specific range and controlling the crystallinity within an appropriate range, there is little variation in charge / discharge performance, and high capacity fibrous carbon with good charge / discharge cycle reversibility can be obtained. I found it feasible.

【0019】本発明で規定する繊維状炭素断面構造のフ
ラクタルディメンションは、図1に示すような繊維断面
における炭素網平面の構造を表す指標である。これを得
るためには、まず電子顕微鏡(電解放射型走査電子顕微
鏡等)などを用いて繊維断面の画像を写真等にし、その
画像をスキャナー等を用いてコンピュータに取り込み、
これを画像処理した後、フラクタル解析を行う。これを
10本の繊維について求めた平均値をフラクタルディメ
ンションの値(以下、単に「FD値」と記す)とした。
The fractal dimension of the fibrous carbon cross section structure defined in the present invention is an index representing the structure of the carbon mesh plane in the fiber cross section as shown in FIG. To obtain this, first use an electron microscope (field emission scanning electron microscope, etc.) to make an image of the fiber cross section into a photograph, etc., and then take that image into a computer using a scanner, etc.
After image processing of this, fractal analysis is performed. The average value obtained for 10 fibers was used as the value of the fractal dimension (hereinafter, simply referred to as "FD value").

【0020】前記フラクタルディメンションは平面内に
おいて曲線の曲がり度合いを示し、1〜2の値をとる
が、曲線が複雑になるほど2に近づく。即ち、FD値に
よって、複雑な繊維状炭素断面構造を定量的に評価する
ことができ、特に負極としての容量と充放電サイクルの
可逆性に影響を与える炭素網面の曲線構造を評価するパ
ラメータとしてFD値は重要である。
The fractal dimension indicates the degree of curve of the curve in the plane, and takes a value of 1 to 2, but approaches 2 as the curve becomes more complicated. That is, a complex fibrous carbon cross-sectional structure can be quantitatively evaluated by the FD value, and particularly as a parameter for evaluating the curved structure of the carbon net surface that affects the capacity as the negative electrode and the reversibility of the charge / discharge cycle. The FD value is important.

【0021】この値が2に近づくほど曲線構造は複雑に
なり、繊維強度が高くなって充放電サイクルの可逆性は
向上する。しかし、その一方では曲線構造が複雑になる
ほど黒鉛化が難しくなり、結晶性が向上せずインターカ
レーション容量が減少する。このため、高結晶性であり
且つFD値が1.1以上、1.8未満が好ましく、1.
25以上、1.8未満が更に好ましい。また、結晶構造
のパラメータとしてはX線解析法(学振法)で得られる
(002)面間隔d002 が指標となる。ここではd002
は0.340nm未満が好ましく、0.335nm以
上、0.337nm以下が更に好ましい。
As this value approaches 2, the curved structure becomes more complicated, the fiber strength increases, and the reversibility of the charge / discharge cycle improves. On the other hand, however, as the curved structure becomes more complicated, graphitization becomes more difficult, the crystallinity does not improve, and the intercalation capacity decreases. Therefore, it is highly crystalline and the FD value is preferably 1.1 or more and less than 1.8.
It is more preferably 25 or more and less than 1.8. Further, as a parameter of the crystal structure, the (002) plane spacing d 002 obtained by the X-ray analysis method (Gakushin method) serves as an index. Here d 002
Is preferably less than 0.340 nm, more preferably 0.335 nm or more and 0.337 nm or less.

【0022】前記結晶性やFD値を制御するためには出
発原料や繊維化の方法が重要である。本発明の繊維状炭
素を生成するに際して、出発原料となる有機物としてポ
リアクリロニトリルやレイヨン等のポリマー類や、石油
系ピッチ、石炭系ピッチ、合成ピッチ、更にこれらを最
高400℃程度で任意の時間保持するか、または酸等の
添加によって重合促進するなどして、芳香環同士を縮
合、多環化して積層配向させたメソフェースピッチ等の
ピッチ類が使用可能である。
In order to control the crystallinity and the FD value, the starting material and the method of fiber formation are important. When the fibrous carbon of the present invention is produced, polymers such as polyacrylonitrile and rayon as starting materials, petroleum pitch, coal pitch, synthetic pitch, and these are kept at about 400 ° C. for any time. It is possible to use pitches such as mesophase pitches in which aromatic rings are condensed and polycyclic to have a laminated orientation by accelerating the polymerization by adding an acid or the like.

【0023】特に、メソフェースピッチを使用する場合
には、紡糸性、繊維状炭素の物理特性、また電気、化学
特性に対し、メソフェース含有率が大きく影響を与え
る。メソフェース含有率は60%以上が好ましく、95
%以上が更に好ましい。この範囲以下であれば結晶の配
向性に劣り、材料自身の容量などの低下をきたすので好
ましくない。
In particular, when the mesophase pitch is used, the mesophase content greatly affects the spinnability, the physical properties of fibrous carbon, and the electrical and chemical properties. The mesophase content is preferably 60% or more, and 95
% Or more is more preferable. If it is less than this range, the crystal orientation is poor and the capacity of the material itself is lowered, which is not preferable.

【0024】本発明の繊維状炭素前駆体である有機物炭
素を作製する場合には、前記ポリマー類やピッチ類は加
熱されて、溶融状態とされ吐出等により成形紡糸され
る。この場合、各有機物によって融点は様々であり、そ
れぞれについて適宜最適紡糸温度が選択可能である。
When the organic carbon which is the fibrous carbon precursor of the present invention is produced, the above-mentioned polymers and pitches are heated to be in a molten state and molded and spun by discharge or the like. In this case, the melting point varies depending on each organic substance, and the optimum spinning temperature can be appropriately selected for each.

【0025】特に、FD値を制御するには紡糸条件、即
ち、押し出し成形であれば押し出し速度や吐出孔の形状
等に大きく影響を受ける。また、吐出する際に吐出孔中
のピッチの流れを乱流とすることによっても断面構造に
おける炭素網面の曲線構造を形作ることが可能である。
この場合、吐出孔中に細孔を設けエアー等のガスを吹き
出す方法や、吐出孔近傍に磁場を発生させピッチ配向を
乱す方法、また超音波等によって吐出孔に振動を与える
方法等を用いることができる。
In particular, in order to control the FD value, the spinning conditions, that is, extrusion molding, is greatly affected by the extrusion speed and the shape of the discharge hole. In addition, it is also possible to form a curved structure of the carbon net surface in the cross-sectional structure by making the flow of the pitch in the discharge holes turbulent at the time of discharging.
In this case, use a method in which a gas such as air is blown out by providing a fine hole in the discharge hole, a method in which a magnetic field is generated in the vicinity of the discharge hole to disturb the pitch alignment, or a method in which the discharge hole is vibrated by ultrasonic waves or the like. You can

【0026】繊維状炭素の前駆体である前記有機物繊維
は、紡糸後、熱処理の前に不融化される。その具体的な
手段は限定されないが、例えば硝酸、混酸、硫酸、次亜
塩素酸等の水溶液による湿式法、或いは酸化性ガス(空
気、酸素)による乾式法、更に硫黄、硝酸アンモニア、
過硫酸アンモニア、塩化第二鉄等の固体試薬による反応
などが用いられる。また、前記処理を行う際、繊維に延
伸、或いは緊張操作を行ってもよい。
The above-mentioned organic fiber, which is a precursor of fibrous carbon, is infusibilized after spinning and before heat treatment. Although the specific means is not limited, for example, a wet method using an aqueous solution of nitric acid, mixed acid, sulfuric acid, hypochlorous acid, or the like, or a dry method using an oxidizing gas (air, oxygen), sulfur, ammonia nitrate,
A reaction with a solid reagent such as ammonium persulfate or ferric chloride is used. Moreover, when performing the said process, you may draw or tension a fiber.

【0027】以上の不融化処理された有機物繊維は窒素
等の不活性ガス気流中で熱処理されるが、その条件とし
ては300〜700℃で炭化した後、不活性ガス気流
中、昇温速度毎分1〜100℃、到達温度900〜15
00℃、到達温度での保持時間0〜30時間程度の条件
でか焼し、更に黒鉛化品を得るためには2000℃以
上、好ましくは2500℃以上で熱処理を行うことが好
ましい。勿論、場合によっては炭化やか焼操作を省略し
てもよい。2500℃以上の高温で熱処理を行うことで
黒鉛化された本発明の繊維状炭素は人造黒鉛に近い真密
度を有し、高い電極充填密度が得られるため好ましい。
The above infusibilized organic fibers are heat-treated in a stream of inert gas such as nitrogen. The conditions are as follows: carbonization at 300 to 700 ° C. and then in a stream of inert gas at every heating rate. Min 1-100 ° C, ultimate temperature 900-15
Calcination is performed at a temperature of 00 ° C. for a holding time of about 0 to 30 hours, and in order to obtain a graphitized product, it is preferable to perform heat treatment at 2000 ° C. or higher, preferably 2500 ° C. or higher. Of course, in some cases, the carbonization and calcination operations may be omitted. The fibrous carbon of the present invention graphitized by heat treatment at a high temperature of 2500 ° C. or higher has a true density close to that of artificial graphite and a high electrode packing density is obtained, which is preferable.

【0028】尚、生成される繊維状炭素は分級、或いは
粉砕・分級して負極材料に供されるが、粉砕は炭化、か
焼の前後、或いは黒鉛化前の昇温過程の間、いずれで行
ってもよく、この場合最終的に粉末状態で黒鉛化のため
の熱処理が行われる。
The produced fibrous carbon is classified or ground and classified to be used as a negative electrode material. Grinding may be carried out before or after carbonization, calcination, or during the temperature rising process before graphitization. In this case, the heat treatment for graphitization is finally performed in the powder state.

【0029】黒鉛化繊維状炭素としては、以上のような
物性値を有するものが好ましく、繊維径やアスペクト比
は前記物性値に合わせて適宜選択可能であるが、繊維径
については5μm以上100μm以下が好ましく、アス
ペクト比については20以下が好ましい。繊維径が小さ
いほど比表面積が大きくなり、また、繊維径が大きいほ
ど繊維形状を付与する効果が低くなるためである。
As the graphitized fibrous carbon, those having the above physical properties are preferable, and the fiber diameter and the aspect ratio can be appropriately selected according to the above physical properties, but the fiber diameter is 5 μm or more and 100 μm or less. Is preferable, and the aspect ratio is preferably 20 or less. This is because the smaller the fiber diameter, the larger the specific surface area, and the larger the fiber diameter, the lower the effect of imparting the fiber shape.

【0030】更に、以下に説明する物性値を満足するこ
とにより、より実用的な負極材料を得ることができる。
Further, by satisfying the physical property values described below, a more practical negative electrode material can be obtained.

【0031】より高い電極充填密度を得るには、黒鉛化
繊維状炭素の真密度は2.1g/cm3 以上が好まし
く、2.18g/cm3 以上が更に好ましい。黒鉛材料
の真密度(ブタノール溶媒によるピクノメータ法)は、
その結晶性によって決まり、X線回折法(学振法)で得
られる(002)面間隔、(002)面のC軸結晶子厚
み等の結晶構造パラメータが指標となる。高い真密度の
材料を得るためには、結晶性が高いほうがよく、X線回
折法で得られる(002)面間隔が0.340nm未満
が好ましく、0.335nm以上、0.337nm以下
が更に好ましい。また、(002)面のC軸結晶子厚み
については14.0nm以上が好ましく、30.0nm
以上が更に好ましい。
To obtain a higher electrode packing density, the true density of the graphitized fibrous carbon is preferably 2.1 g / cm 3 or more, more preferably 2.18 g / cm 3 or more. The true density of graphite material (Pycnometer method using butanol solvent) is
The crystal structure parameters such as the (002) plane distance and the C-axis crystallite thickness of the (002) plane, which are determined by the crystallinity and obtained by the X-ray diffraction method (Gakushin method), are used as an index. In order to obtain a material with high true density, it is preferable that the crystallinity is high, and the (002) plane spacing obtained by X-ray diffraction is preferably less than 0.340 nm, more preferably 0.335 nm or more and 0.337 nm or less. . The C-axis crystallite thickness of the (002) plane is preferably 14.0 nm or more and 30.0 nm.
The above is more preferred.

【0032】また、良好なサイクル特性を得るために
は、嵩密度は0.4g/cm3 以上の材料を用いること
が好ましい。嵩密度が0.4g/cm3 以上の黒鉛材料
を用いて構成された負極は、良好な電極構造を有し、負
極合剤層から黒鉛材料が剥がれ落ちると言ったことが起
き難い。従って、長サイクル寿命が得られることとな
る。
In order to obtain good cycle characteristics, it is preferable to use a material having a bulk density of 0.4 g / cm 3 or more. The negative electrode composed of a graphite material having a bulk density of 0.4 g / cm 3 or more has a good electrode structure, and it is unlikely that the graphite material peels off from the negative electrode mixture layer. Therefore, a long cycle life can be obtained.

【0033】尚、本発明で規制する嵩密度は、JIS
K−1469に記載される方法で求められる価である。
この価が0.4g/cm3 以上の黒鉛材料を用いれば、
十分に長いサイクル寿命が得られるが、好ましくは嵩密
度が0.5g/cm3 以上、より好ましく嵩密度が0.
7g/cm3 以上の材料を用いるのがよい。
The bulk density regulated by the present invention is JIS
It is the value determined by the method described in K-1469.
If a graphite material with this value of 0.4 g / cm 3 or more is used,
Although a sufficiently long cycle life can be obtained, the bulk density is preferably 0.5 g / cm 3 or more, and more preferably the bulk density is 0.1 g / cm 3 .
It is preferable to use a material of 7 g / cm 3 or more.

【0034】嵩密度測定方法嵩密度の測定方法を次に示
す。予め質量を測定しておいた容量100cm3 のメス
シリンダーを斜めにし、これに試料粉末100cm
3 を、さじを用いて徐々に投入する。そして、全体の質
量を最小目盛0.1gで測り、その質量からメスシリン
ダーの質量を差し引くことで試料粉末Mを求める。
Bulk Density Measuring Method The bulk density measuring method will be described below. The graduated cylinder with a capacity of 100 cm 3 whose mass has been measured in advance is tilted, and 100 cm of the sample powder is placed on this.
Gradually add 3 using a spoon. Then, the total mass is measured with a minimum scale of 0.1 g, and the mass of the graduated cylinder is subtracted from the mass to obtain the sample powder M.

【0035】つぎに試料粉末が投入されたメスシリンダ
ーにコルク栓をし、その状態のメスシリンダーを、ゴム
板に対して約5cmの高さから50回落下させる。その
結果、メスシリンダー中の試料粉末は圧縮されるので、
その圧縮された試料粉末の容積Vを読み取る。そして、
下記の(1)式により嵩密度(g/cm3 )を算出す
る。
Next, a graduated cylinder charged with the sample powder is capped with a cork, and the graduated cylinder in this state is dropped 50 times from a height of about 5 cm with respect to the rubber plate. As a result, the sample powder in the graduated cylinder is compressed,
Read the volume V of the compressed sample powder. And
The bulk density (g / cm 3 ) is calculated by the following formula (1).

【0036】 D=W/V (1) ここで、 D:嵩密度(g/cm3 ) W:メスシリンダー中の試料粉末の質量(g) V:50回落下後のメスシリンダー中の試料粉末の容積
(cm3
D = W / V (1) where D: bulk density (g / cm 3 ) W: mass of sample powder in graduated cylinder (g) V: sample powder in graduated cylinder after 50 drops Volume of (cm 3 )

【0037】また、更に(2)式で示される形状パラメ
ータxの平均値が125以下である場合、さらにサイク
ル特性が良好なものとなる。即ち、黒鉛材料粉末の代表
的な形状は、扁平な円柱状、或いは直方体状である。こ
の黒鉛材料粉末の最も厚さの薄い部分の厚みをT、最も
長さの長い部分の長さをL、奥行きに相当する長軸と直
交する方向の長さをWとしたときに、LとWそれぞれを
Tで除した価の積が前記形状パラメータxである。この
形状パラメータxが小さいほど、底面積に対する高さが
高く、扁平度が小さいことを意味する。
Further, when the average value of the shape parameter x expressed by the equation (2) is 125 or less, the cycle characteristics are further improved. That is, a typical shape of the graphite material powder is a flat columnar shape or a rectangular parallelepiped shape. When the thickness of the thinnest part of this graphite material powder is T, the length of the longest part is L, and the length in the direction orthogonal to the major axis corresponding to the depth is W, L The product of the values obtained by dividing each W by T is the shape parameter x. The smaller the shape parameter x, the higher the height with respect to the bottom area and the smaller the flatness.

【0038】 x=(W/T)×(L/T) (2) ここで、 x:形状パラメータ T:粉末の最も厚さの薄い部分の厚み L:粉末の長軸方向の長さ w:粉末の長軸と直交する方向の長さX = (W / T) × (L / T) (2) Here, x: shape parameter T: thickness of the thinnest part of the powder L: length of the powder in the major axis direction w: Length of powder in the direction orthogonal to the long axis

【0039】また、平均形状パラメータxave.を以下の
ような実測によって求める。まず、黒鉛試料粉末をSE
M(走査型電子顕微鏡)を用いて観察し、最も長さの長
い部分の長さが平均粒径の±30%であるような粉末を
10個選択する。そして、選択した10個の粉末それぞ
れについて(2)式より形状パラメータxを計算し、そ
の平均を算出する。この算出された平均値が前記平均形
状パラメータxave.である。黒鉛粉末の平均形状パラメ
ータxave.が125以下であれば上記効果は得られる
が、好ましくは2以上115以下、更に好ましくは2以
上100以下がよい。
Further, the average shape parameter xave. Is obtained by the following actual measurement. First, the graphite sample powder is SE
Observe using M (scanning electron microscope), and select 10 powders in which the length of the longest part is ± 30% of the average particle size. Then, the shape parameter x is calculated from the equation (2) for each of the 10 selected powders, and the average thereof is calculated. The calculated average value is the average shape parameter xave. The above effect can be obtained when the average shape parameter xave. Of the graphite powder is 125 or less, but preferably 2 or more and 115 or less, more preferably 2 or more and 100 or less.

【0040】また、比表面積が9m2 /g以下の材料を
用いた場合、さらに長いサイクル寿命を得ることができ
る。これは、黒鉛粒子に付着したサブミクロンの微粒子
が嵩密度の低下に影響していると考えられ、微粒子が付
着した場合に比表面積が増加することから、同様の粒度
であっても比表面積の小さい黒鉛粉末を用いたほうが微
粒子の影響がなく、高い嵩密度が得られ、結果としてサ
イクル特性が向上する。
When a material having a specific surface area of 9 m 2 / g or less is used, a longer cycle life can be obtained. It is considered that the submicron particles adhering to the graphite particles influence the decrease in bulk density, and the specific surface area increases when the particles adhere, so even if the particle size is similar, the specific surface area The use of small graphite powder is not affected by the fine particles, a high bulk density is obtained, and as a result, cycle characteristics are improved.

【0041】但し、ここでいう比表面積とは、BET法
によって測定され求められたものを言う。黒鉛粉末の比
表面積が9m2 /g以下であれば上記効果は十分得られ
るが、好ましくは7m2 /g以下、更に好ましくは5m
2 /g以下がよい。
However, the specific surface area as used herein means that measured and determined by the BET method. If the specific surface area of the graphite powder is 9 m 2 / g or less, the above effect is sufficiently obtained, but preferably 7 m 2 / g or less, more preferably 5 m
2 / g or less is preferable.

【0042】また、実用電池として高い安全性および信
頼性を得るためには、レーザ回折法により求められる粒
度分布において、累積10%粒径が3μm以上であり、
且つ累積50%粒径が10μm以上であり、且つ累積9
0%粒径が70μm以下である黒鉛粉末を用いることが
望ましい。
In order to obtain high safety and reliability as a practical battery, the cumulative 10% particle size is 3 μm or more in the particle size distribution obtained by the laser diffraction method,
And the cumulative 50% particle size is 10 μm or more, and the cumulative 9%
It is desirable to use graphite powder having a 0% particle size of 70 μm or less.

【0043】電極に充填される黒鉛粉末は、粒度分布に
幅をもたせたほうが効率よく充填でき、正規分布により
近いほうが好ましい。但し、過充電等の異常事態に電池
が発熱することがあり、粒径の小さな粒子の分布数が多
い場合には発熱温度が高くなる傾向にあるため好ましく
ない。
The graphite powder with which the electrodes are filled can be packed more efficiently if the particle size distribution has a width, and it is preferable that the graphite powder is closer to the normal distribution. However, the battery may generate heat in an abnormal situation such as overcharging, and if the number of particles with small particle size is large, the heat generation temperature tends to be high, which is not preferable.

【0044】また、電池を充電する際、黒鉛層間ヘリウ
ムイオンが挿入されるため結晶子が約10%膨張し、電
池内において正極やセパレータを圧迫して、初充電時に
内部ショート等の初期不良が起こりやすい状態となる
が、大きな粒子の分布が多い場合には不良の発生率が高
くなる傾向にあるため好ましくない。
When the battery is charged, the intercalated graphite helium ions cause the crystallite to expand by about 10%, compressing the positive electrode and the separator in the battery, and causing an initial failure such as an internal short circuit during the initial charging. Although it tends to occur, it is not preferable when the distribution of large particles is large, because the incidence of defects tends to increase.

【0045】従って、粒径の大きな粒子から小さい粒子
までバランス良く配合された粒度分布を有する黒鉛粉末
を用いることにより、高い信頼性を有する実用電池が可
能となる。粒度分布の形状はより正規分布に近いほうが
効率よく充填できるが、レーザ回折法により求められる
粒度分布において、累積10%粒径が3μm以上であ
り、且つ累積50%粒径が10μm以上であり、且つ累
積90%粒径が70μm以下である黒鉛粉末を用いるこ
とが望ましく、特に累積90%粒径が60μm以下の場
合、初期不良が大きく低減される。
Therefore, by using the graphite powder having a particle size distribution in which particles having a large particle size to particles having a small particle size are well-balanced, a practical battery having high reliability can be obtained. If the shape of the particle size distribution is closer to the normal distribution, the particles can be packed more efficiently, but in the particle size distribution obtained by the laser diffraction method, the cumulative 10% particle size is 3 μm or more, and the cumulative 50% particle size is 10 μm or more, In addition, it is desirable to use graphite powder having a cumulative 90% particle size of 70 μm or less, and especially when the cumulative 90% particle size is 60 μm or less, initial defects are greatly reduced.

【0046】また、実用電池としての重負荷特性を向上
させるためには、黒鉛粒子の破壊強度の平均値が6.0
kgf/mm2 以上であることが望ましい。負荷特性に
は放電時のイオンの動きやすさが影響するが、特に電極
中に空孔が多く存在するには、電解液も十分に量が存在
し、良好な特性を示すことになる。一方、結晶性が高い
黒鉛材料はa軸方向に黒鉛六角網面が発達しており、そ
の積み重なりによってc軸の結晶が成り立っているが、
炭素六角網面同志の結合はファンデルワールス力という
弱い結合であるため、応力に対して変形しやすく、その
ため、黒鉛粉末の粒子を圧縮成形して電極に充填する
際、低温で焼成された炭素質材料よりも潰れやすく、空
孔を確保することが難しい。従って、黒鉛粉末粒子の破
壊強度が高いほど潰れにくく、空孔を作りやすくなるた
め、負荷特性を向上することが可能となる。
In order to improve the heavy load characteristics of a practical battery, the average value of the breaking strength of graphite particles is 6.0.
It is desirable to be kgf / mm 2 or more. The load characteristics are affected by the ease of movement of ions during discharge, but especially when there are many pores in the electrode, a sufficient amount of the electrolytic solution is present and good characteristics are exhibited. On the other hand, a graphite material with high crystallinity has a hexagonal graphite net surface developed in the a-axis direction, and c-axis crystals are formed by stacking them.
The carbon hexagonal mesh plane bonds are weak bonds called van der Waals forces, and are therefore easily deformed by stress. Therefore, when the graphite powder particles are compression-molded and filled in the electrode, carbon fired at a low temperature is used. It is easier to crush than quality materials, and it is difficult to secure pores. Therefore, the higher the fracture strength of the graphite powder particles, the less likely they are to be crushed, and the easier it is to create voids, which makes it possible to improve the load characteristics.

【0047】但し、ここでいう黒鉛粒子の破壊強度の平
均値とは、以下のような実測によって求められるものを
言う。破壊強度の測定装置として島津製作所製島津微小
圧縮試験機(MCTM−500)を用いる。まず、付属
の光学顕微鏡にて黒鉛試料粉末を観察し、最も長さの長
い部分の長さが平均粒径の±10%であるような粉末を
10個選択する。そして、選択した10個の粉末それぞ
れについて荷重を掛け粒子の破壊強度を測定しその平均
を算出する。この算出された平均値が黒鉛粒子の破壊強
度の平均値である。良好な負荷特性を得るには、黒鉛粒
子の破壊強度の平均値が6kgf/mm2 以上であるこ
とが好ましい。
However, the average value of the breaking strength of the graphite particles as used herein means one obtained by the following actual measurement. A Shimadzu micro compression tester (MCTM-500) manufactured by Shimadzu Corporation is used as a breaking strength measuring device. First, the graphite sample powder is observed with an attached optical microscope, and 10 powders in which the length of the longest part is ± 10% of the average particle size are selected. Then, a load is applied to each of the 10 selected powders, the breaking strength of the particles is measured, and the average thereof is calculated. This calculated average value is the average value of the breaking strength of the graphite particles. In order to obtain good load characteristics, it is preferable that the average breaking strength of the graphite particles is 6 kgf / mm 2 or more.

【0048】一方、このような繊維状炭素または黒鉛化
繊維状炭素よりなる負極と組み合わせて用いられる正極
材料は特に限定されないが、十分な量のLiを含んでい
ることが好ましく、例えば一般式LiMO2 (但し、M
はCo,Ni,Mn,Fe,Al,V,Tiの少なくと
も一種を表す。)で表されるリチウムと遷移金属からな
る複合金属酸化物やLiを含んだ層間化合物等が好適で
ある。
On the other hand, the positive electrode material used in combination with the negative electrode made of such fibrous carbon or graphitized fibrous carbon is not particularly limited, but preferably contains a sufficient amount of Li, for example, the general formula LiMO. 2 (However, M
Represents at least one of Co, Ni, Mn, Fe, Al, V, and Ti. ), A composite metal oxide composed of lithium and a transition metal, an intercalation compound containing Li, and the like are preferable.

【0049】特に、本発明は、高容量を達成することを
狙ったものであるので、正極は、定常状態(例えば5回
程度充放電を繰り返した後)で負極炭素質材料1g当た
り250mAh以上の充放電容量相当分のLiを含むこ
とが必要で、300mAh以上の充放電容量相当分のL
iを含むことがより好ましい。
In particular, the present invention is aimed at achieving a high capacity, so that the positive electrode is 250 mAh or more per 1 g of the negative electrode carbonaceous material in a steady state (for example, after repeating charging and discharging about 5 times). It is necessary to include Li in an amount equivalent to the charge / discharge capacity, and L corresponding to an equivalent charge / discharge capacity of 300 mAh or more.
More preferably, i is included.

【0050】尚、Liは必ずしも正極材からすべて供給
される必要はなく、要は電池系内に炭素質材料1g当た
り250mAh以上の充放電容量相当分のLiが存在す
ればよい。また、このLiの量は、電池の放電容量を測
定することによって判断することとする。
It is not always necessary that Li is supplied from the positive electrode material, and the point is that Li corresponding to a charge / discharge capacity of 250 mAh or more per 1 g of carbonaceous material should be present in the battery system. Further, the amount of Li will be determined by measuring the discharge capacity of the battery.

【0051】本発明の非水電解液二次電池に用いる非水
電解液において、電解液としては電解質が非水溶媒に溶
解されて成る非水電解液が用いられる。ここで、本発明
では負極に黒鉛材料を用いるので、非水溶媒の主溶媒と
しては従来のPCを用いることができず、それ以外の溶
媒を用いることが前提となる。その主溶媒として好適な
のはECがまず挙げられるが、ECの水素元素をハロゲ
ン元素で置換した構造の化合物も好適である。
In the non-aqueous electrolytic solution used in the non-aqueous electrolytic solution secondary battery of the present invention, a non-aqueous electrolytic solution obtained by dissolving an electrolyte in a non-aqueous solvent is used as the electrolytic solution. Here, in the present invention, since the graphite material is used for the negative electrode, conventional PC cannot be used as the main solvent of the non-aqueous solvent, and it is premised that other solvents are used. EC is most preferred as the main solvent, but compounds having a structure in which the hydrogen element of EC is replaced with a halogen element are also suitable.

【0052】また、PCのように黒鉛材料と反応性があ
るものの、主溶媒としてのECやECの水素原子をハロ
ゲン元素で置換した構造の化合物等に対して、その一部
をごく小量第二成分溶媒で置換することにより、良好な
特性が得られる。その第二成分溶媒としては、PC、ブ
チレンカーボネート、1,2−ジメトキシエタン、1,
2−ジエトキシメタン、γ−ブチロラクトン、バレロラ
クトン、テトラヒドロフラン、2−メチルテトラヒドロ
フラン、1,3−ジオキソラン、4−メチル−1,3−
ジオキソラン、スルホラン、メチルスルホラン等が使用
可能であり、その添加量としては10Vol%未満が好
ましい。
Although it is reactive with a graphite material such as PC, a small amount of EC is used as a main solvent or a compound having a structure in which a hydrogen atom of EC is replaced with a halogen element. Good properties are obtained by substituting with a binary solvent. As the second component solvent, PC, butylene carbonate, 1,2-dimethoxyethane, 1,
2-diethoxymethane, γ-butyrolactone, valerolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-
Dioxolane, sulfolane, methylsulfolane and the like can be used, and the addition amount thereof is preferably less than 10 Vol%.

【0053】更に本発明を完成させるには、主溶媒に対
して、或いは主溶媒と第二成分溶媒の混合溶媒に対し
て、第三の溶媒を添加し、導電率の向上、ECの分解抑
制、低温特性の改善を図ると共に、リチウム金属との反
応性を低め、安全性を改善するようにしてもよい。
To further complete the present invention, the third solvent is added to the main solvent or a mixed solvent of the main solvent and the second component solvent to improve the conductivity and suppress the decomposition of EC. The low temperature characteristics may be improved and the reactivity with lithium metal may be lowered to improve the safety.

【0054】第三成分の溶媒としては、まず、DEC
(ジエチルカーボネート)やDMC(ジメチルカーボネ
ート)等の鎖状炭酸エステルが好適である。また、ME
C(メチルエチルカーボネート)やMPC(メチルプロ
ピルカーボネート)等の非対称鎖状炭酸エステルが好適
である。主溶媒、或いは主溶媒と第二成分溶媒の混合溶
媒に対する第三成分となる鎖状炭酸エステルの混合比
(主溶媒、または主溶媒と第二成分溶媒の混合溶媒:第
三成分溶媒)は容量比で10:90から60:40が好
ましく、15:85から40:60が更に好ましい。
As the solvent for the third component, first, DEC
A chain ester carbonate such as (diethyl carbonate) or DMC (dimethyl carbonate) is suitable. Also, ME
Asymmetric chain ester carbonate such as C (methyl ethyl carbonate) or MPC (methyl propyl carbonate) is preferable. The volume ratio of the main solvent or the mixed solvent of the main solvent and the second component solvent of the chain carbonate as the third component (main solvent or the mixed solvent of the main solvent and the second component solvent: the third component solvent) is the volume. The ratio is preferably 10:90 to 60:40, more preferably 15:85 to 40:60.

【0055】更に、第三成分の溶媒としてはMECとD
MCとの混合溶媒であってもよい。MEC−DMC混合
比率は、MEC容量をm、DMC容量をdとしたとき
に、1/9≦d/m≦8/2で示される範囲とすること
が好ましい。また、主溶媒、或いは主溶媒と第二成分溶
媒の混合溶媒と第三成分の溶媒となるMEC−DMC混
合比率は、MEC容量をm、DMC容量をd、溶媒全量
をTとしたときに、3/10≦(m+d)/T≦7/1
0で示される範囲とすることが好ましい。
Further, as the solvent for the third component, MEC and D
It may be a mixed solvent with MC. The MEC-DMC mixing ratio is preferably in a range represented by 1/9 ≦ d / m ≦ 8/2, where MEC capacity is m and DMC capacity is d. Further, the MEC-DMC mixing ratio of the main solvent, or the mixed solvent of the main solvent and the second component solvent and the solvent of the third component, when the MEC capacity is m, the DMC capacity is d, and the total amount of the solvent is T, 3/10 ≦ (m + d) / T ≦ 7/1
The range shown by 0 is preferable.

【0056】このような非水溶媒に溶解する電解質とし
ては、この種の電池に用いられるものであればいずれも
一種以上混合し使用可能である。例えばLiPF6 が好
適であるが、その他LiClO4、LiAsF6 、Li
BF4 、LiB(C6 5 4 、CH3 SO3 Li、C
3 SO3 Li、LiN(CF3 SO2 2 、LiC
(CF3 SO2 3 、LiCl、LiBr等も使用可能
である。
As the electrolyte which can be dissolved in such a non-aqueous solvent, it is possible to use one or more kinds of electrolytes as long as they are used in this type of battery. For example, LiPF 6 is preferable, but LiClO 4, LiAsF 6 , Li
BF 4 , LiB (C 6 H 5 ) 4 , CH 3 SO 3 Li, C
F 3 SO 3 Li, LiN ( CF 3 SO 2) 2, LiC
(CF 3 SO 2 ) 3 , LiCl, LiBr and the like can also be used.

【0057】以下、本発明を具体的な実施例によって説
明するが、本発明がこの実施例に限定されるものではな
く、本発明の技術的思想を具現化する他の手段を用いて
もよいことは論を待たない。
The present invention will be described below with reference to specific examples, but the present invention is not limited to these examples, and other means for embodying the technical idea of the present invention may be used. I can't wait for the matter.

【0058】実施例1 まず、負極材料は以下のようにして生成した。石炭系ピ
ッチを不活性ガス雰囲気中425℃にて5時間保持し、
軟化点220℃の石炭系メソフェースピッチを得た。こ
のとき、メソフェース含有率は90%であった。得られ
た石炭系メソフェースピッチを305℃にて内径20μ
mの吐出孔を用い、これに超音波を加えながらパルス状
に押し出し圧力を変化させつつ吐出紡糸し、前駆体繊維
を得た。その後260℃で不融化処理し、不活性雰囲気
中、温度1000℃でか焼して繊維状炭素を得た。更に
不活性雰囲気中、温度3000℃で熱処理し、風力粉砕
分級し、黒鉛化繊維状炭素の試料粉末を得た。得られた
試料粉末の(002)面間隔d002 とFD値を求めたと
ころ、d002 =0.3363nm、FD=1.1であっ
た。
Example 1 First, a negative electrode material was produced as follows. Hold the coal pitch at 425 ° C in an inert gas atmosphere for 5 hours,
A coal-based mesophase pitch having a softening point of 220 ° C. was obtained. At this time, the mesophase content was 90%. The inner diameter of the obtained coal-based mesophase pitch was 20μ at 305 ° C.
m discharge holes were used, and while the ultrasonic waves were applied thereto, the extrusion pressure was changed in a pulsed manner and the discharge spinning was performed to obtain precursor fibers. After that, it was infusibilized at 260 ° C., and calcined at a temperature of 1000 ° C. in an inert atmosphere to obtain fibrous carbon. Further, heat treatment was carried out at a temperature of 3000 ° C. in an inert atmosphere, and pulverization by air classification was carried out to obtain a sample powder of graphitized fibrous carbon. When the (002) plane spacing d 002 and the FD value of the obtained sample powder were determined, they were d 002 = 0.3363 nm and FD = 1.1.

【0059】フラクタルディメンションの測定方法。つ
ぎにFD値の測定方法について説明する。まず、繊維状
炭素断面構造の画像を得るため、電解放射型走査電子顕
微鏡を用いて2kvの加速電圧条件で断面を観察し、こ
の静止画像をコンピュータに取り込み、得られた画像に
ついて図2に示すように4μm角(512×512の画
素から構成される)の繊維中心部を含む異なる5か所に
断面像を分ける。画像の輝度が不均一な場合にはフーリ
エ変換やフィルタ処理を施し平滑化を行った後、それぞ
れの画像を2値化する。炭素網面の曲線形状をさらに明
確にする必要がある場合は、2値化した画像の白色部分
が細い線として認識できるように画像処理を施す(図
3)。
Measurement method of fractal dimension. Next, a method for measuring the FD value will be described. First, in order to obtain an image of a fibrous carbon cross-sectional structure, the cross section was observed under an accelerating voltage condition of 2 kv using a field emission scanning electron microscope, and this static image was loaded into a computer, and the obtained image is shown in FIG. As described above, the cross-sectional image is divided into five different portions including the fiber central portion of 4 μm square (consisting of 512 × 512 pixels). When the brightness of the image is not uniform, each image is binarized after being subjected to smoothing by Fourier transform or filtering. When it is necessary to further clarify the curved shape of the carbon net surface, image processing is performed so that the white part of the binarized image can be recognized as a thin line (FIG. 3).

【0060】上述した5つの画像について(3)式を用
いて計算し、フラクタル次元dを求める。 d=−ΔlogN(l)/Δlogl (3) ここで、 l:ある大きさの正方形で分割したときの正方形の総数 N:ある大きさの正方形に分割したときの炭素網面の曲
線と重なった正方形の個数 である。即ち、画像を正方形からなる格子に分割し、炭
素網面の曲線と重なった正方形の個数を算出し、更に正
方形の大きさを変えながら同様に算出して5つの画像に
ついて平均を求める。更に、この測定を10本の繊維に
ついて行い、平均値を求めてこれをFD値とした。本方
法は例えば炭素材料学会誌「炭素 TANSO199
5,No.169,P.207〜214」に記載されて
いる方法でも測定可能である。
The above five images are calculated by using the equation (3) to obtain the fractal dimension d. d = -ΔlogN (l) / Δlogl (3) where, l: total number of squares when divided into squares of a certain size N: overlapped with a carbon mesh surface curve when divided into squares of a certain size The number of squares. That is, the image is divided into a grid of squares, the number of squares overlapping the curve of the carbon mesh plane is calculated, and the same calculation is performed while changing the size of the squares, and the average of the five images is obtained. Further, this measurement was performed on 10 fibers, and an average value was obtained and used as an FD value. This method is described in, for example, "Carbon TANSO199"
5, No. 169, P.I. It can also be measured by the method described in "207-214".

【0061】つぎに、試料粉末を負極材料として用い、
実際に円筒型の非水電解液二次電池を作製した。電池の
構成を図4に示す。
Next, using the sample powder as a negative electrode material,
A cylindrical non-aqueous electrolyte secondary battery was actually manufactured. The structure of the battery is shown in FIG.

【0062】負極1は次のように作製した。上記黒鉛粉
末を90重量部と、結着材としてポリフッ化ビニリデン
(PVDF)10重量部を混合して負極合剤を調製し、
溶剤となるN−メチルピロリドンに分散させてスラリー
(ペースト状)にした。負極集電体10として厚さ10
μmの帯状の銅箔を用い、負極合剤スラリーをこの集電
体の両面に塗布、乾燥させた後、一定圧力で圧縮成型し
て帯状の負極1を作製した。
The negative electrode 1 was produced as follows. 90 parts by weight of the above graphite powder and 10 parts by weight of polyvinylidene fluoride (PVDF) as a binder are mixed to prepare a negative electrode mixture,
It was dispersed in N-methylpyrrolidone as a solvent to form a slurry (paste form). The negative electrode current collector 10 has a thickness of 10
A band-shaped negative electrode 1 was prepared by applying a negative electrode mixture slurry on both sides of this current collector using a band-shaped copper foil having a thickness of μm, drying it, and then compression molding it at a constant pressure.

【0063】正極2は次のように作製した。まず、正極
活性物を以下のようにして作製した。炭酸リチウム0.
5モルと炭酸コバルト1モルとを混合し、この混合物
を、空気中、温度900℃で5時間焼成する。得られた
材料についてX線回折測定を行った結果、JCPDSフ
ァイルに登録されたLiCoO2 のピークと良く一致し
ていた。
The positive electrode 2 was manufactured as follows. First, a positive electrode active material was prepared as follows. Lithium carbonate 0.
5 mol and 1 mol of cobalt carbonate are mixed and the mixture is calcined in air at a temperature of 900 ° C. for 5 hours. As a result of X-ray diffraction measurement of the obtained material, it was in good agreement with the peak of LiCoO 2 registered in the JCPDS file.

【0064】このLiCoO2 を粉砕し、レーザ回折法
で得られる累積50%粒径が15μmのLiCoO2
末とした。そして、このLiCoO2 粉末95重量部と
炭酸リチウム粉末5重量部を混合し、この混合物の91
重量部、導電剤としてグラファイト6重量部、結着剤と
してポリフッ化ビニリデン3重量部を混合して正極合剤
を調製し、N−メチルピロリドンに分散させてスラリー
(ペースト状)にした。
This LiCoO 2 was crushed to obtain a LiCoO 2 powder having a cumulative 50% particle size of 15 μm obtained by a laser diffraction method. Then, 95 parts by weight of this LiCoO 2 powder and 5 parts by weight of lithium carbonate powder were mixed to obtain 91 parts of this mixture.
By weight, 6 parts by weight of graphite as a conductive agent and 3 parts by weight of polyvinylidene fluoride as a binder were mixed to prepare a positive electrode mixture, which was dispersed in N-methylpyrrolidone to form a slurry (paste form).

【0065】正極集電体11として厚さ20μmの帯状
のアルミニウム箔を用い、前記正極合剤スラリーをこの
集電体の両面に均一に塗布、乾燥させた後、圧縮成型し
て帯状の正極2を作製した。
A strip-shaped aluminum foil having a thickness of 20 μm is used as the positive electrode current collector 11, and the positive electrode mixture slurry is uniformly applied to both surfaces of the current collector, dried, and then compression molded to obtain the strip-shaped positive electrode 2. Was produced.

【0066】ついで、以上のようにして作製された帯状
の負極1、帯状の正極2を図4に示すように厚さ25μ
mの微多孔性ポリプロピレンフィルムよりなるセパレー
タ3を介して、負極1、セパレータ3、正極2、セパレ
ータ3の順に積層してから多数回巻回し、外径18mm
の渦巻型電極体を作製した。
Then, the strip-shaped negative electrode 1 and the strip-shaped positive electrode 2 produced as described above were made to have a thickness of 25 μm as shown in FIG.
A negative electrode 1, a separator 3, a positive electrode 2, and a separator 3 are laminated in this order through a separator 3 made of a microporous polypropylene film of m and then wound many times to have an outer diameter of 18 mm.
A spirally wound electrode body was prepared.

【0067】このようにして作製した渦巻型電極体を、
ニッケルめっきを施した鉄製の電池缶5に収納した。そ
して、渦巻式電極上下両面には絶縁板4を配設し、アル
ミニウム製の正極リード13を正極集電体11から導出
して電池蓋7に、ニッケル製の負極リード12を負極集
電体10から導出して電池缶5に溶接した。
The spirally wound electrode body thus produced was
It was housed in a nickel-plated iron battery can 5. Then, the insulating plates 4 are arranged on the upper and lower surfaces of the spiral type electrode, and the positive electrode lead 13 made of aluminum is led out from the positive electrode current collector 11 to the battery lid 7, and the negative electrode lead 12 made of nickel is connected to the negative electrode current collector 10. Was welded to the battery can 5.

【0068】この電池缶5の中に、ECとDMCとの等
容量混合溶媒中に、LiPF6 を1mol/lの割合で
溶解した電解液を注入した。ついでアスファルトで表面
を塗布した封口ガスケット6を介して電池缶5をかしめ
ることにより、電流遮断機構を有する安全弁装置8、P
TC素子9並びに電池蓋7を固定し、電池内の気密性を
保持させ、直径18mm、高さ65mmの円筒型非水電
解液二次電池を作製した。
Into the battery can 5, an electrolytic solution in which LiPF 6 was dissolved at a ratio of 1 mol / l in a mixed solvent of equal volume of EC and DMC was injected. Then, by caulking the battery can 5 through a sealing gasket 6 whose surface is coated with asphalt, a safety valve device 8 having a current interruption mechanism, P
The TC element 9 and the battery lid 7 were fixed, the airtightness inside the battery was maintained, and a cylindrical nonaqueous electrolyte secondary battery having a diameter of 18 mm and a height of 65 mm was produced.

【0069】実施例2 パルス条件を変えて吐出紡糸し、前駆体繊維を得たこと
以外は実施例1と同様にして円筒型非水電解液二次電池
を作製した。得られた試験粉末の(002)面間隔d
002 は0.3365nm、またFDは1.2であった。
Example 2 A cylindrical non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 except that the precursor fiber was obtained by discharge spinning under different pulse conditions. The (002) plane spacing d of the obtained test powder
002 was 0.3365 nm and FD was 1.2.

【0070】実施例3 パルス条件を変えて吐出紡糸し、前駆体繊維を得たこと
以外は実施例1と同様にして円筒型非水電解液二次電池
を作製した。得られた試験粉末の(002)面間隔d
002 は0.3367nm、またFDは1.3であった。
Example 3 A cylindrical non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the precursor fiber was obtained by discharge spinning under different pulse conditions. The (002) plane spacing d of the obtained test powder
002 was 0.3367 nm and FD was 1.3.

【0071】実施例4 パルス条件を変えて吐出紡糸し、前駆体繊維を得たこと
以外は実施例1と同様にして円筒型非水電解液二次電池
を作製した。得られた試験粉末の(002)面間隔d
002 は0.3372nm、またFDは1.5であった。
Example 4 A cylindrical non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the precursor fibers were obtained by discharge spinning under different pulse conditions. The (002) plane spacing d of the obtained test powder
002 was 0.3372 nm and FD was 1.5.

【0072】実施例5 パルス条件を変えて吐出紡糸し、前駆体繊維を得たこと
以外は実施例1と同様にして円筒型非水電解液二次電池
を作製した。得られた試験粉末の(002)面間隔d
002 は0.3363nm、またFDは1.3であった。
Example 5 A cylindrical non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 except that the precursor fiber was obtained by discharge spinning under different pulse conditions. The (002) plane spacing d of the obtained test powder
002 was 0.3363 nm and FD was 1.3.

【0073】比較例1 吐出孔に超音波を与えずに吐出紡糸し、前駆体を得たこ
と以外は実施例1と同様にして円筒型非水電解液二次電
池を作製した。得られた試験粉末の(002)面間隔d
002 は0.3410nm、またFDは1.8であった。
Comparative Example 1 A cylindrical non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the precursor was obtained by discharge spinning without applying ultrasonic waves to the discharge hole. The (002) plane spacing d of the obtained test powder
002 was 0.3410 nm and FD was 1.8.

【0074】比較例2 吐出孔に超音波とパルス状に圧力を与えずに吐出紡糸
し、前駆体を得たこと以外は実施例1と同様にして円筒
型非水電解液二次電池を作製した。得られた試験粉末の
(002)面間隔d002 は0.3361nm、またFD
は1.0であった。
Comparative Example 2 A cylindrical non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 except that the precursor was obtained by performing discharge spinning without applying ultrasonic waves and pulsed pressure to the discharge hole. did. The (002) plane spacing d 002 of the obtained test powder was 0.3361 nm, and FD
Was 1.0.

【0075】各実施例および比較例で用いた繊維状炭素
について充放電能力を測定した結果を表1に示した。
Table 1 shows the results of measuring the charge / discharge capacity of the fibrous carbon used in each example and comparative example.

【表1】 また、(002)面間隔d002 と容量の関係を図5に示
した。
[Table 1] Further, the relationship between the (002) plane spacing d 002 and the capacity is shown in FIG.

【0076】充放電能力測定方法 以下に充放電能力測定方法について説明する。測定は以
下に述べるテストセルを作製して行った。テストセルの
作製に際しては、まず前記試料粉末に対し、Ar雰囲気
中で昇温速度約30℃/分、到達温度600℃、到達温
度保持時間1時間なる条件で前熱処理を施した。この
後、バインダーとして10重量%相当量のポリフッ化ビ
ニリデンを加え、ジメチルホルムアミドを溶媒として混
合、乾燥して試料ミックスを調製した。その37mgを
秤量し、集電体であるNiメッシュと共に直径15.5
mmのペレットに成形し、作用電極を作製した。
Charging / Discharging Capacity Measuring Method The charging / discharging capacity measuring method will be described below. The measurement was performed by making a test cell described below. In producing the test cell, first, the sample powder was preheated in an Ar atmosphere under the conditions of a temperature rising rate of about 30 ° C./minute, an ultimate temperature of 600 ° C., and an ultimate temperature holding time of 1 hour. Then, polyvinylidene fluoride in an amount equivalent to 10% by weight was added as a binder, dimethylformamide was mixed as a solvent, and dried to prepare a sample mix. The 37 mg was weighed, and the diameter was 15.5 with the Ni mesh as the current collector.
mm pellets were formed to prepare a working electrode.

【0077】テストセルの構成は次の通りである。 セル形状:コイン型セル(直径20mm、厚さ2.5m
m) 対極:Li金属 セパレータ:ポリプロピレン多孔質膜 電解液:ECとDECの混合溶媒(容量比で1:1)に
LiPF6 を1mol/lの濃度で溶解したもの
The structure of the test cell is as follows. Cell shape: coin type cell (diameter 20 mm, thickness 2.5 m
m) Counter electrode: Li metal Separator: Polypropylene porous membrane Electrolyte: LiPF 6 dissolved in a mixed solvent of EC and DEC (volume ratio 1: 1) at a concentration of 1 mol / l

【0078】上記構成のテストセルを用いて炭素材料1
g当たりの容量を測定した。尚、作用電極へのリチウム
のドープ(充電:厳密に言うとこの試験方法では炭素材
料にリチウムがドープされる過程では充電ではなく放電
であるが、実電池での実態に合わせて便宜上このドーピ
ング過程を充電、脱ドープ過程を放電と呼ぶことにす
る。)はセル当たり1mAの定電流、0V(Li/Li
+ )の定電流定電圧法で充電し、放電(脱ドープ過程)
は、セル当たり1mAの定電流で、端子電圧1.5Vま
で行い、このときの容量を算出した。
Using the test cell having the above structure, the carbon material 1
The capacity per gram was measured. Doping of lithium into the working electrode (charging: strictly speaking, in this test method, discharging is not charging in the process of doping the carbon material with lithium, but this doping process is convenient for the actual battery. Is charged, and the dedoping process is called discharge.) Is a constant current of 1 mA per cell, 0 V (Li / Li
+ ) Constant current constant voltage method for charging and discharging (de-doping process)
Was carried out at a constant current of 1 mA per cell up to a terminal voltage of 1.5 V, and the capacity at this time was calculated.

【0079】各実施例および比較例で作製した筒形電池
について、充電電流1A、最大充電電圧4.2Vで2.
5h定電流定電圧充電を行い、その後、放電電流700
mAで2.75Vまで放電する充放電サイクルを繰り返
し行い、2サイクル目の容量に対する100サイクル目
の容量の比(容量維持率)を求めた。2サイクル目に対
する100サイクル目の容量維持率の結果を前掲の表1
に示した。また、FD値と容量維持率の関係を図6に示
した。
With respect to the cylindrical batteries produced in the respective examples and comparative examples, the charging current was 1 A and the maximum charging voltage was 4.2 V.
5h constant current constant voltage charging, then discharge current 700
The charging / discharging cycle of discharging to 2.75 V at mA was repeated, and the ratio of the capacity at the 100th cycle to the capacity at the second cycle (capacity retention rate) was obtained. The results of the capacity retention ratio at the 100th cycle with respect to the second cycle are shown in Table 1 above.
It was shown to. Further, the relationship between the FD value and the capacity retention rate is shown in FIG.

【0080】以上の結果より、本発明の断面構造の指標
となるFD値を制御した繊維状炭素は比較例に比べサイ
クル特性と充放電能力に優れた負極材料であることが分
かった。
From the above results, it was found that the fibrous carbon having an FD value controlled, which is an index of the cross-sectional structure of the present invention, is a negative electrode material having excellent cycle characteristics and charge / discharge ability as compared with Comparative Examples.

【0081】[0081]

【発明の効果】以上の説明からも明らかなように、本発
明はランダムラジアル型断面構造を有する繊維状炭素に
おいて、その断面高次構造の炭素網面の曲線構造をフラ
クタル解析して求められるフラクタルディメンションの
値と、結晶性の指標であるd00 2 を最適な範囲に制御す
ることにより、工業規模でバラツキの少ないサイクル特
性を有する繊維状炭素を提供するものであり、また、こ
れを負極に用いることで高エネルギー密度でサイクル寿
命が長く信頼性の高い二次電池の実現が可能である。
As is clear from the above description, the present invention is a fractal obtained by fractal analysis of the curved structure of the carbon net surface of the cross-section higher order structure in the fibrous carbon having the random radial type cross-section structure. By controlling the dimension value and d 00 2 which is an index of crystallinity within an optimum range, a fibrous carbon having cycle characteristics with little variation on an industrial scale is provided, and this is used as a negative electrode. By using it, a secondary battery with high energy density, long cycle life and high reliability can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による繊維状炭素の断面である。1 is a cross section of a fibrous carbon according to the present invention.

【図2】 本発明による繊維状炭素の断面の一部拡大図
である。
FIG. 2 is a partially enlarged view of a cross section of fibrous carbon according to the present invention.

【図3】 図2を画像処理した図である。FIG. 3 is a diagram in which FIG. 2 is image-processed.

【図4】 本発明による繊維状炭素を用いた筒形電池の
側面断面図である。
FIG. 4 is a side sectional view of a tubular battery using fibrous carbon according to the present invention.

【図5】 本発明による繊維状炭素の面間隔と容量の関
係を示す図である。
FIG. 5 is a diagram showing the relationship between the interplanar spacing and the capacity of fibrous carbon according to the present invention.

【図6】 本発明による繊維状炭素のフラクタルディメ
ンションと容量維持率の関係を示す図である。
FIG. 6 is a diagram showing the relationship between the fractal dimension and the capacity retention rate of fibrous carbon according to the present invention.

【符号の説明】[Explanation of symbols]

1…負極、2…正極、3…セパレータ、4…絶縁板、5
…電池缶 6…封口ガスケット、7…電池蓋、8…安全弁装置、9
…PTC素子 10…負極集電体、11…正極集電体、12…負極リー
ド、13…正極リード 14…センターピン
1 ... Negative electrode, 2 ... Positive electrode, 3 ... Separator, 4 ... Insulating plate, 5
... Battery can 6 ... Sealing gasket, 7 ... Battery lid, 8 ... Safety valve device, 9
... PTC element 10 ... Negative electrode current collector, 11 ... Positive electrode current collector, 12 ... Negative electrode lead, 13 ... Positive electrode lead 14 ... Center pin

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // C01B 31/02 101 C01B 31/02 101Z ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location // C01B 31/02 101 C01B 31/02 101Z

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 リチウムのドープ脱ドープ可能な炭素材
料よりなる負極と正極、および非水溶媒に電解質が溶解
された非水電解液を有してなる非水電解液二次電池にお
いて、 前記負極は、繊維状の炭素材料であって、 且つ前記炭素材料の断面の高次構造がランダムラジアル
型構造であり、 更に、前記炭素材料の断面のフラクタルディメンション
の値が1.1以上、1.8未満であることを特徴とする
非水電解液二次電池用負極材料。
1. A non-aqueous electrolyte secondary battery comprising a negative electrode and a positive electrode made of a carbon material capable of being doped and dedoped with lithium, and a non-aqueous electrolytic solution in which an electrolyte is dissolved in a non-aqueous solvent. Is a fibrous carbon material, and the higher order structure of the cross section of the carbon material is a random radial type structure, and the value of the fractal dimension of the cross section of the carbon material is 1.1 or more and 1.8. A negative electrode material for a non-aqueous electrolyte secondary battery, which is less than
【請求項2】 前記炭素材料の前駆体を、軟化ピッチに
圧力を加え吐出紡糸する際に、吐出孔に超音波を加えな
がら吐出紡糸を行って形成することを特徴とする、請求
項1に記載の非水電解液二次電池用負極材料の製造方
法。
2. The carbonaceous material precursor is formed by performing discharge spinning while applying ultrasonic waves to a discharge hole when performing discharge spinning by applying pressure to a softening pitch. A method for producing a negative electrode material for a non-aqueous electrolyte secondary battery as described.
【請求項3】 前記炭素材料の前駆体を、軟化ピッチに
圧力を加え吐出紡糸する際に、吐出孔に磁場をかけなが
ら吐出紡糸を行って形成することを特徴とする、請求項
1に記載の非水電解液二次電池用負極材料の製造方法。
3. The precursor of the carbon material is formed by performing discharge spinning while applying a magnetic field to the discharge holes when performing discharge spinning by applying pressure to the softening pitch. 1. A method for producing a negative electrode material for a non-aqueous electrolyte secondary battery.
【請求項4】 リチウムのドープ脱ドープ可能な炭素材
料よりなる負極、正極および非水溶媒に電解質が溶解さ
れた非水電解液を有してなる非水電解液二次電池におい
て、 請求項1に記載の非水電解液二次電池用負極材料を用い
たことを特徴とする非水電解液二次電池。
4. A non-aqueous electrolyte secondary battery comprising a negative electrode made of a carbon material capable of being doped and dedoped with lithium, a positive electrode, and a non-aqueous electrolytic solution in which an electrolyte is dissolved in a non-aqueous solvent. A non-aqueous electrolyte secondary battery comprising the negative electrode material for a non-aqueous electrolyte secondary battery as described in 1.
JP8118005A 1996-05-13 1996-05-13 Negative electrode material for nonaqueous electrolyte secondary battery, manufacture of this negative electrode material and nonaqueous electrolyte secondary battery using this negative electrode material Pending JPH09306488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8118005A JPH09306488A (en) 1996-05-13 1996-05-13 Negative electrode material for nonaqueous electrolyte secondary battery, manufacture of this negative electrode material and nonaqueous electrolyte secondary battery using this negative electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8118005A JPH09306488A (en) 1996-05-13 1996-05-13 Negative electrode material for nonaqueous electrolyte secondary battery, manufacture of this negative electrode material and nonaqueous electrolyte secondary battery using this negative electrode material

Publications (1)

Publication Number Publication Date
JPH09306488A true JPH09306488A (en) 1997-11-28

Family

ID=14725702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8118005A Pending JPH09306488A (en) 1996-05-13 1996-05-13 Negative electrode material for nonaqueous electrolyte secondary battery, manufacture of this negative electrode material and nonaqueous electrolyte secondary battery using this negative electrode material

Country Status (1)

Country Link
JP (1) JPH09306488A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0848440A1 (en) * 1996-06-28 1998-06-17 Sony Corporation Nonaqueous electrolyte secondary cell cathode material and nonaqueous electrolyte secondary cell employing the cathode material
JP2002251997A (en) * 2000-03-15 2002-09-06 Osaka Gas Co Ltd Carbonaceous negative electrode material for lithium secondary battery and its manufacturing method
JP2008223208A (en) * 2007-02-13 2008-09-25 Shinshu Univ Spinneret and spinning device
CN108539091A (en) * 2017-03-03 2018-09-14 住友化学株式会社 Nonaqueous electrolytic solution secondary battery partition board

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0848440A1 (en) * 1996-06-28 1998-06-17 Sony Corporation Nonaqueous electrolyte secondary cell cathode material and nonaqueous electrolyte secondary cell employing the cathode material
EP0848440A4 (en) * 1996-06-28 1999-09-15 Sony Corp Nonaqueous electrolyte secondary cell cathode material and nonaqueous electrolyte secondary cell employing the cathode material
US6716557B2 (en) * 1996-06-28 2004-04-06 Sony Corporation Anode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using such anode material
JP2002251997A (en) * 2000-03-15 2002-09-06 Osaka Gas Co Ltd Carbonaceous negative electrode material for lithium secondary battery and its manufacturing method
JP2008223208A (en) * 2007-02-13 2008-09-25 Shinshu Univ Spinneret and spinning device
CN108539091A (en) * 2017-03-03 2018-09-14 住友化学株式会社 Nonaqueous electrolytic solution secondary battery partition board
CN108539091B (en) * 2017-03-03 2019-08-30 住友化学株式会社 Nonaqueous electrolytic solution secondary battery partition

Similar Documents

Publication Publication Date Title
JP3844495B2 (en) Non-aqueous electrolyte secondary battery
JP4161376B2 (en) Non-aqueous electrolyte secondary battery
JP4207230B2 (en) Graphite powder suitable for anode material of lithium ion secondary battery
JP4144038B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP3436033B2 (en) Non-aqueous electrolyte secondary battery
JP3305995B2 (en) Graphite particles for lithium secondary battery negative electrode
JPH09213335A (en) Lithium secondary cell
JPWO2018179934A1 (en) Anode material and non-aqueous electrolyte secondary battery
JP3779461B2 (en) Lithium secondary battery, negative electrode thereof and method for producing the same
JPH0785888A (en) Lithium secondary battery
JP4354723B2 (en) Method for producing graphite particles
JP2001089118A (en) Graphite particle, method for producing the same, negative electrode for lithium secondary battery and lithium secondary battery
JP2001006730A (en) Nonaqueous electrolyte battery
JPH09306489A (en) Nonaqueous electrolyte secondary battery negative electrode material, manufacture of this nonaqueous electrolyte secondary battery negative electrode material and nonaqueous electrolyte secondary battery using this negative electrode material
JP3651225B2 (en) Lithium secondary battery, negative electrode thereof and method for producing the same
JP3544015B2 (en) Non-aqueous electrolyte secondary battery
JPH09306488A (en) Negative electrode material for nonaqueous electrolyte secondary battery, manufacture of this negative electrode material and nonaqueous electrolyte secondary battery using this negative electrode material
JP3787943B2 (en) Non-aqueous electrolyte secondary battery
JPH09293504A (en) Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using it
JPH09306476A (en) Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using this negative electrode material
JP2001185149A (en) Lithium secondary battery
JPH08180873A (en) Manufacture of negative electrode material and nonaqueous electrolytic secondary battery
JPH10218615A (en) Cathode material for lithium secondary battery
KR0161633B1 (en) Manufacturing method of pitch coke for carbon anode and manufacturing method for battery
JP5001977B2 (en) Graphite particles, lithium ion secondary battery and negative electrode material thereof