JPH09306489A - Nonaqueous electrolyte secondary battery negative electrode material, manufacture of this nonaqueous electrolyte secondary battery negative electrode material and nonaqueous electrolyte secondary battery using this negative electrode material - Google Patents

Nonaqueous electrolyte secondary battery negative electrode material, manufacture of this nonaqueous electrolyte secondary battery negative electrode material and nonaqueous electrolyte secondary battery using this negative electrode material

Info

Publication number
JPH09306489A
JPH09306489A JP8119194A JP11919496A JPH09306489A JP H09306489 A JPH09306489 A JP H09306489A JP 8119194 A JP8119194 A JP 8119194A JP 11919496 A JP11919496 A JP 11919496A JP H09306489 A JPH09306489 A JP H09306489A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
electrolyte secondary
electrode material
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8119194A
Other languages
Japanese (ja)
Inventor
Tokuo Komaru
篤雄 小丸
Naoyuki Nakajima
尚幸 中島
Masayuki Nagamine
政幸 永峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP8119194A priority Critical patent/JPH09306489A/en
Publication of JPH09306489A publication Critical patent/JPH09306489A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Inorganic Fibers (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode material of high capacity having a good cycle characteristic and a secondary battery of high reliability having high energy density. SOLUTION: In a nonaqueous electrolyte secondary battery having a negative/positive electrode formed of a carbon material capable of doping/dedoping lithium and a nonaqueous electrolyte formed by dissolving an electrolyte in a nonaqueous solvent, the negative electrode material is formed by crushing precursor graphitized fiber 20 having a different crystal part 21 periodically in a fiber lengthwise direction, a fiber-shaped carbon material has 50 or less aspect ratio and 1.5m<2> /g or less specific surface area by a BET method. The negative electrode material, after forming an organic material in a fiber shape, is made infusible, the carbon material is formed by heat treating. In the case of forming the organic material into a fiber shape, it is formed while applying a magnetic field in a pulse shape to a delivery spinning delivery hole or while applying an ultrasonic vibration to the delivery spinning delivery hole. The nonaqueous electrolyte secondary battery is constituted by using this negative electrode material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はリチウムイオン二次
電池用負極材料とこれを用いた二次電池に関するもので
あり、更に詳しくは前記負極材料として繊維状炭素材料
を用いることに関するものである。
TECHNICAL FIELD The present invention relates to a negative electrode material for a lithium ion secondary battery and a secondary battery using the same, and more particularly to using a fibrous carbon material as the negative electrode material.

【0002】[0002]

【従来の技術】近年の電子技術のめざましい進歩は、電
子機器の小型、軽量化を次々と実現させている。それに
伴い、ポータブル用電源としての電池に対してもますま
す小型、軽量、且つ高エネルギー密度の要求が高まって
いる。
2. Description of the Related Art Recent remarkable advances in electronic technology have made electronic devices smaller and lighter one after another. Along with this, demands for batteries as portable power sources that are smaller, lighter, and have higher energy density are increasing.

【0003】従来、一般用途の二次電池としては鉛電
池、ニッケル・カドミウム電池等の水溶液系電池が主流
であった。これらの電池は、サイクル特性にはある程度
満足できるが、電池重量やエネルギー密度の点では満足
できる特性とは言えなかった。一方、リチウム或いはリ
チウム合金を負極に用いた非水電解液二次電池の研究開
発は近年盛んに行われている。この電池は高エネルギー
密度を有し、自己放電も少なく、軽量という優れた特性
を有するが、充放電サイクルの進行に伴い、リチウムが
充電時にデンドライト状に結晶成長し、正極に到達して
内部ショートに至る欠点があり、実用化への大きな障害
となっていた。
Conventionally, an aqueous solution type battery such as a lead battery or a nickel-cadmium battery has been mainly used as a secondary battery for general use. These batteries can satisfy the cycle characteristics to some extent, but cannot be said to be satisfactory in terms of battery weight and energy density. On the other hand, research and development of non-aqueous electrolyte secondary batteries using lithium or a lithium alloy for the negative electrode have been actively conducted in recent years. This battery has high energy density, low self-discharge, and excellent characteristics such as light weight, but as the charge and discharge cycle progresses, lithium grows into dendrite-like crystals during charging and reaches the positive electrode, causing an internal short circuit. However, it was a major obstacle to practical use.

【0004】そこでこのような問題を解消するものとし
て、負極に炭素材料を使用した非水電解液二次電池、い
わゆるリチウムイオン二次電池が注目されている。リチ
ウムイオン二次電池は、炭素層間へのリチウムのドープ
/脱ドープを負極反応に利用するもので、充放電サイク
ルが進行しても充電時のデンドライト状の析出は見られ
ず、良好な充放電サイクル特性を示ものである。
As a solution to such a problem, a non-aqueous electrolyte secondary battery using a carbon material for the negative electrode, that is, a so-called lithium ion secondary battery has been receiving attention. The lithium-ion secondary battery utilizes doping / dedoping of lithium between carbon layers for the negative electrode reaction, and no dendrite-like deposition is observed during charging even if the charging / discharging cycle progresses, and good charging / discharging It shows the cycle characteristics.

【0005】ところで、負極として使用可能な炭素材料
としてはいくつかあるが、最初に実用化された材料はコ
ークスやガラス状炭素である。これらは有機材料を比較
的低温で熱処理することによって得られた結晶性が低い
材料であるが、PC(炭酸プロピレン)を主体とする電
解液を用いて実用電池として商品化された。更に最近で
は、PCを主溶媒に用いると、負極として使用不可能で
あった黒鉛類においても、EC(炭酸エチレン)を主体
とする電解液を用いることで使用可能なレベルに到達し
た。
By the way, although there are several carbon materials that can be used as the negative electrode, the first practical materials are coke and glassy carbon. These are materials having low crystallinity obtained by heat-treating an organic material at a relatively low temperature, but they have been commercialized as a practical battery using an electrolytic solution containing PC (propylene carbonate) as a main component. More recently, when PC was used as the main solvent, even graphites that could not be used as the negative electrode reached a level where they could be used by using an electrolytic solution containing EC (ethylene carbonate) as a main component.

【0006】黒鉛類は、鱗片状のものが比較的容易に入
手でき、従来よりアルカリ電池用導電材料として広く用
いられている。この黒鉛類は、難黒鉛化性炭素材料に比
べて結晶性が高く、真密度が高い。従って、これによっ
て負極を構成すれば、高い電極充填性が得られ、電池の
エネルギー密度が高められることになる。このことか
ら、黒鉛類は負極材料として期待の大きな材料であると
言える。
[0006] Graphites, which are scaly, are relatively easily available and have been widely used as conductive materials for alkaline batteries. These graphites have higher crystallinity and higher true density than the non-graphitizable carbon material. Therefore, if the negative electrode is constituted by this, a high electrode filling property is obtained and the energy density of the battery is increased. From this, it can be said that graphites are promising materials as negative electrode materials.

【0007】しかし、上記炭素材料のほとんどは、実際
電池に使用されている粒子サイズよりも大きいブロック
状等であり、粉砕することによって粉末とされ使用され
る。このため、物理的、或いは化学的な処理によってミ
クロに、或いはマクロに炭素構造を制御しても、粉砕に
よって構造が乱れ、充分その効果を得ることができなか
った。
However, most of the above-mentioned carbon materials are in the form of blocks having a particle size larger than that actually used in batteries, and are pulverized into powder to be used. Therefore, even if the carbon structure is controlled microscopically or macroscopically by physical or chemical treatment, the structure is disturbed by pulverization, and the effect cannot be sufficiently obtained.

【0008】これにたいして、繊維状の有機物を炭素化
する等して得られる繊維状炭素(カーボンファイバー)
は比較的炭素構造を制御しやすく、最近注目されてい
る。その構造は、前駆体である有機物繊維の構造を大き
く反映する。有機物繊維としてはポリアクリルニトリル
等のポリマーを原料としたものや、石油ピッチ等のピッ
チ、またさらに配向させたメソフェースピッチを原料と
したものがあり、紡糸されることによって繊維状とな
る。しかしながら、いずれも炭素化時に熱処理される
際、溶融し、繊維構造を破壊してしまうことが生じてい
た。
On the other hand, fibrous carbon (carbon fiber) obtained by carbonizing fibrous organic matter
Is relatively easy to control the carbon structure, and has recently attracted attention. The structure largely reflects the structure of the precursor organic fiber. As the organic fibers, there are fibers made from polymers such as polyacrylonitrile, pitches such as petroleum pitch, and fibers made from further oriented mesophase pitch. The fibers are spun into fibers. However, in all cases, when heat-treated during carbonization, they were melted and destroyed the fiber structure.

【0009】そのため、通常は繊維表面に酸化等により
不融化処理した後に炭素化を行っていた。このようにし
て得られた繊維状炭素は有機物繊維構造に由来する断面
構造を持ち、同心円状に配向したオニオンスキン型、放
射状に配向したラジアル型、等方的なランダム型等の高
次構造を示す。これらを黒鉛化処理した黒鉛繊維は真密
度が高く結晶性も比較的高いため、非水電解液二次電池
用の負極材料として有望なものである。
Therefore, carbonization is usually performed after the fiber surface is infusibilized by oxidation or the like. The fibrous carbon thus obtained has a cross-sectional structure derived from an organic fiber structure, and has a higher-order structure such as a concentrically oriented onion skin type, a radially oriented radial type, or an isotropic random type. Show. Graphite fibers obtained by subjecting these to graphitization have high true density and relatively high crystallinity, and thus are promising as a negative electrode material for non-aqueous electrolyte secondary batteries.

【0010】このような繊維状炭素の重要な物性パラメ
ータとしては、例えば特開平7−85862、特開平7
−142059に示されるアスペクト比(繊維長/繊維
径)がある。この値が小さいほど負極材料としては良好
な特性が得られることが開示されている。
Examples of important physical property parameters of such fibrous carbon include, for example, JP-A-7-85862 and JP-A-7-8562.
There is an aspect ratio (fiber length / fiber diameter) shown in -142059. It is disclosed that the smaller the value, the better the characteristics of the negative electrode material.

【0011】しかしながら、前記の繊維状炭素は繊維の
断面の配向状態が繊維長さ方向にバラツクため、粉砕時
に繊維軸方向に割れが生じやすく、従来の塊状の炭素材
料と比べても粉砕しにくく、アスペクト比を含めた一定
の物性パラメータを有する粉砕粉を得ることが困難であ
った。
However, in the fibrous carbon described above, the orientation state of the cross section of the fiber varies in the fiber length direction, so that cracks are likely to occur in the fiber axis direction during crushing, and it is difficult to crush as compared with the conventional lumpy carbon material. It was difficult to obtain a crushed powder having certain physical property parameters including the aspect ratio.

【0012】[0012]

【発明が解決しようとする課題】従って本発明の課題
は、負極材料としての繊維状炭素粉砕粉の前駆体である
黒鉛化繊維状炭素に対して、粉砕されやすい構造を導入
することにより、物性パラメータのバラツキの少ない実
用的な負極材料を容易に得ることを目的とし、更に、こ
れを負極に用いることでエネルギー密度が高く、高信頼
性の非水電解液二次電池を提供しようとするものであ
る。
SUMMARY OF THE INVENTION Therefore, the object of the present invention is to introduce a structure that is easily crushed into graphitized fibrous carbon, which is a precursor of crushed powder of fibrous carbon as a negative electrode material, to improve its physical properties. The purpose of the present invention is to easily obtain a practical negative electrode material with less variation in parameters, and to provide a highly reliable non-aqueous electrolyte secondary battery with a high energy density by using this material for the negative electrode. Is.

【0013】[0013]

【課題を解決するための手段】本発明は上記課題に鑑み
なされたものであり、リチウムのドープ脱ドープ可能な
炭素材料よりなる負極と正極、および非水溶媒に電解質
が溶解された非水電解液を有してなる非水電解液二次電
池において、前記負極材料は繊維長さ方向に周期的に結
晶構造の異なる断面部を有する繊維状炭素を粉砕して形
成された繊維状の炭素材料とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and a negative electrode and a positive electrode made of a carbon material capable of being doped with lithium and dedoped, and a nonaqueous electrolysis in which an electrolyte is dissolved in a nonaqueous solvent. In a non-aqueous electrolyte secondary battery containing a liquid, the negative electrode material is a fibrous carbon material formed by pulverizing fibrous carbon having cross-sections with different crystal structures periodically in the fiber length direction. And

【0014】また、前記炭素材料はそのアスペクト比が
50以下であり、且つBET法による比表面積が1.5
2 /g以下であるとする。
The carbon material has an aspect ratio of 50 or less and a BET specific surface area of 1.5.
It is assumed to be m 2 / g or less.

【0015】また、前記負極材料は、有機原料が繊維状
に形成された後、不融化され、熱処理されてなる炭素材
料であって、且つ繊維長さ方向に結晶構造の異なる断面
部分を有する繊維状炭素を粉砕して形成する製造方法に
より形成される。
Further, the negative electrode material is a carbon material obtained by infusible and heat-treating an organic raw material formed into a fibrous shape, and a fiber having cross-sections having different crystal structures in the fiber length direction. It is formed by a manufacturing method in which carbonaceous carbon is crushed to form.

【0016】また、前記有機原料を繊維状に形成する際
に、吐出紡糸用吐出孔に磁場をパルス状に印加しながら
形成すること、または吐出紡糸用吐出孔に超音波振動を
印加しながら形成する製造方法を用いる。
Further, when the organic raw material is formed into a fibrous shape, it is formed while applying a magnetic field in a pulse shape to the discharge spinning discharge hole, or while applying ultrasonic vibration to the discharge spinning discharge hole. The manufacturing method is used.

【0017】更に、リチウムのドープ脱ドープ可能な炭
素材料よりなる負極と正極、および非水溶媒に電解質が
溶解された非水電解液を有してなる非水電解液二次電池
において、上述した負極材料を用いて非水電解液二次電
池を構成し、上記課題を解決する。
Further, in the non-aqueous electrolyte secondary battery comprising a negative electrode and a positive electrode made of a carbon material capable of being doped and dedoped with lithium, and a non-aqueous electrolytic solution in which an electrolyte is dissolved in a non-aqueous solvent, A non-aqueous electrolyte secondary battery is constructed using a negative electrode material to solve the above problems.

【0018】本発明は上述したように、繊維長さ方向に
おいて特定の、或いは一定の周期で結晶構造の異なる断
面部位を有するような黒鉛化繊維状炭素を前駆体とし
て、これを粉砕することで、一定のアスペクト比を有す
る繊維状炭素粉砕粉を容易に作製できる。この繊維状炭
素粉砕粉は、より低いアスペクト比と比表面積を実現で
き、高性能の負極材料が容易に得られ、また、これを負
極に用いることで高エネルギー密度でサイクル寿命が長
く信頼性の高い二次電池を得ることができる。
As described above, the present invention uses, as a precursor, graphitized fibrous carbon having a cross-section portion having a different crystal structure at a specific or constant cycle in the fiber length direction, and crushing the precursor. A pulverized powder of fibrous carbon having a constant aspect ratio can be easily produced. This fibrous pulverized carbon powder can realize a lower aspect ratio and specific surface area, and easily obtain a high-performance negative electrode material. Also, by using this for the negative electrode, it has a high energy density, a long cycle life, and a high reliability. A high secondary battery can be obtained.

【0019】[0019]

【発明の実施の形態】本発明の実施の形態について図1
ないし図3を参照して説明する。図1は本発明による繊
維状炭素の形成を説明するための図であり、(a)は前
駆体黒鉛化繊維を示し、(b)は前駆体黒鉛化繊維を粉
砕して得た繊維状炭素の試料粉末を示す。図2は本発明
による繊維状炭素を用いた筒形電池の側面断面図であ
る。また、図3は本発明による繊維状炭素のアスペクト
比と容量維持率の関係を示す図である。
FIG. 1 shows an embodiment of the present invention.
Or, it demonstrates with reference to FIG. FIG. 1 is a diagram for explaining the formation of fibrous carbon according to the present invention, (a) shows a precursor graphitized fiber, and (b) is a fibrous carbon obtained by crushing the precursor graphitized fiber. The sample powder of is shown. FIG. 2 is a side sectional view of a tubular battery using fibrous carbon according to the present invention. FIG. 3 is a diagram showing the relationship between the aspect ratio of the fibrous carbon and the capacity retention rate according to the present invention.

【0020】前述の課題を解決するために、本発明者ら
は繊維長さ方向において、特定、或いは一定の周期で断
面の結晶構造が異なる部位を有するような黒鉛化繊維状
炭素を前駆体として用いることにより、一定のアスペク
ト比を有する繊維状炭素粉砕粉を容易に作製できること
を見いだした。
In order to solve the above-mentioned problems, the present inventors have used, as a precursor, a graphitized fibrous carbon having a portion having a different crystal structure in a cross section at a specific or constant period in the fiber length direction. It was found that by using it, it is possible to easily produce a pulverized fibrous carbon powder having a constant aspect ratio.

【0021】本発明は図1に示すように繊維状炭素粉砕
粉(以下、単に「粉砕粉」と記す)の前駆体となる黒鉛
化繊維状炭素(以下、単に「前駆体黒鉛化繊維」と記
す)を、繊維長さ方向において、特定、或いは一定の周
期(図1は長さlの周期構造を示す)で結晶構造の異な
る断面部を有する構成とし、これを粉砕して試料粉末2
2となる粉砕粉を形成する。この結晶構造の異なる異結
晶部21で結晶配向性が異なるため、粉砕時にこの部分
より破断し易くなり、一定繊維長の試料粉末22が容易
に作製できる。尚、繊維径はdとする。
In the present invention, as shown in FIG. 1, graphitized fibrous carbon (hereinafter, simply referred to as "precursor graphitized fiber") serving as a precursor of fibrous carbon ground powder (hereinafter, simply referred to as "ground powder"). The sample powder 2 has a cross section having different crystal structures in a specific or constant period (FIG. 1 shows a periodic structure of length l) in the fiber length direction, and the sample powder 2 is crushed.
A pulverized powder of 2 is formed. Since the different crystal parts 21 having different crystal structures have different crystal orientations, the different crystal parts 21 are more likely to be broken than the parts during pulverization, and the sample powder 22 having a constant fiber length can be easily produced. The fiber diameter is d.

【0022】前記繊維状炭素を生成するに際し、出発原
料となる有機物としてポリアクリロニトリルやレイヨン
等のポリマー類や、石油系ピッチ、石炭系ピッチ、合成
ピッチ、更にこれらを最高400℃程度で任意の時間保
持するか、または酸等の添加によって重合促進するなど
して、芳香環同士を縮合、多環化して積層配向させたメ
ソフェースピッチ等のピッチ類が使用可能である。
When the fibrous carbon is produced, polymers such as polyacrylonitrile and rayon as starting materials, petroleum pitch, coal pitch, synthetic pitch, and the like, at a maximum of about 400 ° C. for any time. Pitches such as mesophase pitch in which aromatic rings are condensed or polycyclic to have a laminated orientation by holding or accelerating the polymerization by adding an acid or the like can be used.

【0023】特に、メソフェースピッチを使用する場合
には、紡糸性、繊維状炭素の物理特性、また電気、化学
特性に対し、メソフェース含有率が大きく影響を与え
る。メソフェース含有率は60%以上が好ましく、95
%以上が更に好ましい。この範囲以下であれば結晶の配
向性に劣り、材料自身の容量などの低下をきたすので好
ましくない。
In particular, when the mesophase pitch is used, the mesophase content greatly affects the spinnability, the physical properties of fibrous carbon, and the electrical and chemical properties. The mesophase content is preferably 60% or more, and 95
% Or more is more preferable. If it is less than this range, the crystal orientation is poor and the capacity of the material itself is lowered, which is not preferable.

【0024】本発明の繊維状炭素前駆体20である有機
物炭素を作製する場合には、前記ポリマー類やピッチ類
は加熱されて、溶融状態とされ吐出等により成形紡糸さ
れる。この場合、各有機物によって融点は様々であり、
それぞれについて適宜最適紡糸温度が選択可能である。
When the organic carbon which is the fibrous carbon precursor 20 of the present invention is produced, the above-mentioned polymers and pitches are heated, brought into a molten state, and molded and spun by discharge or the like. In this case, each organic substance has a different melting point,
The optimum spinning temperature can be appropriately selected for each.

【0025】繊維状炭素の構造は、前駆体である有機物
繊維の構造を大きく反映する。従って、本発明の前駆体
黒鉛化繊維20が有する異結晶部21は、前記有機物繊
維を紡糸する時点で結晶配向性を制御し形成する必要が
ある。
The structure of the fibrous carbon largely reflects the structure of the precursor organic fiber. Therefore, the different crystal portion 21 of the precursor graphitized fiber 20 of the present invention needs to be formed by controlling the crystal orientation at the time of spinning the organic fiber.

【0026】有機物繊維を紡糸する時点で結晶配向性を
制御する方法としては、吐出する際に吐出孔中のピッチ
の流れを、ある一定の長さ毎に乱流とする方法がある。
これは吐出孔中に細孔を設けエアー等のガスを吹き出す
方法や、また超音波等によって吐出孔に振動を与える方
法等がある。また、材料となるピッチ類が磁場に対して
配向する性質を利用してもよい。
As a method of controlling the crystal orientation at the time of spinning the organic fiber, there is a method of making the flow of the pitch in the discharge holes turbulent at a constant length during discharge.
This includes a method in which a fine hole is provided in the discharge hole to blow out a gas such as air, and a method in which the discharge hole is vibrated by ultrasonic waves or the like. In addition, the property that the pitches as a material are oriented with respect to the magnetic field may be used.

【0027】前記以外のいかなる結晶配向性を制御する
方法も利用可能であるが、重要なことは前記異結晶部2
1が前駆体黒鉛化繊維20中に含有する割合や間隔であ
る。また、異結晶部21は前駆体黒鉛化繊維20の断面
の全体に分布するように存在させてもよく、また一部に
存在させてもよい。この異結晶部21の存在は必要とす
る粉砕粉の物性パラメータに合わせて適宜選択可能であ
るが、異結晶部21の含有量が多くなると、インターカ
レーション容量が減少する場合があり、含有量はより少
ないほうが好ましい。
Although any method other than the above method for controlling the crystal orientation can be used, the important point is that the different crystal part 2 is used.
1 is the ratio and interval contained in the precursor graphitized fiber 20. Further, the different crystal portion 21 may be present so as to be distributed over the entire cross section of the precursor graphitized fiber 20, or may be present in a part thereof. The presence of the different crystal portion 21 can be appropriately selected according to the required physical property parameter of the pulverized powder, but if the content of the different crystal portion 21 increases, the intercalation capacity may decrease, and the content of Is preferably less.

【0028】異結晶部21の配向性は、粉砕等により繊
維軸に対して垂直に破断する必要があるため、繊維断面
に対してより垂直に近く配向することが好ましい。繊維
軸に対して異結晶部21が成す小さい方の角度は60°
以上が好ましく、80°以上が更に好ましい。
Since the orientation of the different crystal portion 21 must be broken perpendicularly to the fiber axis due to crushing or the like, it is preferable that the foreign crystal portion 21 be oriented more perpendicular to the fiber cross section. The smaller angle formed by the different crystal portion 21 with respect to the fiber axis is 60 °
The above is preferable, and 80 ° or more is more preferable.

【0029】異結晶部21が前駆体黒鉛化繊維20に存
在する間隔Wが短い場合はアスペクト比の小さい材料が
得られるが、一方、異結晶部21の含有率が高くなり、
インターカレーション容量が減少することがある。ま
た、この間隔W長い場合はアスペクト比の大きな材料と
なってしまうが、異結晶部21の含有率が低くなるため
容量の損失は少なくなる。そのため、必要とされる粉砕
粉の物性パラメータや容量に合わせて適宜選択可能であ
るが、繊維径dに対して、lはd以上、100d以下が
好ましい。
When the distance W existing in the precursor graphitized fiber 20 where the different crystal portion 21 is present is short, a material having a small aspect ratio can be obtained, while the content of the different crystal portion 21 becomes high.
Intercalation capacity may be reduced. Further, when the distance W is long, the material has a large aspect ratio, but the content ratio of the different crystal portion 21 is low, so that the capacity loss is small. Therefore, although it can be appropriately selected according to the required physical property parameters and capacity of the pulverized powder, 1 is preferably d or more and 100 d or less with respect to the fiber diameter d.

【0030】繊維状炭素の前駆体である前記有機物繊維
は、紡糸後、熱処理の前に不融化される。その具体的な
手段は限定されないが、例えば硝酸、混酸、硫酸、次亜
塩素酸等の水溶液による湿式法、或いは酸化性ガス(空
気、酸素)による乾式法、更に硫黄、硝酸アンモニア、
過硫酸アンモニア、塩化第二鉄等の固体試薬による反応
などが用いられる。また、前記処理を行う際、繊維に延
伸、或いは緊張操作を行ってもよい。
The organic fiber, which is a precursor of fibrous carbon, is infusibilized after spinning and before heat treatment. Although the specific means is not limited, for example, a wet method using an aqueous solution of nitric acid, mixed acid, sulfuric acid, hypochlorous acid, or the like, or a dry method using an oxidizing gas (air, oxygen), sulfur, ammonia nitrate,
A reaction with a solid reagent such as ammonium persulfate or ferric chloride is used. Moreover, when performing the said process, you may draw or tension a fiber.

【0031】以上の不融化処理された有機物繊維は窒素
等の不活性ガス気流中で熱処理されるが、その条件とし
ては300〜700℃で炭化した後、不活性ガス気流
中、昇温速度毎分1〜100℃、到達温度900〜15
00℃、到達温度での保持時間0〜30時間程度の条件
でか焼し、更に黒鉛化品を得るためには2000℃以
上、好ましくは2500℃以上で熱処理を行うことが好
ましい。勿論、場合によっては炭化やか焼操作を省略し
てもよい。2500℃以上の高温で熱処理を行うことで
黒鉛化された本発明の繊維状炭素は人造黒鉛に近い真密
度を有し、高い電極充填密度が得られるため好ましい。
The above infusibilized organic fibers are heat-treated in a stream of inert gas such as nitrogen. The conditions are as follows: carbonization at 300 to 700 ° C. and then in a stream of inert gas at every heating rate. Min 1-100 ° C, ultimate temperature 900-15
Calcination is performed at a temperature of 00 ° C. for a holding time of about 0 to 30 hours, and in order to obtain a graphitized product, it is preferable to perform heat treatment at 2000 ° C. or higher, preferably 2500 ° C. or higher. Of course, in some cases, the carbonization and calcination operations may be omitted. The fibrous carbon of the present invention graphitized by heat treatment at a high temperature of 2500 ° C. or higher has a true density close to that of artificial graphite and a high electrode packing density is obtained, which is preferable.

【0032】尚、生成される繊維状炭素は分級、或いは
粉砕・分級して負極材料に供されるが、粉砕は炭化、か
焼の前後、或いは黒鉛化前の昇温過程の間、いずれで行
ってもよく、この場合最終的に粉末状態で黒鉛化のため
の熱処理が行われる。
The produced fibrous carbon is classified or ground and classified to be used as a negative electrode material. Grinding may be carried out before or after carbonization, calcination, or during the temperature rising process before graphitization. In this case, the heat treatment for graphitization is finally performed in the powder state.

【0033】本発明の負極材料が機能するための主とな
る繊維状炭素の構造は、その断面構造によって類別され
る。同心円状に配向したオニオンスキン型、放射状に配
向したラジアル型、等方的なランダム型等があり、いず
れも本発明の適用が可能である。特に、ラジアル型、或
いはラジアル型とランダム型が混在するランダムラジア
ル型が好適である。
The main structure of fibrous carbon for the function of the negative electrode material of the present invention is classified according to its cross-sectional structure. There are onion skin type with concentric orientation, radial type with radial orientation, isotropic random type, etc., and the present invention can be applied to any of them. In particular, the radial type or the random radial type in which the radial type and the random type are mixed is preferable.

【0034】本発明は、アスペクト比のより小さい材料
を容易に作製するためのものであるが、高性能の負極材
料を得るためには、粉砕粉のアスペクト比は50以下が
好ましく、10以下が更に好ましい。また、前駆体黒鉛
化繊維20の繊維径dは5μm以上100μm以下が好
ましく、10μm以上60μm以下が更に好ましい。繊
維径が小さいほど比表面積が大きくなり、また、繊維径
が大きいほど繊維形状を付与する効果が低くなるため好
ましくない。
The present invention is intended to easily produce a material having a smaller aspect ratio, but in order to obtain a high performance negative electrode material, the crushed powder preferably has an aspect ratio of 50 or less, and 10 or less. More preferable. The fiber diameter d of the precursor graphitized fiber 20 is preferably 5 μm or more and 100 μm or less, more preferably 10 μm or more and 60 μm or less. The smaller the fiber diameter, the larger the specific surface area, and the larger the fiber diameter, the lower the effect of imparting the fiber shape, which is not preferable.

【0035】繊維径、繊維長は電子顕微鏡等を用いて粉
砕粉を観察して求める。また、その繊維長を繊維径で除
した値をその粉砕粉におけるアスペクト比と規定する。
この測定を10個の粉砕粉について行い、それぞれの平
均値を繊維径d、繊維長l、アスペクト比Aとした。
The fiber diameter and fiber length are obtained by observing the pulverized powder with an electron microscope or the like. The value obtained by dividing the fiber length by the fiber diameter is defined as the aspect ratio of the pulverized powder.
This measurement was performed on 10 crushed powders, and the average value of each was defined as the fiber diameter d, the fiber length l, and the aspect ratio A.

【0036】更に、以下に説明する物性値を満足するこ
とにより、より実用的な負極材料を得ることができる。
Further, by satisfying the physical property values described below, a more practical negative electrode material can be obtained.

【0037】より高い電極充填密度を得るには、黒鉛化
繊維状炭素の真密度は2.1g/cm3 以上が好まし
く、2.18g/cm3 以上が更に好ましい。黒鉛材料
の真密度(ブタノール溶媒によるピクノメータ法)は、
その結晶性によって決まり、X線回折法(学振法)で得
られる(002)面間隔、(002)面のC軸結晶子厚
み等の結晶構造パラメータが指標となる。高い真密度の
材料を得るためには、結晶性が高いほうがよく、X線回
折法で得られる(002)面間隔が0.340nm未満
が好ましく、0.335nm以上、0.337nm以下
が更に好ましい。また、(002)面のC軸結晶子厚み
については14.0nm以上が好ましく、30.0nm
以上が更に好ましい。
To obtain a higher electrode packing density, the true density of the graphitized fibrous carbon is preferably 2.1 g / cm 3 or more, more preferably 2.18 g / cm 3 or more. The true density of graphite material (Pycnometer method using butanol solvent) is
The crystal structure parameters such as the (002) plane distance and the C-axis crystallite thickness of the (002) plane, which are determined by the crystallinity and obtained by the X-ray diffraction method (Gakushin method), are used as an index. In order to obtain a material with high true density, it is preferable that the crystallinity is high, and the (002) plane spacing obtained by X-ray diffraction is preferably less than 0.340 nm, more preferably 0.335 nm or more and 0.337 nm or less. . The C-axis crystallite thickness of the (002) plane is preferably 14.0 nm or more and 30.0 nm.
The above is more preferred.

【0038】また、良好なサイクル特性を得るために
は、嵩密度は0.4g/cm3 以上の材料を用いること
が好ましい。嵩密度が0.4g/cm3 以上の黒鉛材料
を用いて構成された負極は、良好な電極構造を有し、負
極合剤層から黒鉛材料が剥がれ落ちると言ったことが起
き難い。従って、長サイクル寿命が得られることとな
る。
In order to obtain good cycle characteristics, it is preferable to use a material having a bulk density of 0.4 g / cm 3 or more. The negative electrode composed of a graphite material having a bulk density of 0.4 g / cm 3 or more has a good electrode structure, and it is unlikely that the graphite material peels off from the negative electrode mixture layer. Therefore, a long cycle life can be obtained.

【0039】尚、本発明で規制する嵩密度は、JIS
K−1469に記載される方法で求められる価である。
この価が0.4g/cm3 以上の黒鉛材料を用いれば、
十分に長いサイクル寿命が得られるが、好ましくは嵩密
度が0.5g/cm3 以上、より好ましく嵩密度が0.
7g/cm3 以上の材料を用いるのがよい。
The bulk density regulated by the present invention is JIS
It is the value determined by the method described in K-1469.
If a graphite material with this value of 0.4 g / cm 3 or more is used,
Although a sufficiently long cycle life can be obtained, the bulk density is preferably 0.5 g / cm 3 or more, and more preferably the bulk density is 0.1 g / cm 3 .
It is preferable to use a material of 7 g / cm 3 or more.

【0040】嵩密度測定方法 嵩密度の測定方法を次に示す。予め質量を測定しておい
た容量100cm3 のメスシリンダーを斜めにし、これ
に試料粉末100cm3 を、徐々に投入する。そして、
全体の質量を最小目盛0.1gで測り、その質量からメ
スシリンダーの質量を差し引くことで試料粉末の質量を
求める。
Bulk Density Measuring Method The bulk density measuring method will be described below. A graduated cylinder having a capacity of 100 cm 3 whose mass has been measured in advance is tilted, and 100 cm 3 of the sample powder is gradually added to this. And
The total mass is measured with a minimum scale of 0.1 g, and the mass of the graduated cylinder is subtracted from the mass to determine the mass of the sample powder.

【0041】つぎに試料粉末が投入されたメスシリンダ
ーにコルク栓をし、その状態のメスシリンダーを、ゴム
板に対して約5cmの高さから50回落下させる。その
結果、メスシリンダー中の試料粉末は圧縮されるので、
その圧縮された試料粉末の容積Vを読み取る。そして、
下記の(1)式により嵩密度(g/cm3 )を算出す
る。
Next, a graduated cylinder charged with the sample powder is capped with a cork, and the graduated cylinder in that state is dropped 50 times from a height of about 5 cm with respect to the rubber plate. As a result, the sample powder in the graduated cylinder is compressed,
Read the volume V of the compressed sample powder. And
The bulk density (g / cm 3 ) is calculated by the following formula (1).

【0042】 D=W/V (1) ここで、 D:嵩密度(g/cm3 ) W:メスシリンダー中の試料粉末の質量(g) V:50回落下後のメスシリンダー中の試料粉末の容積
(cm3
D = W / V (1) where D: bulk density (g / cm 3 ) W: mass of sample powder in graduated cylinder (g) V: sample powder in graduated cylinder after 50 drops Volume of (cm 3 )

【0043】また、更に(2)式で示される形状パラメ
ータxの平均値が125以下である場合、さらにサイク
ル特性が良好なものとなる。即ち、黒鉛材料粉末の代表
的な形状は、扁平な円柱状、或いは直方体状である。こ
の黒鉛材料粉末の最も厚さの薄い部分の厚みをT、最も
長さの長い部分の長さをL、奥行きに相当する長軸と直
交する方向の長さをWとしたときに、LとWそれぞれを
Tで除した価の積が前記形状パラメータxである。この
形状パラメータxが小さいほど、底面積に対する高さが
高く、扁平度が小さいことを意味する。
Further, when the average value of the shape parameter x expressed by the equation (2) is 125 or less, the cycle characteristics are further improved. That is, a typical shape of the graphite material powder is a flat columnar shape or a rectangular parallelepiped shape. When the thickness of the thinnest part of this graphite material powder is T, the length of the longest part is L, and the length in the direction orthogonal to the major axis corresponding to the depth is W, L The product of the values obtained by dividing each W by T is the shape parameter x. The smaller the shape parameter x, the higher the height with respect to the bottom area and the smaller the flatness.

【0044】 x=(W/T)×(L/T) (2) ここで、 x:形状パラメータ T:粉末の最も厚さの薄い部分の厚み L:粉末の長軸方向の長さ W:粉末の長軸と直交する方向の長さX = (W / T) × (L / T) (2) Here, x: shape parameter T: thickness of the thinnest part of the powder L: length of the powder in the major axis direction W: Length of powder in the direction orthogonal to the long axis

【0045】また、平均形状パラメータxave.を以下の
ような実測によって求める。まず、黒鉛試料粉末をSE
M(走査型電子顕微鏡)を用いて観察し、最も長さの長
い部分の長さが平均粒径の±30%であるような粉末を
10個選択する。そして、選択した10個の粉末それぞ
れについて(2)式より形状パラメータxを計算し、そ
の平均を算出する。この算出された平均値が前記平均形
状パラメータxave.である。黒鉛粉末の平均形状パラメ
ータxave.が125以下であれば上記効果は得られる
が、好ましくは2以上115以下、更に好ましくは2以
上100以下がよい。
Further, the average shape parameter xave. Is obtained by the following actual measurement. First, the graphite sample powder is SE
Observe using M (scanning electron microscope), and select 10 powders in which the length of the longest part is ± 30% of the average particle size. Then, the shape parameter x is calculated from the equation (2) for each of the 10 selected powders, and the average thereof is calculated. The calculated average value is the average shape parameter xave. The above effect can be obtained when the average shape parameter xave. Of the graphite powder is 125 or less, but preferably 2 or more and 115 or less, more preferably 2 or more and 100 or less.

【0046】また、比表面積が9m2 /g以下の材料を
用いた場合、さらに長いサイクル寿命を得ることができ
る。これは、黒鉛粒子に付着したサブミクロンの微粒子
が嵩密度の低下に影響していると考えられ、微粒子が付
着した場合に比表面積が増加することから、同様の粒度
であっても比表面積の小さい黒鉛粉末を用いたほうが微
粒子の影響がなく、高い嵩密度が得られ、結果としてサ
イクル特性が向上する。
When a material having a specific surface area of 9 m 2 / g or less is used, a longer cycle life can be obtained. It is considered that the submicron particles adhering to the graphite particles influence the decrease in bulk density, and the specific surface area increases when the particles adhere, so even if the particle size is similar, the specific surface area The use of small graphite powder is not affected by the fine particles, a high bulk density is obtained, and as a result, cycle characteristics are improved.

【0047】但し、ここでいう比表面積とは、BET法
によって測定され求められたものを言う。黒鉛粉末の比
表面積が9m2 /g以下であれば上記効果は十分得られ
るが、好ましくは7m2 /g以下、更に好ましくは5m
2 /g以下がよい。
However, the specific surface area as referred to herein means that measured and determined by the BET method. If the specific surface area of the graphite powder is 9 m 2 / g or less, the above effect is sufficiently obtained, but preferably 7 m 2 / g or less, more preferably 5 m
2 / g or less is preferable.

【0048】また、実用電池として高い安全性および信
頼性を得るためには、レーザ回折法により求められる粒
度分布において、累積10%粒径が3μm以上であり、
且つ累積50%粒径が10μm以上であり、且つ累積9
0%粒径が70μm以下である黒鉛粉末を用いることが
望ましい。
In order to obtain high safety and reliability as a practical battery, the cumulative 10% particle size is 3 μm or more in the particle size distribution obtained by the laser diffraction method,
And the cumulative 50% particle size is 10 μm or more, and the cumulative 9%
It is desirable to use graphite powder having a 0% particle size of 70 μm or less.

【0049】電極に充填される黒鉛粉末は、粒度分布に
幅をもたせたほうが効率よく充填でき、正規分布により
近いほうが好ましい。但し、過充電等の異常事態に電池
が発熱することがあり、粒径の小さな粒子の分布数が多
い場合には発熱温度が高くなる傾向にあるため好ましく
ない。
It is preferable that the graphite powder with which the electrode is filled should have a particle size distribution with a range so that the graphite powder can be packed more efficiently, and that it is closer to the normal distribution. However, the battery may generate heat in an abnormal situation such as overcharging, and if the number of particles with small particle size is large, the heat generation temperature tends to be high, which is not preferable.

【0050】また、電池を充電する際、黒鉛層間ヘリウ
ムイオンが挿入されるため結晶子が約10%膨張し、電
池内において正極やセパレータを圧迫して、初充電時に
内部ショート等の初期不良が起こりやすい状態となる
が、大きな粒子の分布が多い場合には不良の発生率が高
くなる傾向にあるため好ましくない。
In addition, when the battery is charged, graphite intercalation helium ions are inserted, so that the crystallite expands by about 10% and presses the positive electrode and the separator in the battery, causing an initial defect such as an internal short circuit during the first charge. Although it tends to occur, it is not preferable when the distribution of large particles is large, because the incidence of defects tends to increase.

【0051】従って、粒径の大きな粒子から小さい粒子
までバランス良く配合された粒度分布を有する黒鉛粉末
を用いることにより、高い信頼性を有する実用電池が可
能となる。粒度分布の形状はより正規分布に近いほうが
効率よく充填できるが、レーザ回折法により求められる
粒度分布において、累積10%粒径が3μm以上であ
り、且つ累積50%粒径が10μm以上であり、且つ累
積90%粒径が70μm以下である黒鉛粉末を用いるこ
とが望ましく、特に累積90%粒径が60μm以下の場
合、初期不良が大きく低減される。
Therefore, by using the graphite powder having a particle size distribution in which particles having a large particle size to particles having a small particle size are well-balanced, a practical battery having high reliability can be obtained. If the shape of the particle size distribution is closer to the normal distribution, the particles can be packed more efficiently, but in the particle size distribution obtained by the laser diffraction method, the cumulative 10% particle size is 3 μm or more, and the cumulative 50% particle size is 10 μm or more, In addition, it is desirable to use graphite powder having a cumulative 90% particle size of 70 μm or less, and especially when the cumulative 90% particle size is 60 μm or less, initial defects are greatly reduced.

【0052】また、実用電池としての重負荷特性を向上
させるためには、黒鉛粒子の破壊強度の平均値が6.0
kgf/mm2 以上であることが望ましい。負荷特性に
は放電時のイオンの動き易さが影響するが、特に電極中
に空孔が多く存在する場合は、電解液も十分な量が存在
するので、良好な特性を示すことになる。一方、結晶性
が高い黒鉛材料はa軸方向に黒鉛六角網面が発達してお
り、その積み重なりによってc軸の結晶が成り立ってい
るが、炭素六角網面同志の結合はファンデルワールス力
という弱い結合であるため、応力に対して変形しやす
く、そのため、黒鉛粉末の粒子を圧縮成形して電極に充
填する際、低温で焼成された炭素質材料よりも潰れやす
く、空孔を確保することが難しい。従って、黒鉛粉末粒
子の破壊強度が高いほど潰れにくく、空孔を作りやすく
なるため、負荷特性を向上することが可能となる。
In order to improve the heavy load characteristics of a practical battery, the average value of the breaking strength of graphite particles is 6.0.
It is desirable to be kgf / mm 2 or more. The load characteristics are affected by the ease with which ions move during discharge, but particularly when there are many holes in the electrodes, a sufficient amount of the electrolytic solution is present, so that good characteristics are exhibited. On the other hand, a graphite material with high crystallinity has a hexagonal graphite net plane developed in the a-axis direction, and a c-axis crystal is formed by stacking the graphite hexagonal net planes. Since it is a bond, it is easily deformed by stress. Therefore, when the graphite powder particles are compression-molded and filled in the electrode, they are more easily crushed than the carbonaceous material fired at a low temperature, and it is possible to secure pores. difficult. Therefore, the higher the fracture strength of the graphite powder particles, the less likely they are to be crushed, and the easier it is to create voids, which makes it possible to improve the load characteristics.

【0053】但し、ここでいう黒鉛粒子の破壊強度の平
均値とは、以下のような実測によって求められるものを
言う。破壊強度の測定装置として島津製作所製島津微小
圧縮試験機(MCTM−500)を用いる。まず、付属
の光学顕微鏡にて黒鉛試料粉末を観察し、最も長さの長
い部分の長さが平均粒径の±10%であるような粉末を
10個選択する。そして、選択した10個の粉末それぞ
れについて荷重を掛け粒子の破壊強度を測定しその平均
を算出する。この算出された平均値が黒鉛粒子の破壊強
度の平均値である。良好な負荷特性を得るには、黒鉛粒
子の破壊強度の平均値が6kgf/mm2 以上であるこ
とが好ましい。
However, the average value of the breaking strength of the graphite particles as used herein means that which is obtained by the following actual measurement. A Shimadzu micro compression tester (MCTM-500) manufactured by Shimadzu Corporation is used as a breaking strength measuring device. First, the graphite sample powder is observed with an attached optical microscope, and 10 powders in which the length of the longest part is ± 10% of the average particle size are selected. Then, a load is applied to each of the 10 selected powders, the breaking strength of the particles is measured, and the average thereof is calculated. This calculated average value is the average value of the breaking strength of the graphite particles. In order to obtain good load characteristics, it is preferable that the average breaking strength of the graphite particles is 6 kgf / mm 2 or more.

【0054】一方、このような繊維状炭素または黒鉛化
繊維状炭素よりなる負極と組み合わせて用いられる正極
材料は特に限定されないが、十分な量のLiを含んでい
ることが好ましく、例えば一般式LiMO2 (但し、M
はCo,Ni,Mn,Fe,Al,V,Tiの少なくと
も一種を表す。)で表されるリチウムと遷移金属からな
る複合金属酸化物やLiを含んだ層間化合物等が好適で
ある。
On the other hand, the positive electrode material used in combination with the negative electrode made of such fibrous carbon or graphitized fibrous carbon is not particularly limited, but preferably contains a sufficient amount of Li, for example, the general formula LiMO 2 (However, M
Represents at least one of Co, Ni, Mn, Fe, Al, V, and Ti. ), A composite metal oxide composed of lithium and a transition metal, an intercalation compound containing Li, and the like are preferable.

【0055】特に、本発明は、高容量を達成することを
狙ったものであるので、正極は、定常状態(例えば5回
程度充放電を繰り返した後)で負極炭素材料1g当たり
250mAh以上の充放電容量相当分のLiを含むこと
が必要で、300mAh以上の充放電容量相当分のLi
を含むことがより好ましい。
In particular, since the present invention is aimed at achieving a high capacity, the positive electrode should be charged at 250 mAh or more per 1 g of the negative electrode carbon material in a steady state (for example, after repeating charging and discharging about 5 times). It is necessary to contain Li corresponding to the discharge capacity, and Li corresponding to the charge / discharge capacity of 300 mAh or more.
It is more preferred to include

【0056】尚、Liは必ずしも正極材からすべて供給
される必要はなく、要は電池系内に炭素材料1g当たり
250mAh以上の充放電容量相当分のLiが存在すれ
ばよい。また、このLiの量は、電池の放電容量を測定
することによって判断することとする。
It is not always necessary that Li is supplied from the positive electrode material, and the point is that Li corresponding to a charge / discharge capacity of 250 mAh or more per 1 g of carbon material should be present in the battery system. Further, the amount of Li will be determined by measuring the discharge capacity of the battery.

【0057】本発明の非水電解液二次電池に用いる非水
電解液において、電解液としては電解質が非水溶媒に溶
解されて成る非水電解液が用いられる。ここで、本発明
では負極に黒鉛材料を用いるので、非水溶媒の主溶媒と
しては従来のPCを用いることができず、それ以外の溶
媒を用いることが前提となる。その主溶媒として好適な
のはECがまず挙げられるが、ECの水素元素をハロゲ
ン元素で置換した構造の化合物も好適である。
In the nonaqueous electrolytic solution used in the nonaqueous electrolytic solution secondary battery of the present invention, a nonaqueous electrolytic solution obtained by dissolving an electrolyte in a nonaqueous solvent is used as the electrolytic solution. Here, in the present invention, since the graphite material is used for the negative electrode, conventional PC cannot be used as the main solvent of the non-aqueous solvent, and it is premised that other solvents are used. EC is most preferred as the main solvent, but compounds having a structure in which the hydrogen element of EC is replaced with a halogen element are also suitable.

【0058】また、PCのように黒鉛材料と反応性があ
るものの、主溶媒としてのECやECの水素原子をハロ
ゲン元素で置換した構造の化合物等に対して、その一部
をごく小量第二成分溶媒で置換することにより、良好な
特性が得られる。その第二成分溶媒としては、PC、ブ
チレンカーボネート、1,2−ジメトキシエタン、1,
2−ジエトキシメタン、γ−ブチロラクトン、バレロラ
クトン、テトラヒドロフラン、2−メチルテトラヒドロ
フラン、1,3−ジオキソラン、4−メチル−1,3−
ジオキソラン、スルホラン、メチルスルホラン等が使用
可能であり、その添加量としては10Vol%未満が好
ましい。
Although it is reactive with a graphite material like PC, a small amount of EC is used as a main solvent or a compound having a structure in which a hydrogen atom of EC is replaced with a halogen element. Good properties are obtained by substituting with a binary solvent. As the second component solvent, PC, butylene carbonate, 1,2-dimethoxyethane, 1,
2-diethoxymethane, γ-butyrolactone, valerolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-
Dioxolane, sulfolane, methylsulfolane and the like can be used, and the addition amount thereof is preferably less than 10 Vol%.

【0059】更に本発明を完成させるには、主溶媒に対
して、或いは主溶媒と第二成分溶媒の混合溶媒に対し
て、第三の溶媒を添加し、導電率の向上、ECの分解抑
制、低温特性の改善を図ると共に、リチウム金属との反
応性を低め、安全性を改善するようにしてもよい。
To further complete the present invention, a third solvent is added to the main solvent or a mixed solvent of the main solvent and the second component solvent to improve the conductivity and suppress the decomposition of EC. The low temperature characteristics may be improved and the reactivity with lithium metal may be lowered to improve the safety.

【0060】第三成分の溶媒としては、まず、DEC
(ジエチルカーボネート)やDMC(ジメチルカーボネ
ート)等の鎖状炭酸エステルが好適である。また、ME
C(メチルエチルカーボネート)やMPC(メチルプロ
ピルカーボネート)等の非対称鎖状炭酸エステルが好適
である。主溶媒、或いは主溶媒と第二成分溶媒の混合溶
媒に対する第三成分となる鎖状炭酸エステルの混合比
(主溶媒、または主溶媒と第二成分溶媒の混合溶媒:第
三成分溶媒)は容量比で10:90から60:40が好
ましく、15:85から40:60が更に好ましい。
As the solvent for the third component, first, DEC
A chain ester carbonate such as (diethyl carbonate) or DMC (dimethyl carbonate) is suitable. Also, ME
Asymmetric chain ester carbonate such as C (methyl ethyl carbonate) or MPC (methyl propyl carbonate) is preferable. The volume ratio of the main solvent or the mixed solvent of the main solvent and the second component solvent of the chain carbonate as the third component (main solvent or the mixed solvent of the main solvent and the second component solvent: the third component solvent) is the volume. The ratio is preferably 10:90 to 60:40, more preferably 15:85 to 40:60.

【0061】更に、第三成分の溶媒としてはMECとD
MCとの混合溶媒であってもよい。MEC−DMC混合
比率は、MEC容量をm、DMC容量をdとしたとき
に、1/9≦d/m≦8/2で示される範囲とすること
が好ましい。また、主溶媒、或いは主溶媒と第二成分溶
媒の混合溶媒と第三成分の溶媒となるMEC−DMC混
合比率は、MEC容量をm、DMC容量をd、溶媒全量
をTとしたときに、3/10≦(m+d)/T≦7/1
0で示される範囲とすることが好ましい。
Further, as the solvent for the third component, MEC and D
It may be a mixed solvent with MC. The MEC-DMC mixing ratio is preferably in a range represented by 1/9 ≦ d / m ≦ 8/2, where MEC capacity is m and DMC capacity is d. Further, the MEC-DMC mixing ratio of the main solvent, or the mixed solvent of the main solvent and the second component solvent and the solvent of the third component, when the MEC capacity is m, the DMC capacity is d, and the total amount of the solvent is T, 3/10 ≦ (m + d) / T ≦ 7/1
The range shown by 0 is preferable.

【0062】このような非水溶媒に溶解する電解質とし
ては、この種の電池に用いられるものであればいずれも
一種以上混合し使用可能である。例えばLiPF6 が好
適であるが、その他LiClO4、LiAsF6 、Li
BF4 、LiB(C6 5 4 、CH3 SO3 Li、C
3 SO3 Li、LiN(CF3 SO2 2 、LiC
(CF3 SO2 3 、LiCl、LiBr等も使用可能
である。
As the electrolyte which can be dissolved in such a non-aqueous solvent, one or more kinds can be used as a mixture as long as they are used in the battery of this type. For example, LiPF 6 is preferable, but LiClO 4, LiAsF 6 , Li
BF 4 , LiB (C 6 H 5 ) 4 , CH 3 SO 3 Li, C
F 3 SO 3 Li, LiN ( CF 3 SO 2) 2, LiC
(CF 3 SO 2 ) 3 , LiCl, LiBr and the like can also be used.

【0063】以下、本発明を具体的な実施例によって説
明するが、本発明がこの実施例に限定されるものではな
く、本発明の技術的思想を具現化する他の手段に用いて
もよいことは論を待たない。
Hereinafter, the present invention will be described with reference to specific examples, but the present invention is not limited to these examples and may be used for other means for embodying the technical idea of the present invention. I can't wait for the matter.

【0064】実施例1 まず、負極材料は以下のようにして生成した。石油系ピ
ッチを不活性ガス雰囲気中425℃にて5時間保持し、
軟化点230℃の石油系メソフェースピッチを得た。こ
のとき、メソフェース含有率は91%であった。得られ
た石油系メソフェースピッチを、磁場印加用の小型プロ
ーブを内蔵する内径20μmの吐出孔を用い、一定時間
間隔で磁場をパルス状に印加しながら、300℃にて一
定押し出し圧力で吐出紡糸し、有機繊維を得た。その後
これを260℃で不融化処理し、不活性雰囲気中、温度
1000℃でか焼して繊維状炭素を得た。更に不活性雰
囲気中、温度3000℃で熱処理して図1に示すような
前駆体黒鉛化繊維20とし、更にこれを風力粉砕して試
料粉末22とした。得られた試料粉末22のアスペクト
比はA=1.3、比表面積は0.9mm2/gであっ
た。
Example 1 First, a negative electrode material was produced as follows. Keep the petroleum pitch in an inert gas atmosphere at 425 ° C for 5 hours,
A petroleum-based mesophase pitch having a softening point of 230 ° C. was obtained. At this time, the mesophase content rate was 91%. Discharge spinning of the obtained petroleum mesophase pitch at a constant extrusion pressure at 300 ° C. while applying a magnetic field in a pulse shape at a constant time interval using a discharge hole having an inner diameter of 20 μm that incorporates a small probe for applying a magnetic field. Then, an organic fiber was obtained. Then, this was infusibilized at 260 ° C. and calcined at a temperature of 1000 ° C. in an inert atmosphere to obtain fibrous carbon. Further, it was heat-treated at a temperature of 3000 ° C. in an inert atmosphere to obtain a precursor graphitized fiber 20 as shown in FIG. 1, which was further air-ground to give a sample powder 22. The aspect ratio of the obtained sample powder 22 was A = 1.3, and the specific surface area was 0.9 mm 2 / g.

【0065】つぎに、試料粉末を負極材料として用い、
実際に円筒型の非水電解液二次電池を作製した。電池の
構成を図2に示す。
Next, using the sample powder as a negative electrode material,
A cylindrical non-aqueous electrolyte secondary battery was actually manufactured. The structure of the battery is shown in FIG.

【0066】負極1は次のように作製した。上記黒鉛粉
末を90重量部と、結着材としてポリフッ化ビニリデン
(PVDF)10重量部を混合して負極合剤を調製し、
溶剤となるN−メチルピロリドンに分散させてスラリー
(ペースト状)にした。負極集電体10として厚さ10
μmの帯状の銅箔を用い、負極合剤スラリーをこの集電
体の両面に塗布、乾燥させた後、一定圧力で圧縮成型し
て帯状の負極1を作製した。
The negative electrode 1 was manufactured as follows. 90 parts by weight of the above graphite powder and 10 parts by weight of polyvinylidene fluoride (PVDF) as a binder are mixed to prepare a negative electrode mixture,
It was dispersed in N-methylpyrrolidone as a solvent to form a slurry (paste form). The negative electrode current collector 10 has a thickness of 10
A band-shaped negative electrode 1 was prepared by applying a negative electrode mixture slurry on both sides of this current collector using a band-shaped copper foil having a thickness of μm, drying it, and then compression molding it at a constant pressure.

【0067】正極2は次のように作製した。まず、正極
活性物を以下のようにして作製した。炭酸リチウム0.
5モルと炭酸コバルト1モルとを混合し、この混合物
を、空気中、温度900℃で5時間焼成する。得られた
材料についてX線回折測定を行った結果、JCPDSフ
ァイルに登録されたLiCoO2 のピークと良く一致し
ていた。
The positive electrode 2 was manufactured as follows. First, a positive electrode active material was prepared as follows. Lithium carbonate 0.
5 mol and 1 mol of cobalt carbonate are mixed and the mixture is calcined in air at a temperature of 900 ° C. for 5 hours. As a result of X-ray diffraction measurement of the obtained material, it was in good agreement with the peak of LiCoO 2 registered in the JCPDS file.

【0068】このLiCoO2 を粉砕し、レーザ回折法
で得られる累積50%粒径が15μmのLiCoO2
末とした。そして、このLiCoO2 粉末95重量部と
炭酸リチウム粉末5重量部を混合し、この混合物の91
重量部、導電剤としてグラファイト6重量部、結着剤と
してポリフッ化ビニリデン3重量部を混合して正極合剤
を調製し、N−メチルピロリドンに分散させてスラリー
(ペースト状)にした。
This LiCoO 2 was crushed to obtain a LiCoO 2 powder having a cumulative 50% particle size of 15 μm obtained by a laser diffraction method. Then, 95 parts by weight of this LiCoO 2 powder and 5 parts by weight of lithium carbonate powder were mixed to obtain 91 parts of this mixture.
By weight, 6 parts by weight of graphite as a conductive agent and 3 parts by weight of polyvinylidene fluoride as a binder were mixed to prepare a positive electrode mixture, which was dispersed in N-methylpyrrolidone to form a slurry (paste form).

【0069】正極集電体11として厚さ20μmの帯状
のアルミニウム箔を用い、前記正極合剤スラリーをこの
集電体の両面に均一に塗布、乾燥させた後、圧縮成型し
て帯状の正極2を作製した。
A strip-shaped aluminum foil having a thickness of 20 μm was used as the positive electrode current collector 11, and the positive electrode mixture slurry was uniformly applied to both surfaces of the current collector, dried, and then compression molded to obtain the strip-shaped positive electrode 2. Was produced.

【0070】ついで、以上のようにして作製された帯状
の負極1、帯状の正極2を図2に示すように厚さ25μ
mの微多孔性ポリプロピレンフィルムよりなるセパレー
タ3を介して、負極1、セパレータ3、正極2、セパレ
ータ3の順に積層してから多数回巻回し、外径18mm
の渦巻型電極体を作製した。
Then, the strip-shaped negative electrode 1 and the strip-shaped positive electrode 2 produced as described above were made to have a thickness of 25 μm as shown in FIG.
A negative electrode 1, a separator 3, a positive electrode 2, and a separator 3 are laminated in this order through a separator 3 made of a microporous polypropylene film of m and then wound many times to have an outer diameter of 18 mm.
A spirally wound electrode body was prepared.

【0071】このようにして作製した渦巻型電極体を、
ニッケルめっきを施した鉄製の電池缶5に収納した。そ
して、渦巻式電極上下両面には絶縁板4を配設し、アル
ミニウム製の正極リード13を正極集電体11から導出
して電池蓋7に、ニッケル製の負極リード12を負極集
電体10から導出して電池缶5に溶接した。
The spirally wound electrode body thus produced was
It was housed in a nickel-plated iron battery can 5. Then, the insulating plates 4 are arranged on the upper and lower surfaces of the spiral type electrode, and the positive electrode lead 13 made of aluminum is led out from the positive electrode current collector 11 to the battery lid 7, and the negative electrode lead 12 made of nickel is connected to the negative electrode current collector 10. Was welded to the battery can 5.

【0072】この電池缶5の中に、ECとDMCとの等
容量混合溶媒中に、LiPF6 を1mol/lの割合で
溶解した電解液を注入した。ついでアスファルトで表面
を塗布した封口ガスケット6を介して電池缶5をかしめ
ることにより、電流遮断機構を有する安全弁装置8、P
TC素子9並びに電池蓋7を固定し、電池内の気密性を
保持させ、直径18mm、高さ65mmの円筒型非水電
解液二次電池を作製した。
Into the battery can 5, an electrolytic solution prepared by dissolving LiPF 6 at a ratio of 1 mol / l in a mixed solvent of EC and DMC in an equal volume was injected. Then, by caulking the battery can 5 through a sealing gasket 6 whose surface is coated with asphalt, a safety valve device 8 having a current interruption mechanism, P
The TC element 9 and the battery lid 7 were fixed, the airtightness inside the battery was maintained, and a cylindrical nonaqueous electrolyte secondary battery having a diameter of 18 mm and a height of 65 mm was produced.

【0073】実施例2 磁場の印加パルス条件を変えて吐出紡糸し、有機繊維を
得たこと以外は実施例1と同様にして円筒型非水電解液
二次電池を作製した。得られた試験粉末のアスペクト比
はA=3.3、比表面積は0.8m2 /gであった。
Example 2 A cylindrical non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 except that discharge spinning was carried out under different applied magnetic field pulse conditions to obtain organic fibers. The aspect ratio of the obtained test powder was A = 3.3 and the specific surface area was 0.8 m 2 / g.

【0074】実施例3 磁場の印加パルス条件を変えて吐出紡糸し、有機繊維を
得たこと以外は実施例1と同様にして円筒型非水電解液
二次電池を作製した。得られた試験粉末のアスペクト比
はA=7.0、比表面積は1.2m2 /gであった。
Example 3 A cylindrical non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that discharge spinning was performed by changing the applied pulse conditions of the magnetic field to obtain organic fibers. The aspect ratio of the obtained test powder was A = 7.0, and the specific surface area was 1.2 m 2 / g.

【0075】実施例4 磁場に替えて超音波を吐出孔先端にパルス状に印加して
吐出紡糸し、有機繊維を得たこと以外は実施例1と同様
にして円筒型非水電解液二次電池を作製した。得られた
試験粉末のアスペクト比はA=9.3、比表面積は1.
3m2 /gであった。
Example 4 Cylindrical non-aqueous electrolyte secondary solution was obtained in the same manner as in Example 1 except that ultrasonic waves were applied to the tip of the discharge hole in pulses instead of the magnetic field to carry out discharge spinning to obtain organic fibers. A battery was made. The aspect ratio of the obtained test powder was A = 9.3, and the specific surface area was 1.
It was 3 m 2 / g.

【0076】実施例5 磁場に替えて内部に細孔を有する吐出孔を用い、細孔よ
り空気をパルス状に噴出させながら吐出紡糸して有機繊
維を得たこと以外は実施例1と同様にして円筒型非水電
解液二次電池を作製した。得られた試験粉末のアスペク
ト比はA=41.0、比表面積は1.5m2 /gであっ
た。
Example 5 The same as Example 1 except that a discharge hole having pores inside was used instead of the magnetic field, and discharge was spun while ejecting air in a pulse shape from the pores to obtain an organic fiber. To produce a cylindrical non-aqueous electrolyte secondary battery. The aspect ratio of the obtained test powder was A = 41.0, and the specific surface area was 1.5 m 2 / g.

【0077】比較例1 吐出孔に磁場を印加しないこと以外は実施例1と同様に
して円筒型非水電解液二次電池を作製した。得られた試
験粉末のアスペクト比はA=64、比表面積は2.0m
2 /gであった。
Comparative Example 1 A cylindrical non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that no magnetic field was applied to the discharge holes. The obtained test powder has an aspect ratio of A = 64 and a specific surface area of 2.0 m.
2 / g.

【0078】各実施例および比較例で用いた繊維状炭素
について充放電能力を測定した結果を表1に示した。
Table 1 shows the results of measuring the charge / discharge capacity of the fibrous carbon used in each of the examples and comparative examples.

【表1】 [Table 1]

【0079】充放電能力測定方法 以下に充放電能力測定方法について説明する。測定は以
下に述べるテストセルを作製して行った。テストセルの
作製に際しては、まず前記試料粉末に対し、Ar雰囲気
中で昇温速度約30℃/分、到達温度600℃、到達温
度保持時間1時間なる条件で前熱処理を施した。この
後、バインダーとして10重量%相当量のポリフッ化ビ
ニリデンを加え、ジメチルホルムアミドを溶媒として混
合、乾燥して試料ミックスを調製した。その37mgを
秤量し、集電体であるNiメッシュと共に直径15.5
mmのペレットに成形し、作用電極を作製した。
Charging / Discharging Capacity Measuring Method The charging / discharging capacity measuring method will be described below. The measurement was performed by making a test cell described below. In producing the test cell, first, the sample powder was preheated in an Ar atmosphere under the conditions of a temperature rising rate of about 30 ° C./minute, an ultimate temperature of 600 ° C., and an ultimate temperature holding time of 1 hour. Then, polyvinylidene fluoride in an amount equivalent to 10% by weight was added as a binder, dimethylformamide was mixed as a solvent, and dried to prepare a sample mix. The 37 mg was weighed, and the diameter was 15.5 with the Ni mesh as the current collector.
mm pellets were formed to prepare a working electrode.

【0080】テストセルの構成は次の通りである。 セル形状:コイン型セル(直径20mm、厚さ2.5m
m) 対極:Li金属 セパレータ:ポリプロピレン多孔質膜 電解液:ECとDECの混合溶媒(容量比で1:1)に
LiPF6 を1mol/lの濃度で溶解したもの
The structure of the test cell is as follows. Cell shape: coin type cell (diameter 20 mm, thickness 2.5 m
m) Counter electrode: Li metal Separator: Polypropylene porous membrane Electrolyte: LiPF 6 dissolved in a mixed solvent of EC and DEC (volume ratio 1: 1) at a concentration of 1 mol / l

【0081】上記構成のテストセルを用いて炭素材料1
g当たりの容量を測定した。尚、作用電極へのリチウム
のドープ(充電:厳密に言うとこの試験方法では炭素材
料にリチウムがドープされる過程では充電ではなく放電
であるが、実電池での実態に合わせて便宜上このドーピ
ング過程を充電、脱ドープ過程を放電と呼ぶことにす
る。)はセル当たり1mAの定電流、0V(Li/Li
+ )の定電流定電圧法で充電し、放電(脱ドープ過程)
は、セル当たり1mAの定電流で、端子電圧1.5Vま
で行い、このときの放電容量を容量とし、また、充電容
量から放電容量を差し引いた値を容量ロスとして算出し
た。
Using the test cell having the above structure, carbon material 1
The capacity per gram was measured. Doping of lithium into the working electrode (charging: strictly speaking, in this test method, discharging is not charging in the process of doping the carbon material with lithium, but this doping process is convenient for the actual battery. Is charged, and the dedoping process is called discharge.) Is a constant current of 1 mA per cell, 0 V (Li / Li
+ ) Constant current constant voltage method for charging and discharging (de-doping process)
Was calculated with a constant current of 1 mA per cell up to a terminal voltage of 1.5 V, the discharge capacity at this time was taken as the capacity, and the value obtained by subtracting the discharge capacity from the charge capacity was taken as the capacity loss.

【0082】各実施例および比較例で作製した筒形電池
について、充電電流1A、最大充電電圧4.2Vで2.
5h定電流定電圧充電を行い、その後、放電電流700
mAで2.75Vまで放電する充放電サイクルを繰り返
し行い、2サイクル目の容量に対する100サイクル目
の容量の比(容量維持率)を求めた。2サイクル目に対
する200サイクル目の容量維持率の結果を前掲の表1
に示した。また、アスペクト比Aと容量維持率の関係を
図3に示した。
With respect to the tubular batteries produced in the respective examples and comparative examples, the charging current was 1 A and the maximum charging voltage was 4.2 V.
5h constant current constant voltage charging, then discharge current 700
The charging / discharging cycle of discharging to 2.75 V at mA was repeated, and the ratio of the capacity at the 100th cycle to the capacity at the second cycle (capacity retention rate) was obtained. The results of the capacity retention rate at the 200th cycle relative to the second cycle are shown in Table 1 above
It was shown to. The relationship between the aspect ratio A and the capacity retention rate is shown in FIG.

【0083】以上の結果より、本発明の作製方法による
繊維状炭素粉は、低いアスペクト比を容易に実現し、こ
れを負極材料に用いることにより、比較例の材料に比べ
てサイクル特性に優れた非水二次電池が得られることが
明らかとなった。
From the above results, the fibrous carbon powder according to the manufacturing method of the present invention easily realized a low aspect ratio, and by using this as the negative electrode material, the cycle characteristics were excellent as compared with the material of the comparative example. It was revealed that a non-aqueous secondary battery can be obtained.

【0084】[0084]

【発明の効果】以上の説明からも明らかなように、本発
明は上述したように、繊維長さ方向において特定の、或
いは一定の周期で結晶構造の異なる断面部位を有するよ
うな黒鉛化繊維状炭素を前駆体として、これを粉砕する
ことで、一定のアスペクト比を有する繊維状炭素粉砕粉
を容易に作製できる。この繊維状炭素粉砕粉は、より低
いアスペクト比と比表面積を実現でき、高性能の負極材
料が容易に得られ、また、これを負極に用いることで高
エネルギー密度でサイクル寿命が長く信頼性の高い二次
電池を得ることができる。
As is apparent from the above description, the present invention is, as described above, a graphitized fibrous material having a cross-section portion having a different crystal structure in a specific or constant period in the fiber length direction. By using carbon as a precursor and crushing it as a precursor, it is possible to easily produce a pulverized fibrous carbon powder having a constant aspect ratio. This fibrous pulverized carbon powder can realize a lower aspect ratio and specific surface area, and easily obtain a high-performance negative electrode material. Also, by using this for the negative electrode, it has a high energy density, a long cycle life, and a high reliability. A high secondary battery can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による繊維状炭素の形成を説明するた
めの図であって、(a)は前駆体黒鉛化繊維を示し、
(b)は前駆体黒鉛化繊維を粉砕して得た繊維状炭素の
試料粉末を示す。
FIG. 1 is a view for explaining the formation of fibrous carbon according to the present invention, in which (a) shows a precursor graphitized fiber,
(B) shows a sample powder of fibrous carbon obtained by crushing the precursor graphitized fiber.

【図2】 本発明による繊維状炭素を用いた筒形電池の
側面断面図である。
FIG. 2 is a side sectional view of a tubular battery using fibrous carbon according to the present invention.

【図3】 本発明による繊維状炭素のアスペクト比と容
量維持率の関係を示す図である。
FIG. 3 is a diagram showing the relationship between the aspect ratio and the capacity retention rate of fibrous carbon according to the present invention.

【符号の説明】[Explanation of symbols]

1…負極、2…正極、3…セパレータ、4…絶縁板、5
…電池缶 6…封口ガスケット、7…電池蓋、8…安全弁装置、9
…PTC素子 10…負極集電体、11…正極集電体、12…負極リー
ド、13…正極リード 14…センターピン、20…前駆体黒鉛化繊維、21…
異結晶部 22…試料粉末
1 ... Negative electrode, 2 ... Positive electrode, 3 ... Separator, 4 ... Insulating plate, 5
... Battery can 6 ... Sealing gasket, 7 ... Battery lid, 8 ... Safety valve device, 9
... PTC element 10 ... Negative electrode collector, 11 ... Positive electrode collector, 12 ... Negative electrode lead, 13 ... Positive electrode lead 14 ... Center pin, 20 ... Precursor graphitized fiber, 21 ...
Different crystal part 22 ... Sample powder

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 リチウムのドープ脱ドープ可能な炭素材
料よりなる負極と正極、および非水溶媒に電解質が溶解
された非水電解液を有してなる非水電解液二次電池にお
いて、 前記負極材料は繊維長さ方向に周期的に結晶構造の異な
る断面部を有する繊維状炭素を粉砕して形成された繊維
状の炭素材料であることを特徴とする非水電解液二次電
池用負極材料。
1. A non-aqueous electrolyte secondary battery comprising a negative electrode and a positive electrode made of a carbon material capable of being doped and dedoped with lithium, and a non-aqueous electrolytic solution in which an electrolyte is dissolved in a non-aqueous solvent. The material is a fibrous carbon material formed by pulverizing fibrous carbon having cross-sections having different crystal structures periodically in the fiber length direction, and a negative electrode material for a non-aqueous electrolyte secondary battery. .
【請求項2】 アスペクト比が50以下であり、且つB
ET法による比表面積が1.5m2 /g以下であること
を特徴とする、請求項1に記載の非水電解液二次電池用
負極材料
2. The aspect ratio is 50 or less, and B
The negative electrode material for a non-aqueous electrolyte secondary battery according to claim 1, which has a specific surface area of 1.5 m 2 / g or less according to the ET method.
【請求項3】 前記負極材料は、有機原料が繊維状に形
成された後、不融化され、熱処理されてなる炭素材料で
あって、 且つ繊維長さ方向に結晶構造の異なる断面部分を有する
繊維状炭素を粉砕して形成することを特徴とする、請求
項1に記載の非水電解液二次電池用負極材料の製造方
法。
3. The negative electrode material is a carbon material obtained by infusible and heat-treating an organic raw material formed into a fibrous shape, and a fiber having cross-sections having different crystal structures in the fiber length direction. The method for producing a negative electrode material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the carbonaceous carbon is formed by crushing.
【請求項4】 前記有機原料を繊維状に形成する際に、
吐出紡糸用吐出孔に磁場をパルス状に印加しながら形成
することを特徴とする、請求項1に記載の非水電解液二
次電池用負極材料の製造方法。
4. When forming the organic raw material into a fibrous shape,
The method for producing a negative electrode material for a non-aqueous electrolyte secondary battery according to claim 1, characterized in that the negative electrode material for a non-aqueous electrolyte secondary battery is formed by applying a magnetic field in a pulsed manner to a discharge spinning discharge hole.
【請求項5】 前記有機原料を繊維状に形成する際に、
吐出紡糸用吐出孔に超音波振動を印加しながら形成する
ことを特徴とする、請求項1に記載の非水電解液二次電
池用負極材料の製造方法。
5. When forming the organic raw material into a fibrous shape,
The method for producing a negative electrode material for a non-aqueous electrolyte secondary battery according to claim 1, which is formed while applying ultrasonic vibration to the discharge spinning discharge holes.
【請求項6】 リチウムのドープ脱ドープ可能な炭素材
料よりなる負極と正極、および非水溶媒に電解質が溶解
された非水電解液を有してなる非水電解液二次電池にお
いて、 請求項1に記載の非水電解液二次電池用負極材料を用い
たことを特徴とする非水電解液二次電池。
6. A non-aqueous electrolyte secondary battery comprising a negative electrode and a positive electrode made of a carbon material capable of being doped and dedoped with lithium, and a non-aqueous electrolyte solution in which an electrolyte is dissolved in a non-aqueous solvent. A non-aqueous electrolyte secondary battery using the negative electrode material for a non-aqueous electrolyte secondary battery according to 1.
JP8119194A 1996-05-14 1996-05-14 Nonaqueous electrolyte secondary battery negative electrode material, manufacture of this nonaqueous electrolyte secondary battery negative electrode material and nonaqueous electrolyte secondary battery using this negative electrode material Pending JPH09306489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8119194A JPH09306489A (en) 1996-05-14 1996-05-14 Nonaqueous electrolyte secondary battery negative electrode material, manufacture of this nonaqueous electrolyte secondary battery negative electrode material and nonaqueous electrolyte secondary battery using this negative electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8119194A JPH09306489A (en) 1996-05-14 1996-05-14 Nonaqueous electrolyte secondary battery negative electrode material, manufacture of this nonaqueous electrolyte secondary battery negative electrode material and nonaqueous electrolyte secondary battery using this negative electrode material

Publications (1)

Publication Number Publication Date
JPH09306489A true JPH09306489A (en) 1997-11-28

Family

ID=14755257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8119194A Pending JPH09306489A (en) 1996-05-14 1996-05-14 Nonaqueous electrolyte secondary battery negative electrode material, manufacture of this nonaqueous electrolyte secondary battery negative electrode material and nonaqueous electrolyte secondary battery using this negative electrode material

Country Status (1)

Country Link
JP (1) JPH09306489A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000022687A1 (en) * 1998-10-09 2000-04-20 Showa Denko K.K. Carbonaceous material for cell and cell containing the carbonaceous material
KR100445438B1 (en) * 2001-12-21 2004-08-21 삼성에스디아이 주식회사 Method of preparing composition comprising graphite, negative electrode for lithium secondary battery, and lithium secondary battery
US6989137B1 (en) 1998-10-09 2006-01-24 Showa Denko K.K. Carbonaceous material for cell and cell containing the carbonaceous material
EP2105985A1 (en) * 2008-03-25 2009-09-30 Fuji Jukogyo Kabushiki Kaisha Carbon Material for Negative Electrode, Electric Storage Device, and Product Having Mounted Thereon Electric Storage Device
WO2018168286A1 (en) * 2017-03-13 2018-09-20 株式会社豊田中央研究所 Secondary battery and method for producing same
JP2018152230A (en) * 2017-03-13 2018-09-27 株式会社豊田中央研究所 Secondary battery and manufacturing method thereof
JP2022515678A (en) * 2019-01-07 2022-02-21 ユーシーエル ビジネス リミテッド How to enhance the performance of electrochemical cells

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000022687A1 (en) * 1998-10-09 2000-04-20 Showa Denko K.K. Carbonaceous material for cell and cell containing the carbonaceous material
KR100450348B1 (en) * 1998-10-09 2004-09-30 쇼와 덴코 가부시키가이샤 Carbonaceous material for cell and cell containing the carbonaceous material
US6989137B1 (en) 1998-10-09 2006-01-24 Showa Denko K.K. Carbonaceous material for cell and cell containing the carbonaceous material
KR100445438B1 (en) * 2001-12-21 2004-08-21 삼성에스디아이 주식회사 Method of preparing composition comprising graphite, negative electrode for lithium secondary battery, and lithium secondary battery
EP2105985A1 (en) * 2008-03-25 2009-09-30 Fuji Jukogyo Kabushiki Kaisha Carbon Material for Negative Electrode, Electric Storage Device, and Product Having Mounted Thereon Electric Storage Device
WO2018168286A1 (en) * 2017-03-13 2018-09-20 株式会社豊田中央研究所 Secondary battery and method for producing same
JP2018152230A (en) * 2017-03-13 2018-09-27 株式会社豊田中央研究所 Secondary battery and manufacturing method thereof
US11171389B2 (en) 2017-03-13 2021-11-09 Kabushiki Kaisha Toyota Chuo Kenkyusho Secondary battery and method for producing the same
JP2022515678A (en) * 2019-01-07 2022-02-21 ユーシーエル ビジネス リミテッド How to enhance the performance of electrochemical cells

Similar Documents

Publication Publication Date Title
JP3844495B2 (en) Non-aqueous electrolyte secondary battery
KR100508839B1 (en) Graphite powder suitable as a cathode material for lithium ion secondary batteries
JP4144038B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP3436033B2 (en) Non-aqueous electrolyte secondary battery
JP3540478B2 (en) Anode material for lithium ion secondary battery
JPH06318459A (en) Lithium secondary battery
JPH0785888A (en) Lithium secondary battery
JP3779461B2 (en) Lithium secondary battery, negative electrode thereof and method for producing the same
KR100555817B1 (en) Carbonaceous Precursor, Carbonaceous Anode Material, and Nonaqueous Rechargeable Battery
JPH0927344A (en) Nonaqueous electrolyte secondary battery
JP2004299944A (en) Graphite particle, its producing method, lithium ion secondary battery and negative electrode material for it
JPH09306489A (en) Nonaqueous electrolyte secondary battery negative electrode material, manufacture of this nonaqueous electrolyte secondary battery negative electrode material and nonaqueous electrolyte secondary battery using this negative electrode material
JP3651225B2 (en) Lithium secondary battery, negative electrode thereof and method for producing the same
JP3544015B2 (en) Non-aqueous electrolyte secondary battery
JPH09306488A (en) Negative electrode material for nonaqueous electrolyte secondary battery, manufacture of this negative electrode material and nonaqueous electrolyte secondary battery using this negative electrode material
JP3863514B2 (en) Lithium secondary battery
JPH11111297A (en) Lithium secondary battery
JP2001148241A (en) Non-aqueous electrolyte battery
JPH09306476A (en) Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using this negative electrode material
JPH09293504A (en) Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using it
JP3787943B2 (en) Non-aqueous electrolyte secondary battery
JPH08162096A (en) Lithium secondary battery
JP2001185149A (en) Lithium secondary battery
JPH08180873A (en) Manufacture of negative electrode material and nonaqueous electrolytic secondary battery
KR0161633B1 (en) Manufacturing method of pitch coke for carbon anode and manufacturing method for battery