WO2022118443A1 - Electrolyte and dual ion battery - Google Patents

Electrolyte and dual ion battery Download PDF

Info

Publication number
WO2022118443A1
WO2022118443A1 PCT/JP2020/045107 JP2020045107W WO2022118443A1 WO 2022118443 A1 WO2022118443 A1 WO 2022118443A1 JP 2020045107 W JP2020045107 W JP 2020045107W WO 2022118443 A1 WO2022118443 A1 WO 2022118443A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
positive electrode
active material
electrode active
mass
Prior art date
Application number
PCT/JP2020/045107
Other languages
French (fr)
Japanese (ja)
Inventor
由磨 五行
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to PCT/JP2020/045107 priority Critical patent/WO2022118443A1/en
Priority to JP2022566588A priority patent/JPWO2022118443A1/ja
Publication of WO2022118443A1 publication Critical patent/WO2022118443A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents

Definitions

  • the present invention relates to an electrolyte and a dual ion battery.
  • Dual-ion batteries are attracting attention as secondary batteries with excellent input / output characteristics.
  • the dual ion battery is a secondary battery in which charging and discharging proceed by inserting and desorbing an anion in an electrolyte into a positive electrode and inserting and desorbing a cation in an electrolyte into a negative electrode.
  • DIBs a battery in which a carbon material is used for the positive electrode and the negative electrode is called a dual carbon battery (DCB).
  • Patent Document 1 describes a positive electrode containing a positive electrode active material into which an anion can be inserted or removed, a negative electrode containing a negative electrode active material, a non-aqueous solvent, an electrolyte salt containing a halogen atom, and an anion containing a halogen atom.
  • a non-aqueous electrolyte storage element having a compound having a possible moiety and a non-aqueous electrolytic solution containing a cyclic sulfonic acid ester has been proposed.
  • the charge / discharge efficiency, the discharge capacity, and the cycle characteristics can be improved by preventing the decomposition of the non-aqueous electrolyte.
  • Patent Document 1 discloses the use of a non-aqueous solvent such as dimethyl carbonate.
  • the present inventors have focused on the fact that the ionic liquid is non-volatile and has high stability as compared with a non-aqueous solvent such as dimethyl carbonate, and considered applying the ionic liquid to the electrolyte of the dual ion battery. did.
  • One form of the present disclosure is made in view of the above-mentioned conventional circumstances, and is an electrolyte capable of producing a dual ion battery capable of reversibly performing an electrochemical reaction and functioning as a secondary battery. , And a dual ion battery capable of reversibly performing an electrochemical reaction.
  • a positive electrode containing a positive electrode active material containing a lithium salt, a heterocyclic non-aromatic cation containing a nitrogen element in its structure, and a bis (trifluoromethanesulfonyl) imide anion, and an anion can be inserted and removed, and a negative electrode active material.
  • the heterocyclic non-aromatic cation contains at least one cation of a Helicobacter pylori cation and a piperidinium cation.
  • ⁇ 3> The electrolyte according to ⁇ 1> or ⁇ 2>, further comprising at least one compound selected from the group consisting of a sulfite compound, an organic borane compound, a cyclic sulfonic acid ester, and a dinitrile compound.
  • ⁇ 4> The electrolyte according to any one of ⁇ 1> to ⁇ 3>, wherein the heterocyclic non-aromatic cation contains a Helicobacter pyloridinium cation.
  • a dual ion battery comprising a positive electrode containing a positive electrode active material capable of inserting and removing anions, a negative electrode containing a negative electrode active material, and an electrolyte of any one of ⁇ 1> to ⁇ 4>.
  • the negative electrode active material contains at least one of graphite, lithium titanate, aluminum metal, and lithium metal.
  • an electrochemical reaction can be reversibly carried out, an electrolyte capable of producing a dual ion battery capable of functioning as a secondary battery, and an electrochemical reaction can be carried out reversibly. It is possible to provide a dual ion battery capable of being capable.
  • FIG. 1 It is a perspective view which shows an example of the dual ion battery of this disclosure. It is a perspective view which shows the positive electrode plate, the negative electrode plate, a separator and a gas storage member which make up an electrode group. It is a graph which shows the result of the charge / discharge test in Example 1.
  • FIG. 2 It is a graph which shows the result of the charge / discharge test in Example 2.
  • the present invention is not limited to the following embodiments.
  • the components including element steps and the like are not essential unless otherwise specified.
  • various changes and modifications by those skilled in the art are possible within the scope of the technical idea disclosed in the present disclosure.
  • the term "process” includes, in addition to a process independent of other processes, the process as long as the purpose of the process is achieved even if it cannot be clearly distinguished from the other process. ..
  • the numerical range indicated by using "-" includes the numerical values before and after "-" as the minimum value and the maximum value, respectively.
  • each component may contain a plurality of applicable substances.
  • the content rate of each component means the total content rate of the plurality of substances unless otherwise specified.
  • a plurality of types of particles corresponding to each component may be contained.
  • the particle size of each component means a value for a mixture of the plurality of types of particles unless otherwise specified.
  • the term "layer” or “membrane” is used only in a part of the region, in addition to the case where the layer or the membrane is formed in the entire region when the region is observed. The case where it is formed is also included.
  • the "solid content" of the positive electrode mixture or the negative electrode mixture means the remaining components obtained by removing volatile components such as organic solvents from the slurry of the positive electrode mixture or the slurry of the negative electrode mixture.
  • the "positive electrode active material capable of inserting and removing anions” means a positive electrode active material capable of reversibly inserting and removing anions into the crystals of the positive electrode active material.
  • the "negative electrode active material capable of inserting and removing a cation” means a negative electrode active material capable of reversibly inserting and removing a cation into a crystallite of the negative electrode active material. Therefore, a negative electrode active material that repeatedly precipitates lithium ions and dissolves the precipitated lithium metal, such as lithium metal, is not included in the negative electrode active material capable of inserting and removing the cation of the present disclosure.
  • the electrolytes of the present disclosure include a lithium salt, a heterocyclic non-aromatic cation containing a nitrogen element in the structure, and a bis (trifluoromethanesulfonyl) imide anion, and a positive electrode containing a positive electrode active material capable of inserting and removing the anion.
  • An electrolyte for use in a dual ion battery comprising a negative electrode containing a negative electrode active material.
  • the electrolyte of the present disclosure it is possible to reversibly carry out an electrochemical reaction, and it is possible to manufacture a dual ion battery that can function as a secondary battery. Since the positive electrode of the dual ion battery undergoes the reaction at a high potential of 4.5 V or more, the electrolytic solution is required to have oxidation resistance. Since the ionic liquid containing a heterocyclic non-aromatic cation such as a pyrrolidinium cation and a bis (trifluoromethanesulfonyl) imide anion has excellent electrochemical stability, it is considered that the reaction proceeds reversibly.
  • a heterocyclic non-aromatic cation such as a pyrrolidinium cation and a bis (trifluoromethanesulfonyl) imide anion
  • Lithium salt The electrolytes of the present disclosure include lithium salts.
  • Lithium salts include LiPF 6 , LiBF 4 , LiFSI (lithium bis (fluorosulfonyl) imide), LiTFSI (lithium bis (trifluoromethanesulfonyl) imide), LiClO 4 , LiB (C 6 H 5 ) 4 , LiCH 3 SO 3 , LiCF 3 SO 3 , LiN (SO 2 CF 2 CF 3 ) 2 , and the like.
  • the lithium salt one kind may be used alone, or two or more kinds may be used in combination.
  • the concentration of the lithium salt in the electrolyte is preferably 0.5 mol / L or more, and more preferably 1.5 mol / L or more.
  • the upper limit of the concentration of the lithium salt is not particularly limited and may be 3.0 mol / L or less, or 2.5 mol / L or less.
  • the electrolyte of the present disclosure includes a heterocyclic non-aromatic cation (hereinafter, also referred to as “specific cation”) containing a nitrogen element in the structure.
  • specific cation a heterocyclic non-aromatic cation
  • the heterocyclic non-aromatic cation is not particularly limited as long as it is a cation containing a heterocycle having no aromaticity, and it is preferable that the skeleton contains a cyclic structure such as a 5-membered ring or a 6-membered ring.
  • the heterocyclic non-aromatic cation may be one kind or two or more kinds.
  • cyclic structure such as a 5-membered ring or a 6-membered ring
  • a structure derived from a complex monocyclic compound such as pyrrolidine or piperidine is preferable.
  • heterocyclic non-aromatic cation examples include a pyrrolidinium cation such as 1-butyl-1-methylpyrrolidinium cation and a 1-methyl-1-propylpyrrolidinium cation, and 1-butyl-1-methylpiperidinium.
  • a pyrrolidinium cation such as 1-butyl-1-methylpyrrolidinium cation and a 1-methyl-1-propylpyrrolidinium cation
  • 1-butyl-1-methylpiperidinium examples thereof include cations, piperidinium cations such as 1-methyl-1-propylpiperidinium cations, and the like.
  • pyrrolidinium cations such as 1-butyl-1-methylpyrrolidinium cation and 1-methyl-1-propylpyrrolidinium cation are preferable from the viewpoint of electrochemical stability.
  • the electrolytes of the present disclosure include bis (trifluoromethanesulfonyl) imide anions ((CF 3 SO 2 ) 2 N- ) . Certain cations and bis (trifluoromethanesulfonyl) imide anions contained in the electrolytes of the present disclosure can serve as solvents for lithium salts.
  • the electrolyte of the present disclosure may contain cations other than specific cations (hereinafter, also referred to as “other cations”), and anions other than bis (trifluoromethanesulfonyl) imide anions (hereinafter, “other anions”). Also referred to as)).
  • other cations and the other anions may be one kind or two or more kinds independently of each other.
  • the other cations are not particularly limited as long as they are cations that do not contain a heterocyclic ring having no aromaticity, and for example, at least one element selected from the group consisting of an element of nitrogen, an element of phosphorus, an element of sulfur and an element of oxygen.
  • a cation containing a chain structure, a cyclic structure such as a 5-membered ring, a 6-membered ring, or the like in the skeleton can be mentioned.
  • the cyclic structure such as a 5-membered ring or a 6-membered ring includes furan, thiophene, pyrrole, pyridine, oxazole, isooxazole, thiazole, isothiazole, frazane, imidazole, pyrazole, pyrazine, pyrimidine, pyridazine and the like.
  • Examples thereof include a structure derived from a heterocyclic compound, a structure derived from a fused heterocyclic compound such as benzofuran, isobenzofuran, indole, isoindole, indridin, and carbazole.
  • the other cations are not particularly limited, and examples thereof include alkylammonium cations such as triethylammonium cations, imidazolium cations such as ethylmethylimidazolium cations and butylmethylimidazolium cations, and pyridinium cations such as 1-ethylpyridinium cations. ..
  • the other anions are not particularly limited, and are, for example, bis (fluorosulfonyl) imide anions ([N (SO2 F) 2 ] - ), BF 4- , PF 6- , AsF 6- , ClO 4 , NO 3 - , CF 3 SO 3- , CF 3 CO 2- and CH 3 CO 2- .
  • the content of the specific cation with respect to the total of the specific cation and other cations is preferably 50 mol% to 100 mol%, more preferably 70 mol% to 100 mol%. , 90 mol% to 100 mol% is more preferable.
  • the content of the bis (trifluoromethanesulfonyl) imide anion with respect to the total of the bis (trifluoromethanesulfonyl) imide anion and other anions is preferably 50 mol% to 100 mol%, preferably 70 mol%. It is more preferably from ⁇ 100 mol%, still more preferably from 90 mol% to 100 mol%.
  • the electrolyte of the present disclosure is at least one selected from the group consisting of a sulfite compound, an organic borane compound, a cyclic sulfonic acid ester and a dinitrile compound from the viewpoint of improving the cycle characteristics of the dual ion battery and from the viewpoint of preferably maintaining the capacity. It is preferable that the compound of the species (hereinafter, also referred to as “specific compound”) is further contained.
  • the specific compound may be used alone or in combination of two or more.
  • the sulphite compound is not particularly limited, and examples thereof include ethylene sulphite, propylene sulphite, butylene sulphite, pentenesulfite, dimethylsulfite, and dipropargyl sulphite.
  • ethylene sulphite is preferable from the viewpoint of being able to suppress side reactions while maintaining a suitable capacity.
  • the organic borane compound is not particularly limited, and is limited to tris (pentafluorophenyl) borane, tris (hexafluoroisopropyl) borate, trimesityl borane, tris (1,2 dimethylpropyl) borane, tris (parafluorophenyl) borane, and the like.
  • Tris (parachlorophenyl) borane (CH 3 O) 3 B, (C 3 F 7 CH 2 O) 3 B, [(CF 3 ) 2 CHO] 3 B, [(CF 3 ) 2 C (C 6 H 5 ) ) O] 3 B, (C 6 H 5 O) 3 B, (FC 6 H 4 O) 3 B, (F 2 C 6 H 3 O) 3 B, (F 4 C 6 HO) 3 B, (C) 6 F 5 O) 3 B, (CF 3 C 6 H 4 O) 3 B, [(CF 3 ) 2 C 6 H 3 O] 3 B, [(CF 3 ) 2 CHO] 3 B, [CF 3 CH] 2 O] 3 B, (CF 3 O) 3 B and the like.
  • tris (pentafluorophenyl) borane is preferable.
  • the cyclic sulfonic acid ester is not particularly limited, and is a monosulfonic acid ester such as 1,3-propane sulton, 1,4-butane sulton, 1,3-butane sulton, and 2,4-butan sulton; methylenemethanedisulfonic acid ester, ethylene.
  • examples thereof include disulfonic acid esters such as methane disulfonic acid ester. Of these, 1,3-propanesulton is preferable.
  • the dinitrile compound is not particularly limited, and examples thereof include malononitrile, succinonitrile, glutaronitrile, adiponitrile, pimeronitrile, suberonitrile, azelanitrile, sebaconitrile, undecanenitrile, and dodecanenitrile.
  • the content of the specific compound is preferably 0.1% by mass to 5.0% by mass, preferably 0.3% by mass to 4.0% by mass, based on the total amount of the electrolyte. More preferably, it is more preferably 0.5% by mass to 3.0% by mass.
  • the content of a specific compound is 0.1% by mass or more, it tends to be possible to manufacture a dual ion battery having better cycle characteristics, and the content of a specific compound is 5.0% by mass or less. As a result, side reactions tend to be suppressed.
  • the electrolyte of the present disclosure may contain a cyclic carbonate.
  • cyclic carbonate examples include vinylene carbonate (VC), propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC) and fluoroethylene carbonate (FEC). Cyclic carbonate may be used alone or in combination of two or more.
  • the content of the cyclic carbonate may be 0.05% by mass to 3% by mass, 0.2% by mass to 1.5% by mass, or 0.3% by mass or more, based on the total amount of the electrolyte. It may be 1.2% by mass, or 0.4% by mass to 0.9% by mass.
  • the electrolyte of the present disclosure may contain a non-aqueous solvent.
  • the non-aqueous solvent is not particularly limited, and a chain carbonate is preferable from the viewpoint of the solubility of the lithium salt.
  • chain carbonate examples include dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, methyl propionate and the like. Of these, ethylmethyl carbonate is preferable from the viewpoint of oxidation resistance and reduction resistance.
  • the dual ion battery of the present disclosure includes a positive electrode containing a positive electrode active material capable of inserting and removing anions, a negative electrode containing a negative electrode active material, and an electrolyte of the present disclosure.
  • the dual ion battery of the present disclosure is excellent in energy density by providing the above-mentioned electrolyte of the present disclosure.
  • the dual ion battery of the present disclosure comprises a positive electrode containing a positive electrode active material capable of inserting and removing anions.
  • the positive electrode may be configured to be arranged on the positive electrode current collector and its surface and to have a positive electrode mixture layer containing a positive electrode active material.
  • the positive electrode active material is not particularly limited as long as it is an active material capable of inserting and removing anions.
  • Examples of the positive electrode active material include carbon materials such as graphite, carbon nanotubes, graphene, nanocarbon, graphite oxide, graphene oxide, hard carbon, and soft carbon.
  • One type of positive electrode active material may be used alone, or two or more types may be used in combination.
  • the average particle size of the carbon material is preferably 2 ⁇ m to 30 ⁇ m, more preferably 2.5 ⁇ m to 25 ⁇ m, and more preferably 3 ⁇ m to 20 ⁇ m. It is more preferably 5 ⁇ m to 20 ⁇ m, and particularly preferably 5 ⁇ m to 20 ⁇ m.
  • the average particle size is 30 ⁇ m or less, the discharge capacity and the discharge characteristics tend to be improved.
  • the average particle size is 2 ⁇ m or more, the initial charge / discharge efficiency tends to improve.
  • the average particle size (d50) of the particles is determined by measuring the volume-based particle size distribution using, for example, a particle size distribution measuring device (SALD-3000, Shimadzu Corporation) using a laser light scattering method, and d50 (median size). ) Is the volume average particle size.
  • the range of the specific surface area of the carbon material, preferably graphite, is preferably 0.5 m 2 / g to 10 m 2 / g, more preferably 0.8 m 2 / g to 8 m 2 / g, and 1 m 2 It is more preferably / g to 7 m 2 / g, and particularly preferably 1.5 m 2 / g to 6 m 2 / g.
  • the specific surface area is 0.5 m 2 / g or more, excellent battery performance tends to be obtained.
  • the specific surface area is 10 m 2 / g or less, the tap density tends to increase, and the mixing property with other materials such as a binder and a conductive agent tends to be good.
  • the specific surface area can be measured from the nitrogen adsorption capacity according to JIS Z 8830: 2013.
  • the measurement cell containing 0.05 g of the measurement sample is depressurized to 10 Pa or less with a vacuum pump, heated at 110 ° C., held for 3 hours or more, and then kept at room temperature (reduced pressure). Naturally cool to 25 ° C).
  • the evaluation temperature is set to 77K, and the evaluation pressure range is measured as a relative pressure (equilibrium pressure with respect to saturated vapor pressure) of less than 1.
  • Nitrogen adsorption is measured by the multipoint method, and the specific surface area is calculated by the BET method.
  • the positive electrode may be configured to have a positive electrode current collector and a positive electrode mixture layer arranged on the surface thereof and containing a positive electrode active material.
  • the content of the positive electrode active material is preferably 80% by mass or more, preferably 85% by mass, based on the total amount of the positive electrode mixture layer from the viewpoint of increasing the capacity of the battery.
  • the above is more preferable, and 90% by mass or more is further preferable.
  • the positive electrode mixture layer contains a positive electrode active material, a binder, and the like, and is arranged on the positive electrode current collector.
  • the positive electrode mixture layer is formed as follows, for example. By mixing the positive electrode active material, the binder and other materials such as the conductive agent and the thickener used as needed in a dry method to form a sheet, and crimping this to the positive electrode current collector (dry method).
  • a positive electrode mixture layer can be formed.
  • a positive electrode mixture layer can be formed by applying and drying (wet method).
  • Examples of the conductive agent for the positive electrode include metal materials such as copper and nickel; graphite such as natural graphite and artificial graphite (graphite); carbon black such as acetylene black; and carbon materials such as amorphous carbon such as needle coke. ..
  • metal materials such as copper and nickel
  • graphite such as natural graphite and artificial graphite (graphite)
  • carbon black such as acetylene black
  • carbon materials such as amorphous carbon such as needle coke. ..
  • the conductive agent for the positive electrode one type may be used alone, or two or more types may be used in combination.
  • the content of the conductive agent with respect to the mass of the positive electrode mixture layer may be 0.01% by mass to 10% by mass, 0.1% by mass to 5% by mass, or 1% by mass to 3% by mass. May be%.
  • the content of the conductive agent is 0.01% by mass or more, sufficient conductivity tends to be easily obtained.
  • the content of the conductive agent is 10% by mass or less, the decrease in battery capacity tends to be suppressed.
  • the binder for the positive electrode is not particularly limited, and when the positive electrode mixture layer is formed by the wet method, a material having good solubility or dispersibility in the dispersion solvent is selected.
  • resin-based polymers such as polyethylene, polypropylene, polyethylene terephthalate, polyimide, and cellulose
  • rubber-like polymers such as SBR (styrene-butadiene rubber) and NBR (acrylonitrile-butadiene rubber), polyvinylidene fluoride (PVdF).
  • Polytetrafluoroethylene Polytetrafluoroethylene-vinylidene fluoride copolymer, polyvinylidene fluoride and other fluoropolymers, polyacrylonitrile skeleton with acrylic acid and linear ether group added; alkali metal Examples thereof include polymer compositions having ionic conductivity of ions (particularly lithium ions).
  • the binder for the positive electrode one type may be used alone, or two or more types may be used in combination.
  • the binder includes fluoropolymers such as polyvinylidene fluoride (PVdF) and polyvinylidene fluoride-vinylidene fluoride copolymer, copolymers having a polyacrylonitrile skeleton, cellulose and the like. It is preferable to use.
  • PVdF polyvinylidene fluoride
  • PVdF polyvinylidene fluoride-vinylidene fluoride copolymer
  • the content of the binder with respect to the mass of the positive electrode mixture layer is preferably 0.1% by mass to 10% by mass, more preferably 0.5% by mass to 5% by mass, and 1% by mass to It is more preferably 3% by mass.
  • the content of the binder is 0.1% by mass or more, the positive electrode active material can be sufficiently bound, sufficient mechanical strength of the positive electrode mixture layer is obtained, and battery performance such as cycle characteristics is improved. There is a tendency.
  • the content of the binder is 10% by mass or less, sufficient battery capacity and conductivity tend to be obtained.
  • the positive electrode mixture layer formed on the positive electrode current collector by the wet method or the dry method is preferably consolidated by a hand press or a roller press in order to improve the packing density of the positive electrode active material.
  • the density of the compacted positive mixture layer is preferably 0.7 g / cm 3 to 2 g / cm 3 and 0.8 g / cm 3 to 1.9 g / cm from the viewpoint of further improving the input / output characteristics. 3 is more preferable, and 0.9 g / cm 3 to 1.8 g / cm 3 is even more preferable.
  • the amount of the positive electrode mixture slurry applied to the positive electrode current collector on one side when forming the positive electrode mixture layer is 20 g / m 2 as the solid content of the positive electrode mixture from the viewpoint of energy density and input / output characteristics. It is preferably ⁇ 100 g / m 2 , more preferably 30 g / m 2 to 80 g / m 2 , and even more preferably 40 g / m 2 to 60 g / m 2 .
  • the material of the positive electrode current collector is not particularly limited, and among them, a metal material is preferable, and stainless steel coated with aluminum, molybdenum, and titanium nitride is more preferable.
  • the shape of the positive electrode current collector is not particularly limited, and materials processed into various shapes can be used. Examples of the metal material include a metal foil, a metal plate, a metal thin film, an expanded metal, and the like, and among them, it is preferable to use a metal thin film. The thin film may be formed in a mesh shape as appropriate.
  • the average thickness of the positive electrode current collector is not particularly limited, and is preferably 1 ⁇ m to 1 mm, preferably 3 ⁇ m to 100 ⁇ m, from the viewpoint of obtaining the strength required for the positive electrode current collector and good flexibility. It is more preferably present, and even more preferably 5 ⁇ m to 100 ⁇ m.
  • the dual ion battery of the present disclosure includes a negative electrode containing a negative electrode active material.
  • the negative electrode may be configured to be arranged on the negative electrode current collector and its surface and to have a negative electrode mixture layer containing a negative electrode active material.
  • the negative electrode active material is not particularly limited and preferably contains at least one of a carbon material, a metal and a metal compound, more preferably contains at least one of graphite, lithium titanate, an aluminum metal and a lithium metal, and graphite. And at least one of lithium titanate is more preferably contained.
  • the negative electrode active material may be a negative electrode active material capable of inserting and removing a cation, or may be at least one of a carbon material and a metal compound.
  • One type of negative electrode active material may be used alone, or two or more types may be used in combination.
  • carbon materials include graphite, carbon nanotubes, graphene, nanocarbon, graphite oxide, graphene oxide, hard carbon, soft carbon and the like.
  • the metal compound examples include lithium titanium composite oxides such as Li 4 Ti 5 O 12 , molybdenum oxide, niobium pentoxide, iron sulfide, titanium sulfide, titanium dioxide, titanium niobium oxide (TiNb 2 O 7 ), and iron oxide (Fe 2 ).
  • Li 4 Ti 5 O 12 molybdenum oxide, niobium pentoxide, iron sulfide, titanium sulfide, titanium dioxide, titanium niobium oxide (TiNb 2 O 7 ), and iron oxide (Fe 2 ).
  • Li 3 VO 4 lithium vanadium acid
  • WO 3 tungsten oxide
  • manganese oxide Mn 2 O 3
  • Y 2 Ti 2 O 5 S 2 Y 2 Ti 2 O 5 S 2 .
  • lithium titanium composite oxide (LTO) is preferable.
  • the lithium-titanium composite oxide examples include lithium titanate.
  • the negative electrode active material is a carbon material, preferably graphite
  • the conditions such as the average particle size and the specific surface area of the carbon material are the same as when the above-mentioned positive electrode active material is a carbon material, preferably graphite.
  • the content of the negative electrode active material is preferably 80% by mass or more, preferably 85% by mass, based on the total amount of the negative electrode mixture layer from the viewpoint of increasing the capacity of the battery.
  • the above is more preferable, and 90% by mass or more is further preferable.
  • the negative electrode mixture layer contains a negative electrode active material, a binder, and the like, and is arranged on the negative electrode current collector.
  • the negative electrode mixture layer is formed as follows, for example. Negative electrode active material, binder and other materials such as conductive agent and thickener used as needed are dissolved or dispersed in a dispersion solvent to form a slurry of negative electrode mixture, which is applied to the negative electrode current collector.
  • the negative electrode mixture layer can be formed by drying (wet method).
  • the conductive agent for the negative electrode carbon black such as acetylene black, amorphous carbon such as needle coke, etc. can be used.
  • the conductive agent for the negative electrode one type may be used alone, or two or more types may be used in combination. As described above, by adding the conductive agent to the negative electrode mixture, the effect of reducing the resistance of the electrode tends to be obtained.
  • the content of the conductive agent with respect to the mass of the negative electrode mixture layer is preferably 1% by mass to 10% by mass, preferably 2% by mass to 7% by mass, from the viewpoint of improving the conductivity and reducing the initial irreversible capacity. More preferably, it is more preferably 3% by mass to 5% by mass.
  • the content of the conductive agent is 1% by mass or more, it tends to be easy to obtain sufficient conductivity.
  • the content of the conductive agent is 10% by mass or less, the decrease in battery capacity tends to be suppressed.
  • the binder for the negative electrode is not particularly limited as long as it is a non-aqueous electrolytic solution or a material stable to the dispersion solvent used when forming the electrode.
  • resin-based polymers such as polyethylene, polypropylene, polyethylene terephthalate, cellulose, and nitrocellulose; rubber-like polymers such as SBR (styrene-butadiene rubber) and NBR (acrylonitrile-butadiene rubber); polyvinylidene fluoride (PVdF).
  • PVdF polyvinylidene fluoride
  • Polytetrafluoroethylene, polyvinylidene fluoride and the like examples thereof include polymer compositions having ionic conductivity of alkali metal ions (particularly lithium ions).
  • binder for the negative electrode one type may be used alone, or two or more types may be used in combination. Among these, it is preferable to use a fluoropolymer represented by cellulose, SBR, polyvinylidene fluoride and the like.
  • the content of the binder with respect to the mass of the negative electrode mixture layer is preferably 0.1% by mass to 20% by mass, more preferably 0.5% by mass to 15% by mass, and 0.6% by mass. It is more preferably% to 10% by mass.
  • the content of the binder is 0.1% by mass or more, the negative electrode active material can be sufficiently bound, and a sufficient mechanical strength of the negative electrode mixture layer tends to be obtained.
  • the content of the binder is 20% by mass or less, sufficient battery capacity and conductivity tend to be obtained.
  • the content of the binder with respect to the mass of the negative electrode mixture layer is 1% by mass to 15% by mass. It is preferable, it is more preferably 2% by mass to 10% by mass, and further preferably 3% by mass to 8% by mass.
  • Thickeners are used to adjust the viscosity of the slurry.
  • the thickener is not particularly limited, and specific examples thereof include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein, and salts thereof.
  • the thickener may be used alone or in combination of two or more.
  • the content of the thickener with respect to the mass of the negative electrode mixture layer is preferably 0.1% by mass to 5% by mass, preferably 0.5% by mass to 3% by mass, from the viewpoint of input / output characteristics and battery capacity. It is more preferably present, and further preferably 0.6% by mass to 2% by mass.
  • any solvent can be used as long as it can dissolve or disperse the negative electrode active material, the binder, and the conductive agent, thickener, etc. used as needed.
  • an aqueous solvent or an organic solvent may be used.
  • the aqueous solvent include water, alcohol, a mixed solvent of water and alcohol, and the like.
  • organic solvents examples include N-methyl-2-pyrrolidone (NMP), dimethylformamide, dimethylacetamide, methylethylketone, cyclohexanone, methyl acetate, methyl acrylate, tetrahydrofuran (THF), toluene, acetone, diethyl ether, dimethyl sulfoxide. , Benzene, xylene, hexane and the like. In particular, when an aqueous solvent is used, it is preferable to use a thickener.
  • the density of the negative electrode mixture layer is preferably 0.7 g / cm 3 to 2 g / cm 3 , more preferably 0.8 g / cm 3 to 1.9 g / cm 3 , and more preferably 0.9 g / cm. It is more preferably 3 to 1.8 g / cm 3 .
  • the density of the negative electrode mixture layer is 0.7 g / cm 3 or more, the conductivity between the negative electrode active materials can be improved, the increase in battery resistance can be suppressed, and the capacity per unit volume tends to be improved. ..
  • the density of the negative electrode mixture layer is 2 g / cm 3 or less, the initial irreversible capacity increases and the discharge characteristics deteriorate due to the decrease in the permeability of the non-aqueous electrolyte solution near the interface between the negative electrode current collector and the negative electrode active material. There is a tendency that the risk of inviting is reduced.
  • the amount of the negative electrode mixture slurry applied to the negative electrode current collector on one side when forming the negative electrode mixture layer is 20 g / m 2 as the solid content of the negative electrode mixture from the viewpoint of energy density and input / output characteristics. It is preferably ⁇ 100 g / m 2 , more preferably 30 g / m 2 to 80 g / m 2 , and even more preferably 40 g / m 2 to 60 g / m 2 .
  • the material of the negative electrode current collector is not particularly limited, and specific examples thereof include metal materials such as copper, nickel, stainless steel, and nickel-plated steel. Of these, copper is preferable from the viewpoint of ease of processing and cost.
  • the shape of the negative electrode current collector is not particularly limited, and materials processed into various shapes can be used. Specific examples include metal foil, metal plate, metal thin film, expanded metal and the like. Among them, metal foil is preferable, and copper foil is more preferable.
  • the copper foil includes a rolled copper foil formed by a rolling method and an electrolytic copper foil formed by an electrolytic method, both of which are suitable as a negative electrode current collector.
  • the average thickness of the negative electrode current collector is not particularly limited. For example, it is preferably 5 ⁇ m to 50 ⁇ m, more preferably 8 ⁇ m to 40 ⁇ m, and even more preferably 9 ⁇ m to 30 ⁇ m. When the average thickness of the negative electrode current collector is less than 25 ⁇ m, the strength should be improved by using a strong copper alloy (phosphor bronze, titanium copper, Corson alloy, Cu—Cr—Zr alloy, etc.) rather than pure copper. Can be done.
  • a strong copper alloy phosphor bronze, titanium copper, Corson alloy, Cu—Cr—Zr
  • the dual ion battery of the present disclosure may include a separator that insulates between the positive electrode and the negative electrode between the positive electrode and the negative electrode.
  • the separator is not particularly limited as long as it insulates between the positive electrode and the negative electrode, has ion permeability, and has resistance to oxidizing property on the positive electrode side and reducing property on the negative electrode side.
  • a resin, an inorganic substance, or the like is used.
  • the resin an olefin polymer, a fluorine polymer, a cellulosic polymer, a polyimide, nylon and the like are used.
  • a porous sheet or a non-woven fabric made of polyolefin such as polyethylene or polypropylene as a raw material.
  • oxides such as alumina and silicon dioxide, nitrides such as aluminum nitride and silicon nitride, and glass are used.
  • a fiber-shaped or particle-shaped inorganic substance attached to a thin-film-shaped base material such as a non-woven fabric, a woven fabric, or a microporous film can be used as a separator.
  • the thin film-shaped substrate those having a pore diameter of 0.01 ⁇ m to 1 ⁇ m and an average thickness of 5 ⁇ m to 50 ⁇ m are preferably used.
  • a fiber-shaped or particle-shaped inorganic substance formed into a composite porous layer by using a binder such as a resin can also be used as a separator.
  • the composite porous layer may be formed on the surface of another separator to form a multilayer separator. Further, this composite porous layer may be formed on the surface of the positive electrode or the negative electrode to serve as a separator.
  • the method for manufacturing a dual ion battery of the present disclosure is a step of accommodating a positive electrode containing a positive electrode active material capable of inserting and removing anions, a negative electrode containing a negative electrode active material, and the above-mentioned electrolyte of the present disclosure in a battery container ( Containment process).
  • the manufacturing method of the present disclosure includes a step (accommodation step) of accommodating a positive electrode, a negative electrode, and the above-mentioned electrolyte of the present disclosure in a battery container.
  • each component of the dual ion battery is housed in a battery container.
  • the separator may be housed in the battery container so that the separator that insulates between the positive electrode and the negative electrode is arranged between the positive electrode and the negative electrode.
  • the above-mentioned electrolyte of the present disclosure may be supplied into the battery container in a state where the separator is arranged in the battery container between the positive electrode and the negative electrode and, if necessary, the positive electrode and the negative electrode.
  • Example 1 An electrolyte, a positive electrode and a negative electrode were prepared as follows, and a dual ion battery was prepared using each of them.
  • a mixture was obtained by mixing 98 parts by mass of graphite (Showa Denko Materials Co., Ltd.) as a positive electrode active material and 2 parts by mass of carboxymethyl cellulose (# 2200, Daicel Co., Ltd.) as a binder. An appropriate amount of water was added to the mixture and kneaded to obtain a paste-like positive electrode mixture slurry.
  • the positive electrode mixture slurry was applied to one side of an aluminum foil having a thickness of 15 ⁇ m, which is a current collector for the positive electrode, so that the solid content of the positive electrode mixture was 45 g / m 2 . Then, it was dried and a dry coating film was obtained on the current collector.
  • This dried coating film was consolidated by pressing until the solid content density of the positive electrode mixture reached 1.6 g / cm 3 , to prepare a positive electrode laminate having a positive electrode active material layer formed on the current collector.
  • the total thickness of the current collector and the positive electrode active material layer was 30 ⁇ m.
  • the produced positive electrode laminate was cut into a width of 30 mm and a length of 45 mm to obtain a positive electrode plate, and a positive electrode was produced by attaching a positive electrode current collecting tab to the positive electrode plate.
  • the negative electrode mixture slurry was applied to one side of a copper foil having a thickness of 10 ⁇ m, which is a current collector for the negative electrode, so that the solid content of the negative electrode mixture was 45 g / m 2 . Then, it was subjected to a drying treatment, and a dry coating film was obtained. This dried coating film was consolidated by pressing until the solid content density of the negative electrode mixture reached 1.6 g / cm 3 , to prepare a negative electrode laminate having a negative electrode active material layer formed on the current collector. The total thickness of the current collector and the negative electrode active material layer was 30 ⁇ m.
  • the produced negative electrode laminate was cut into a width of 31 mm and a length of 46 mm to form a negative electrode plate, and a negative electrode was produced by attaching a negative electrode current collecting tab to the negative electrode plate.
  • the prepared positive electrode and the negative electrode were opposed to each other via a glass fiber filter paper (Whatman, GF / D) having a thickness of 680 ⁇ m, a width of 35 mm, and a length of 50 mm, which was a separator, to prepare a laminated electrode group.
  • a glass fiber filter paper (Whatman, GF / D) having a thickness of 680 ⁇ m, a width of 35 mm, and a length of 50 mm, which was a separator, to prepare a laminated electrode group.
  • LiTFSI Lithium bis (trifluoromethanesulfonyl) imide
  • Pyr13TFSI 1-methyl-1-propylpyrrolidinium bis (trifluoromethanesulfonyl) imide
  • ES ethylene sulfate
  • the laminated electrode group was housed in a battery exterior made of an aluminum laminated film, and 1.3 mL of the prepared electrolytic solution was injected. Then, the dual ion battery of Example 1 was produced by closing the opening of the battery container with the positive electrode current collecting tab and the negative electrode current collecting tab taken out from the opening.
  • the aluminum laminated film was a laminated body of polyethylene terephthalate (PET) film / aluminum foil / sealant layer (polypropylene).
  • the configurations of the manufactured dual ion battery and the electrode group are shown in FIGS. 1 and 2, respectively.
  • the dual ion battery 10 shown in FIG. 1 contains the electrode group 20 and the electrolytic solution in the battery exterior body 6, and the positive electrode current collecting tab 2 and the negative electrode current collecting tab 4 are taken out of the battery exterior body 6. It is configured to be.
  • the electrode group 20 shown in FIG. 2 is a stack of a positive electrode plate 1 to which a positive electrode current collector tab 2 is attached, a separator 5, and a negative electrode plate 3 to which a negative electrode current collector tab 4 is attached.
  • Example 2 An electrolytic solution was prepared and prepared in the same manner as in Example 1 except that 1-butyl-1-methylpyrrolidinium bis (trifluoromethanesulfonyl) imide (Pyr14TFSI) was used instead of Pyr13TFSI in Example 1.
  • the dual ion battery of Example 2 was produced in the same manner as in Example 1 using the electrolytic solution.
  • Comparative Example 1 An electrolytic solution was prepared in the same manner as in Example 1 except that 1-ethyl-3-methylimidazole bis (trifluoromethanesulfonyl) imide was used instead of Pyr13TFSI in Example 1, and the prepared electrolytic solution was used. A dual ion battery of Comparative Example 1 was produced in the same manner as in Example 1.
  • Example 2 lithium bis (fluorosulfonyl) imide was used instead of lithium bis (trifluoromethanesulfonyl) imide, and 1-ethyl-3-methylimidazole bis (fluorosulfonyl) imide was used instead of Pyr13TFSI.
  • An electrolytic solution was prepared in the same manner as in Example 1, and a dual ion battery of Comparative Example 2 was prepared in the same manner as in Example 1 using the prepared electrolytic solution.
  • the dual ion secondary batteries manufactured in Examples 1 and 2 are charged in the first cycle (1 cyc), the second cycle (2 cyc), and the third cycle (3 cyc). There was no significant difference in the discharge test results and the capacity was maintained.
  • FIGS. 5 and 6 in the dual ion secondary batteries manufactured in Comparative Examples 1 and 2, there is a large difference in the charge / discharge test results between the first cycle and the second cycle. , The capacity could not be maintained either.
  • FIG. 7 in the dual ion secondary battery manufactured in Comparative Example 3 there is a difference in the charge / discharge test results between the first cycle and the third cycle, and the capacity increases with each cycle. It was declining.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

Provided is an electrolyte that contains a lithium salt, heterocyclic non-aromatic cations containing elemental nitrogen in the structure thereof, and bis(trifluoromethanesulfonyl)imide anions and that is used in a dual ion battery comprising a positive electrode containing a positive-electrode active material that can insert/desorb anions and a negative electrode containing a negative-electrode active material.

Description

電解質及びデュアルイオン電池Electrolyte and dual ion battery
 本発明は、電解質及びデュアルイオン電池に関する。 The present invention relates to an electrolyte and a dual ion battery.
 近年、各種モビリティ、スマートグリッド等向けに高性能な二次電池が必要とされている。中でも小型電気自動車のようなパーソナルモビリティ、電力周波数平準化等に用いられる二次電池にはさらなる入出力特性の改善が求められている。 In recent years, high-performance secondary batteries have been required for various types of mobility, smart grids, etc. In particular, secondary batteries used for personal mobility, power frequency leveling, etc., such as small electric vehicles, are required to have further improved input / output characteristics.
 入出力特性に優れる二次電池としてデュアルイオン電池(DIB)が注目されている。デュアルイオン電池は、正極に電解質中のアニオンが挿入脱離し、負極に電解質中のカチオンが挿入脱離することで充放電が進行する二次電池である。DIBの中でも特に正極及び負極に炭素材料が用いられる電池をデュアルカーボン電池(DCB)という。 Dual-ion batteries (DIBs) are attracting attention as secondary batteries with excellent input / output characteristics. The dual ion battery is a secondary battery in which charging and discharging proceed by inserting and desorbing an anion in an electrolyte into a positive electrode and inserting and desorbing a cation in an electrolyte into a negative electrode. Among the DIBs, a battery in which a carbon material is used for the positive electrode and the negative electrode is called a dual carbon battery (DCB).
 例えば、特許文献1には、アニオンを挿入乃至脱離可能な正極活物質を含む正極と、負極活物質を含む負極と、非水溶媒、ハロゲン原子を含む電解質塩、ハロゲン原子を含むアニオンを結合可能な部位を有する化合物、及び環状スルホン酸エステルを含有する非水電解液と、を有することを特徴とする非水電解液蓄電素子が提案されている。特許文献1にて提案されている非水電解液蓄電素子では、非水電解液の分解を防止することで充放電効率、放電容量、及びサイクル特性をいずれも向上させることができる。 For example, Patent Document 1 describes a positive electrode containing a positive electrode active material into which an anion can be inserted or removed, a negative electrode containing a negative electrode active material, a non-aqueous solvent, an electrolyte salt containing a halogen atom, and an anion containing a halogen atom. A non-aqueous electrolyte storage element having a compound having a possible moiety and a non-aqueous electrolytic solution containing a cyclic sulfonic acid ester has been proposed. In the non-aqueous electrolyte storage element proposed in Patent Document 1, the charge / discharge efficiency, the discharge capacity, and the cycle characteristics can be improved by preventing the decomposition of the non-aqueous electrolyte.
特開2014-96528号公報Japanese Unexamined Patent Publication No. 2014-96528
 特許文献1では、ジメチルカーボネート等の非水溶媒を用いることが開示されている。一方、本発明者らは、イオン液体は不揮発性であり、ジメチルカーボネート等の非水溶媒と比較して安定性が高いことに着目し、デュアルイオン電池の電解質にイオン液体を適用することを検討した。 Patent Document 1 discloses the use of a non-aqueous solvent such as dimethyl carbonate. On the other hand, the present inventors have focused on the fact that the ionic liquid is non-volatile and has high stability as compared with a non-aqueous solvent such as dimethyl carbonate, and considered applying the ionic liquid to the electrolyte of the dual ion battery. did.
 しかし、デュアルイオン電池の電解質にイオン液体を適用した際、電気化学反応を可逆的に行うことができず、このデュアルイオン電池を二次電池として機能させることができない場合があることが分かった。 However, it was found that when an ionic liquid was applied to the electrolyte of a dual-ion battery, the electrochemical reaction could not be performed reversibly, and this dual-ion battery could not function as a secondary battery.
 本開示の一形態は上記従来の事情に鑑みてなされたものであり、電気化学反応を可逆的に行うことが可能であり、二次電池として機能させることができるデュアルイオン電池を製造可能な電解質、及び電気化学反応を可逆的に行うことが可能なデュアルイオン電池を提供することを目的とする。 One form of the present disclosure is made in view of the above-mentioned conventional circumstances, and is an electrolyte capable of producing a dual ion battery capable of reversibly performing an electrochemical reaction and functioning as a secondary battery. , And a dual ion battery capable of reversibly performing an electrochemical reaction.
 前記課題を達成するための具体的手段は以下の通りである。
<1> リチウム塩、窒素元素を構造中に含む複素環式非芳香族カチオン及びビス(トリフルオロメタンスルホニル)イミドアニオンを含み、アニオンを挿入脱離可能な正極活物質を含む正極と、負極活物質を含む負極と、を備えるデュアルイオン電池に用いるための電解質。
<2> 前記複素環式非芳香族カチオンは、ピロリジニウムカチオン及びピペリジニウムカチオンの少なくとも一方のカチオンを含む<1>に記載の電解質。
<3> サルファイト化合物、有機ボラン化合物、環状スルホン酸エステル及びジニトリル化合物からなる群より選択される少なくとも1種の化合物をさらに含む<1>又は<2>に記載の電解質。
<4> 前記複素環式非芳香族カチオンは、ピロリジニウムカチオンを含む<1>~<3>のいずれか1つに記載の電解質。
Specific means for achieving the above-mentioned problems are as follows.
<1> A positive electrode containing a positive electrode active material containing a lithium salt, a heterocyclic non-aromatic cation containing a nitrogen element in its structure, and a bis (trifluoromethanesulfonyl) imide anion, and an anion can be inserted and removed, and a negative electrode active material. An electrolyte for use in dual ion batteries, including a negative electrode.
<2> The electrolyte according to <1>, wherein the heterocyclic non-aromatic cation contains at least one cation of a Helicobacter pylori cation and a piperidinium cation.
<3> The electrolyte according to <1> or <2>, further comprising at least one compound selected from the group consisting of a sulfite compound, an organic borane compound, a cyclic sulfonic acid ester, and a dinitrile compound.
<4> The electrolyte according to any one of <1> to <3>, wherein the heterocyclic non-aromatic cation contains a Helicobacter pyloridinium cation.
<5> アニオンを挿入脱離可能な正極活物質を含む正極と、負極活物質を含む負極と、<1>~<4>のいずれか1つの電解質と、を備えるデュアルイオン電池。
<6> 前記負極活物質は、炭素材料、金属及び金属化合物の少なくとも一つを含む<1>~<5>のいずれか1つに記載のデュアルイオン電池。
<7> 前記負極活物質は、グラファイト、チタン酸リチウム、アルミニウム金属及びリチウム金属の少なくとも一つを含む<6>に記載のデュアルイオン電池。
<5> A dual ion battery comprising a positive electrode containing a positive electrode active material capable of inserting and removing anions, a negative electrode containing a negative electrode active material, and an electrolyte of any one of <1> to <4>.
<6> The dual ion battery according to any one of <1> to <5>, wherein the negative electrode active material contains at least one of a carbon material, a metal, and a metal compound.
<7> The dual ion battery according to <6>, wherein the negative electrode active material contains at least one of graphite, lithium titanate, aluminum metal, and lithium metal.
 本開示の一形態によれば、電気化学反応を可逆的に行うことが可能であり、二次電池として機能させることができるデュアルイオン電池を製造可能な電解質、及び電気化学反応を可逆的に行うことが可能なデュアルイオン電池を提供することができる。 According to one embodiment of the present disclosure, an electrochemical reaction can be reversibly carried out, an electrolyte capable of producing a dual ion battery capable of functioning as a secondary battery, and an electrochemical reaction can be carried out reversibly. It is possible to provide a dual ion battery capable of being capable.
本開示のデュアルイオン電池の一例を示す斜視図である。It is a perspective view which shows an example of the dual ion battery of this disclosure. 電極群を構成する正極板、負極板、セパレータ及びガス吸蔵部材を示す斜視図である。It is a perspective view which shows the positive electrode plate, the negative electrode plate, a separator and a gas storage member which make up an electrode group. 実施例1における充放電試験の結果を示すグラフである。It is a graph which shows the result of the charge / discharge test in Example 1. FIG. 実施例2における充放電試験の結果を示すグラフである。It is a graph which shows the result of the charge / discharge test in Example 2. 比較例1における充放電試験の結果を示すグラフである。It is a graph which shows the result of the charge / discharge test in the comparative example 1. 比較例2における充放電試験の結果を示すグラフである。It is a graph which shows the result of the charge / discharge test in the comparative example 2. 比較例3における充放電試験の結果を示すグラフである。It is a graph which shows the result of the charge / discharge test in the comparative example 3.
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。また、本開示中の技術的思想の範囲内において、当業者による様々な変更及び修正が可能である。
 本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。各成分に該当する物質が複数種存在する場合、各成分の含有率は、特に断らない限り、当該複数種の物質の合計の含有率を意味する。
 本開示において各成分に該当する粒子は複数種含んでいてもよい。各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、当該複数種の粒子の混合物についての値を意味する。
 本開示において「層」又は「膜」との語には、当該層又は膜が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
 本開示において、正極合剤又は負極合剤の「固形分」とは、正極合剤のスラリー又は負極合剤のスラリーから有機溶媒等の揮発性成分を除いた残りの成分を意味する。
 本開示において、「アニオンを挿入脱離可能な正極活物質」とは正極活物質の結晶子中にアニオンが可逆的に挿入及び脱離することが可能な正極活物質を意味する。
 本開示において、「カチオンを挿入脱離可能な負極活物質」とは負極活物質の結晶子中にカチオンが可逆的に挿入及び脱離することが可能な負極活物質を意味する。そのため、リチウム金属のようにリチウムイオンの析出及び析出したリチウム金属の溶解を繰り返す負極活物質は、本開示のカチオンを挿入脱離可能な負極活物質に含まれない。
Hereinafter, embodiments for carrying out the present invention will be described in detail. However, the present invention is not limited to the following embodiments. In the following embodiments, the components (including element steps and the like) are not essential unless otherwise specified. The same applies to the numerical values and their ranges, and does not limit the present invention. In addition, various changes and modifications by those skilled in the art are possible within the scope of the technical idea disclosed in the present disclosure.
In the present disclosure, the term "process" includes, in addition to a process independent of other processes, the process as long as the purpose of the process is achieved even if it cannot be clearly distinguished from the other process. ..
In the present disclosure, the numerical range indicated by using "-" includes the numerical values before and after "-" as the minimum value and the maximum value, respectively.
In the numerical range described stepwise in the present disclosure, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of the numerical range described in another stepwise description. .. Further, in the numerical range described in the present disclosure, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
In the present disclosure, each component may contain a plurality of applicable substances. When there are a plurality of substances corresponding to each component, the content rate of each component means the total content rate of the plurality of substances unless otherwise specified.
In the present disclosure, a plurality of types of particles corresponding to each component may be contained. When there are a plurality of types of particles corresponding to each component, the particle size of each component means a value for a mixture of the plurality of types of particles unless otherwise specified.
In the present disclosure, the term "layer" or "membrane" is used only in a part of the region, in addition to the case where the layer or the membrane is formed in the entire region when the region is observed. The case where it is formed is also included.
In the present disclosure, the "solid content" of the positive electrode mixture or the negative electrode mixture means the remaining components obtained by removing volatile components such as organic solvents from the slurry of the positive electrode mixture or the slurry of the negative electrode mixture.
In the present disclosure, the "positive electrode active material capable of inserting and removing anions" means a positive electrode active material capable of reversibly inserting and removing anions into the crystals of the positive electrode active material.
In the present disclosure, the "negative electrode active material capable of inserting and removing a cation" means a negative electrode active material capable of reversibly inserting and removing a cation into a crystallite of the negative electrode active material. Therefore, a negative electrode active material that repeatedly precipitates lithium ions and dissolves the precipitated lithium metal, such as lithium metal, is not included in the negative electrode active material capable of inserting and removing the cation of the present disclosure.
<電解質>
 本開示の電解質は、リチウム塩、窒素元素を構造中に含む複素環式非芳香族カチオン及びビス(トリフルオロメタンスルホニル)イミドアニオンを含み、アニオンを挿入脱離可能な正極活物質を含む正極と、負極活物質を含む負極と、を備えるデュアルイオン電池に用いるための電解質である。
<Electrolyte>
The electrolytes of the present disclosure include a lithium salt, a heterocyclic non-aromatic cation containing a nitrogen element in the structure, and a bis (trifluoromethanesulfonyl) imide anion, and a positive electrode containing a positive electrode active material capable of inserting and removing the anion. An electrolyte for use in a dual ion battery comprising a negative electrode containing a negative electrode active material.
 本開示の電解質を用いることで電気化学反応を可逆的に行うことが可能であり、二次電池として機能させることができるデュアルイオン電池を製造可能である。デュアルイオン電池の正極は4.5V以上の高い電位で反応が進行するため、電解液には耐酸化性が要求される。ピロリジニウムカチオン等の複素環式非芳香族カチオン及びビス(トリフルオロメタンスルホニル)イミドアニオンを含むイオン液体は電気化学的な安定性に優れるため、可逆的に反応が進行すると考えられる。 By using the electrolyte of the present disclosure, it is possible to reversibly carry out an electrochemical reaction, and it is possible to manufacture a dual ion battery that can function as a secondary battery. Since the positive electrode of the dual ion battery undergoes the reaction at a high potential of 4.5 V or more, the electrolytic solution is required to have oxidation resistance. Since the ionic liquid containing a heterocyclic non-aromatic cation such as a pyrrolidinium cation and a bis (trifluoromethanesulfonyl) imide anion has excellent electrochemical stability, it is considered that the reaction proceeds reversibly.
(リチウム塩)
 本開示の電解質は、リチウム塩を含む。リチウム塩としては、LiPF、LiBF、LiFSI(リチウムビス(フルオロスルホニル)イミド)、LiTFSI(リチウムビス(トリフルオロメタンスルホニル)イミド)、LiClO、LiB(C、LiCHSO、LiCFSO、LiN(SOCFCF等が挙げられる。リチウム塩は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(Lithium salt)
The electrolytes of the present disclosure include lithium salts. Lithium salts include LiPF 6 , LiBF 4 , LiFSI (lithium bis (fluorosulfonyl) imide), LiTFSI (lithium bis (trifluoromethanesulfonyl) imide), LiClO 4 , LiB (C 6 H 5 ) 4 , LiCH 3 SO 3 , LiCF 3 SO 3 , LiN (SO 2 CF 2 CF 3 ) 2 , and the like. As the lithium salt, one kind may be used alone, or two or more kinds may be used in combination.
 電解質におけるリチウム塩の濃度は、0.5mol/L以上であることが好ましく、1.5mol/L以上であることがより好ましい。リチウム塩の濃度の上限値は特に制限はなく、3.0mol/L以下であってもよく、2.5mol/L以下であってもよい。リチウム塩の濃度を0.5mol/L以上とすることで、デュアルイオン電池の充放電サイクル特性をより向上させることができる。 The concentration of the lithium salt in the electrolyte is preferably 0.5 mol / L or more, and more preferably 1.5 mol / L or more. The upper limit of the concentration of the lithium salt is not particularly limited and may be 3.0 mol / L or less, or 2.5 mol / L or less. By setting the concentration of the lithium salt to 0.5 mol / L or more, the charge / discharge cycle characteristics of the dual ion battery can be further improved.
(特定のカチオン)
 本開示の電解質は、窒素元素を構造中に含む複素環式非芳香族カチオン(以下、「特定のカチオン」とも称する。)を含む。
(Specific cation)
The electrolyte of the present disclosure includes a heterocyclic non-aromatic cation (hereinafter, also referred to as “specific cation”) containing a nitrogen element in the structure.
 複素環式非芳香族カチオンとしては、芳香族性を持たない複素環を含むカチオンであれば特に限定されず、5員環、6員環等の環状構造を骨格中に含むことが好ましい。
 複素環式非芳香族カチオンは一種であってもよく、二種以上であってもよい。
The heterocyclic non-aromatic cation is not particularly limited as long as it is a cation containing a heterocycle having no aromaticity, and it is preferable that the skeleton contains a cyclic structure such as a 5-membered ring or a 6-membered ring.
The heterocyclic non-aromatic cation may be one kind or two or more kinds.
 5員環、6員環等の環状構造としては、ピロリジン、ピペリジン等の複素単環化合物に由来する構造が好ましい。 As the cyclic structure such as a 5-membered ring or a 6-membered ring, a structure derived from a complex monocyclic compound such as pyrrolidine or piperidine is preferable.
 複素環式非芳香族カチオンとしては、1-ブチル-1-メチルピロリジニウムカチオン、1-メチル-1-プロピルピロリジニウムカチオン等のピロリジニウムカチオン、1-ブチル-1-メチルピペリジニウムカチオン、1-メチル-1-プロピルピペリジニウムカチオン等のピペリジニウムカチオンなどが挙げられる。中でも、電気化学的な安定性の観点から、1-ブチル-1-メチルピロリジニウムカチオン、1-メチル-1-プロピルピロリジニウムカチオン等のピロリジニウムカチオンが好ましい。 Examples of the heterocyclic non-aromatic cation include a pyrrolidinium cation such as 1-butyl-1-methylpyrrolidinium cation and a 1-methyl-1-propylpyrrolidinium cation, and 1-butyl-1-methylpiperidinium. Examples thereof include cations, piperidinium cations such as 1-methyl-1-propylpiperidinium cations, and the like. Among them, pyrrolidinium cations such as 1-butyl-1-methylpyrrolidinium cation and 1-methyl-1-propylpyrrolidinium cation are preferable from the viewpoint of electrochemical stability.
(ビス(トリフルオロメタンスルホニル)イミドアニオン)
 本開示の電解質は、ビス(トリフルオロメタンスルホニル)イミドアニオン((CFSO)を含む。
 本開示の電解質に含まれる特定のカチオン及びビス(トリフルオロメタンスルホニル)イミドアニオンは、リチウム塩の溶媒として機能し得る。
(Bis (trifluoromethanesulfonyl) imide anion)
The electrolytes of the present disclosure include bis (trifluoromethanesulfonyl) imide anions ((CF 3 SO 2 ) 2 N- ) .
Certain cations and bis (trifluoromethanesulfonyl) imide anions contained in the electrolytes of the present disclosure can serve as solvents for lithium salts.
 本開示の電解質は、特定のカチオン以外のカチオン(以下、「その他のカチオン」とも称する。)を含んでいてもよく、ビス(トリフルオロメタンスルホニル)イミドアニオン以外のアニオン(以下、「その他のアニオン」とも称する。)を含んでいてもよい。
 その他のカチオン及びその他のアニオンはそれぞれ独立に、一種であってもよく、二種以上であってもよい。
The electrolyte of the present disclosure may contain cations other than specific cations (hereinafter, also referred to as “other cations”), and anions other than bis (trifluoromethanesulfonyl) imide anions (hereinafter, “other anions”). Also referred to as)).
The other cations and the other anions may be one kind or two or more kinds independently of each other.
 その他のカチオンとしては、芳香族性を持たない複素環を含まないカチオンであれば特に限定されず、例えば、窒素元素、リン元素、硫黄元素及び酸素元素からなる群より選択される少なくとも1つの元素を構造中に含み、鎖状構造、5員環、6員環等の環状構造などを骨格中に含むカチオンが挙げられる。 The other cations are not particularly limited as long as they are cations that do not contain a heterocyclic ring having no aromaticity, and for example, at least one element selected from the group consisting of an element of nitrogen, an element of phosphorus, an element of sulfur and an element of oxygen. In the structure, a cation containing a chain structure, a cyclic structure such as a 5-membered ring, a 6-membered ring, or the like in the skeleton can be mentioned.
 その他のカチオンにおいて、5員環、6員環等の環状構造としては、フラン、チオフェン、ピロール、ピリジン、オキサゾール、イソオキサゾール、チアゾール、イソチアゾール、フラザン、イミダゾール、ピラゾール、ピラジン、ピリミジン、ピリダジン等の複素単環化合物に由来する構造、ベンゾフラン、イソベンゾフラン、インドール、イソインドール、インドリジン、カルバゾール等の縮合複素環化合物に由来する構造などが挙げられる In other cations, the cyclic structure such as a 5-membered ring or a 6-membered ring includes furan, thiophene, pyrrole, pyridine, oxazole, isooxazole, thiazole, isothiazole, frazane, imidazole, pyrazole, pyrazine, pyrimidine, pyridazine and the like. Examples thereof include a structure derived from a heterocyclic compound, a structure derived from a fused heterocyclic compound such as benzofuran, isobenzofuran, indole, isoindole, indridin, and carbazole.
 その他のカチオンとしては、特に限定されず、トリエチルアンモニウムカチオン等のアルキルアンモニウムカチオン、エチルメチルイミダゾリウムカチオン、ブチルメチルイミダゾリウムカチオン等のイミダゾリウムカチオン、1-エチルピリジニウムカチオン等のピリジニウムカチオンなどが挙げられる。 The other cations are not particularly limited, and examples thereof include alkylammonium cations such as triethylammonium cations, imidazolium cations such as ethylmethylimidazolium cations and butylmethylimidazolium cations, and pyridinium cations such as 1-ethylpyridinium cations. ..
 その他のアニオンとしては、特に限定されず、例えば、ビス(フルオロスルホニル)イミドアニオン(〔N(SOF))、BF 、PF 、AsF 、ClO、NO 、CFSO 、CFCO 及びCHCO が挙げられる。 The other anions are not particularly limited, and are, for example, bis (fluorosulfonyl) imide anions ([N (SO2 F) 2 ] - ), BF 4- , PF 6- , AsF 6- , ClO 4 , NO 3 - , CF 3 SO 3- , CF 3 CO 2- and CH 3 CO 2- .
 本開示の電解質において、特定のカチオン及びその他のカチオンの合計に対する特定のカチオンの含有率は、50モル%~100モル%であることが好ましく、70モル%~100モル%であることがより好ましく、90モル%~100モル%であることがさらに好ましい。 In the electrolytes of the present disclosure, the content of the specific cation with respect to the total of the specific cation and other cations is preferably 50 mol% to 100 mol%, more preferably 70 mol% to 100 mol%. , 90 mol% to 100 mol% is more preferable.
 本開示の電解質において、ビス(トリフルオロメタンスルホニル)イミドアニオン及びその他のアニオンの合計に対するビス(トリフルオロメタンスルホニル)イミドアニオン
の含有率は、50モル%~100モル%であることが好ましく、70モル%~100モル%であることがより好ましく、90モル%~100モル%であることがさらに好ましい。
In the electrolytes of the present disclosure, the content of the bis (trifluoromethanesulfonyl) imide anion with respect to the total of the bis (trifluoromethanesulfonyl) imide anion and other anions is preferably 50 mol% to 100 mol%, preferably 70 mol%. It is more preferably from ~ 100 mol%, still more preferably from 90 mol% to 100 mol%.
(特定の化合物)
 本開示の電解質は、デュアルイオン電池のサイクル特性を向上させる観点及び容量を好適に維持する観点から、サルファイト化合物、有機ボラン化合物、環状スルホン酸エステル及びジニトリル化合物からなる群より選択される少なくとも1種の化合物(以下、「特定の化合物」とも称する。)をさらに含むことが好ましい。特定の化合物を、1種単独で使用してもよいし、2種以上併用してもよい。
(Specific compound)
The electrolyte of the present disclosure is at least one selected from the group consisting of a sulfite compound, an organic borane compound, a cyclic sulfonic acid ester and a dinitrile compound from the viewpoint of improving the cycle characteristics of the dual ion battery and from the viewpoint of preferably maintaining the capacity. It is preferable that the compound of the species (hereinafter, also referred to as “specific compound”) is further contained. The specific compound may be used alone or in combination of two or more.
 サルファイト化合物としては、特に限定されず、エチレンサルファイト、プロピレンサルファイト、ブチレンサルファイト、ペンテンサルファイト、ジメチルサルファイト、ジプロパルギルサルファイト等が挙げられる。これらの中でも、容量を好適に維持しつつ、副反応を抑制することが可能となる観点から、エチレンサルファイトが好ましい。 The sulphite compound is not particularly limited, and examples thereof include ethylene sulphite, propylene sulphite, butylene sulphite, pentenesulfite, dimethylsulfite, and dipropargyl sulphite. Among these, ethylene sulphite is preferable from the viewpoint of being able to suppress side reactions while maintaining a suitable capacity.
 有機ボラン化合物としては、特に限定されず、トリス(ぺンタフルオロフェニル)ボラン、トリス(ヘキサフルオロイソプロピル)ボレート、トリメシチルボラン、トリス(1,2ジメチルプロピル)ボラン、トリス(パラフルオロフェニル)ボラン、トリス(パラクロロフェニル)ボラン、(CHO)B、(CCHO)B、[(CFCHO]B、[(CFC(C)O]B、(CO)B、(FCO)B、(FO)B、(FHO)B、(CO)B、(CFO)B、[(CFO]B、[(CFCHO]B、[CFCHO]B、(CFO)B等が挙げられる。これらの中でも、トリス(ぺンタフルオロフェニル)ボランが好ましい。 The organic borane compound is not particularly limited, and is limited to tris (pentafluorophenyl) borane, tris (hexafluoroisopropyl) borate, trimesityl borane, tris (1,2 dimethylpropyl) borane, tris (parafluorophenyl) borane, and the like. Tris (parachlorophenyl) borane, (CH 3 O) 3 B, (C 3 F 7 CH 2 O) 3 B, [(CF 3 ) 2 CHO] 3 B, [(CF 3 ) 2 C (C 6 H 5 ) ) O] 3 B, (C 6 H 5 O) 3 B, (FC 6 H 4 O) 3 B, (F 2 C 6 H 3 O) 3 B, (F 4 C 6 HO) 3 B, (C) 6 F 5 O) 3 B, (CF 3 C 6 H 4 O) 3 B, [(CF 3 ) 2 C 6 H 3 O] 3 B, [(CF 3 ) 2 CHO] 3 B, [CF 3 CH] 2 O] 3 B, (CF 3 O) 3 B and the like. Among these, tris (pentafluorophenyl) borane is preferable.
 環状スルホン酸エステルとしては、特に限定されず、1,3-プロパンスルトン、1,4-ブタンスルトン、1,3-ブタンスルトン、2,4-ブタンスルトン等のモノスルホン酸エステル;メチレンメタンジスルホン酸エステル、エチレンメタンジスルホン酸エステル等のジスルホン酸エステルなどが挙げられる。これらの中でも、1,3-プロパンスルトンが好ましい。 The cyclic sulfonic acid ester is not particularly limited, and is a monosulfonic acid ester such as 1,3-propane sulton, 1,4-butane sulton, 1,3-butane sulton, and 2,4-butan sulton; methylenemethanedisulfonic acid ester, ethylene. Examples thereof include disulfonic acid esters such as methane disulfonic acid ester. Of these, 1,3-propanesulton is preferable.
 ジニトリル化合物としては、特に限定されず、マロノニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、スベロニトリル、アゼラニトリル、セバコニトリル、ウンデカンジニトリル、ドデカンジニトリル等が挙げられる。 The dinitrile compound is not particularly limited, and examples thereof include malononitrile, succinonitrile, glutaronitrile, adiponitrile, pimeronitrile, suberonitrile, azelanitrile, sebaconitrile, undecanenitrile, and dodecanenitrile.
 本開示の電解質にて、特定の化合物の含有率は、電解質全量に対して0.1質量%~5.0質量%であることが好ましく、0.3質量%~4.0質量%であることがより好ましく、0.5質量%~3.0質量%であることがさらに好ましい。
 特定の化合物の含有率が0.1質量%以上であることにより、サイクル特性により優れるデュアルイオン電池を製造可能である傾向にあり、特定の化合物の含有率が5.0質量%以下であることにより、副反応が抑制できる傾向にある。
In the electrolytes of the present disclosure, the content of the specific compound is preferably 0.1% by mass to 5.0% by mass, preferably 0.3% by mass to 4.0% by mass, based on the total amount of the electrolyte. More preferably, it is more preferably 0.5% by mass to 3.0% by mass.
When the content of a specific compound is 0.1% by mass or more, it tends to be possible to manufacture a dual ion battery having better cycle characteristics, and the content of a specific compound is 5.0% by mass or less. As a result, side reactions tend to be suppressed.
(環状カーボネート)
 本開示の電解質は、環状カーボネートを含んでいてもよい。環状カーボネートとしては、例えば、ビニレンカーボネート(VC)、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)及びフルオロエチレンカーボネート(FEC)が挙げられる。
 環状カーボネートを、1種単独で使用してもよいし、2種以上併用してもよい。
(Cyclic carbonate)
The electrolyte of the present disclosure may contain a cyclic carbonate. Examples of the cyclic carbonate include vinylene carbonate (VC), propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC) and fluoroethylene carbonate (FEC).
Cyclic carbonate may be used alone or in combination of two or more.
 環状カーボネートの含有率は、電解質全量に対して0.05質量%~3質量%であってもよく、0.2質量%~1.5質量%であってもよく、0.3質量%~1.2質量%であってもよく、0.4質量%~0.9質量%であってもよい。 The content of the cyclic carbonate may be 0.05% by mass to 3% by mass, 0.2% by mass to 1.5% by mass, or 0.3% by mass or more, based on the total amount of the electrolyte. It may be 1.2% by mass, or 0.4% by mass to 0.9% by mass.
(非水溶媒)
 本開示の電解質は、非水溶媒を含んでいてもよい。非水溶媒としては、特に限定されず、リチウム塩の溶解性の観点から、鎖状カーボネートが好ましい。
(Non-aqueous solvent)
The electrolyte of the present disclosure may contain a non-aqueous solvent. The non-aqueous solvent is not particularly limited, and a chain carbonate is preferable from the viewpoint of the solubility of the lithium salt.
 鎖状カーボネートとしては、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、メチルプロピオネート等が挙げられる。中でも、耐酸化性及び耐還元性の観点から、エチルメチルカーボネートが好ましい。 Examples of the chain carbonate include dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, methyl propionate and the like. Of these, ethylmethyl carbonate is preferable from the viewpoint of oxidation resistance and reduction resistance.
<デュアルイオン電池>
 本開示のデュアルイオン電池は、アニオンを挿入脱離可能な正極活物質を含む正極と、負極活物質を含む負極と、本開示の電解質と、を備える。本開示のデュアルイオン電池は、前述の本開示の電解質を備えることによりエネルギー密度に優れる。
<Dual ion battery>
The dual ion battery of the present disclosure includes a positive electrode containing a positive electrode active material capable of inserting and removing anions, a negative electrode containing a negative electrode active material, and an electrolyte of the present disclosure. The dual ion battery of the present disclosure is excellent in energy density by providing the above-mentioned electrolyte of the present disclosure.
 本開示のデュアルイオン電池にて用いる正極及び負極の好ましい構成について以下に説明する。 The preferable configurations of the positive electrode and the negative electrode used in the dual ion battery of the present disclosure will be described below.
(正極)
 本開示のデュアルイオン電池は、アニオンを挿入脱離可能な正極活物質を含む正極を備える。例えば、正極は、正極集電体及びその表面に配置され、かつ正極活物質を含む正極合剤層を有する構成であってもよい。
(Positive electrode)
The dual ion battery of the present disclosure comprises a positive electrode containing a positive electrode active material capable of inserting and removing anions. For example, the positive electrode may be configured to be arranged on the positive electrode current collector and its surface and to have a positive electrode mixture layer containing a positive electrode active material.
 正極活物質は、アニオンを挿入脱離可能な活物質であれば特に限定されない。正極活物質としては、グラファイト、カーボンナノチューブ、グラフェン、ナノカーボン、酸化グラファイト、酸化グラフェン、ハードカーボン、ソフトカーボン等の炭素材料が挙げられる。
 正極活物質は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
The positive electrode active material is not particularly limited as long as it is an active material capable of inserting and removing anions. Examples of the positive electrode active material include carbon materials such as graphite, carbon nanotubes, graphene, nanocarbon, graphite oxide, graphene oxide, hard carbon, and soft carbon.
One type of positive electrode active material may be used alone, or two or more types may be used in combination.
 正極活物質が炭素材料、好ましくはグラファイトである場合、炭素材料の平均粒子径は、2μm~30μmであることが好ましく、2.5μm~25μmであることがより好ましく、3μm~20μmであることがさらに好ましく、5μm~20μmであることが特に好ましい。平均粒子径が30μm以下であると、放電容量及び放電特性が向上する傾向にある。平均粒子径が2μm以上であると、初回充放電効率が向上する傾向にある。
 粒子の平均粒子径(d50)は、例えば、レーザー光散乱法を利用した粒子径分布測定装置(SALD-3000、株式会社島津製作所)を用いて体積基準の粒度分布を測定し、d50(メジアン径)として求められる体積平均粒子径である。
When the positive electrode active material is a carbon material, preferably graphite, the average particle size of the carbon material is preferably 2 μm to 30 μm, more preferably 2.5 μm to 25 μm, and more preferably 3 μm to 20 μm. It is more preferably 5 μm to 20 μm, and particularly preferably 5 μm to 20 μm. When the average particle size is 30 μm or less, the discharge capacity and the discharge characteristics tend to be improved. When the average particle size is 2 μm or more, the initial charge / discharge efficiency tends to improve.
The average particle size (d50) of the particles is determined by measuring the volume-based particle size distribution using, for example, a particle size distribution measuring device (SALD-3000, Shimadzu Corporation) using a laser light scattering method, and d50 (median size). ) Is the volume average particle size.
 炭素材料、好ましくはグラファイトの比表面積の範囲は、0.5m/g~10m/gであることが好ましく、0.8m/g~8m/gであることがより好ましく、1m/g~7m/gであることがさらに好ましく、1.5m/g~6m/gであることが特に好ましい。
 比表面積が0.5m/g以上であると、優れた電池性能が得られる傾向にある。また、比表面積が10m/g以下であると、タップ密度が上がりやすく、結着剤、導電剤等のほかの材料との混合性が良好になる傾向にある。
 比表面積は、JIS Z 8830:2013に準じて窒素吸着能から測定することができる。比表面積の測定を行う際には、試料表面及び構造中に吸着している水分がガス吸着能に影響を及ぼすと考えられることから、まず、加熱による水分除去の前処理を行うことが好ましい。
 前処理では、0.05gの測定試料を投入した測定用セルを、真空ポンプで10Pa以下に減圧した後、110℃で加熱し、3時間以上保持した後、減圧した状態を保ったまま常温(25℃)まで自然冷却する。この前処理を行った後、評価温度を77Kとし、評価圧力範囲を相対圧(飽和蒸気圧に対する平衡圧力)にて1未満として測定する。窒素吸着を多点法で測定し、BET法により比表面積を算出する。
The range of the specific surface area of the carbon material, preferably graphite, is preferably 0.5 m 2 / g to 10 m 2 / g, more preferably 0.8 m 2 / g to 8 m 2 / g, and 1 m 2 It is more preferably / g to 7 m 2 / g, and particularly preferably 1.5 m 2 / g to 6 m 2 / g.
When the specific surface area is 0.5 m 2 / g or more, excellent battery performance tends to be obtained. Further, when the specific surface area is 10 m 2 / g or less, the tap density tends to increase, and the mixing property with other materials such as a binder and a conductive agent tends to be good.
The specific surface area can be measured from the nitrogen adsorption capacity according to JIS Z 8830: 2013. When measuring the specific surface area, it is considered that the water adsorbed on the sample surface and the structure affects the gas adsorption capacity. Therefore, it is preferable to first perform a pretreatment for removing water by heating.
In the pretreatment, the measurement cell containing 0.05 g of the measurement sample is depressurized to 10 Pa or less with a vacuum pump, heated at 110 ° C., held for 3 hours or more, and then kept at room temperature (reduced pressure). Naturally cool to 25 ° C). After performing this pretreatment, the evaluation temperature is set to 77K, and the evaluation pressure range is measured as a relative pressure (equilibrium pressure with respect to saturated vapor pressure) of less than 1. Nitrogen adsorption is measured by the multipoint method, and the specific surface area is calculated by the BET method.
 正極は、正極集電体、及び、その表面に配置され、かつ正極活物質を含む正極合剤層を有する構成であってもよい。 The positive electrode may be configured to have a positive electrode current collector and a positive electrode mixture layer arranged on the surface thereof and containing a positive electrode active material.
 正極合剤層が正極活物質を含む場合、正極活物質の含有率は、電池の高容量化の観点から、正極合剤層全量に対して80質量%以上であることが好ましく、85質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。 When the positive electrode mixture layer contains a positive electrode active material, the content of the positive electrode active material is preferably 80% by mass or more, preferably 85% by mass, based on the total amount of the positive electrode mixture layer from the viewpoint of increasing the capacity of the battery. The above is more preferable, and 90% by mass or more is further preferable.
 次に、正極合剤層及び正極集電体について詳細に説明する。正極合剤層は、正極活物質、結着剤等を含有し、正極集電体上に配置される。正極合剤層の形成方法に制限はなく、例えば、次のように形成される。正極活物質、結着剤及び必要に応じて用いられる導電剤、増粘剤等の他の材料を乾式で混合してシート状にし、これを正極集電体に圧着する(乾式法)ことで正極合剤層を形成することができる。また、正極活物質、結着剤及び必要に応じて用いられる導電剤、増粘剤等の他の材料を分散溶媒に溶解又は分散させて正極合剤のスラリーとし、これを正極集電体に塗布し、乾燥する(湿式法)ことで正極合剤層を形成することができる。 Next, the positive electrode mixture layer and the positive electrode current collector will be described in detail. The positive electrode mixture layer contains a positive electrode active material, a binder, and the like, and is arranged on the positive electrode current collector. There is no limitation on the method of forming the positive electrode mixture layer, and the positive electrode mixture layer is formed as follows, for example. By mixing the positive electrode active material, the binder and other materials such as the conductive agent and the thickener used as needed in a dry method to form a sheet, and crimping this to the positive electrode current collector (dry method). A positive electrode mixture layer can be formed. Further, other materials such as a positive electrode active material, a binder and a conductive agent and a thickener used as necessary are dissolved or dispersed in a dispersion solvent to form a slurry of a positive electrode mixture, which is used as a positive electrode current collector. A positive electrode mixture layer can be formed by applying and drying (wet method).
 正極用の導電剤としては、銅、ニッケル等の金属材料;天然黒鉛、人造黒鉛等の黒鉛(グラファイト);アセチレンブラック等のカーボンブラック;ニードルコークス等の無定形炭素等の炭素材料などが挙げられる。なお、正極用の導電剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of the conductive agent for the positive electrode include metal materials such as copper and nickel; graphite such as natural graphite and artificial graphite (graphite); carbon black such as acetylene black; and carbon materials such as amorphous carbon such as needle coke. .. As the conductive agent for the positive electrode, one type may be used alone, or two or more types may be used in combination.
 正極合剤層の質量に対する導電剤の含有率は、0.01質量%~10質量%であってもよく、0.1質量%~5質量%であってもよく、1質量%~3質量%であってもよい。導電剤の含有率が0.01質量%以上であると充分な導電性を得やすい傾向にある。導電剤の含有率が10質量%以下であれば、電池容量の低下を抑制することができる傾向にある。 The content of the conductive agent with respect to the mass of the positive electrode mixture layer may be 0.01% by mass to 10% by mass, 0.1% by mass to 5% by mass, or 1% by mass to 3% by mass. May be%. When the content of the conductive agent is 0.01% by mass or more, sufficient conductivity tends to be easily obtained. When the content of the conductive agent is 10% by mass or less, the decrease in battery capacity tends to be suppressed.
 正極用の結着剤としては、特に限定されず、湿式法により正極合剤層を形成する場合には、分散溶媒に対する溶解性又は分散性が良好な材料が選択される。具体的には、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリイミド、セルロース等の樹脂系高分子;SBR(スチレン-ブタジエンゴム)、NBR(アクリロニトリル-ブタジエンゴム)等のゴム状高分子、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン、ポリテトラフルオロエチレン-フッ化ビニリデン共重合体、フッ素化ポリフッ化ビニリデン等のフッ素系高分子、ポリアクリロニトリル骨格にアクリル酸及び直鎖エーテル基を付加した共重合体;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物などが挙げられる。なお、正極用の結着剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 正極の安定性の観点から、結着剤としては、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン-フッ化ビニリデン共重合体等のフッ素系高分子、ポリアクリロニトリル骨格を有する共重合体、セルロースなどを用いることが好ましい。
The binder for the positive electrode is not particularly limited, and when the positive electrode mixture layer is formed by the wet method, a material having good solubility or dispersibility in the dispersion solvent is selected. Specifically, resin-based polymers such as polyethylene, polypropylene, polyethylene terephthalate, polyimide, and cellulose; rubber-like polymers such as SBR (styrene-butadiene rubber) and NBR (acrylonitrile-butadiene rubber), polyvinylidene fluoride (PVdF). , Polytetrafluoroethylene, Polytetrafluoroethylene-vinylidene fluoride copolymer, polyvinylidene fluoride and other fluoropolymers, polyacrylonitrile skeleton with acrylic acid and linear ether group added; alkali metal Examples thereof include polymer compositions having ionic conductivity of ions (particularly lithium ions). As the binder for the positive electrode, one type may be used alone, or two or more types may be used in combination.
From the viewpoint of the stability of the positive electrode, the binder includes fluoropolymers such as polyvinylidene fluoride (PVdF) and polyvinylidene fluoride-vinylidene fluoride copolymer, copolymers having a polyacrylonitrile skeleton, cellulose and the like. It is preferable to use.
 正極合剤層の質量に対する結着剤の含有率は、0.1質量%~10質量%であることが好ましく、0.5質量%~5質量%であることがより好ましく、1質量%~3質量%であることがさらに好ましい。
 結着剤の含有率が0.1質量%以上であると、正極活物質を充分に結着でき、充分な正極合剤層の機械的強度が得られ、サイクル特性等の電池性能が向上する傾向にある。結着剤の含有率が10質量%以下であると、充分な電池容量及び導電性が得られる傾向にある。
The content of the binder with respect to the mass of the positive electrode mixture layer is preferably 0.1% by mass to 10% by mass, more preferably 0.5% by mass to 5% by mass, and 1% by mass to It is more preferably 3% by mass.
When the content of the binder is 0.1% by mass or more, the positive electrode active material can be sufficiently bound, sufficient mechanical strength of the positive electrode mixture layer is obtained, and battery performance such as cycle characteristics is improved. There is a tendency. When the content of the binder is 10% by mass or less, sufficient battery capacity and conductivity tend to be obtained.
 湿式法又は乾式法を用いて正極集電体上に形成された正極合剤層は、正極活物質の充填密度を向上させるため、ハンドプレス又はローラープレスにより圧密化することが好ましい。
 圧密化した正極合剤層の密度は、入出力特性のさらなる向上の観点から、0.7g/cm~2g/cmであることが好ましく、0.8g/cm~1.9g/cmであることがより好ましく、0.9g/cm~1.8g/cmであることがさらに好ましい。
The positive electrode mixture layer formed on the positive electrode current collector by the wet method or the dry method is preferably consolidated by a hand press or a roller press in order to improve the packing density of the positive electrode active material.
The density of the compacted positive mixture layer is preferably 0.7 g / cm 3 to 2 g / cm 3 and 0.8 g / cm 3 to 1.9 g / cm from the viewpoint of further improving the input / output characteristics. 3 is more preferable, and 0.9 g / cm 3 to 1.8 g / cm 3 is even more preferable.
 また、正極合剤層を形成する際の正極合剤のスラリーの正極集電体への片面塗布量は、エネルギー密度及び入出力特性の観点から、正極合剤の固形分として、20g/m~100g/mであることが好ましく、30g/m~80g/mであることがより好ましく、40g/m~60g/mであることがさらに好ましい。 Further, the amount of the positive electrode mixture slurry applied to the positive electrode current collector on one side when forming the positive electrode mixture layer is 20 g / m 2 as the solid content of the positive electrode mixture from the viewpoint of energy density and input / output characteristics. It is preferably ~ 100 g / m 2 , more preferably 30 g / m 2 to 80 g / m 2 , and even more preferably 40 g / m 2 to 60 g / m 2 .
 正極集電体の材質としては特に制限はなく、中でも金属材料が好ましく、アルミニウム、モリブデン、窒化チタンをコートしたステンレス鋼がより好ましい。正極集電体の形状としては特に制限はなく、種々の形状に加工された材料を用いることができる。金属材料については、金属箔、金属板、金属薄膜、エキスパンドメタル等が挙げられ、中でも、金属薄膜を用いることが好ましい。なお、薄膜は適宜メッシュ状に形成してもよい。
 正極集電体の平均厚さは特に限定されるものではなく、正極集電体として必要な強度及び良好な可とう性が得られる観点から、1μm~1mmであることが好ましく、3μm~100μmであることがより好ましく、5μm~100μmであることがさらに好ましい。
The material of the positive electrode current collector is not particularly limited, and among them, a metal material is preferable, and stainless steel coated with aluminum, molybdenum, and titanium nitride is more preferable. The shape of the positive electrode current collector is not particularly limited, and materials processed into various shapes can be used. Examples of the metal material include a metal foil, a metal plate, a metal thin film, an expanded metal, and the like, and among them, it is preferable to use a metal thin film. The thin film may be formed in a mesh shape as appropriate.
The average thickness of the positive electrode current collector is not particularly limited, and is preferably 1 μm to 1 mm, preferably 3 μm to 100 μm, from the viewpoint of obtaining the strength required for the positive electrode current collector and good flexibility. It is more preferably present, and even more preferably 5 μm to 100 μm.
(負極)
 本開示のデュアルイオン電池は、負極活物質を含む負極を備える。例えば、負極は、負極集電体及びその表面に配置され、かつ負極活物質を含む負極合剤層を有する構成であってもよい。
(Negative electrode)
The dual ion battery of the present disclosure includes a negative electrode containing a negative electrode active material. For example, the negative electrode may be configured to be arranged on the negative electrode current collector and its surface and to have a negative electrode mixture layer containing a negative electrode active material.
 負極活物質は、特に限定されず、炭素材料、金属及び金属化合物の少なくとも一つを含むことが好ましく、グラファイト、チタン酸リチウム、アルミニウム金属及びリチウム金属の少なくとも一つを含むことがより好ましく、グラファイト及びチタン酸リチウムの少なくとも一方を含むことがさらに好ましい。
 負極活物質は、カチオンを挿入脱離可能な負極活物質であってもよく、炭素材料及び金属化合物の少なくとも一方であってもよい。
 負極活物質は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
The negative electrode active material is not particularly limited and preferably contains at least one of a carbon material, a metal and a metal compound, more preferably contains at least one of graphite, lithium titanate, an aluminum metal and a lithium metal, and graphite. And at least one of lithium titanate is more preferably contained.
The negative electrode active material may be a negative electrode active material capable of inserting and removing a cation, or may be at least one of a carbon material and a metal compound.
One type of negative electrode active material may be used alone, or two or more types may be used in combination.
 炭素材料としては、グラファイト、カーボンナノチューブ、グラフェン、ナノカーボン、酸化グラファイト、酸化グラフェン、ハードカーボン、ソフトカーボン等が挙げられる。 Examples of carbon materials include graphite, carbon nanotubes, graphene, nanocarbon, graphite oxide, graphene oxide, hard carbon, soft carbon and the like.
 金属化合物としては、LiTi12等のリチウムチタン複合酸化物、酸化モリブデン、五酸化ニオブ、硫化鉄、硫化チタン、二酸化チタン、チタンニオブ酸化物(TiNb)、酸化鉄(Fe)、バナジウム酸リチウム(LiVO)、酸化タングステン(WO)、酸化マンガン(Mn)及びYTiが挙げられる。これらの中でも、リチウムチタン複合酸化物(LTO)であることが好ましい。リチウムチタン複合酸化物としては、例えば、チタン酸リチウムが挙げられる。 Examples of the metal compound include lithium titanium composite oxides such as Li 4 Ti 5 O 12 , molybdenum oxide, niobium pentoxide, iron sulfide, titanium sulfide, titanium dioxide, titanium niobium oxide (TiNb 2 O 7 ), and iron oxide (Fe 2 ). O 3 ), lithium vanadium acid (Li 3 VO 4 ), tungsten oxide (WO 3 ), manganese oxide (Mn 2 O 3 ) and Y 2 Ti 2 O 5 S 2 . Among these, lithium titanium composite oxide (LTO) is preferable. Examples of the lithium-titanium composite oxide include lithium titanate.
 負極活物質が炭素材料、好ましくはグラファイトである場合、炭素材料の平均粒子径、比表面積等の条件は、前述の正極活物質が炭素材料、好ましくはグラファイトである場合と同様である。 When the negative electrode active material is a carbon material, preferably graphite, the conditions such as the average particle size and the specific surface area of the carbon material are the same as when the above-mentioned positive electrode active material is a carbon material, preferably graphite.
 負極合剤層が負極活物質を含む場合、負極活物質の含有率は、電池の高容量化の観点から、負極合剤層全量に対して80質量%以上であることが好ましく、85質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。
 
When the negative electrode mixture layer contains a negative electrode active material, the content of the negative electrode active material is preferably 80% by mass or more, preferably 85% by mass, based on the total amount of the negative electrode mixture layer from the viewpoint of increasing the capacity of the battery. The above is more preferable, and 90% by mass or more is further preferable.
 次に、負極合剤層及び負極集電体について詳細に説明する。負極合剤層は、負極活物質、結着剤等を含有し、負極集電体上に配置される。負極合剤層の形成方法に制限はなく、例えば、次のように形成される。負極活物質、結着剤及び必要に応じて用いられる導電剤、増粘剤等の他の材料を分散溶媒に溶解又は分散させて負極合剤のスラリーとし、これを負極集電体に塗布し、乾燥する(湿式法)ことで負極合剤層を形成することができる。 Next, the negative electrode mixture layer and the negative electrode current collector will be described in detail. The negative electrode mixture layer contains a negative electrode active material, a binder, and the like, and is arranged on the negative electrode current collector. There is no limitation on the method of forming the negative electrode mixture layer, and the negative electrode mixture layer is formed as follows, for example. Negative electrode active material, binder and other materials such as conductive agent and thickener used as needed are dissolved or dispersed in a dispersion solvent to form a slurry of negative electrode mixture, which is applied to the negative electrode current collector. The negative electrode mixture layer can be formed by drying (wet method).
 負極用の導電剤としては、アセチレンブラック等のカーボンブラック、ニードルコークス等の無定形炭素などを用いることができる。負極用の導電剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。このように、負極合剤に導電剤を添加することにより、電極の抵抗を低減する等の効果が得られる傾向にある。 As the conductive agent for the negative electrode, carbon black such as acetylene black, amorphous carbon such as needle coke, etc. can be used. As the conductive agent for the negative electrode, one type may be used alone, or two or more types may be used in combination. As described above, by adding the conductive agent to the negative electrode mixture, the effect of reducing the resistance of the electrode tends to be obtained.
 負極合剤層の質量に対する導電剤の含有率は、導電性の向上及び初期不可逆容量の低減の観点から、1質量%~10質量%であることが好ましく、2質量%~7質量%であることがより好ましく、3質量%~5質量%であることがさらに好ましい。導電剤の含有率が1質量%以上であると充分な導電性を得やすい傾向にある。導電剤の含有率が10質量%以下であると電池容量の低下を抑制することができる傾向にある。 The content of the conductive agent with respect to the mass of the negative electrode mixture layer is preferably 1% by mass to 10% by mass, preferably 2% by mass to 7% by mass, from the viewpoint of improving the conductivity and reducing the initial irreversible capacity. More preferably, it is more preferably 3% by mass to 5% by mass. When the content of the conductive agent is 1% by mass or more, it tends to be easy to obtain sufficient conductivity. When the content of the conductive agent is 10% by mass or less, the decrease in battery capacity tends to be suppressed.
 負極用の結着剤としては、非水電解液又は電極の形成の際に用いる分散溶媒に対して安定な材料であれば、特に制限はない。具体的には、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン-ブタジエンゴム)、NBR(アクリロニトリル-ブタジエンゴム)等のゴム状高分子;ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物などが挙げられる。なお、負極用の結着剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらの中でも、セルロース、SBR、ポリフッ化ビニリデンに代表されるフッ素系高分子等を用いることが好ましい。 The binder for the negative electrode is not particularly limited as long as it is a non-aqueous electrolytic solution or a material stable to the dispersion solvent used when forming the electrode. Specifically, resin-based polymers such as polyethylene, polypropylene, polyethylene terephthalate, cellulose, and nitrocellulose; rubber-like polymers such as SBR (styrene-butadiene rubber) and NBR (acrylonitrile-butadiene rubber); polyvinylidene fluoride (PVdF). ), Polytetrafluoroethylene, polyvinylidene fluoride and the like; examples thereof include polymer compositions having ionic conductivity of alkali metal ions (particularly lithium ions). As the binder for the negative electrode, one type may be used alone, or two or more types may be used in combination. Among these, it is preferable to use a fluoropolymer represented by cellulose, SBR, polyvinylidene fluoride and the like.
 負極合剤層の質量に対する結着剤の含有率は、0.1質量%~20質量%であることが好ましく、0.5質量%~15質量%であることがより好ましく、0.6質量%~10質量%であることがさらに好ましい。
 結着剤の含有率が0.1質量%以上であると、負極活物質を充分に結着でき、充分な負極合剤層の機械的強度が得られる傾向にある。結着剤の含有率が20質量%以下であると、充分な電池容量及び導電性が得られる傾向にある。
The content of the binder with respect to the mass of the negative electrode mixture layer is preferably 0.1% by mass to 20% by mass, more preferably 0.5% by mass to 15% by mass, and 0.6% by mass. It is more preferably% to 10% by mass.
When the content of the binder is 0.1% by mass or more, the negative electrode active material can be sufficiently bound, and a sufficient mechanical strength of the negative electrode mixture layer tends to be obtained. When the content of the binder is 20% by mass or less, sufficient battery capacity and conductivity tend to be obtained.
 なお、結着剤として、ポリフッ化ビニリデンに代表されるフッ素系高分子を主要成分として用いる場合の負極合剤層の質量に対する結着剤の含有率は、1質量%~15質量%であることが好ましく、2質量%~10質量%であることがより好ましく、3質量%~8質量%であることがさらに好ましい。 When a fluoropolymer represented by polyvinylidene fluoride is used as the main component as the binder, the content of the binder with respect to the mass of the negative electrode mixture layer is 1% by mass to 15% by mass. It is preferable, it is more preferably 2% by mass to 10% by mass, and further preferably 3% by mass to 8% by mass.
 増粘剤は、スラリーの粘度を調整するために使用される。増粘剤としては、特に制限はなく、具体的には、例えば、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩が挙げられる。増粘剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Thickeners are used to adjust the viscosity of the slurry. The thickener is not particularly limited, and specific examples thereof include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein, and salts thereof. The thickener may be used alone or in combination of two or more.
 負極合剤層の質量に対する増粘剤の含有率は、入出力特性及び電池容量の観点から、0.1質量%~5質量%であることが好ましく、0.5質量%~3質量%であることがより好ましく、0.6質量%~2質量%であることがさらに好ましい。 The content of the thickener with respect to the mass of the negative electrode mixture layer is preferably 0.1% by mass to 5% by mass, preferably 0.5% by mass to 3% by mass, from the viewpoint of input / output characteristics and battery capacity. It is more preferably present, and further preferably 0.6% by mass to 2% by mass.
 スラリーを形成するための分散溶媒としては、負極活物質、結着剤、及び必要に応じて用いられる導電剤、増粘剤等を溶解又は分散することが可能な溶媒であれば、その種類に制限はなく、水系溶媒又は有機系溶媒のどちらを用いてもよい。水系溶媒の例としては、水、アルコール、水とアルコールとの混合溶媒等が挙げられる。有機系溶媒の例としては、N-メチル-2-ピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、テトラヒドロフラン(THF)、トルエン、アセトン、ジエチルエーテル、ジメチルスルホキシド、ベンゼン、キシレン、ヘキサン等が挙げられる。特に水系溶媒を用いる場合、増粘剤を用いることが好ましい。 As the dispersion solvent for forming the slurry, any solvent can be used as long as it can dissolve or disperse the negative electrode active material, the binder, and the conductive agent, thickener, etc. used as needed. There is no limitation, and either an aqueous solvent or an organic solvent may be used. Examples of the aqueous solvent include water, alcohol, a mixed solvent of water and alcohol, and the like. Examples of organic solvents include N-methyl-2-pyrrolidone (NMP), dimethylformamide, dimethylacetamide, methylethylketone, cyclohexanone, methyl acetate, methyl acrylate, tetrahydrofuran (THF), toluene, acetone, diethyl ether, dimethyl sulfoxide. , Benzene, xylene, hexane and the like. In particular, when an aqueous solvent is used, it is preferable to use a thickener.
 負極合剤層の密度は、0.7g/cm~2g/cmであることが好ましく、0.8g/cm~1.9g/cmであることがより好ましく、0.9g/cm~1.8g/cmであることがさらに好ましい。
 負極合剤層の密度が0.7g/cm以上であると、負極活物質間の導電性が向上し電池抵抗の増加を抑制することができ、単位容積あたりの容量を向上できる傾向にある。負極合剤層の密度が2g/cm以下であると、初期不可逆容量の増加及び負極集電体と負極活物質との界面付近への非水電解液の浸透性の低下による放電特性の劣化を招くおそれが少なくなる傾向にある。
The density of the negative electrode mixture layer is preferably 0.7 g / cm 3 to 2 g / cm 3 , more preferably 0.8 g / cm 3 to 1.9 g / cm 3 , and more preferably 0.9 g / cm. It is more preferably 3 to 1.8 g / cm 3 .
When the density of the negative electrode mixture layer is 0.7 g / cm 3 or more, the conductivity between the negative electrode active materials can be improved, the increase in battery resistance can be suppressed, and the capacity per unit volume tends to be improved. .. When the density of the negative electrode mixture layer is 2 g / cm 3 or less, the initial irreversible capacity increases and the discharge characteristics deteriorate due to the decrease in the permeability of the non-aqueous electrolyte solution near the interface between the negative electrode current collector and the negative electrode active material. There is a tendency that the risk of inviting is reduced.
 また、負極合剤層を形成する際の負極合剤のスラリーの負極集電体への片面塗布量は、エネルギー密度及び入出力特性の観点から、負極合剤の固形分として、20g/m~100g/mであることが好ましく、30g/m~80g/mであることがより好ましく、40g/m~60g/mであることがさらに好ましい。 Further, the amount of the negative electrode mixture slurry applied to the negative electrode current collector on one side when forming the negative electrode mixture layer is 20 g / m 2 as the solid content of the negative electrode mixture from the viewpoint of energy density and input / output characteristics. It is preferably ~ 100 g / m 2 , more preferably 30 g / m 2 to 80 g / m 2 , and even more preferably 40 g / m 2 to 60 g / m 2 .
 負極集電体の材質としては特に制限はなく、具体例としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられる。中でも、加工のし易さとコストの観点から銅が好ましい。 The material of the negative electrode current collector is not particularly limited, and specific examples thereof include metal materials such as copper, nickel, stainless steel, and nickel-plated steel. Of these, copper is preferable from the viewpoint of ease of processing and cost.
 負極集電体の形状としては特に制限はなく、種々の形状に加工された材料を用いることができる。具体例としては、金属箔、金属板、金属薄膜、エキスパンドメタル等が挙げられる。中でも、金属箔が好ましく、銅箔がより好ましい。銅箔には、圧延法により形成された圧延銅箔と、電解法により形成された電解銅箔とがあり、どちらも負極集電体として好適である。
 負極集電体の平均厚さは特に限定されるものではない。例えば、5μm~50μmであることが好ましく、8μm~40μmであることがより好ましく、9μm~30μmであることがさらに好ましい。
 なお、負極集電体の平均厚さが25μm未満の場合、純銅よりも強銅合金(リン青銅、チタン銅、コルソン合金、Cu-Cr-Zr合金等)を用いることでその強度を向上させることができる。
The shape of the negative electrode current collector is not particularly limited, and materials processed into various shapes can be used. Specific examples include metal foil, metal plate, metal thin film, expanded metal and the like. Among them, metal foil is preferable, and copper foil is more preferable. The copper foil includes a rolled copper foil formed by a rolling method and an electrolytic copper foil formed by an electrolytic method, both of which are suitable as a negative electrode current collector.
The average thickness of the negative electrode current collector is not particularly limited. For example, it is preferably 5 μm to 50 μm, more preferably 8 μm to 40 μm, and even more preferably 9 μm to 30 μm.
When the average thickness of the negative electrode current collector is less than 25 μm, the strength should be improved by using a strong copper alloy (phosphor bronze, titanium copper, Corson alloy, Cu—Cr—Zr alloy, etc.) rather than pure copper. Can be done.
(セパレータ)
 本開示のデュアルイオン電池は、正極と負極との間に正極及び負極間を絶縁するセパレータを備えていてもよい。セパレータとしては、正極及び負極間を絶縁しつつ、イオン透過性を有し、かつ、正極側における酸化性及び負極側における還元性に対する耐性を備えるものであれば特に制限はない。このような特性を満たすセパレータの材料(材質)としては、樹脂、無機物等が用いられる。
 樹脂としては、オレフィン系高分子、フッ素系高分子、セルロース系高分子、ポリイミド、ナイロン等が用いられる。中でも、ポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シート又は不織布などを用いることが好ましい。
 無機物としては、アルミナ、二酸化ケイ素等の酸化物類、窒化アルミニウム、窒化ケイ素等の窒化物類、ガラスなどが用いられる。例えば、繊維形状又は粒子形状の上記無機物を、不織布としたもの、織布としたもの又は微多孔性フィルム等の薄膜形状の基材に付着させたものをセパレータとして用いることができる。薄膜形状の基材としては、孔径が0.01μm~1μmであり、平均厚さが5μm~50μmのものが好適に用いられる。また、繊維形状又は粒子形状の上記無機物を、樹脂等の結着剤を用いて複合多孔層としたものをセパレータとして用いることもできる。また、この複合多孔層を他のセパレータの表面に形成し、多層セパレータとしてもよい。さらに、この複合多孔層を、正極又は負極の表面に形成し、セパレータとしてもよい。
(Separator)
The dual ion battery of the present disclosure may include a separator that insulates between the positive electrode and the negative electrode between the positive electrode and the negative electrode. The separator is not particularly limited as long as it insulates between the positive electrode and the negative electrode, has ion permeability, and has resistance to oxidizing property on the positive electrode side and reducing property on the negative electrode side. As the material (material) of the separator satisfying such characteristics, a resin, an inorganic substance, or the like is used.
As the resin, an olefin polymer, a fluorine polymer, a cellulosic polymer, a polyimide, nylon and the like are used. Above all, it is preferable to use a porous sheet or a non-woven fabric made of polyolefin such as polyethylene or polypropylene as a raw material.
As the inorganic substance, oxides such as alumina and silicon dioxide, nitrides such as aluminum nitride and silicon nitride, and glass are used. For example, a fiber-shaped or particle-shaped inorganic substance attached to a thin-film-shaped base material such as a non-woven fabric, a woven fabric, or a microporous film can be used as a separator. As the thin film-shaped substrate, those having a pore diameter of 0.01 μm to 1 μm and an average thickness of 5 μm to 50 μm are preferably used. Further, a fiber-shaped or particle-shaped inorganic substance formed into a composite porous layer by using a binder such as a resin can also be used as a separator. Further, the composite porous layer may be formed on the surface of another separator to form a multilayer separator. Further, this composite porous layer may be formed on the surface of the positive electrode or the negative electrode to serve as a separator.
<デュアルイオン電池の製造方法>
 本開示のデュアルイオン電池の製造方法は、アニオンを挿入脱離可能な正極活物質を含む正極と、負極活物質を含む負極と、前述の本開示の電解質と、を電池容器に収容する工程(収容工程)を有する。
<Manufacturing method of dual ion battery>
The method for manufacturing a dual ion battery of the present disclosure is a step of accommodating a positive electrode containing a positive electrode active material capable of inserting and removing anions, a negative electrode containing a negative electrode active material, and the above-mentioned electrolyte of the present disclosure in a battery container ( Containment process).
(収容工程)
 本開示の製造方法は、正極と、負極と、前述の本開示の電解質と、を電池容器に収容する工程(収容工程)を有する。この工程では、デュアルイオン電池の各構成部材が電池容器に収容される。また、正極と負極との間に正極及び負極間を絶縁するセパレータが配置されるように、セパレータを電池容器に収容してもよい。
(Accommodation process)
The manufacturing method of the present disclosure includes a step (accommodation step) of accommodating a positive electrode, a negative electrode, and the above-mentioned electrolyte of the present disclosure in a battery container. In this step, each component of the dual ion battery is housed in a battery container. Further, the separator may be housed in the battery container so that the separator that insulates between the positive electrode and the negative electrode is arranged between the positive electrode and the negative electrode.
 例えば、正極及び負極、並びに必要に応じて正極と負極との間にセパレータを電池容器内に配置した状態にて、電池容器内に前述の本開示の電解質を供給すればよい。 For example, the above-mentioned electrolyte of the present disclosure may be supplied into the battery container in a state where the separator is arranged in the battery container between the positive electrode and the negative electrode and, if necessary, the positive electrode and the negative electrode.
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.
[実施例1]
 以下のようにして電解質、正極及び負極を作製し、それぞれを用いてデュアルイオン電池を作製した。
[Example 1]
An electrolyte, a positive electrode and a negative electrode were prepared as follows, and a dual ion battery was prepared using each of them.
(正極の作製)
 正極活物質であるグラファイト(昭和電工マテリアルズ株式会社)を98質量部、結着剤であるカルボキシメチルセルロース(#2200、株式会社ダイセル)を2質量部混合して混合物を得た。混合物に適量の水を添加して混練することでペースト状の正極合剤スラリーを得た。正極合剤の固形分が45g/mとなるように、正極用の集電体である厚さ15μmのアルミニウム箔の片面に正極合剤スラリーを塗布した。その後、乾燥処理を施し、集電体上に乾燥塗膜を得た。この乾燥塗膜を、正極合剤の固形分の密度が1.6g/cmになるまでプレスにより圧密化し、集電体上に正極活物質層が形成された正極積層体を作製した。集電体及び正極活物質層の合計の厚さは30μmであった。作製された正極積層体を幅30mm、長さ45mmに切断して正極板とし、この正極板に正極集電タブを取り付けることで正極を作製した。
(Preparation of positive electrode)
A mixture was obtained by mixing 98 parts by mass of graphite (Showa Denko Materials Co., Ltd.) as a positive electrode active material and 2 parts by mass of carboxymethyl cellulose (# 2200, Daicel Co., Ltd.) as a binder. An appropriate amount of water was added to the mixture and kneaded to obtain a paste-like positive electrode mixture slurry. The positive electrode mixture slurry was applied to one side of an aluminum foil having a thickness of 15 μm, which is a current collector for the positive electrode, so that the solid content of the positive electrode mixture was 45 g / m 2 . Then, it was dried and a dry coating film was obtained on the current collector. This dried coating film was consolidated by pressing until the solid content density of the positive electrode mixture reached 1.6 g / cm 3 , to prepare a positive electrode laminate having a positive electrode active material layer formed on the current collector. The total thickness of the current collector and the positive electrode active material layer was 30 μm. The produced positive electrode laminate was cut into a width of 30 mm and a length of 45 mm to obtain a positive electrode plate, and a positive electrode was produced by attaching a positive electrode current collecting tab to the positive electrode plate.
(負極の作製)
 負極活物質であるグラファイト(昭和電工マテリアルズ株式会社)を98質量部、結着剤であるスチレン・ブタジエンゴム(TDR2001、JSR株式会社)を1質量部、増粘剤であるカルボキシメチルセルロース(#2200、株式会社ダイセル)を1質量部混合して混合物を得た。混合物に適量の水を添加して混練することでペースト状の負極合剤スラリーを得た。負極合剤の固形分が45g/mとなるように、負極用の集電体である厚さ10μmの銅箔の片面に負極合剤スラリーを塗布した。その後、乾燥処理を施し、乾燥塗膜を得た。この乾燥塗膜を、負極合剤の固形分の密度が1.6g/cmになるまでプレスにより圧密化し、集電体の上に負極活物質層が形成された負極積層体を作製した。集電体及び負極活物質層の合計の厚さは30μmであった。作製された負極積層体を幅31mm、長さ46mmに切断して負極板とし、この負極板に負極集電タブを取り付けることで負極を作製した。
(Manufacturing of negative electrode)
98 parts by mass of graphite (Showa Denko Materials Co., Ltd.), which is a negative electrode active material, 1 part by mass of styrene-butadiene rubber (TDR2001, JSR Corporation), which is a binder, and carboxymethyl cellulose (# 2200), which is a thickener. , Daicel Co., Ltd.) was mixed in an amount of 1 part by mass to obtain a mixture. An appropriate amount of water was added to the mixture and kneaded to obtain a paste-like negative electrode mixture slurry. The negative electrode mixture slurry was applied to one side of a copper foil having a thickness of 10 μm, which is a current collector for the negative electrode, so that the solid content of the negative electrode mixture was 45 g / m 2 . Then, it was subjected to a drying treatment, and a dry coating film was obtained. This dried coating film was consolidated by pressing until the solid content density of the negative electrode mixture reached 1.6 g / cm 3 , to prepare a negative electrode laminate having a negative electrode active material layer formed on the current collector. The total thickness of the current collector and the negative electrode active material layer was 30 μm. The produced negative electrode laminate was cut into a width of 31 mm and a length of 46 mm to form a negative electrode plate, and a negative electrode was produced by attaching a negative electrode current collecting tab to the negative electrode plate.
(電極群の作製)
 作製した正極と負極とを、セパレータである厚さ680μm、幅35mm、長さ50mmのガラス繊維ろ紙(Whatman、GF/D)を介して対向させ、積層状の電極群を作製した。
(Preparation of electrode group)
The prepared positive electrode and the negative electrode were opposed to each other via a glass fiber filter paper (Whatman, GF / D) having a thickness of 680 μm, a width of 35 mm, and a length of 50 mm, which was a separator, to prepare a laminated electrode group.
(電解液の調製)
 1-メチル-1-プロピルピロリジニウムビス(トリフルオロメタンスルホニル)イミド(Pyr13TFSI)に、1.0mol/Lの濃度となるように電解質塩であるリチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)を添加した。次いで、Pyr13TFSI及びLiTFSIの混合液にエチレンサルファイト(ES)を添加して電解液を調製した。電解液中にて、エチレンサルファイトの濃度は電解液全体の2.0質量%であった。
(Preparation of electrolyte)
Lithium bis (trifluoromethanesulfonyl) imide (LiTFSI), which is an electrolyte salt, is added to 1-methyl-1-propylpyrrolidinium bis (trifluoromethanesulfonyl) imide (Pyr13TFSI) so as to have a concentration of 1.0 mol / L. did. Next, ethylene sulfate (ES) was added to a mixed solution of Pyr13TFSI and LiTFSI to prepare an electrolytic solution. In the electrolytic solution, the concentration of ethylene sulfide was 2.0% by mass of the whole electrolytic solution.
(デュアルイオン電池の作製)
 上記積層状の電極群を、アルミニウム製のラミネートフィルムで構成された電池外装体内に収容し、調製された電解液を1.3mL注入した。その後、上記の正極集電タブと負極集電タブとを開口部から外部に取り出した状態にて電池容器の開口部を封口させて、実施例1のデュアルイオン電池を作製した。なお、アルミニウム製のラミネートフィルムは、ポリエチレンテレフタレート(PET)フィルム/アルミニウム箔/シーラント層(ポリプロピレン)の積層体であった。
(Manufacturing of dual ion battery)
The laminated electrode group was housed in a battery exterior made of an aluminum laminated film, and 1.3 mL of the prepared electrolytic solution was injected. Then, the dual ion battery of Example 1 was produced by closing the opening of the battery container with the positive electrode current collecting tab and the negative electrode current collecting tab taken out from the opening. The aluminum laminated film was a laminated body of polyethylene terephthalate (PET) film / aluminum foil / sealant layer (polypropylene).
 作製したデュアルイオン電池及び電極群の構成を図1及び図2にそれぞれ示す。
 図1に示すデュアルイオン電池10は、電池外装体6内に、電極群20と電解液を収容したものであり、正極集電タブ2と負極集電タブ4が電池外装体6の外に取り出されるように構成されている。
 図2に示す電極群20は、正極集電タブ2を取り付けた正極板1、セパレータ5、及び負極集電タブ4を取り付けた負極板3が積層されたものである。
The configurations of the manufactured dual ion battery and the electrode group are shown in FIGS. 1 and 2, respectively.
The dual ion battery 10 shown in FIG. 1 contains the electrode group 20 and the electrolytic solution in the battery exterior body 6, and the positive electrode current collecting tab 2 and the negative electrode current collecting tab 4 are taken out of the battery exterior body 6. It is configured to be.
The electrode group 20 shown in FIG. 2 is a stack of a positive electrode plate 1 to which a positive electrode current collector tab 2 is attached, a separator 5, and a negative electrode plate 3 to which a negative electrode current collector tab 4 is attached.
[実施例2]
 実施例1にてPyr13TFSIの替わりに1-ブチル-1-メチルピロリジニウムビス(トリフルオロメタンスルホニル)イミド(Pyr14TFSI)を用いた以外は実施例1と同様にして電解液を調製し、調製された電解液を用いて実施例1と同様にして実施例2のデュアルイオン電池を作製した。
[Example 2]
An electrolytic solution was prepared and prepared in the same manner as in Example 1 except that 1-butyl-1-methylpyrrolidinium bis (trifluoromethanesulfonyl) imide (Pyr14TFSI) was used instead of Pyr13TFSI in Example 1. The dual ion battery of Example 2 was produced in the same manner as in Example 1 using the electrolytic solution.
[比較例1]
 実施例1にてPyr13TFSIの替わりに1-エチル-3-メチルイミダゾールビス(トリフルオロメタンスルホニル)イミドを用いた以外は実施例1と同様にして電解液を調製し、調製された電解液を用いて実施例1と同様にして比較例1のデュアルイオン電池を作製した。
[Comparative Example 1]
An electrolytic solution was prepared in the same manner as in Example 1 except that 1-ethyl-3-methylimidazole bis (trifluoromethanesulfonyl) imide was used instead of Pyr13TFSI in Example 1, and the prepared electrolytic solution was used. A dual ion battery of Comparative Example 1 was produced in the same manner as in Example 1.
[比較例2]
 実施例1にてリチウムビス(トリフルオロメタンスルホニル)イミドの替わりにリチウムビス(フルオロスルホニル)イミドを用い、Pyr13TFSIの替わりに1-エチル-3-メチルイミダゾールビス(フルオロスルホニル)イミドを用いた以外は実施例1と同様にして電解液を調製し、調製された電解液を用いて実施例1と同様にして比較例2のデュアルイオン電池を作製した。
[Comparative Example 2]
In Example 1, lithium bis (fluorosulfonyl) imide was used instead of lithium bis (trifluoromethanesulfonyl) imide, and 1-ethyl-3-methylimidazole bis (fluorosulfonyl) imide was used instead of Pyr13TFSI. An electrolytic solution was prepared in the same manner as in Example 1, and a dual ion battery of Comparative Example 2 was prepared in the same manner as in Example 1 using the prepared electrolytic solution.
[比較例3]
 実施例1にてリチウムビス(トリフルオロメタンスルホニル)イミドの替わりにリチウムビス(フルオロスルホニル)イミドを用い、Pyr13TFSIの替わりに1-メチル-1-プロピルピロリジニウムビス(フルオロスルホニル)イミドを用いた以外は実施例1と同様にして電解液を調製し、調製された電解液を用いて実施例1と同様にして比較例3のデュアルイオン電池を作製した。
[Comparative Example 3]
Except that in Example 1, lithium bis (fluorosulfonyl) imide was used instead of lithium bis (trifluoromethanesulfonyl) imide, and 1-methyl-1-propylpyrrolidinium bis (fluorosulfonyl) imide was used instead of Pyr13TFSI. Prepared an electrolytic solution in the same manner as in Example 1, and prepared a dual ion battery of Comparative Example 3 in the same manner as in Example 1 using the prepared electrolytic solution.
(充放電試験)
 作製されたデュアルイオン二次電池について、充放電装置(BATTERY TEST UNIT、株式会社IEM)を用い、25℃、電流値0.1Cの条件で図3~7に示す電圧範囲にて定電流充電及び定電流放電を2サイクル又は3サイクル行った。
 実施例1、2及び比較例1~3における充放電試験の結果を図3~図7に示す。
(Charging / discharging test)
The manufactured dual-ion secondary battery is constantly charged and charged in the voltage range shown in FIGS. 3 to 7 under the conditions of 25 ° C. and a current value of 0.1 C using a charging / discharging device (BATTERY TEST UNIT, IEM Co., Ltd.). Constant current discharge was performed for 2 or 3 cycles.
The results of the charge / discharge tests in Examples 1 and 2 and Comparative Examples 1 to 3 are shown in FIGS. 3 to 7.
 図3及び図4に示すように、実施例1及び2にて作製されたデュアルイオン二次電池では、1サイクル目(1cyc)、2サイクル目(2cyc)及び3サイクル目(3cyc)にて充放電試験の結果に大きな差異がなく、容量も維持されていた。
 一方、図5及び図6に示すように、比較例1及び2にて作製されたデュアルイオン二次電池では、1サイクル目及び2サイクル目にて充放電試験の結果に大きな差異が生じており、容量も維持することができなかった。
 図7に示すように、比較例3にて作製されたデュアルイオン二次電池では、1サイクル目~3サイクル目にて充放電試験の結果に差異が生じており、サイクルを経るごとに容量が低下していた。
As shown in FIGS. 3 and 4, the dual ion secondary batteries manufactured in Examples 1 and 2 are charged in the first cycle (1 cyc), the second cycle (2 cyc), and the third cycle (3 cyc). There was no significant difference in the discharge test results and the capacity was maintained.
On the other hand, as shown in FIGS. 5 and 6, in the dual ion secondary batteries manufactured in Comparative Examples 1 and 2, there is a large difference in the charge / discharge test results between the first cycle and the second cycle. , The capacity could not be maintained either.
As shown in FIG. 7, in the dual ion secondary battery manufactured in Comparative Example 3, there is a difference in the charge / discharge test results between the first cycle and the third cycle, and the capacity increases with each cycle. It was declining.

Claims (7)

  1.  リチウム塩、窒素元素を構造中に含む複素環式非芳香族カチオン及びビス(トリフルオロメタンスルホニル)イミドアニオンを含み、
     アニオンを挿入脱離可能な正極活物質を含む正極と、負極活物質を含む負極と、を備えるデュアルイオン電池に用いるための電解質。
    Contains lithium salts, heterocyclic non-aromatic cations containing elemental nitrogen in the structure and bis (trifluoromethanesulfonyl) imide anions.
    An electrolyte for use in a dual ion battery comprising a positive electrode containing a positive electrode active material capable of inserting and removing anions and a negative electrode containing a negative electrode active material.
  2.  前記複素環式非芳香族カチオンは、ピロリジニウムカチオン及びピペリジニウムカチオンの少なくとも一方のカチオンを含む請求項1に記載の電解質。 The electrolyte according to claim 1, wherein the heterocyclic non-aromatic cation contains at least one cation of a Helicobacter pylori cation and a piperidinium cation.
  3.  サルファイト化合物、有機ボラン化合物、環状スルホン酸エステル及びジニトリル化合物からなる群より選択される少なくとも1種の化合物をさらに含む請求項1又は請求項2に記載の電解質。 The electrolyte according to claim 1 or 2, further comprising at least one compound selected from the group consisting of a sulfite compound, an organic borane compound, a cyclic sulfonic acid ester and a dinitrile compound.
  4.  前記複素環式非芳香族カチオンは、ピロリジニウムカチオンを含む請求項1~請求項3のいずれか1項に記載の電解質。 The electrolyte according to any one of claims 1 to 3, wherein the heterocyclic non-aromatic cation contains a Helicobacter pyloridinium cation.
  5.  アニオンを挿入脱離可能な正極活物質を含む正極と、
     負極活物質を含む負極と、
     請求項1~請求項4のいずれか1項の電解質と、を備えるデュアルイオン電池。
    A positive electrode containing a positive electrode active material capable of inserting and removing anions, and a positive electrode containing an anion.
    Negative electrode containing negative electrode active material and negative electrode
    A dual ion battery comprising the electrolyte according to any one of claims 1 to 4.
  6.  前記負極活物質は、炭素材料、金属及び金属化合物の少なくとも一方を含む請求項1~請求項5のいずれか1項に記載のデュアルイオン電池。 The dual ion battery according to any one of claims 1 to 5, wherein the negative electrode active material contains at least one of a carbon material, a metal and a metal compound.
  7.  前記負極活物質は、グラファイト、チタン酸リチウム、アルミニウム金属及びリチウム金属の少なくとも一つを含む請求項6に記載のデュアルイオン電池。 The dual ion battery according to claim 6, wherein the negative electrode active material contains at least one of graphite, lithium titanate, aluminum metal and lithium metal.
PCT/JP2020/045107 2020-12-03 2020-12-03 Electrolyte and dual ion battery WO2022118443A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/045107 WO2022118443A1 (en) 2020-12-03 2020-12-03 Electrolyte and dual ion battery
JP2022566588A JPWO2022118443A1 (en) 2020-12-03 2020-12-03

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/045107 WO2022118443A1 (en) 2020-12-03 2020-12-03 Electrolyte and dual ion battery

Publications (1)

Publication Number Publication Date
WO2022118443A1 true WO2022118443A1 (en) 2022-06-09

Family

ID=81853037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045107 WO2022118443A1 (en) 2020-12-03 2020-12-03 Electrolyte and dual ion battery

Country Status (2)

Country Link
JP (1) JPWO2022118443A1 (en)
WO (1) WO2022118443A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005026091A (en) * 2003-07-03 2005-01-27 Yuasa Corp Nonaqueous electrolyte battery
JP2012009158A (en) * 2010-06-22 2012-01-12 Nippon Synthetic Chem Ind Co Ltd:The Electrolyte and lithium secondary battery using it
JP2015153700A (en) * 2014-02-18 2015-08-24 住友電気工業株式会社 Power storage device
JP2015526890A (en) * 2012-06-22 2015-09-10 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Composition comprising a specific ionic liquid
CN108183261A (en) * 2017-12-26 2018-06-19 深圳先进技术研究院 Electrolyte and lithium rechargeable battery and preparation method thereof
JP2018152519A (en) * 2017-03-14 2018-09-27 株式会社リコー Nonaqueous power storage element
JP2018537831A (en) * 2015-12-17 2018-12-20 上海交通大学Shanghai Jiao Tong University Solid electrolyte, solid electrolyte membrane and method for producing the same, and secondary battery
JP2019029077A (en) * 2017-07-26 2019-02-21 トヨタ自動車株式会社 Aqueous rechargeable dual-ion battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005026091A (en) * 2003-07-03 2005-01-27 Yuasa Corp Nonaqueous electrolyte battery
JP2012009158A (en) * 2010-06-22 2012-01-12 Nippon Synthetic Chem Ind Co Ltd:The Electrolyte and lithium secondary battery using it
JP2015526890A (en) * 2012-06-22 2015-09-10 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Composition comprising a specific ionic liquid
JP2015153700A (en) * 2014-02-18 2015-08-24 住友電気工業株式会社 Power storage device
JP2018537831A (en) * 2015-12-17 2018-12-20 上海交通大学Shanghai Jiao Tong University Solid electrolyte, solid electrolyte membrane and method for producing the same, and secondary battery
JP2018152519A (en) * 2017-03-14 2018-09-27 株式会社リコー Nonaqueous power storage element
JP2019029077A (en) * 2017-07-26 2019-02-21 トヨタ自動車株式会社 Aqueous rechargeable dual-ion battery
CN108183261A (en) * 2017-12-26 2018-06-19 深圳先进技术研究院 Electrolyte and lithium rechargeable battery and preparation method thereof

Also Published As

Publication number Publication date
JPWO2022118443A1 (en) 2022-06-09

Similar Documents

Publication Publication Date Title
JP7232355B2 (en) rechargeable battery cell
CN110651386B (en) Negative electrode active material for electrochemical device, negative electrode comprising the same, and electrochemical device comprising the same
US7468224B2 (en) Battery having improved positive electrode and method of manufacturing the same
JP5221660B2 (en) Battery negative electrode and lithium ion battery using the same
CN108028357B (en) Method for forming a lithium-ion battery cell provided with a positive electrode comprising a sacrificial salt
KR102460008B1 (en) Method of pre-lithiating anode and Anode obtained therefrom
KR101893227B1 (en) Nonaqueous electrolyte and lithium secondary battery containing the same
JP6630071B2 (en) Electrode material, electrode and power storage device
KR100834053B1 (en) Cathode, and lithium secondary battery and hybrid capacitor comprising same
JP7387884B2 (en) Electrolyte for lithium secondary batteries and lithium secondary batteries containing the same
US11811068B2 (en) Cellulose-based self-standing films for use in Li-ion batteries
KR20190083304A (en) A method of pre-lithiating anode and Anode manufactured therefrom
KR101700056B1 (en) Lithium secondary cell
JP7376711B2 (en) Electrolyte for lithium secondary batteries and lithium secondary batteries containing the same
KR20190038332A (en) Binder for manufacturing a positive electrode of lithium-sulfur secondary battery and mathod for manufacturing the positive electrode using the same
WO2011034163A1 (en) Electrochemical cell and electrochemical capacitor
KR20150048499A (en) Nonaqueous electrolyte and lithium secondary battery containing the same
JP2017188424A (en) Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery positive electrode using the same, and lithium ion secondary battery
JP2022083299A (en) Electrolyte and dual ion battery
WO2022118443A1 (en) Electrolyte and dual ion battery
KR20220130199A (en) Salt additive for sulfur secondary battery
US20040048165A1 (en) Electrolyte for a secondary cell
JP2020053282A (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
CN112219299B (en) Cellulose-based self-supporting film for lithium ion battery pack
US20240021872A1 (en) Electrode for quasi-solid li-ion battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20964295

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022566588

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20964295

Country of ref document: EP

Kind code of ref document: A1