JPS61163562A - Secondary cell - Google Patents

Secondary cell

Info

Publication number
JPS61163562A
JPS61163562A JP60003084A JP308485A JPS61163562A JP S61163562 A JPS61163562 A JP S61163562A JP 60003084 A JP60003084 A JP 60003084A JP 308485 A JP308485 A JP 308485A JP S61163562 A JPS61163562 A JP S61163562A
Authority
JP
Japan
Prior art keywords
carbon
carbon material
secondary battery
electrode
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60003084A
Other languages
Japanese (ja)
Inventor
Tadaaki Miyazaki
忠昭 宮崎
Tadashi Nakajima
正 中島
Masao Ogawa
雅男 小川
Shinichi Toyosawa
真一 豊澤
Yoshitomo Masuda
善友 増田
Takashi Kitamura
隆 北村
Takahiro Kawagoe
隆博 川越
Ryota Fujio
藤尾 亮太
Takashi Ohashi
隆 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP60003084A priority Critical patent/JPS61163562A/en
Publication of JPS61163562A publication Critical patent/JPS61163562A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To assure a high output and an excellent cycle life by employing a conductive high polymer material as a positive electrode and a noncrystalline carbon material as a negative electrode. CONSTITUTION:A material containing a conductive material capable of electrochemically doping an electrolyte negative ion and a noncrystalline carbon material are respectively employed, and furthermore a solution containing a compound dissolved in a nonaqueous solvent is employed, said compound ions, each of which can be doped into said positive and negative electrodes by electrolysis. Moreover, for the carbon material, any of materials can be employed each mainly comprising carbon atoms and having an interval of a graphitized portion in a direction of a C axis being 3.8Angstrom or more. Such arrangement of a secondary cell makes effective a combination of the positive and negative electrodes, whereby a high output can be assured while a cycle life, particularly a life of a cycle of the repetition of charge and discharge at higher capacity of the charge and discharge can be assured without allowing metal to be deposited.

Description

【発明の詳細な説明】 色!ユ!艷 本発明は、導電性高分子物質を正極として用いると共に
、グラファイト化部分のC軸方向面間隔が3.8A以上
である炭素材料を負極として用いたことにより、高出力
でかつ負極に対するデンドライトの析出がなく、サイク
ル寿命が良好な非水溶媒系二次電池に関する。
[Detailed Description of the Invention] Color! Yu!艷The present invention uses a conductive polymer material as a positive electrode and a carbon material whose graphitized portion has a plane spacing of 3.8 A or more in the C-axis direction as a negative electrode. The present invention relates to a non-aqueous solvent-based secondary battery that is free from precipitation and has a good cycle life.

従来の技術及びその間 近年、ポリアセチレン等の導電性^分子物質が二次電池
用電極材料として−れていることが明らかにされ、これ
らの物質を使った二次電池が種々提案されている。これ
らの二次電池を分類すると次の三つに大別される。
BACKGROUND OF THE INVENTION In recent years, it has been revealed that conductive molecular substances such as polyacetylene are used as electrode materials for secondary batteries, and various secondary batteries using these substances have been proposed. These secondary batteries can be broadly classified into the following three types.

(1)両極にポリアセチレン等の導電性高分子物質を用
いたもの。
(1) A conductive polymer material such as polyacetylene is used for both electrodes.

(2)正慎に1!電性^分子物質を用い、負極にリチウ
ム電極を用いたもの。
(2) 1 for Seishin! It uses an electrically conductive molecular substance and uses a lithium electrode as the negative electrode.

(3)正極に共役二重結合を有する導電性高分子物質を
用い、負極にグラファイト環を多く含む炭素材料、好ま
しくは黒鉛を用いるもの(特開昭59−143280号
公報)。
(3) A conductive polymer material having a conjugated double bond is used for the positive electrode, and a carbon material containing many graphite rings, preferably graphite, is used for the negative electrode (Japanese Patent Application Laid-Open No. 143280/1983).

これらの電池は、通常二次電池の軽量化、安定化の点か
らリチウムイオンをドープ剤として含む電解液が使用さ
れている。
These batteries usually use an electrolytic solution containing lithium ions as a dopant in order to reduce the weight and stabilize the secondary battery.

しかしながら、上記(1)〜(3)の電池はそれぞれ下
記の欠点を有する。
However, the batteries (1) to (3) above each have the following drawbacks.

即ら、(1)の電池は正極側の電極特性は優れているが
、リチウムをドープする負極側は劣化が激しく、電池寿
命を短かくする原因となっている。
That is, although the battery (1) has excellent electrode characteristics on the positive electrode side, the negative electrode side doped with lithium is severely degraded, causing a shortened battery life.

また、(2)の負極にリチウムを用いる電池は、充放電
の繰り返しにより9極にリチウムがドープされる場合、
負極上にリチウムの樹枝状析出を生じ、電極間の短絡に
より著しい寿命の低下を招くという欠点を有する。
In addition, in the battery using lithium for the negative electrode (2), when the 9 electrodes are doped with lithium through repeated charging and discharging,
This method has the disadvantage that dendritic precipitation of lithium occurs on the negative electrode, resulting in a short circuit between the electrodes, resulting in a significant reduction in service life.

更に、(3)の負極に結晶化度の高いグラフフィト質を
用いる電池は、低い充放電容世での充放電の繰り返しを
行なう場合は良好であるが、100AH/ka以上の高
い充放電容所での充放電の繰り返しを行なった場合には
グラファイト上に同様にリチウムの樹枝状析出を生じ、
サイクル寿命の低下を招く欠点を有する。
Furthermore, (3) a battery using a graphite substance with a high degree of crystallinity for the negative electrode is good when repeated charging and discharging is performed at a low charge/discharge capacity, but a battery with a high charge/discharge capacity of 100 AH/ka or more is good. When charging and discharging are repeated in a place, dendritic precipitation of lithium occurs on graphite.
It has the disadvantage of reducing cycle life.

11へ」L 本発明は上記事情に鑑みなされたもので、出力が高く、
しかも負極上にリチウム等の金属が析出することがなく
、サイクル寿命、特に高い充放電容量での充放電繰り返
しによるサイクル寿命が良好な二次電池を提供すること
を目的とする。
Go to 11"L The present invention was made in view of the above circumstances, and has a high output.
Moreover, it is an object of the present invention to provide a secondary battery that does not deposit metals such as lithium on the negative electrode and has a good cycle life, especially when repeated charging and discharging at a high charging and discharging capacity.

即ち、本発明は上記目的を達成するため、電解質の陰イ
オンを電気化学的かつ可逆的にドープし得る導電性高分
子物質を正極とし、電解質の陽イオンを電気化学的かつ
可逆的にドープし得る炭素材料を負極とすると共に、電
解によりこれら正極及び負極にそれぞれドープされ得る
イオンを生成することが可能な化合物を非水溶媒に溶解
した溶液を電解液とした二次電池において、負極を構成
する炭素材料としてグラフフィト化部分のC軸方向面間
隔が3.8人以、Eであるものを用いたものである。
That is, in order to achieve the above object, the present invention uses a conductive polymer material that can electrochemically and reversibly dope electrolyte anions as a positive electrode, and electrolyte cations are doped electrochemically and reversibly. In a secondary battery, the obtained carbon material is used as a negative electrode, and a solution of a compound capable of producing ions that can be doped into the positive and negative electrodes by electrolysis in a non-aqueous solvent is used as an electrolyte. The carbon material used is one in which the distance between graphite parts in the C-axis direction is 3.8 or more, E.

この点につき更に詳述すると、本発明者らは上記問題点
を解決するため、リチウムイオンをドープ剤とする電解
液を用い、負極として構造の興なる種々の炭素材料につ
いて鋭意検討を行なった結果、意外にもポリアクリロニ
トリル(PAN)等の含窒素化合物を焼成した炭素材料
に比べ、セルロース材質又はフェノール樹脂を焼成して
得られる炭素材料の方がリチウムの析出が無く、はるか
に良好な性能を示すこと、また同種原料を焼成して得ら
れる炭素原料の中でも、グラフフィト質の炭素材料に比
べてより非品性の炭素原料の方がリチウム析出がなく、
かつ充放電容曇及びサイクル寿命が大きく、はるかに良
好な性能を示すことを見い出すと共に、上記したような
負極材として好適な炭素材料のX1m解析を行なった結
果、グラフフィト化部分のC軸方向の面間隔が3.8Å
以上の場合はリチウム析出が生じないことを見い出し、
このC軸方向の面間隔が3.8八以上の炭素材料を負極
とし、導電性高分子物質を正極とする二次電池が上述し
たように優れた性能を有していることを知見した。
To explain this point in more detail, in order to solve the above problem, the present inventors used an electrolytic solution containing lithium ions as a dopant, and as a result of intensive studies on various carbon materials with different structures as negative electrodes. Surprisingly, compared to carbon materials obtained by baking nitrogen-containing compounds such as polyacrylonitrile (PAN), carbon materials obtained by baking cellulose materials or phenolic resins do not precipitate lithium and exhibit much better performance. Furthermore, among the carbon raw materials obtained by sintering the same kind of raw materials, lower quality carbon raw materials are free from lithium precipitation compared to graphite carbon materials.
In addition, we found that the charge/discharge capacity and cycle life were large, and exhibited much better performance.As a result of the X1m analysis of the carbon material suitable as the negative electrode material mentioned above, we found that The interplanar spacing is 3.8 Å
We discovered that lithium precipitation does not occur in the above cases.
It has been found that a secondary battery in which a carbon material having a lattice spacing in the C-axis direction of 3.88 or more is used as a negative electrode and a conductive polymer substance is used as a positive electrode has excellent performance as described above.

更に、本発明者らは、上記炭素材料の中でも有機成分、
即ちカルボキシル基、水am、水素基等が少なくて水素
原子/炭素原子比が0.25以上になると*m率が低下
し、過電圧が高くなるため、負極材としての性能が低下
してくること、従って炭素材料としては水素原子/炭素
原子比が0.25未v4(J[率10’ S/cn+J
X上)のものがより望ましく、この種の炭素材料を用い
ることにより、性能の更に向上した二次電池が得られる
ことを知見し、本発明をなすに至ったものである。
Furthermore, the present inventors found that among the above carbon materials, organic components,
In other words, when carboxyl groups, water am, hydrogen groups, etc. are small and the hydrogen atom/carbon atomic ratio becomes 0.25 or more, the *m ratio decreases, the overvoltage increases, and the performance as a negative electrode material decreases. Therefore, as a carbon material, the hydrogen atom/carbon atomic ratio is less than 0.25v4 (J [rate 10' S/cn+J
The inventors have discovered that the carbon material (X above) is more desirable and that by using this type of carbon material, a secondary battery with further improved performance can be obtained, leading to the present invention.

以下、本発明につき更に詳しく説明する。The present invention will be explained in more detail below.

11悲1良 本発明に係る二次電池は、上述したように導電性高分子
物質を正極とし、非晶質炭素材料を負極とし、電解によ
りこれら正負極にそれぞれドープされ得るイオンを生成
することが可能な化合物を非水溶媒に溶解した溶液を電
解液としてなるものである。
11.11.1 Good As described above, the secondary battery according to the present invention uses a conductive polymer substance as a positive electrode, an amorphous carbon material as a negative electrode, and generates ions that can be doped into the positive and negative electrodes respectively by electrolysis. The electrolyte consists of a solution in which a compound capable of oxidation is dissolved in a non-aqueous solvent.

ここで本発明に用いる炭素材料としては、グラフフィト
化部分のC軸方向面間隔が3.8八以上の構造を有する
主として炭素原子からなる材料であればいずれのもので
も使用し得る。この場合、グラフフィト化部分のC軸方
向面間隔の上限に特に限定はない。
As the carbon material used in the present invention, any material mainly consisting of carbon atoms can be used as long as the graphite portion has a structure in which the spacing in the C-axis direction is 3.88 or more. In this case, there is no particular limitation on the upper limit of the distance between the graphite portions in the C-axis direction.

このような炭素材料としては、特にセルロース材質又は
フェノール樹脂を1200℃未満で焼成することにより
得られたものを好適に使用し得る。
As such a carbon material, one obtained by firing a cellulose material or a phenol resin at a temperature below 1200° C. can be particularly preferably used.

この場合、焼成温度の上限はより好ましくは1000℃
であり、下限は500℃より高い温度であることが望ま
しい。
In this case, the upper limit of the firing temperature is more preferably 1000°C.
The lower limit is preferably higher than 500°C.

また、本発明に用いる炭素材料としては、水素原子/炭
素原子比が0.25未満、特に0.15未満のものが好
ましい。また、その下限は0.01であることが好まし
い。更に、炭素材料はその導電率が10’S/am以上
のものが好ましい。
Further, the carbon material used in the present invention preferably has a hydrogen atom/carbon atom ratio of less than 0.25, particularly less than 0.15. Moreover, it is preferable that the lower limit is 0.01. Furthermore, the carbon material preferably has an electrical conductivity of 10'S/am or more.

なお、負極として用いる炭素材料の形態に特に制限はな
く1例えばm帷、布、不織布、フィルム、板、粉末等の
各種形態で使用できる。具体的にはカーボン繊維、カー
ボンクロス、カーボン不織布、カーボンベーパー、カー
ボンフォイル、カーボンフオーム、カーボン粉末等が使
用し得る。
There is no particular restriction on the form of the carbon material used as the negative electrode, and it can be used in various forms, such as m-thread, cloth, nonwoven fabric, film, plate, and powder. Specifically, carbon fiber, carbon cloth, carbon nonwoven fabric, carbon vapor, carbon foil, carbon foam, carbon powder, etc. can be used.

次に、正極に用いる>s電性高分子物質としては、ポリ
アニリン、ポリチェニレン、ポリフラン、ポリピロール
、ポリフェニレンスルフィド及びポリフェニレンオキシ
ドなどが挙げられるが、これらのうちではポリアニリン
が最も好適に使用し得る。
Next, examples of >s-conductive polymeric substances used in the positive electrode include polyaniline, polythenylene, polyfuran, polypyrrole, polyphenylene sulfide, and polyphenylene oxide, among which polyaniline is most preferably used.

なお、これらの導電性高分子物質は電気化学的手合法に
より得ることができ、例えば電極に金属或いはカーボン
成形体を使用してこれら導電性高分子物質を直接電極上
に電解合成し、これをそのまま正極とじで使用すること
ができるもので、このような方法を採用することにより
導電性高分子物質の製造工程を短縮することができる。
Note that these conductive polymer substances can be obtained by electrochemical methods, for example, by electrolytically synthesizing these conductive polymer substances directly on the electrode using a metal or carbon molded body, and then It can be used as is for positive electrode binding, and by adopting such a method, the manufacturing process of the conductive polymer material can be shortened.

本発朗二次電池を構成する電解液に用いられ、前記正負
極にそれぞれドープされ得るイオンを生成する化合物は
、アニオンとカチオンの組合せよりなる化合物であって
、アニオンの例としてはPF6−.5tlF6−、AS
Fs−,5tlCjs−の如きVA族元素のハロゲン化
物アニオン。
The compound that is used in the electrolytic solution constituting this secondary battery and that generates ions that can be doped into the positive and negative electrodes is a compound consisting of a combination of an anion and a cation, and examples of the anion include PF6-. 5tlF6-, AS
Halide anions of group VA elements such as Fs-, 5tlCjs-.

B F4− 、 Aj Cj 4−の如きmA族元素の
ハロゲン化物アニオン、I−([3−)、Br−。
Halide anions of mA group elements such as B F4- , Aj Cj 4-, I-([3-), Br-.

CJ−の如きハロゲンアニオン、ClO4−の如き過塩
素酸アニオン* HFt −、CF350g −。
Halogen anions such as CJ-, perchlorate anions such as ClO4-* HFt-, CF350g-.

CN5−.804− 、H8O4−等を挙げZpことが
できる。また、カチオンとしてはL i +。
CN5-. 804-, H8O4-, etc. can be mentioned. Moreover, as a cation, L i +.

Na ” 、K”の如きアルカリ金属イAン等を挙げる
ことができる。これらアニオン及びカチオンを有する化
合物の具体例としては、 Li PFe 、Li 81)F@ 、Li As F
s 。
Examples include alkali metal ions such as Na'' and K''. Specific examples of compounds having these anions and cations include Li PFe, Li 81) F@, Li As F
s.

しi CtOa 、Li  1.Li Or 、Li 
Cj。
Shii CtOa, Li 1. Li Or, Li
Cj.

Na PFs 、Na Sb Fa 、Na As F
s *Na ClO4,l’tla 1.KPFs 。
NaPFs, NaSbFa, NaAsF
s *Na ClO4, l'tla 1. KPFs.

KSb Fe 、KAS Fn 、KC,104。KSb Fe, KAS Fn, KC, 104.

Li  BF4  、  Li  AJICj4 、 
 Li  HF7  。
Li BF4, Li AJICj4,
LiHF7.

しi CNS、KSON、Li 301 CF3等を挙
げることができ、これらに限定されるものではないが、
二次電池の軽量化、安定化の点からはリチウム塩、特に
Li ClO4,Li BF4゜Li PFs 、Li
  1.Li Br 、Li C,1等が好適に用いら
れる。
Examples include, but are not limited to, CNS, KSON, Li 301 CF3, etc.
From the point of view of weight reduction and stabilization of secondary batteries, lithium salts, especially Li ClO4, Li BF4゜Li PFs, Li
1. Li Br , Li C,1, etc. are preferably used.

なお、」:配化合物は通常溶媒により溶解され光状態で
使用され、この場合溶媒は特に限定はされないが、比較
的極性の大きい溶媒が好適に用いられる。具体的には、
プロピレンカーボネート、エチレンカーボネート、ベン
ゾニトリル、アセトニトリル、テトラヒドロフラン、2
−メチルテトラヒドロフラン、γ−ブチOラクトン、ジ
オキソラン、塩化メチレン、トリエチルフォスフェート
Incidentally, the compound compound is usually dissolved in a solvent and used in a light state, and in this case, the solvent is not particularly limited, but a relatively polar solvent is preferably used. in particular,
Propylene carbonate, ethylene carbonate, benzonitrile, acetonitrile, tetrahydrofuran, 2
-Methyltetrahydrofuran, γ-butyO-lactone, dioxolane, methylene chloride, triethyl phosphate.

トリエチルフォスファイト、硫酸ジメチル、ジメチルホ
ルムアミド、ジメチルアセトアミド、ジメチルスルフオ
キシド、ジオキサン、ジメトキシエタン、ポリエチレン
グリコール、スルフオラン。
Triethyl phosphite, dimethyl sulfate, dimethyl formamide, dimethyl acetamide, dimethyl sulfoxide, dioxane, dimethoxyethane, polyethylene glycol, sulforane.

ジクロロエタン、クロルベンゼン、ニトロペンゼンなど
の1!I又は2秒以上の混合物を挙げることができる。
1 such as dichloroethane, chlorobenzene, nitropenzene! I or a mixture of 2 seconds or more.

本発明の二次電池は、通常正負4@問に電解液を介在さ
せることにより構成されるが、この場合正負両極間に両
極の接触による電流の短絡を防ぐためセパレーターを介
装することができる。セパレーターとしては多孔質で電
解液を通したり含んだりすることのできる材料、例えば
ポリテトラフル4ロエチレン、ポリプロピレンやポリエ
チレンなどの合成樹脂製の不lIA布、繊布及び網等を
使用することができる。
The secondary battery of the present invention is usually constructed by interposing an electrolyte between the positive and negative electrodes, but in this case, a separator may be interposed between the positive and negative electrodes to prevent short circuits of current due to contact between the two electrodes. . As the separator, it is possible to use a material that is porous and can allow the electrolyte to pass through or contain it, such as synthetic resin fabrics, textiles, and nets made of polytetrafluoroethylene, polypropylene, polyethylene, and the like.

11へ11 以上説明したように、本発明の二次電池は正極が界雷性
高分子物質、負極がグラファイト化部分のC軸方向面間
隔が3.8人以上である炭素材料より形成され、これら
正負極の組み合せが有効であるため、に2出力が達成さ
れると共に、負極に金属が析出することがなく、1fイ
クル寿命、特に高い充放電I!吊での充放電繰り返しに
よるサイクルDI@が良好で、かつ軽量であり、このた
め自動車、飛行機、ポータプル機械、電気自flll車
など多方面の用途に好適に使用されるものである。
11 to 11 As explained above, in the secondary battery of the present invention, the positive electrode is formed of a lightning-resistant polymer material, the negative electrode is formed of a carbon material in which the distance between the graphitized portions in the C-axis direction is 3.8 or more, Since the combination of these positive and negative electrodes is effective, two outputs can be achieved, no metal is deposited on the negative electrode, and the cycle life is 1f, especially high charge/discharge I! It has a good cycle DI@ due to repeated charging and discharging while hanging, and is lightweight, so it is suitable for use in a wide variety of applications such as automobiles, airplanes, portable machines, and fully electric vehicles.

以下、炭素材料の負極性能(リチウムの電気化学的吸蔵
能力)をII性嵩高分子物質正極は独立に評圃するため
、炭素材料を作用極に、リチウム全屈を対極にしたセル
を組み、作用極へのリチウムの電気化学的ドープ及びア
ンドープを調べた実験例を示す。
Below, in order to evaluate the negative electrode performance (electrochemical storage capacity of lithium) of carbon materials independently of the type II bulky polymer material cathode, we will construct a cell with a carbon material as a working electrode and a lithium fully exposed electrode as a counter electrode. An experimental example is shown in which electrochemical doping and undoping of lithium into an electrode was investigated.

〔実験例11 不燃処理を施したセルロースm帷(レーヨン織布)を8
00℃で焼成して得られたカーボン織布(C軸方向面間
隔3.95A、水素原子/炭素原子比0.09)50m
を真空乾燥し、これをニッケルメツシュ東ffi極にス
テンレス製ホッチキスでつけて正極とする。負極にはリ
チウム金FA箔を用いると共に、電解液として脱水プロ
ピレンカーボネート中に無水過塩素酸リチウムを溶解し
た溶液を使用して電池を構成した。この場合、電池は上
記正極、負極及び電解液をアルゴン置換されたグローブ
ボックス中で試験管型セルに組み込むことにより作成し
た。
[Experimental Example 11 8 pieces of cellulose m-thread (rayon woven fabric) subjected to non-combustible treatment
Carbon woven fabric obtained by firing at 00°C (C-axis direction spacing 3.95A, hydrogen atom/carbon atomic ratio 0.09) 50 m
is vacuum dried and attached to a nickel mesh East ffi electrode with a stainless steel stapler to form a positive electrode. A battery was constructed using lithium gold FA foil as the negative electrode and a solution of anhydrous lithium perchlorate dissolved in dehydrated propylene carbonate as the electrolyte. In this case, a battery was created by incorporating the positive electrode, negative electrode, and electrolyte into a test tube cell in an argon-substituted glove box.

電池組み立て後の両横間の電圧は3.2■であった。こ
の電池を1mAで10時間(作用極当り200AI−1
/ko)放i!(作用極へのリチウムのドープ)を行な
い、次いで同じり11mAで端子電圧が1.5vになる
まで充電(作用極からのリチウムのドープ)を行なった
。この充放電を50回繰り返したが、カーボン瑚布土へ
のリチウムの析出は全(認められなかった。この時のク
ーロン効率は85〜95%であった。
After the battery was assembled, the voltage between both sides was 3.2■. This battery was operated at 1 mA for 10 hours (200 AI-1 per working electrode)
/ko) Hoi! (doping of lithium to the working electrode), and then charging (doping of lithium from the working electrode) at 11 mA until the terminal voltage reached 1.5 V. This charging and discharging process was repeated 50 times, but no lithium was deposited on the carbon clay. The Coulombic efficiency at this time was 85 to 95%.

[実験例21 不燃処理を施したセルロースII、I(レーヨン織布)
を2000℃で焼成して得られたグラ7?イト織作(C
軸方向面間隔3.6人、水素原子/炭素原子比O)を作
用極として用いる以外は実験例1と同様の電池を作成し
た。
[Experiment Example 21 Cellulose II, I (rayon woven fabric) subjected to nonflammable treatment
Gura 7? obtained by firing at 2000℃ Orisaku Ito (C
A battery was prepared in the same manner as in Experimental Example 1, except that the axial spacing was 3.6 and the hydrogen atom/carbon atomic ratio O) was used as the working electrode.

電池組み立て袴の両極間の電圧は3.1vであった。こ
の電池を11Aで10時間(作用極当り200AH/k
G)放電し、次いで同じ<1mAで端子電圧が1.5v
になるまで充電を行なった。この充放電を5回繰り返し
たところ、グラフ1イト織布土へのリチウム析出が認め
られた。この時のクーロン効率は87〜98%であった
The voltage between the poles of the battery assembled hakama was 3.1v. This battery was operated at 11A for 10 hours (200AH/k per working electrode)
G) Discharge and then terminal voltage 1.5v at same <1mA
I charged it until it was. When this charging and discharging process was repeated five times, lithium precipitation on the graphite woven soil was observed. The coulombic efficiency at this time was 87 to 98%.

[実験例3J PAN織布を800℃で焼成して得られたカーボン織布
(C軸方向面間隔3.5A1水素原子7′炭素原子比0
)を作用極として用いる以外は実験例1と同様の電池を
作成した。
[Experimental Example 3J Carbon woven fabric obtained by firing a PAN woven fabric at 800°C (C-axis direction spacing 3.5 A1 hydrogen atoms 7' carbon atomic ratio 0
) was used as the working electrode, but the same battery as in Experimental Example 1 was prepared.

電池組み立て後の両極間の電圧は3.3vであった。こ
の電池を1wAで10時間(作用極当り200 A H
/ ka )放電し、次いで同じり1111/1で端子
電圧が1.5vになるまで充電を行なった。この充放電
を8回繰り返したところ、カーボン織布、[へのリチウ
ムの析出が認められた。この時のクーロン効率は90〜
95%であった。
The voltage between the two poles after battery assembly was 3.3V. This battery was operated at 1 wA for 10 hours (200 A H per working electrode).
/ka) and then charged at the same voltage of 1111/1 until the terminal voltage reached 1.5V. When this charging and discharging process was repeated eight times, lithium was observed to be deposited on the carbon woven fabric. The coulomb efficiency at this time is 90~
It was 95%.

[実験例4] フェノール樹脂横部を800℃で焼成して得られたカー
ボン織布(C軸方向面間M3.95A。
[Experimental Example 4] A carbon woven fabric obtained by firing the phenol resin side part at 800°C (C-axis direction face-to-face M3.95A).

水素原子/炭素原子比0.08、導電率3.48/ C
1l )を作用極として用いる以外は実験例1と同様の
電池を作成した。
Hydrogen atom/carbon atomic ratio 0.08, electrical conductivity 3.48/C
A battery similar to that in Experimental Example 1 was prepared except that 1l) was used as the working electrode.

電池組み立て侵の両極間の電圧は3.2vであった。こ
の電池を1111Aで10時1m(作用極当り200 
A H/ kg )放電を行ない、次いで同じく1鯖で
端子電圧が1.5■になるまで充電を行なった。この充
放電を50回繰り返したが、カーボン織布上へのリチウ
ムの析出は全く認められなかつ、た。この時のクーロン
効率は終始85〜98%であった。
The voltage between the poles during battery assembly was 3.2v. This battery was operated at 1111A for 1m at 10 hours (200m per working electrode)
The battery was discharged (A H/kg), and then charged in the same manner until the terminal voltage reached 1.5μ. This charging and discharging process was repeated 50 times, but no precipitation of lithium was observed on the carbon woven fabric. The coulombic efficiency at this time was 85 to 98% throughout.

[実験例5j フェノール樹脂I!lI布を2000℃で焼成して得ら
れたグラファイト絹布(C軸方向面間隔3.55人、水
素原子/炭素原子比0)を作用極として用いる以外は実
験例1と同様の電池を作成した。
[Experimental Example 5j Phenolic Resin I! A battery was made in the same manner as in Experimental Example 1, except that a graphite silk cloth obtained by firing the lI cloth at 2000°C (c-axis direction spacing 3.55, hydrogen atom/carbon atomic ratio 0) was used as the working electrode. .

電池組み立て後の両極間の電圧は3.15Vであった。The voltage between the two poles after battery assembly was 3.15V.

この電池を1mlで101011I作用極当り200A
H/lcc+)放電し、次いで同じり11IAで端子電
圧が1.5vになるまで充電を行なった。この充放電を
5回くり返したところ、グラフ1イト織布上へのリチウ
ムの析出が認められた。この時のクーロン9!h帯は8
8〜98%であった。
1ml of this battery is 200A per 101011I working electrode.
H/lcc+) was discharged, and then charged at the same 11 IA until the terminal voltage reached 1.5 V. When this charging and discharging process was repeated five times, lithium was observed to be deposited on the graphite woven fabric. Coulomb 9 at this time! h band is 8
It was 8-98%.

以下、実施例と比較例を示し、本発明を具体的に説明す
るが、本発明は下記の実施例に制限されるものではない
EXAMPLES Hereinafter, the present invention will be specifically explained by showing examples and comparative examples, but the present invention is not limited to the following examples.

[実施例1 アニリンを含む過塩素酸水溶液を@解液とし、この中に
作用極、対極としてそれぞれ白金板(2X21)を浸漬
し、低電位電解によってポリアニリンを合成した。得ら
れたポリアニリン(重量6、4Kl)は蒸溜水で十分洗
浄した後、真空乾燥した。
[Example 1] A perchloric acid aqueous solution containing aniline was used as a solution, and a platinum plate (2×21) was immersed therein as a working electrode and a counter electrode, and polyaniline was synthesized by low potential electrolysis. The obtained polyaniline (weight 6.4 Kl) was thoroughly washed with distilled water and then vacuum dried.

次に、このポリアニリンを正極として使用すると共に、
負極として不燃処理を施したレーヨン繊維を800℃で
焼成して得られたカーボンI雑(C軸方向面間隔3.9
5A、水素原子/炭素原子比0.09>2.7waを用
い、かつ電解液として脱水プロピレンカーボネート中に
無水過塩素酸リチウムを11111モル/Jで溶解した
溶液を使用し工電池を構成した。この場合、電池は上記
正極、負極及び電解液をアルゴンa換されたグローブボ
ックス中で試験IR型セルに組み込むことにより作成し
た。
Next, while using this polyaniline as a positive electrode,
Carbon I miscellaneous (C-axis direction spacing 3.9
5A, a hydrogen atom/carbon atom ratio of 0.09>2.7 wa, and a solution of anhydrous lithium perchlorate dissolved in dehydrated propylene carbonate at 11111 mol/J as the electrolyte. In this case, a battery was constructed by incorporating the positive electrode, negative electrode, and electrolyte into a test IR type cell in an argon a-filled glove box.

電池組み立て後の両極間の電圧は0.5Vであったが、
50μA定電流で充電すると両極間の電圧は直ちに2.
0■に上昇し、その後充電を続けると電圧は徐々に上昇
し、3.8vに達したところで充電を終了した。この時
の充電に要した時間は12.5時間であった。即ち、充
電容量はポリアニリン当り98AH/に9、カーボン当
り233A H/ kG、両極当り70 A H/ k
aに相当する。次いで、同じく50μAで端子電圧が2
.OVになるまで放電(平均放ltI圧3.2V)を行
った。
The voltage between the two poles after battery assembly was 0.5V,
When charging with a constant current of 50 μA, the voltage between the two poles immediately increases to 2.
The voltage rose to 0.2 V, and as charging continued, the voltage gradually increased and when it reached 3.8 V, charging was terminated. The time required for charging at this time was 12.5 hours. That is, the charging capacity is 98 AH/kG per polyaniline, 233 AH/kG per carbon, and 70 AH/k per pole.
Corresponds to a. Next, the terminal voltage is 2 at the same 50 μA.
.. Discharge was performed until the voltage reached OV (average released ltI voltage 3.2V).

この充放電を50回繰り返したが、カーボン楳粒上への
リチウムの析出は全く認められなかった。
This charging and discharging process was repeated 50 times, but no precipitation of lithium on the carbon grains was observed.

この時のクーロン効率は86%であった。The coulombic efficiency at this time was 86%.

[比較例1 実施例と同様の方法で合成したポリアニリン7.0mを
正極とし、不燃処理を施したレーヨン1IIIを200
0℃で焼成して得られたグラフフィト繊M(C軸方向面
間隔3.6八、水素原子/炭素原子比O)を負極とする
以外は実施例と同様のw121!!を作成した。
[Comparative Example 1 7.0m of polyaniline synthesized in the same manner as in Example was used as the positive electrode, and 200m of rayon 1III subjected to nonflammable treatment was used as the positive electrode.
w121! Same as in Example except that graphite fiber M obtained by firing at 0°C (c-axis direction spacing 3.68, hydrogen atom/carbon atomic ratio O) was used as the negative electrode! ! It was created.

電池を組み立てた模の両極間の電圧は0.6Vであった
。この11F#1を50μA定電流で13.5時間充電
(ポリアニリン当り97AH/に9、グラフ1イト当り
233 A H/ ka、両極当り69AH/kg)シ
、次いで同じく50μAで端子電圧が−2)OVになる
まで放電(平均放電率3.2V)を行なった。この充放
電を5回繰り返したところ、グラファイト繊維上にリチ
ウムの析出が認められた。この時のクーロン効率は86
%であった。
The voltage between the poles of the assembled battery was 0.6V. This 11F#1 was charged for 13.5 hours at a constant current of 50 μA (97 AH/9 per polyaniline, 233 AH/ka per graphite, 69 AH/kg per pole), and then the terminal voltage was -2 at the same 50 μA). Discharge was performed until the voltage reached OV (average discharge rate 3.2V). When this charging and discharging process was repeated five times, lithium precipitation was observed on the graphite fibers. The coulomb efficiency at this time is 86
%Met.

出願人  株式会社 ブリデストン 代理人  弁理士 小 島 隆 司 手続補正書(自発) 昭和60年9月12日 1)事件の表示 昭和60年特許願第3084号 2)発明の名称 二次電池 3)補正をする者 事件との関係    特許出願人 住  所  東京都中央区京橋−丁目10番1号氏  
名  (527)株式会社  ブリデストン代表者  
家 入  昭 4)代理人 〒104 住  所  東京都中央区銀座3丁目11番14号ダパ
クリエートビル5階 電話(545)6454明細書の
「発明の詳細な説明」の欄。
Applicant Brideston Co., Ltd. Agent Patent Attorney Takashi Kojima Procedural amendment (voluntary) September 12, 1985 1) Indication of the case 1985 Patent Application No. 3084 2) Name of the invention Secondary battery 3) Amendment Relationship with the case involving the applicant Patent applicant address: 10-1 Kyobashi-chome, Chuo-ku, Tokyo
Name (527) Representative of Brideston Co., Ltd.
House: 1924) Agent: 104 Address: 5th floor, Dapa Create Building, 3-11-14 Ginza, Chuo-ku, Tokyo Telephone: (545) 6454 "Detailed Description of the Invention" section of the specification.

6、補正の内容 明細書第12頁第8行目「を示す、」の次に[なお、本
実験における面間距離の求めかたは、X線回折のチャー
トを(OO2)面の回折ピークの最大値を与える2θか
ら直接求めた。」を挿入する。
6. In the 8th line of page 12 of the specification of amendments, next to ``indicates,'' [In this experiment, the interplane distance was determined by It was determined directly from 2θ which gives the value. ” is inserted.

以上that's all

Claims (1)

【特許請求の範囲】 1)電解質の陰イオンを電気化学的かつ可逆的にドープ
し得る導電性高分子物質を含む正極と、電解質の陽イオ
ンを電気化学的かつ可逆的にドープし得るグラファイト
化部分のC軸方向面間隔が3.8Å以上である炭素材料
を含む負極とを具備し、電解によりこれら正極及び負極
にそれぞれドープされ得るイオンを生成することが可能
な化合物を非水溶媒に溶解した溶液を電解液としてなる
ことを特徴とする二次電池。 2)炭素材料がセルロース材質又はフェノール樹脂を1
200℃未満で焼成して得られたものである特許請求の
範囲第1項記載の二次電池。 3)炭素材料の水素原子/炭素原子比が 0.25未満である特許請求の範囲第1項又は第2項記
載の二次電池。 4)炭素材料の導電率が10^−^4/cm以上である
特許請求の範囲第1項乃至第3項いずれか記載の二次電
池。 5)導電性高分子物質がポリアニリンである特許請求の
範囲第1項乃至第4項いずれか記載の二次電池。
[Claims] 1) A positive electrode containing a conductive polymer substance that can electrochemically and reversibly dope the anions of the electrolyte, and a graphitization that can electrochemically and reversibly dope the cations of the electrolyte. A negative electrode containing a carbon material whose portions have a plane spacing in the C-axis direction of 3.8 Å or more, and a compound capable of generating ions that can be doped into the positive electrode and negative electrode by electrolysis, respectively, is dissolved in a non-aqueous solvent. A secondary battery characterized by using a solution as an electrolyte. 2) The carbon material is cellulose material or phenolic resin.
The secondary battery according to claim 1, which is obtained by firing at a temperature below 200°C. 3) The secondary battery according to claim 1 or 2, wherein the carbon material has a hydrogen atom/carbon atomic ratio of less than 0.25. 4) The secondary battery according to any one of claims 1 to 3, wherein the carbon material has an electrical conductivity of 10^-^4/cm or more. 5) The secondary battery according to any one of claims 1 to 4, wherein the conductive polymer material is polyaniline.
JP60003084A 1985-01-11 1985-01-11 Secondary cell Pending JPS61163562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60003084A JPS61163562A (en) 1985-01-11 1985-01-11 Secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60003084A JPS61163562A (en) 1985-01-11 1985-01-11 Secondary cell

Publications (1)

Publication Number Publication Date
JPS61163562A true JPS61163562A (en) 1986-07-24

Family

ID=11547473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60003084A Pending JPS61163562A (en) 1985-01-11 1985-01-11 Secondary cell

Country Status (1)

Country Link
JP (1) JPS61163562A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0205856A2 (en) * 1985-05-10 1986-12-30 Asahi Kasei Kogyo Kabushiki Kaisha Secondary battery
JPS63100009A (en) * 1986-10-14 1988-05-02 Kuraray Co Ltd Activated carbon
JPS63216272A (en) * 1987-03-03 1988-09-08 Asahi Glass Co Ltd Nonaqueous electrolyte energy storage device
JPS63298967A (en) * 1987-05-29 1988-12-06 Kanebo Ltd Organic electrolyte battery using polyaniline as positive electrode
US5151162A (en) * 1989-06-12 1992-09-29 Honda Giken Kogyo Kabushiki Kaisha Rechargeable storage battery with electroactive organic polymer electrodes in polar solvent electrolyte
WO1993010566A1 (en) * 1991-11-20 1993-05-27 Honda Giken Kogyo Kabushiki Kaisha Carbon-based material
WO1995018467A1 (en) * 1992-04-30 1995-07-06 Sony Corporation Material for cathode and method of its manufacture
US5643426A (en) * 1993-12-28 1997-07-01 Sony Corporation Anode material and method of manufacturing the same
US5716732A (en) * 1992-04-30 1998-02-10 Imoto; Hiroshi Anode material and method of manufacturing the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0205856A2 (en) * 1985-05-10 1986-12-30 Asahi Kasei Kogyo Kabushiki Kaisha Secondary battery
USRE34991E (en) * 1985-05-10 1995-07-04 Asahi Kasei Kogyo Kabushiki Kaisha Secondary battery
JPS63100009A (en) * 1986-10-14 1988-05-02 Kuraray Co Ltd Activated carbon
JPS63216272A (en) * 1987-03-03 1988-09-08 Asahi Glass Co Ltd Nonaqueous electrolyte energy storage device
JPS63298967A (en) * 1987-05-29 1988-12-06 Kanebo Ltd Organic electrolyte battery using polyaniline as positive electrode
US5151162A (en) * 1989-06-12 1992-09-29 Honda Giken Kogyo Kabushiki Kaisha Rechargeable storage battery with electroactive organic polymer electrodes in polar solvent electrolyte
WO1993010566A1 (en) * 1991-11-20 1993-05-27 Honda Giken Kogyo Kabushiki Kaisha Carbon-based material
US5591545A (en) * 1991-11-20 1997-01-07 Honda Giken Kogyo Kabushiki Kaisha Carbon material and method for producing same
WO1995018467A1 (en) * 1992-04-30 1995-07-06 Sony Corporation Material for cathode and method of its manufacture
US5716732A (en) * 1992-04-30 1998-02-10 Imoto; Hiroshi Anode material and method of manufacturing the same
US5643426A (en) * 1993-12-28 1997-07-01 Sony Corporation Anode material and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US6174621B1 (en) Electroactive high storage capacity polyacetylene-co-polysulfur materials and electrolytic cells containing same
US5529860A (en) Electroactive high storage capacity polyacetylene-co-polysulfur materials and electrolytic cells containing same
US4550067A (en) Secondary battery
JP6054387B2 (en) Electrode active material for sodium ion battery
US6072026A (en) Aniline polymer electrode material and secondary cell
JPH09147868A (en) Sulfide secondary battery and activated carbon fiber for electrode material
US5183543A (en) Polyanilines, process for the preparation thereof and cells using them
JPH0831404A (en) Electrode and secondary battery using this electrode
JPS61163562A (en) Secondary cell
JP3015411B2 (en) Polyaniline battery
JPS63314762A (en) Organic electrolyte cell using aluminum-lithium alloy as negative electrode
KR20200142897A (en) Sulfur-carbon composite, positive electrode for lithium secondary battery and lithium secondary battery comprising the same
JPS6289749A (en) Electrode material
JP2018133126A (en) Secondary battery electrode active material and secondary battery arranged by use thereof
KR100378008B1 (en) Negative electrode and for lithium-sulfur battery and lithium-sulfur battery comprising same
JP2562601B2 (en) Organic electrolyte battery with activated carbon-aniline composite as positive electrode
JPS6020476A (en) Secondary battery
JPH0821430B2 (en) Secondary battery
JPH06275267A (en) Electrode, battery using the same, and its manufacture
JPH0567477A (en) Battery
JPS60221973A (en) Secondary battery
JP2515547B2 (en) Organic electrolyte battery using aniline composite as positive electrode
JPS59157974A (en) Secondary battery
JPS63152867A (en) Polyaniline
JPH08315859A (en) Nonaqueous lithium secondary battery