JPH0992321A - Redox cell - Google Patents

Redox cell

Info

Publication number
JPH0992321A
JPH0992321A JP7249737A JP24973795A JPH0992321A JP H0992321 A JPH0992321 A JP H0992321A JP 7249737 A JP7249737 A JP 7249737A JP 24973795 A JP24973795 A JP 24973795A JP H0992321 A JPH0992321 A JP H0992321A
Authority
JP
Japan
Prior art keywords
layer
carbon
negative electrode
liquid
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7249737A
Other languages
Japanese (ja)
Inventor
Mitsutaka Miyabayashi
光孝 宮林
Toshihiko Tanimoto
敏彦 谷本
Kanji Sato
完二 佐藤
Toshiyuki Tayama
利行 田山
Masahiro Sasaki
政弘 佐々木
Yoshiteru Kageyama
芳輝 景山
Masato Nakajima
正人 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KASHIMAKITA KYODO HATSUDEN KK
Original Assignee
KASHIMAKITA KYODO HATSUDEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KASHIMAKITA KYODO HATSUDEN KK filed Critical KASHIMAKITA KYODO HATSUDEN KK
Priority to JP7249737A priority Critical patent/JPH0992321A/en
Publication of JPH0992321A publication Critical patent/JPH0992321A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a redox flow cell which can be reduced in resistance of battery cell, enhanced in power efficiency, minimized in pump power for permeating electrolyte, and also enhanced in energy efficiency by using liquid permeable porous electrodes of two layers or more. SOLUTION: The drawing shows the unit cell structure of a redox cell. Liquid permeable porous electrode formed of carbon fiber layers 3 and carbon compact layers 2 are arranged on both sides of a diaphragm 4, respectively, and these members are pressed in sandwich state by a current collector A1 and a current collector B1'. One of chambers partitioned by the diaphragm 4 is set to a positive electrode chamber, the other to a negative electrode chamber, and the thickness of the chambers is ensured by a proper spacer 5. A positive electrode electrolyte formed of V<4+> /V<5+> is passed to the positive electrode chamber through a passage Lp, and a negative electrode electrolyte formed of V<3+> /V<2+> is passed to the negative electrode chamber through a passage Ln. In charging, electrons are released in the positive electrode chamber to oxidize V<4+> to V<5+> . The released electrons are supplied to the negative electrode side through an external circuit. In the negative electrode chamber, V<3+> is reduced to V<2+> by the supplied electrons.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、レドックスフロー
型二次電池(略して、「レドックス電池」と呼ぶことが
ある)に関するものであり、特に該電池に使用する液透
過性多孔質電極の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a redox flow type secondary battery (sometimes abbreviated as "redox battery"), and in particular, an improvement of a liquid-permeable porous electrode used in the battery. It is about.

【0002】[0002]

【発明の背景】現在、化石燃料の大量使用による大気中
炭酸ガス濃度の増加が著しく、地球の温暖化が大きな問
題となっている。このために、クリーンなエネルギー源
である太陽電池の開発が活発に行われているが、太陽電
池は、夜間や雨天時は発電できないため太陽電池と組み
合わせる高性能な2次電池の開発が待たれている。一
方、従来の発電設備に於いても夜と昼等で電力需要の差
が大きく、需要のピークにあわせて発電能力を備えねば
ならないため、発電設備の負荷率は低下している。その
ため大型の電力貯蔵電池により夜間電力を貯蔵し、昼間
活用することで運転負荷の平滑化を図り、発電設備の負
荷率を上げて効率的な運転を行うことが必要になってき
ており、大型の電力貯蔵電池の開発が待たれている。さ
らには、電気自動車等の移動体電源に適した出力密度の
大きい二次電池の開発も待たれている。レドックス電池
はタッピングによって太陽電池の出力電圧に合わせて充
電できることや、構造が比較的シンプルで大型化しやす
い等の特徴を持つために、上記の用途に適した新型の二
次電池として有望である。
BACKGROUND OF THE INVENTION At present, the concentration of carbon dioxide in the atmosphere is remarkably increased due to the large use of fossil fuels, and global warming has become a serious problem. For this reason, solar cells, which are clean energy sources, are being actively developed. However, since solar cells cannot generate power at night or in rainy weather, the development of high-performance secondary batteries to be combined with solar cells is awaited. ing. On the other hand, even in the conventional power generation equipment, there is a large difference in power demand between night and day and the power generation capacity must be provided in accordance with the peak demand, so the load factor of the power generation equipment is decreasing. Therefore, it is necessary to store nighttime electric power with a large power storage battery and utilize it during the daytime to smooth the operating load and increase the load factor of the power generation equipment for efficient operation. The development of the electric power storage battery is awaited. Furthermore, the development of a secondary battery having a high output density suitable for a mobile power source such as an electric vehicle has been awaited. A redox battery is promising as a new type of secondary battery suitable for the above-mentioned applications because it can be charged according to the output voltage of the solar cell by tapping, and has features such as a relatively simple structure and easy enlargement.

【0003】[0003]

【従来の技術】レドックスフロー型二次電池とは、電池
活物質が液状であり、正極及び負極の電池活物質を液透
過型の電解槽に流通せしめ、酸化還元反応を利用して充
放電を行うものであり、従来の二次電池と比べレドック
スフロー型二次電池は次の利点を有する。 (1) 蓄電容量を大きくするためには、貯蔵容器の容量を
大きくし、活物質量を増加させるだけでよく、出力を大
きくしない限り、電解槽自体はそのままでよい。 (2) 正、負極活物質は容器に完全に分離して貯蔵できる
ので、活物質が電極に接しているような電池と異なり、
自己放電の可能性が小さい。 (3) 本電池で使用する液透過型炭素多孔質電極において
は、活物質イオンの充放電反応(電極反応)は、単に、電
極表面で電子の交換を行うのみで、亜鉛ー臭素電池にお
ける、亜鉛イオンのように電極に析出することはないの
で、電池の反応が単純である。
2. Description of the Related Art A redox flow type secondary battery is a battery in which a battery active material is in a liquid state, and a battery active material of a positive electrode and a negative electrode is passed through a liquid-permeable electrolytic cell, and charge and discharge are performed using an oxidation-reduction reaction. The redox flow type secondary battery has the following advantages as compared with the conventional secondary battery. (1) In order to increase the storage capacity, it is sufficient to increase the capacity of the storage container and increase the amount of the active material, and the electrolytic cell itself can be used as long as the output is not increased. (2) Since the positive and negative electrode active materials can be completely separated and stored in a container, unlike a battery in which the active material is in contact with the electrodes,
The possibility of self-discharge is low. (3) In the liquid-permeable carbon porous electrode used in the present battery, the charge / discharge reaction of the active material ions (electrode reaction) is simply carried out by exchanging electrons on the electrode surface, and in the zinc-bromine battery, The reaction of the battery is simple because it does not deposit on the electrode like zinc ions.

【0004】しかし、レドックスフロー型二次電池でも
従来開発が行われてきた鉄ークロム系電池は、エネルギ
ー密度が小さく、イオン交換膜を介して鉄とクロムが混
合するなどの欠点があるために実用化に至っていない。
そのため全バナジウムレドックスフロー型電池(J.Elec
trochem.Soc., 1331057(1986)、特公昭62-186473号公
報)が提案されており、この電池は、鉄ークロム系電池
電池に比して起電力が高く、容量密度が大きく、また電
解液が一元素系であるために、隔膜を介して正極液及び
負極液が相互に混合しても充電によって簡単に再生する
ことができ、電池容量が低下せず、電解液を完全にクロ
ーズド化できる等の利点を持っている。
However, iron-chromium batteries, which have been conventionally developed for redox flow type secondary batteries, have a low energy density and are disadvantageous in that iron and chromium are mixed through an ion exchange membrane. It has not been realized.
Therefore, all vanadium redox flow batteries (J. Elec
trochem.Soc., 1331057 (1986), Japanese Examined Patent Publication No. 62-186473), which has a higher electromotive force, a larger capacity density, and an electrolytic solution than an iron-chromium battery. Since it is a one-element system, even if the positive electrode liquid and the negative electrode liquid are mixed with each other through the diaphragm, they can be easily regenerated by charging, the battery capacity does not decrease, and the electrolytic solution can be completely closed. Etc. have advantages.

【0005】しかしながら、この全バナジウムレドック
スフロー型電池でも、セル抵抗率を小さくし、比較的高
い電流密度においても高い電力効率を維持し、かつ電解
液を透過させるためのポンプ動力を小さくしてエネルギ
ー効率を高くする必要があるが、従来の全バナジウムレ
ドックスフロー型電池では不十分であった。正極室及び
負極室のセル厚を薄くして電池セルの内部抵抗を低減す
ると、電解液を透過させるためのポンプ動力が大きくな
り、エネルギー効率は低下する。逆に、正極室及び負極
室のセル厚を厚くして電解液を透過させるためのポンプ
動力を小さくすると、電池セルの抵抗が大きくなり電力
効率が低下する。例えば、従来はセルの内部抵抗を低減
するために液透過性多孔質電極を過剰に押圧し、セルの
厚さを薄くする方法、反応性液透過性多孔質電極の炭素
繊維を高密度に充填し、単位体積あたりの酸化還元反応
の活性化点の総数を増加させる方法、電解液の酸濃度を
上げ電解液の電導度を上げる方法等が試みられていた。
一方、シャント電流損失を低減するためには、電解液導
入口のスリットの長さを長くし、断面積を小さくする方
法が用いられた。
However, even in this all-vanadium redox flow type battery, the cell resistivity is reduced, high power efficiency is maintained even at a relatively high current density, and the pump power for allowing the electrolyte to permeate is reduced to save energy. Although it is necessary to increase efficiency, the conventional all-vanadium redox flow battery is not sufficient. When the cell thickness of the positive electrode chamber and the negative electrode chamber is reduced to reduce the internal resistance of the battery cell, the pump power for allowing the electrolytic solution to permeate increases and the energy efficiency decreases. On the contrary, when the cell power of the positive electrode chamber and the negative electrode chamber is increased to reduce the pump power for permeating the electrolytic solution, the resistance of the battery cell increases and the power efficiency decreases. For example, the conventional method is to press the liquid-permeable porous electrode excessively to reduce the internal resistance of the cell and reduce the cell thickness, and to fill the carbon fiber of the reactive liquid-permeable porous electrode with high density. However, a method of increasing the total number of activation points of the redox reaction per unit volume, a method of increasing the acid concentration of the electrolytic solution and increasing the electrical conductivity of the electrolytic solution have been tried.
On the other hand, in order to reduce the shunt current loss, a method of increasing the length of the slit of the electrolytic solution introducing port and decreasing the cross-sectional area was used.

【0006】しかし、液透過性多孔質電極を過剰に押圧
し、セルの厚さを薄くする方法、高密度に充填し単位体
積あたりの活性点を増加させる方法、電解液の酸濃度を
上げる方法および電解液導入口のスリットの長さを長く
して断面積を小さくする方法等は、すなわちポンプ動力
損失を増大することであり、上記方法によって充放電の
効率を向上してもポンプ動力損失によって全体のエネル
ギー効率は、減少してしまう結果になっていた。また、
特開平2-148659号公報では、集電炭素板に電解液の流通
方向に沿って通液溝を形成し、特開平2-148658号公報で
は、多孔質電極材と隔膜の間に液流通性の高い多孔質絶
縁材を配置してポンプ動力損失を低減している。しか
し、この時のセル抵抗は、1.8Ωcm2程度と高く、高い電
流密度で用いることができず、また電力効率が低く、全
体のエネルギー効率も低いものであった。従って、電池
セルの抵抗を低減でき、電力効率が高く、電解液を透過
させるためのポンプ動力が小さく、エネルギー効率の大
きなレドックスフロー型電池の開発が求められていた。
However, the method of excessively pressing the liquid-permeable porous electrode to reduce the thickness of the cell, the method of filling the cell with high density to increase the number of active sites per unit volume, and the method of increasing the acid concentration of the electrolytic solution And the method of decreasing the cross-sectional area by increasing the length of the slit of the electrolytic solution inlet is to increase the pump power loss, and even if the efficiency of charging and discharging is improved by the above method, The overall energy efficiency was reduced. Also,
In JP-A-2-148659, a liquid-flowing groove is formed in the current collecting carbon plate along the flow direction of the electrolytic solution, and in JP-A-2-148658, liquid flowability is provided between the porous electrode material and the diaphragm. Highly porous porous material is placed to reduce pump power loss. However, the cell resistance at this time was as high as about 1.8 Ωcm 2 , it could not be used at high current density, the power efficiency was low, and the overall energy efficiency was low. Therefore, there has been a demand for the development of a redox flow type battery which can reduce the resistance of the battery cell, has high power efficiency, low pump power for permeating the electrolytic solution, and high energy efficiency.

【0007】[0007]

【発明が解決しようとする課題】かかる状況に鑑み、本
発明者等は、電池セルの抵抗を低減でき、電力効率が高
く、電解液を透過させるためのポンプ動力が小さく、エ
ネルギー効率の大きなレドックスフロー型電池の開発に
ついて鋭意検討した結果、本発明に到達したものであ
る。
In view of such a situation, the present inventors have found that the redox of which the resistance of the battery cell can be reduced, the power efficiency is high, the pump power for permeating the electrolytic solution is small, and the energy efficiency is large. As a result of intensive studies on the development of a flow type battery, the present invention has been achieved.

【0008】[0008]

【課題を解決するための手段】すなわち、本発明によれ
ば、隔膜によって分離され且つ液透過性多孔質電極が配
設された正極室と負極室に、正極液と負極液を通液して
酸化還元反応を行い充放電する液循環式型のレドックス
電池において、該液透過性多孔質電極が下記のA層およ
びB層の少なくとも二層からなり、該B層が隔膜側に配
置されることを特徴とするレドックス電池が提供され
る。 A層:X線広角回折法による(002)面の面間隔(d
002)が3.75Å以下であり且つ嵩密度が0.01〜0.
80g/ccであるシート状の炭素成形体層 B層:X線広角回折法による(002)面の面間隔(d
002)が3.37Å以上であり、繊維径が35μm以下で
あり且つ表面積が0.5m2 /g以上である炭素繊維層
That is, according to the present invention, a positive electrode liquid and a negative electrode liquid are passed through a positive electrode chamber and a negative electrode chamber separated by a diaphragm and provided with a liquid-permeable porous electrode. In a liquid-circulation type redox battery that performs an oxidation-reduction reaction and is charged and discharged, the liquid-permeable porous electrode is composed of at least two layers of the following A layer and B layer, and the B layer is arranged on the diaphragm side. A redox battery is provided. Layer A: Interplanar spacing (d) of (002) plane by X-ray wide-angle diffraction method
002 ) is 3.75 Å or less and the bulk density is 0.01 to 0.
80 g / cc sheet-like carbon molded body layer B layer: Interplanar spacing (d) of (002) plane by X-ray wide angle diffraction method
002 ) is 3.37Å or more, the fiber diameter is 35 μm or less, and the surface area is 0.5 m 2 / g or more.

【0009】[0009]

【発明の実施の形態】本発明のレドックス電池において
は、正極室および負極室の液透過性多孔質電極が上記A
層およびB層の少なくとも二層から成る。A層に相当す
るシート状炭素成形体層は、X線広角回折法による(0
02)面の面間隔(d002)が3.75Å以下であり、好
ましくは3.70Å以下、より好ましくは3.68Å以
下、さらに好ましくは3.35〜3.65Å、特に好ま
しくは3.36〜3.63Å、最も好ましくは3.37〜
3.62Åである。(002)面の面間隔(d002)が
3.75Åを越えると、導電性が低く電池セルの抵抗を
低減することができない。また、A層は、X線広角回折
法によるC軸方向の結晶子の大きさ(Lc)が、好ましく
は8Å以上であり、より好ましくは10Å以上、さらに
好ましくは11Å以上、さらにより好ましくは12〜8
00Å、特に好ましくは13〜500Å、最も好ましく
は14〜200Åである。過度にC軸方向の結晶子の大
きさ(Lc)が小さいと導電性が低く、電池セルの抵抗が
高くなるので好ましくない。
BEST MODE FOR CARRYING OUT THE INVENTION In the redox battery of the present invention, the liquid-permeable porous electrodes in the positive electrode chamber and the negative electrode chamber are the above-mentioned A.
And at least two layers, layer B and layer B. The sheet-like carbon molded body layer corresponding to the A layer was formed by the X-ray wide angle diffraction method (0
02) surface spacing (d 002 ) is 3.75Å or less, preferably 3.70Å or less, more preferably 3.68Å or less, still more preferably 3.35 to 3.65Å, particularly preferably 3.36. ~ 3.63Å, most preferably 3.37 ~
It is 3.62Å. When the surface spacing (d 002 ) of the (002) plane exceeds 3.75Å, the conductivity is low and the resistance of the battery cell cannot be reduced. The A layer has a crystallite size (Lc) in the C-axis direction by the X-ray wide angle diffraction method of preferably 8 Å or more, more preferably 10 Å or more, still more preferably 11 Å or more, and even more preferably 12 ~ 8
00Å, particularly preferably 13 to 500Å, most preferably 14 to 200Å. If the crystallite size (Lc) in the C-axis direction is too small, the conductivity is low and the resistance of the battery cell is high, which is not preferable.

【0010】さらに、A層は、0.01〜0.80g/c
cの嵩密度を有することが必要である。該嵩密度は、好
ましくは0.01〜0.60g/cc、より好ましくは0.
02〜0.50g/cc、さらに好ましくは0.03〜0.
40g、特に好ましくは0.04〜0.35g/cc、最
も好ましくは0.045〜0.32g/ccである。嵩密
度が0.60g/ccを越えると電解液を透過させるため
のポンプ動力が大きくなる。嵩密度が0.01g/cc未
満であると電極と集電体との接触面積が小さくなるため
セル抵抗が大きくなり、また機械的強度が小さくなる。
Further, the layer A is 0.01 to 0.80 g / c.
It is necessary to have a bulk density of c. The bulk density is preferably 0.01 to 0.60 g / cc, more preferably 0.9.
02-0.50 g / cc, more preferably 0.03-0.5.
40 g, particularly preferably 0.04 to 0.35 g / cc, most preferably 0.045 to 0.32 g / cc. When the bulk density exceeds 0.60 g / cc, the pump power for permeating the electrolytic solution becomes large. When the bulk density is less than 0.01 g / cc, the contact area between the electrode and the current collector becomes small, so that the cell resistance becomes large and the mechanical strength becomes small.

【0011】A層は、好ましくは平均孔径3μm以上の
連続気孔を有し、より好ましくは平均孔径10〜300
0μm、さらに好ましくは20〜2000μm、特に好
ましくは30〜1000μm、さらに特に好ましくは5
0〜700μm、最も好ましくは70〜500μmの連
続気孔を有する。平均孔径が3μm未満であると電解液
を透過させるためのポンプ動力が大きくなる。なお、平
均孔径は、好ましくは数平均孔径で表すことができる。
例えば、顕微鏡写真において一定長さ中に存在する気孔
数で一定長さを除した値として求めることができる。
The layer A preferably has continuous pores having an average pore diameter of 3 μm or more, more preferably 10 to 300.
0 μm, more preferably 20 to 2000 μm, particularly preferably 30 to 1000 μm, and even more preferably 5
It has open pores of 0-700 μm, most preferably 70-500 μm. If the average pore size is less than 3 μm, the pump power for allowing the electrolytic solution to permeate becomes large. The average pore size can be preferably expressed as a number average pore size.
For example, it can be obtained as a value obtained by dividing the fixed length by the number of pores existing in the fixed length in the micrograph.

【0012】A層は、水素/炭素の原子比が0.12以
下であることが好ましく、さらに好ましくは0.10以
下、特に好ましくは0〜0.08、最も好ましくは0〜
0.06である。水素/炭素の原子比が0.12を超え
ると、電極の導電性が低下し、電池セルの抵抗が上昇
し、好ましくない。
The layer A preferably has an atomic ratio of hydrogen / carbon of 0.12 or less, more preferably 0.10 or less, particularly preferably 0 to 0.08, and most preferably 0.
It is 0.06. When the atomic ratio of hydrogen / carbon exceeds 0.12, the conductivity of the electrode decreases and the resistance of the battery cell increases, which is not preferable.

【0013】A層は、真密度が好ましくは1.20g/c
c以上、より好ましくは1.30g/cc以上、さらに好
ましくは1.40〜2.20g/cc、特に好ましくは1.
50〜2.15g/cc、最も好ましくは1.55〜2.1
0g/ccである。真密度が過度に小さいと、電極の電
気伝導性が悪くなり高電流密度での充放電がしづらくな
る。真密度が過度に大きいと、電極表面での反応性が小
さくなる。
The layer A preferably has a true density of 1.20 g / c.
c or more, more preferably 1.30 g / cc or more, further preferably 1.40 to 2.20 g / cc, particularly preferably 1.
50-2.15 g / cc, most preferably 1.55-2.1
It is 0 g / cc. If the true density is excessively low, the electrical conductivity of the electrode deteriorates, making it difficult to charge and discharge at a high current density. When the true density is excessively high, the reactivity on the electrode surface becomes low.

【0014】A層は、表面積(BET法)が好ましくは
0.1m2/g以上、より好ましくは0.5〜2000m2/
g、さらに好ましくは1.0〜1000m2/g、特に好
ましくは1.5〜500m2/g、最も好ましくは2.0〜
100m2/gである。表面積が過度に小さいと、電極反
応速度が遅くなって高電流密度での充放電がしづらくな
る。表面積が過度に大きいと、電極の機械的強度が小さ
くなる。
[0014] A layer, the surface area (BET method) is preferably from 0.1 m 2 / g or more, more preferably 0.5~2000m 2 /
g, more preferably 1.0 to 1000 m 2 / g, particularly preferably 1.5 to 500 m 2 / g, and most preferably 2.0.
It is 100 m 2 / g. If the surface area is excessively small, the electrode reaction rate becomes slow and it becomes difficult to charge and discharge at a high current density. If the surface area is too large, the mechanical strength of the electrode will be low.

【0015】A層は、厚みが好ましくは0.5〜20m
m、より好ましくは1.0〜10mm、さらに好ましく
は1.2〜5mm、特に好ましくは1.4〜3mm、最も
好ましくは1.5〜2.5mmである。厚みが過度に小さ
いと、電解液を透過させるためのポンプ動力を小さく
し、セル抵抗率を小さくすることが困難であったり、電
極の機械的強度が小さくなる。厚みが過度に大きいと、
電極反応の速度が遅くなり、セル抵抗率が大きくなる。
The layer A preferably has a thickness of 0.5 to 20 m.
m, more preferably 1.0 to 10 mm, still more preferably 1.2 to 5 mm, particularly preferably 1.4 to 3 mm, and most preferably 1.5 to 2.5 mm. If the thickness is excessively small, it is difficult to reduce the pump power for permeating the electrolytic solution, it is difficult to reduce the cell resistivity, and the mechanical strength of the electrode is reduced. If the thickness is too large,
The rate of electrode reaction becomes slow and the cell resistivity becomes high.

【0016】A層は上記したような特性を有することか
ら、電気伝導性に優れ、電解液を透過させるためのポン
プ動力が低減され、セル抵抗率を小さくする機能を有す
る。
Since the layer A has the above-mentioned characteristics, it has excellent electrical conductivity, the pump power for permeating the electrolytic solution is reduced, and it has the function of reducing the cell resistivity.

【0017】A層は、フェノール樹脂、ウレタン樹脂、
セルロース、アクリル樹脂、ピッチ等から多孔質又は発
泡状のシートを成形し、得られた成形体を不活性ガス中
で、500〜3000℃の温度で加熱処理することによ
り得られる。加熱処理は、先ず成形体を500〜120
0℃、好ましくは600〜1100℃の温度に加熱して
炭素化した後、1200〜3000℃、殊に2000〜
3000℃の温度で処理して黒鉛化を行うことが好まし
い。
The layer A is made of phenol resin, urethane resin,
It is obtained by molding a porous or foamed sheet from cellulose, acrylic resin, pitch or the like, and heat-treating the obtained molded body at a temperature of 500 to 3000 ° C. in an inert gas. In the heat treatment, first, the molded body is 500 to 120.
After heating to a temperature of 0 ° C., preferably 600 to 1100 ° C. for carbonization, 1200 to 3000 ° C., especially 2000 to
It is preferable to perform graphitization by treating at a temperature of 3000 ° C.

【0018】本発明の液透過性多孔質電極を構成する、
B層に相当する炭素繊維層は、X線広角回折法による
(002)面の面間隔(d002)が3.37Å以上のもの
である。(002)面の面間隔(d002)は、好ましく
は3.40Å以上、より好ましくは3.43Å以上、さら
に好ましくは3.45Å以上、特に好ましくは3.48〜
3.75Å、最も好ましくは3.50〜3.70Åであ
る。B層の(002)面の面間隔(d002)が3.37Å
未満であると該層の電極反応性が小さくなる。
The liquid-permeable porous electrode of the present invention is constituted,
The carbon fiber layer corresponding to the layer B has a (002) plane spacing (d 002 ) of 3.37 Å or more measured by the X-ray wide angle diffraction method. The spacing (d 002 ) of (002) planes is preferably 3.40 Å or more, more preferably 3.43 Å or more, further preferably 3.45 Å or more, and particularly preferably 3.48 to
3.75Å, most preferably 3.50 to 3.70Å. The surface spacing (d 002 ) of the (002) surface of layer B is 3.37Å
When it is less than the above range, the electrode reactivity of the layer becomes small.

【0019】B層は、C軸方向の結晶子の大きさ(Lc)
が、好ましくは180Å以下、より好ましくは150Å
以下、さらに好ましくは100Å以下、特に好ましくは
8〜70Å、さらに特に好ましくは8〜50Å、最も好
ましくは9〜35Åである。C軸方向の結晶子の大きさ
(Lc)が180Åを越えると、該層の電極反応性が小さ
くなる。
The B layer has a crystallite size (Lc) in the C-axis direction.
However, it is preferably 180 Å or less, more preferably 150 Å
The following is more preferable, 100 Å or less, particularly preferably 8 to 70 Å, particularly preferably 8 to 50 Å, most preferably 9 to 35 Å. Crystallite size in the C-axis direction
When (Lc) exceeds 180Å, the electrode reactivity of the layer becomes small.

【0020】B層は、繊維径35μm以下の炭素繊維か
らなる。該繊維径は好ましくは30μm以下であり、よ
り好ましくは1〜25μm、さらに好ましくは2〜20
μm、特に好ましくは3〜15μm、最も好ましくは5
〜12μmである。繊維径が過度に小さいと機械的強度
が劣り、過度に大きいと繊維としての柔軟性がなくな
る。
The layer B is made of carbon fiber having a fiber diameter of 35 μm or less. The fiber diameter is preferably 30 μm or less, more preferably 1 to 25 μm, further preferably 2 to 20 μm.
μm, particularly preferably 3 to 15 μm, most preferably 5
1212 μm. If the fiber diameter is too small, the mechanical strength will be poor, and if it is too large, the flexibility of the fiber will be lost.

【0021】B層の表面積(BET法)が0.5m2 /g
以上、好ましくは1m2/g以上、より好ましくは3〜2
000m2/g、さらに好ましくは5〜1000m2/g、
特に好ましくは7〜500m2/g、最も好ましくは10
〜100m2/gである。表面積が過度に小さいと、電極
反応速度が遅くなって高電流密度での充放電がしづらく
なる。表面積が過度に大きいと、電極の機械的強度が小
さくなる。
Surface area of B layer (BET method) is 0.5 m 2 / g
Or more, preferably 1 m 2 / g or more, more preferably 3 to 2
000 m 2 / g, more preferably 5-1000 m 2 / g,
Particularly preferably 7 to 500 m 2 / g, most preferably 10
~ 100 m 2 / g. If the surface area is excessively small, the electrode reaction rate becomes slow and it becomes difficult to charge and discharge at a high current density. If the surface area is too large, the mechanical strength of the electrode will be low.

【0022】B層の嵩密度は、好ましくは0.05〜0.
50g/cc、より好ましくは0.08〜0.45g/c
c、さらに好ましくは0.10〜0.40g/cc、特に
好ましくは0.12〜0.35g/cc、最も好ましくは
0.15〜0.32g/ccである。
The bulk density of the layer B is preferably 0.05 to 0.5.
50 g / cc, more preferably 0.08 to 0.45 g / c
c, more preferably 0.10 to 0.40 g / cc, particularly preferably 0.12 to 0.35 g / cc, and most preferably 0.15 to 0.32 g / cc.

【0023】B層は、真密度が好ましくは2.10g/
cc以下、より好ましくは2.05g/cc以下、さらに
好ましくは1.00〜2.00g/cc、特に好ましくは
1.10〜1.95g/cc、最も好ましくは1.15〜
1.90g/ccである。真密度が過度に大きいと、電極
表面での反応性が小さくなる。真密度が過度に小さい
と、電極の電気伝導性が悪くなり高電流密度での充放電
がしづらくなる。
The B layer preferably has a true density of 2.10 g /
cc or less, more preferably 2.05 g / cc or less, further preferably 1.00 to 2.00 g / cc, particularly preferably 1.10 to 1.95 g / cc, and most preferably 1.15 to
It is 1.90 g / cc. When the true density is excessively high, the reactivity on the electrode surface becomes low. If the true density is excessively low, the electrical conductivity of the electrode deteriorates, making it difficult to charge and discharge at a high current density.

【0024】さらに、B層はその表面の酸素原子と炭素
原子の原子比(O/C)が0.02以上であることが好ま
しい。炭素繊維表面の酸素原子と炭素原子の原子比(O
/C)は、より好ましくは0.04以上、特に好ましくは
0.05〜0.30、最も好ましくは0.06〜0.20で
ある。なお、O/C比は、X線光電子分光法(ESC
A)により測定されるものをいう。
Further, the B layer preferably has an atomic ratio (O / C) of oxygen atoms to carbon atoms on its surface of 0.02 or more. Atomic ratio of oxygen atoms and carbon atoms on the carbon fiber surface (O
/ C) is more preferably 0.04 or more, particularly preferably 0.05 to 0.30, and most preferably 0.06 to 0.20. The O / C ratio is determined by X-ray photoelectron spectroscopy (ESC
Refers to those measured according to A).

【0025】また、B層は、好ましくは水素/炭素の原
子比が0.06以上、より好ましくは0.08以上、さら
に好ましくは0.10以上、特に好ましくは0.11〜
0.50、最も好ましくは0.12〜0.30である。水
素/炭素の原子比が過度に小さいと、電極の反応性が小
さくなり、好ましくない。
The B layer preferably has an atomic ratio of hydrogen / carbon of 0.06 or more, more preferably 0.08 or more, still more preferably 0.10 or more, and particularly preferably 0.11 to 10.
It is 0.50, most preferably 0.12 to 0.30. If the atomic ratio of hydrogen / carbon is too small, the reactivity of the electrode becomes small, which is not preferable.

【0026】B層は、各種形状であることができるが、
フェルト状、スダレ編み状、メリアス編み状等の形態で
あることが好ましい。B層の厚みは、好ましくは0.3
〜10mm、より好ましくは0.5〜8mm、さらに好
ましくは0.7〜5mm、特に好ましくは0.8〜3mm
以下、最も好ましくは1.0〜2.5mm以下である。B
層の厚みが過度に小さいと、電極反応速度が不十分とな
り、セル抵抗率を小さくすることが困難となる。厚みが
過度に大きいと、電解液を透過させるためのポンプ動力
が小さくできない。B層は上記したような特性を有する
ことから、高い電極反応性を有する。
The B layer can have various shapes,
It is preferably in the form of a felt shape, a woven knitting shape, a melias knitting shape or the like. The thickness of layer B is preferably 0.3.
-10 mm, more preferably 0.5-8 mm, even more preferably 0.7-5 mm, particularly preferably 0.8-3 mm.
Below, it is most preferably 1.0 to 2.5 mm or less. B
If the layer thickness is too small, the electrode reaction rate will be insufficient and it will be difficult to reduce the cell resistivity. If the thickness is too large, the pump power for permeating the electrolyte cannot be reduced. Since the B layer has the characteristics as described above, it has high electrode reactivity.

【0027】B層に相当する炭素繊維層は、フェノール
樹脂、セルロース、アクリル樹脂、ピッチ等からなる繊
維を不活性ガス中で、500〜2000℃の温度で加熱
処理することにより得られる。加熱温度は、好ましくは
600〜1500℃、さらに好ましくは700℃〜13
00℃、特に好ましくは700℃〜1200℃、最も好
ましくは800℃〜1100℃以下である。酸素を含む
雰囲気中、炭酸ガス中又は水蒸気中で加熱する賦活処理
を行うこともできる。
The carbon fiber layer corresponding to the layer B is obtained by heat-treating fibers made of phenol resin, cellulose, acrylic resin, pitch, etc. in an inert gas at a temperature of 500 to 2000 ° C. The heating temperature is preferably 600 to 1500 ° C, more preferably 700 ° C to 13 ° C.
00 ° C, particularly preferably 700 ° C to 1200 ° C, most preferably 800 ° C to 1100 ° C or lower. It is also possible to perform activation treatment by heating in an atmosphere containing oxygen, in carbon dioxide gas or in steam.

【0028】本発明の液透過性多孔質電極は、そのA層
が集電体側に、B層が隔膜側に設置することにより、電
極反応を特に効率的に行うことができる。液透過性多孔
質電極全体の厚みは0.5〜5.0mm、好ましくは1.
5〜3.5mmであり、その際、A層とB層の厚みの比
は、好ましくは0.2〜10:1、より好ましくは0.3
〜6:1、さらに好ましくは0.4〜5:1、特に好ま
しくは0.5〜4:1、最も好ましくは0.8〜3:1で
ある。
In the liquid-permeable porous electrode of the present invention, the electrode reaction can be carried out particularly efficiently by disposing the layer A on the side of the current collector and the layer B on the side of the diaphragm. The total thickness of the liquid-permeable porous electrode is 0.5 to 5.0 mm, preferably 1.
5 to 3.5 mm, in which case the thickness ratio of the A layer to the B layer is preferably 0.2 to 10: 1, more preferably 0.3.
˜6: 1, more preferably 0.4 to 5: 1, particularly preferably 0.5 to 4: 1 and most preferably 0.8 to 3: 1.

【0029】本発明の液透過性多孔質電極は、A層とB
層の少なくとも二層から成るが、該二層のみからなる電
極はもとより、必要に応じて該二層に他の層、例えば嵩
密度が0.60〜1.0g/ccのシート状の炭素成形体
層をさらに集電体側に積層させて三層以上として用いる
こともできる。
The liquid-permeable porous electrode of the present invention comprises an A layer and a B layer.
Although it is composed of at least two layers, not only an electrode composed of only the two layers, but also another layer of the two layers as required, for example, a sheet-like carbon molding having a bulk density of 0.60 to 1.0 g / cc. The body layer may be further laminated on the current collector side to be used as three or more layers.

【0030】本発明のレドックス電池で用いる隔膜は、
有機高分子からなるイオン交換膜を用いるのが好まし
く、カチオン交換膜、アニオン交換膜いずれのイオン交
換膜も用いることができる。また、カチオン交換膜の表
面にアニオン交換膜を薄くコーティングしたイオン交換
膜、アニオン交換膜の表面にカチオン交換膜を薄くコー
ティングしたイオン交換膜を用いることができる。
The diaphragm used in the redox battery of the present invention is
It is preferable to use an ion exchange membrane made of an organic polymer, and either a cation exchange membrane or an anion exchange membrane can be used. Further, an ion exchange membrane in which the surface of the cation exchange membrane is thinly coated with an anion exchange membrane, and an ion exchange membrane in which the surface of the anion exchange membrane is thinly coated with the cation exchange membrane can be used.

【0031】カチオン交換膜としては、スチレンージビ
ニルベンゼン共重合体をスルホン化して得られるカチオ
ン交換膜、テトラフルオロエチレンとハ゜ーフルオロ・
スルホニル・エトキシビニルエーテルの共重合体をベー
スにスルホン酸基を導入したカチオン交換膜、テトラフ
ルオロエチレンとカルボキシル基を側鎖に持つハ゜ーフ
ルオロビニルエーテルとの共重合体からなるカチオン交
換膜、芳香族ポリスルホン共重合体をベースにスルホン
酸基を導入したカチオン交換膜などを用いることができ
る。アニオン交換膜としては、スチレンージビニルベン
ゼン共重合体をベースにクロロメチル基を導入し、アミ
ノ化したアニオン交換膜、ビニルピリジンージビニルベ
ンゼン共重合体を4級ピリジウム化したアニオン交換
膜、芳香族ポリスルホン共重合体をベースにクロロメチ
ル基を導入し、アミノ化したアニオン交換膜などを用い
ることができる。
As the cation exchange membrane, a cation exchange membrane obtained by sulfonation of a styrene-divinylbenzene copolymer, tetrafluoroethylene and perfluoro.
A cation exchange membrane with a sulfonic acid group introduced based on a sulfonyl / ethoxy vinyl ether copolymer, a cation exchange membrane composed of a copolymer of tetrafluoroethylene and perfluorovinyl ether having a carboxyl group as a side chain, and an aromatic polysulfone copolymer. A cation exchange membrane or the like in which a sulfonic acid group is introduced based on a polymer can be used. As the anion exchange membrane, a styrene-divinylbenzene copolymer-based chloromethyl group-introduced and aminated anion exchange membrane, a vinylpyridine-divinylbenzene copolymer quaternary pyridinized anion exchange membrane, an aromatic It is possible to use an anion exchange membrane in which a chloromethyl group is introduced based on a polysulfone copolymer and aminated.

【0032】本発明の電池で用いるイオン交換膜のイオ
ン交換容量は、好ましくは1.0〜3.0ミリ当量/g、
より好ましくは2.0〜2.5ミリ当量/gである。イオ
ン交換膜の厚みは、好ましくは30〜250μm、より
好ましくは55〜180μmである。
The ion exchange capacity of the ion exchange membrane used in the battery of the present invention is preferably 1.0 to 3.0 meq / g,
More preferably, it is 2.0 to 2.5 meq / g. The thickness of the ion exchange membrane is preferably 30 to 250 μm, more preferably 55 to 180 μm.

【0033】本発明の電池に用いる電解液は、例えば、
鉄−クロム系では鉄及びクロム各々の塩化物の溶液が用
いられ、全バナジウム系電池では、バナジウムの硫酸溶
液が用いられる。バナジウム系電池の電解液におけるバ
ナジウムの濃度は、好ましくは0.5〜6.0モル/リッ
トル、より好ましくは1.5〜3.5モル/リットルであ
る。バナジウム系電池の電解液における硫酸根の濃度
は、好ましくは0.5〜9.0モル/リットル、より好ま
しくは1.5〜7.0モル/リットルである。
The electrolyte used in the battery of the present invention is, for example,
The iron-chromium system uses a solution of each chloride of iron and chromium, and the all-vanadium battery uses a sulfuric acid solution of vanadium. The vanadium concentration in the electrolytic solution of the vanadium-based battery is preferably 0.5 to 6.0 mol / liter, more preferably 1.5 to 3.5 mol / liter. The concentration of sulfate in the electrolytic solution of the vanadium-based battery is preferably 0.5 to 9.0 mol / liter, more preferably 1.5 to 7.0 mol / liter.

【0034】本発明のレドックス電極の1例として、全
バナジウムレドックスフロー型電池について以下に説明
する。電池セルの単セル構造は、図1に示すように、隔
膜の両側に及びからなる液透過性多孔質電極を配
置し、これらの部材を二枚の集電体AとBによってサン
ドイッチ状態に押圧し、隔膜で仕切られた室の一方を正
極室、他方を負極室とし、その室の厚さは適当なスペー
サーによって確保される。この各室、すなわち正極室
にV4+/V5+から成る正極電解液を、負極室にV3+/V
2+から成る負極電解液を流通させることによりレドック
ス電池が構成される。レドックスフロー型電池の場合、
充電時には正極室では、電子を放出しV4+がV5+に酸化
される。放出された電子は、外部回路を通して負極室に
供給される。負極室では、供給された電子によってV3+
がV2+に還元される。この酸化還元反応に伴って正極室
では、水素イオンH+が過剰になる。一方、負極室で
は、水素イオンH+が不足する。隔膜は、正極室の過剰
な水素イオンH+を選択的に負極室へ移動させ電気的中
性が保たれる。放電時には、この逆の反応が進む。上述
の電池反応では、エネルギ−効率は、式−1で示され
る。
As an example of the redox electrode of the present invention, an all-vanadium redox flow type battery will be described below. As shown in FIG. 1, the single cell structure of the battery cell is such that liquid-permeable porous electrodes composed of and are arranged on both sides of a diaphragm, and these members are pressed in a sandwich state by two current collectors A and B. Then, one of the chambers partitioned by the diaphragm serves as a positive electrode chamber and the other as a negative electrode chamber, and the thickness of the chamber is secured by an appropriate spacer. In each of these chambers, that is, in the positive electrode chamber, a positive electrode electrolyte composed of V 4+ / V 5+ is charged , and in the negative electrode chamber, V 3+ / V
A redox battery is formed by flowing a negative electrode electrolyte composed of 2+ . For redox flow batteries,
During charging, electrons are emitted from the positive electrode chamber, and V 4+ is oxidized to V 5+ . The emitted electrons are supplied to the negative electrode chamber through the external circuit. In the negative electrode chamber, V 3+
Is reduced to V 2+ . Along with this oxidation-reduction reaction, hydrogen ions H + become excessive in the positive electrode chamber. On the other hand, hydrogen ions H + are insufficient in the negative electrode chamber. The diaphragm selectively transfers excess hydrogen ions H + in the positive electrode chamber to the negative electrode chamber to maintain electrical neutrality. At the time of discharge, the opposite reaction proceeds. In the above-mentioned battery reaction, energy-efficiency is given by Equation-1.

【0035】[0035]

【数1】 [Equation 1]

【0036】この式中の充放電電力量は、電池セルの内
部抵抗と隔膜のイオン選択性およびシャント電流損失等
に依存している。内部抵抗の減少は、電圧効率を向上さ
せる。イオン選択性の向上およびシャント電流損失の低
減は、電流効率を向上させる。また、ポンプ電力量は、
電池セル内に最適な量の電解液を流通させるための電力
量であり、その電力量は、特に電池の正極室及び負極室
の厚さ(セル厚さ)、液透過性多孔質電極構造および電
解液導入口のスリットの長さと断面積の影響が大きい。
The charging / discharging power amount in this equation depends on the internal resistance of the battery cell, the ion selectivity of the diaphragm, the shunt current loss, and the like. The reduction of internal resistance improves voltage efficiency. Improved ion selectivity and reduced shunt current loss improve current efficiency. Also, the pump power is
It is the amount of electric power for circulating an optimal amount of electrolytic solution in the battery cell, and the amount of electric power is particularly the thickness of the positive electrode chamber and the negative electrode chamber (cell thickness) of the battery, the liquid-permeable porous electrode structure, and The influence of the slit length and cross-sectional area of the electrolyte inlet is large.

【0037】[0037]

【実施例】以下、実施例及び比較例に基づいて、本発明
を具体的に説明する。 [測定装置および測定条件] a)充放電実験 実施例及び比較例に用いたレドックスフロー電池セル構
造は図1に示す単セル型電池であり、電極面積10c
m2、隔膜としてポリスルフォン系アニオン交換膜、電解
液として全バナジウム濃度が2M/lで、全硫酸根濃度
が4M/lの電解液を用いた。 b)圧力損失測定 液透過性多孔質電極の圧力損失は、実験に用いた電池セ
ルの負極側の電解液の入り口と出口における圧力の差に
より求めた。
The present invention will be specifically described below based on examples and comparative examples. [Measuring Device and Measuring Conditions] a) Charge / Discharge Experiment The redox flow battery cell structure used in Examples and Comparative Examples is a single cell type battery shown in FIG.
m 2 , a polysulfone-based anion exchange membrane was used as the diaphragm, and an electrolytic solution having a total vanadium concentration of 2 M / l and a total sulfate group concentration of 4 M / l was used as the electrolytic solution. b) Pressure loss measurement The pressure loss of the liquid-permeable porous electrode was determined by the difference in pressure between the inlet and outlet of the electrolyte solution on the negative electrode side of the battery cell used in the experiment.

【0038】実施例1 図1に示すようなレドックス電池セルを用い正極室およ
び負極室の厚さを3mmとし、下記のシート状炭素成形
体層(A層)および炭素繊維層(B層)からなる液透過
性多孔質電極を、B層が隔膜側にして配置した。シート状炭素成形体層 : 調製:発泡ポリウレタンにフェノール樹脂を含浸してな
るシート状成形体を、電気加熱炉において窒素気流中1
5℃/分の速度で1000℃まで昇温し、この温度で1
時間保持し、炭素化した。この炭素質物質を別の電気加
熱炉にセットし、窒素気流中25℃/分の速度で250
0℃まで昇温し、この温度で1時間保持し、シート状炭
素成形体層を得た。 特性: X線広角回折法による(002)面の面間隔(d002) 3.58Å C軸方向の結晶子の大きさ(Lc) 22Å 嵩密度 0.20g/cc 真密度 1.40g/cc 平均孔径(連続気孔) 200μm 表面積 3.4m2/g 水素/炭素原子比 0.03 厚さ 1.7mm炭素繊維層 調製:セルロース繊維からなるフェルトを、電気加熱炉
において窒素気流中15℃/分の速度で1100℃まで
昇温し、この温度で1時間保持し、炭素繊維層を得た。 特性: X線広角回折法による(002)面の面間隔(d002) 3.50Å 平均繊維径 12μm 窒素によるBET表面積 29.5m2/g 酸素/炭素原子比 0.102 水素/炭素原子比 0.108 嵩密度 0.098g/cc 厚さ 1.3mm
Example 1 Using a redox battery cell as shown in FIG. 1, the thickness of the positive electrode chamber and the negative electrode chamber was set to 3 mm, and the following sheet-like carbon molded body layer (A layer) and carbon fiber layer (B layer) were formed. The liquid-permeable porous electrode was placed with the layer B on the diaphragm side. Sheet-shaped carbon molded body layer : Preparation: A sheet-shaped molded body obtained by impregnating foamed polyurethane with a phenol resin is placed in an electric heating furnace in a nitrogen stream 1
The temperature is raised to 1000 ° C at a rate of 5 ° C / minute, and at this temperature 1
Hold for time and carbonize. This carbonaceous material is set in another electric heating furnace and heated in a nitrogen stream at a rate of 25 ° C./min.
The temperature was raised to 0 ° C. and the temperature was maintained for 1 hour to obtain a sheet-shaped carbon molded body layer. Characteristics: Interplanar spacing (d 002 ) of (002) plane by X-ray wide angle diffraction method 3.58Å Crystallite size in the C-axis direction (Lc) 22Å Bulk density 0.20 g / cc True density 1.40 g / cc Average Pore size (continuous pores) 200 μm Surface area 3.4 m 2 / g Hydrogen / carbon atomic ratio 0.03 Thickness 1.7 mm Carbon fiber layer preparation: A felt made of cellulose fibers was heated in an electric heating furnace in a nitrogen stream at 15 ° C./min. The temperature was raised to 1100 ° C. and the temperature was maintained for 1 hour to obtain a carbon fiber layer. Characteristics: Interplanar spacing of (002) plane by X-ray wide angle diffraction method (d 002 ) 3.50Å Average fiber diameter 12 μm BET surface area by nitrogen 29.5 m 2 / g Oxygen / carbon atom ratio 0.102 Hydrogen / carbon atom ratio 0 .108 Bulk density 0.098 g / cc Thickness 1.3 mm

【0039】比較例1 実施例1のB層のみで構成された、厚み3.0mm、嵩
密度0.114g/ccの電極を用いた以外は、全て実施
例1と同様にして充放電実験を実施した。結果を表−1
に示す。
Comparative Example 1 A charge / discharge experiment was conducted in the same manner as in Example 1 except that an electrode having a thickness of 3.0 mm and a bulk density of 0.114 g / cc, which was composed only of the layer B in Example 1, was used. Carried out. The results are shown in Table-1
Shown in

【0040】比較例2 シート状成形体層として、発泡ポリウレタンにフェノー
ル樹脂を含浸してなるシート状成形体を、電気加熱炉に
おいて窒素気流中15℃/分の速度で800℃まで昇温
し、この温度で1時間保持し、炭素化してシート状炭素
成形体層を得た。 特性: X線広角回折法による(002)面の面間隔(d002) 3.80Å C軸方向の結晶子の大きさ(Lc) 8Å 嵩密度 0.18g/cc 真密度 1.17g/cc 平均孔径(連続気孔) 170μm 表面積 3.5m2/g 水素/炭素原子比 0.31 厚さ 1.7mm 上記シート状炭素成形体層を用いた以外は、実施例1と
同様にして充放電実験を実施した。結果を表−1に示
す。
Comparative Example 2 As a sheet-shaped molded body layer, a sheet-shaped molded body obtained by impregnating foamed polyurethane with a phenol resin was heated to 800 ° C. at a rate of 15 ° C./min in a nitrogen stream in an electric heating furnace. It was kept at this temperature for 1 hour and carbonized to obtain a sheet-like carbon molded body layer. Characteristics: Interplanar spacing (d 002 ) of (002) plane by X-ray wide angle diffraction method 3.80Å C-axis crystallite size (Lc) 8Å Bulk density 0.18 g / cc True density 1.17 g / cc Average Pore size (continuous pores) 170 μm Surface area 3.5 m 2 / g Hydrogen / carbon atomic ratio 0.31 Thickness 1.7 mm A charge / discharge experiment was conducted in the same manner as in Example 1 except that the above-mentioned sheet-shaped carbon compact layer was used. Carried out. The results are shown in Table 1.

【0041】比較例3 炭素繊維層として、下記のものを用いた以外は実施例1
と同様にして充放電実験を実施した。結果を表−1に示
す。炭素繊維層 調製:ピッチ繊維からなるフェルトを、電気加熱炉にお
いて窒素気流中15℃/分の速度で1000℃まで昇温
し、この温度で1時間保持し、炭素繊維層を得た。この
炭素質物質を別の電気加熱炉にセットし、窒素気流中で
30℃/分の速度で2800℃まで昇温し、この温度で
1時間保持し、シート状炭素成形体層を得た。 特性: X線広角回折法による(002)面の面間隔(d002) 3.36Å 平均繊維径 10μm 窒素によるBET表面積 0.1m2/g 酸素/炭素原子比 0 水素/炭素原子比 0 厚さ 1.3mm 上記炭素成形体層を用いた以外は、実施例1と同様にし
て充放電実験を実施した。結果を表−1に示す。
Comparative Example 3 Example 1 except that the following was used as the carbon fiber layer.
A charge / discharge experiment was carried out in the same manner as. The results are shown in Table 1. Preparation of carbon fiber layer : A felt made of pitch fibers was heated in an electric heating furnace to 1000 ° C. at a rate of 15 ° C./min in a nitrogen stream and held at this temperature for 1 hour to obtain a carbon fiber layer. This carbonaceous material was set in another electric heating furnace, heated to 2800 ° C. at a rate of 30 ° C./min in a nitrogen stream, and kept at this temperature for 1 hour to obtain a sheet-like carbon molded body layer. Characteristics: Interplanar spacing (d 002 ) of (002) plane by X-ray wide-angle diffraction method 3.36 Å Average fiber diameter 10 μm BET surface area by nitrogen 0.1 m 2 / g Oxygen / carbon atomic ratio 0 Hydrogen / carbon atomic ratio 0 Thickness 1.3 mm A charge / discharge experiment was carried out in the same manner as in Example 1 except that the above carbon compact layer was used. The results are shown in Table 1.

【0042】実施例2 短繊維の炭素繊維とフェノール樹脂バインダーからなる
シート状成形体を、電気加熱炉において窒素気流中15
℃/分の速度で1000℃まで昇温し、この温度で1時
間保持し、炭素化した。この炭素質物質を別の電気加熱
炉にセットし、窒素気流中30℃/分の速度で2300
℃まで昇温し、この温度で1時間保持し、シート状炭素
成形体層を得た。 特性: X線広角回折法による(002)面の面間隔(d002) 3.50Å C軸方向の結晶子の大きさ(Lc) 28Å 嵩密度 0.25g/cc 平均孔径(連続気孔) 120μm 表面積 2.8m2/g 水素/炭素原子比 0.04 厚さ 1.7mm 上記シート状炭素成形体層を用いた以外は、実施例1と
同様にして充放電実験を実施した。結果を表−1に示
す。
Example 2 A sheet-like molded product composed of short carbon fibers and a phenol resin binder was placed in an electric heating furnace in a nitrogen stream for 15 minutes.
The temperature was raised to 1000 ° C. at a rate of ° C./min, and this temperature was maintained for 1 hour for carbonization. This carbonaceous material is set in another electric heating furnace and 2300 at a rate of 30 ° C / min in a nitrogen stream.
The temperature was raised to 0 ° C. and the temperature was maintained for 1 hour to obtain a sheet-like carbon molded body layer. Characteristics: Interplanar spacing (d 002 ) of (002) plane by X-ray wide angle diffraction method 3.50Å C-axis crystallite size (Lc) 28Å Bulk density 0.25g / cc Average pore diameter (continuous pore) 120μm Surface area 2.8 m 2 / g hydrogen / carbon atomic ratio 0.04 thickness 1.7 mm A charge / discharge experiment was carried out in the same manner as in Example 1 except that the above-mentioned sheet-shaped carbon compact layer was used. The results are shown in Table 1.

【0043】実施例3 黒鉛粒子とフェノール樹脂バインダーからなるシート状
成形体を、電気加熱炉において窒素気流中15℃/分の
速度で1000℃まで昇温し、この温度で1時間保持
し、炭素化した。この炭素質物質を別の電気加熱炉にセ
ットし、窒素気流中30℃/分の速度で2350℃まで
昇温し、この温度で1時間保持し、シート状炭素成形体
層を得た。 特性: X線広角回折法による(002)面の面間隔(d002) 3.36Å C軸方向の結晶子の大きさ(Lc) 800Å 嵩密度 0.30g/cc 平均孔径(連続気孔) 80μm 表面積 1.7m2/g 水素/炭素原子比 0.01 厚さ 1.7mm 上記シート状炭素成形体層を用いた以外は、実施例1と
同様にして充放電実験を実施した。結果を表−1に示
す。
Example 3 A sheet-like molded body composed of graphite particles and a phenol resin binder was heated to 1000 ° C. at a rate of 15 ° C./min in a nitrogen stream in an electric heating furnace, and kept at this temperature for 1 hour to obtain carbon. Turned into This carbonaceous substance was set in another electric heating furnace, heated to 2350 ° C. at a rate of 30 ° C./min in a nitrogen stream, and kept at this temperature for 1 hour to obtain a sheet-shaped carbon molded body layer. Characteristics: Interplanar spacing (d 002 ) of (002) plane by X-ray wide-angle diffraction method 3.36Å C-axis crystallite size (Lc) 800Å Bulk density 0.30 g / cc Average pore diameter (continuous pore) 80 μm Surface area 1.7 m 2 / g hydrogen / carbon atomic ratio 0.01 thickness 1.7 mm A charge / discharge experiment was carried out in the same manner as in Example 1 except that the above-mentioned sheet-shaped carbon compact layer was used. The results are shown in Table 1.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【発明の効果】本発明のレドックスフロー型電池は、セ
ル抵抗が小さく、高い電力効率を有し、かつ電池の充放
電に必要な電解液量を低いポンプ動力で流通させること
が可能である。
The redox flow type battery of the present invention has a small cell resistance, high power efficiency, and is capable of circulating the amount of electrolyte required for charging and discharging the battery with low pump power.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のレドックス電池を構成する単一セルの
概略説明図である。
FIG. 1 is a schematic explanatory view of a single cell constituting a redox battery of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田山 利行 茨城県稲敷郡阿見町中央8丁目3番1号 鹿島北共同発電株式会社V電池開発室内 (72)発明者 佐々木 政弘 茨城県稲敷郡阿見町中央8丁目3番1号 鹿島北共同発電株式会社V電池開発室内 (72)発明者 景山 芳輝 茨城県稲敷郡阿見町中央8丁目3番1号 鹿島北共同発電株式会社V電池開発室内 (72)発明者 中島 正人 茨城県稲敷郡阿見町中央8丁目3番1号 鹿島北共同発電株式会社V電池開発室内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshiyuki Tayama 8-3-1 Chuo, Ami-cho, Inashiki-gun, Ibaraki Kashima Kita Kyodo Co., Ltd. V battery development room (72) Masahiro Sasaki Ami-cho, Inashiki-gun, Ibaraki Chuo 8-3-1 Kashima Kita Kyodo Co., Ltd. V Battery Development Room (72) Inventor Yoshiteru Kageyama 8-3-1 Chuo Ami-cho, Ibaraki Prefecture Kashima Kita Kyodo Co., Ltd. V Battery Development Room (72) Inventor Masato Nakajima 8-3-1 Chuo, Ami-cho, Inashiki-gun, Ibaraki Kashima Kita Kyodo Power Co., Ltd. V battery development room

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 隔膜によって分離され且つ液透過性多孔
質電極が配設された正極室と負極室に、正極液と負極液
を通液して酸化還元反応を行い充放電する液循環式型の
レドックス電池において、該液透過性多孔質電極が下記
のA層およびB層の少なくとも二層からなり、該B層が
隔膜側に配置されることを特徴とするレドックス電池。 A層:X線広角回折法による(002)面の面間隔(d
002)が3.75Å以下であり且つ嵩密度が0.01〜0.
80g/ccであるシート状の炭素成形体層 B層:X線広角回折法による(002)面の面間隔(d
002)が3.37Å以上であり、繊維径が35μm以下で
あり且つ表面積が0.5m2 /g以上である炭素繊維層
1. A liquid circulation type in which a positive electrode liquid and a negative electrode liquid are passed through a positive electrode chamber and a negative electrode chamber, which are separated by a diaphragm and in which a liquid-permeable porous electrode is disposed, to carry out an oxidation-reduction reaction and charge / discharge. 2. The redox battery according to item 1, wherein the liquid-permeable porous electrode is composed of at least two layers of the following A layer and B layer, and the B layer is arranged on the diaphragm side. Layer A: Interplanar spacing (d) of (002) plane by X-ray wide-angle diffraction method
002 ) is 3.75 Å or less and the bulk density is 0.01 to 0.
80 g / cc sheet-like carbon molded body layer B layer: Interplanar spacing (d) of (002) plane by X-ray wide angle diffraction method
002 ) is 3.37Å or more, the fiber diameter is 35 μm or less, and the surface area is 0.5 m 2 / g or more.
【請求項2】 前記炭素成形体層が、平均孔径3μm以
上の気孔分布を有する請求項1記載のレドックス電池。
2. The redox battery according to claim 1, wherein the carbon molded body layer has a pore distribution having an average pore diameter of 3 μm or more.
【請求項3】 前記炭素成形体層が0.12以下の水素
/炭素原子比を有する請求項1記載のレドックス電池。
3. The redox battery according to claim 1, wherein the carbon compact layer has a hydrogen / carbon atomic ratio of 0.12 or less.
【請求項4】 前記炭素繊維層が0.08以上の水素/
炭素原子比を有する請求項1記載のレドックス電池。
4. The carbon fiber layer has a hydrogen content of 0.08 or more /
The redox battery of claim 1 having a carbon atom ratio.
【請求項5】 前記炭素繊維層がその表面において0.
02以上の酸素/炭素原子比を有する請求項1記載のレ
ドックス電池。
5. The carbon fiber layer has a surface area of 0.
The redox battery according to claim 1, having an oxygen / carbon atomic ratio of 02 or more.
【請求項6】 前記炭素繊維層が0.50以下の嵩密度
を有する請求項1記載のレドックス電池。
6. The redox battery according to claim 1, wherein the carbon fiber layer has a bulk density of 0.50 or less.
【請求項7】 前記正極液が5価/4価バナジウム溶液
であり、前記負極液が2価/3価バナジウム溶液である
請求項1記載の全バナジウムレドックス電池。
7. The all-vanadium redox battery according to claim 1, wherein the positive electrode liquid is a pentavalent / tetravalent vanadium solution and the negative electrode liquid is a divalent / trivalent vanadium solution.
JP7249737A 1995-09-27 1995-09-27 Redox cell Pending JPH0992321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7249737A JPH0992321A (en) 1995-09-27 1995-09-27 Redox cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7249737A JPH0992321A (en) 1995-09-27 1995-09-27 Redox cell

Publications (1)

Publication Number Publication Date
JPH0992321A true JPH0992321A (en) 1997-04-04

Family

ID=17197464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7249737A Pending JPH0992321A (en) 1995-09-27 1995-09-27 Redox cell

Country Status (1)

Country Link
JP (1) JPH0992321A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11260390A (en) * 1998-03-05 1999-09-24 Kashimakita Kyodo Hatsuden Kk Redox flow battery
JP2001167771A (en) * 1999-12-08 2001-06-22 Toyobo Co Ltd Electrode material for redox flow cell and electrolytic bath
JP2008544444A (en) * 2005-06-20 2008-12-04 ヴィ−フューエル ピーティワイ リミテッド Improved perfluoromembrane and improved electrolyte for redox cells and batteries
WO2013100079A1 (en) 2011-12-28 2013-07-04 旭化成イーマテリアルズ株式会社 Redox flow secondary battery and electrolyte membrane for redox flow secondary batteries
WO2013100083A1 (en) 2011-12-28 2013-07-04 旭化成イーマテリアルズ株式会社 Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
WO2013100082A1 (en) 2011-12-28 2013-07-04 旭化成イーマテリアルズ株式会社 Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
WO2013100087A1 (en) 2011-12-28 2013-07-04 旭化成イーマテリアルズ株式会社 Redox flow secondary battery and electrolyte membrane for redox flow secondary batteries
WO2017006729A1 (en) * 2015-07-09 2017-01-12 住友電気工業株式会社 Electrode for redox flow battery, and redox flow battery system
JP2018147595A (en) * 2017-03-01 2018-09-20 三菱ケミカル株式会社 Electrode for redox flow battery and method of manufacturing the same, and redox flow battery
WO2018198252A1 (en) * 2017-04-26 2018-11-01 日立化成株式会社 Secondary battery, secondary battery system, and electricity-generating system
WO2021106838A1 (en) * 2019-11-27 2021-06-03 アイオン株式会社 Electrode for redox flow battery, and method for manufacturing electrode for redox flow battery
WO2021215126A1 (en) * 2020-04-24 2021-10-28 旭化成株式会社 Diaphragm for redox flow batteries, method for producing diaphragm for redox flow batteries, diaphragm electrode assembly for redox flow batteries, cell for redox flow batteries, and redox flow battery
US11374234B2 (en) 2017-09-18 2022-06-28 Lotte Chemical Corporation Separation membrane complex and redox flow battery
WO2023042280A1 (en) * 2021-09-14 2023-03-23 住友電気工業株式会社 Electrode, battery cell, cell stack, battery system, and method for manufacturing electrode

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11260390A (en) * 1998-03-05 1999-09-24 Kashimakita Kyodo Hatsuden Kk Redox flow battery
JP2001167771A (en) * 1999-12-08 2001-06-22 Toyobo Co Ltd Electrode material for redox flow cell and electrolytic bath
JP2008544444A (en) * 2005-06-20 2008-12-04 ヴィ−フューエル ピーティワイ リミテッド Improved perfluoromembrane and improved electrolyte for redox cells and batteries
US10211474B2 (en) 2011-12-28 2019-02-19 Asahi Kasei E-Materials Corporation Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
US9905875B2 (en) 2011-12-28 2018-02-27 Asahi Kasei Kabushiki Kaisha Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
WO2013100082A1 (en) 2011-12-28 2013-07-04 旭化成イーマテリアルズ株式会社 Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
WO2013100087A1 (en) 2011-12-28 2013-07-04 旭化成イーマテリアルズ株式会社 Redox flow secondary battery and electrolyte membrane for redox flow secondary batteries
KR20140098189A (en) 2011-12-28 2014-08-07 아사히 가세이 이-매터리얼즈 가부시키가이샤 Redox flow secondary battery and electrolyte membrane for redox flow secondary batteries
EP3046174A1 (en) 2011-12-28 2016-07-20 Asahi Kasei E-materials Corporation Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
EP3091598A1 (en) 2011-12-28 2016-11-09 Asahi Kasei Kabushiki Kaisha Redox flow secondary battery and electrolyte membrane for redox flow secondary batteries
EP3091599A1 (en) 2011-12-28 2016-11-09 Asahi Kasei Kabushiki Kaisha Redox flow secondary battery and electrolyte membrane for redox flow secondary batteries
EP3091600A1 (en) 2011-12-28 2016-11-09 Asahi Kasei Kabushiki Kaisha Redox flow secondary battery and electrolyte membrane for redox flow secondary batteries
US10256493B2 (en) 2011-12-28 2019-04-09 Asahi Kasei Kabushiki Kaisha Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
US9799906B2 (en) 2011-12-28 2017-10-24 Asahi Kasei Kabushiki Kaisha Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
WO2013100083A1 (en) 2011-12-28 2013-07-04 旭化成イーマテリアルズ株式会社 Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
WO2013100079A1 (en) 2011-12-28 2013-07-04 旭化成イーマテリアルズ株式会社 Redox flow secondary battery and electrolyte membrane for redox flow secondary batteries
JPWO2017006729A1 (en) * 2015-07-09 2018-04-19 住友電気工業株式会社 Redox flow battery electrode and redox flow battery system
WO2017006729A1 (en) * 2015-07-09 2017-01-12 住友電気工業株式会社 Electrode for redox flow battery, and redox flow battery system
JP2018147595A (en) * 2017-03-01 2018-09-20 三菱ケミカル株式会社 Electrode for redox flow battery and method of manufacturing the same, and redox flow battery
JP2021100004A (en) * 2017-03-01 2021-07-01 三菱ケミカル株式会社 Electrode for redox flow battery and redox flow battery
WO2018198252A1 (en) * 2017-04-26 2018-11-01 日立化成株式会社 Secondary battery, secondary battery system, and electricity-generating system
US11374234B2 (en) 2017-09-18 2022-06-28 Lotte Chemical Corporation Separation membrane complex and redox flow battery
WO2021106838A1 (en) * 2019-11-27 2021-06-03 アイオン株式会社 Electrode for redox flow battery, and method for manufacturing electrode for redox flow battery
WO2021215126A1 (en) * 2020-04-24 2021-10-28 旭化成株式会社 Diaphragm for redox flow batteries, method for producing diaphragm for redox flow batteries, diaphragm electrode assembly for redox flow batteries, cell for redox flow batteries, and redox flow battery
JP6971431B1 (en) * 2020-04-24 2021-11-24 旭化成株式会社 A diaphragm for a redox flow battery, a method for manufacturing a diaphragm for a redox flow battery, a diaphragm electrode junction for a redox flow battery, a cell for a redox flow battery, and a redox flow battery.
US11923584B2 (en) 2020-04-24 2024-03-05 Asahi Kasei Kabushiki Kaisha Membrane for redox flow battery, method for producing membrane for redox flow battery, membrane electrode assembly for redox flow battery, cell for redox flow battery, and redox flow battery
WO2023042280A1 (en) * 2021-09-14 2023-03-23 住友電気工業株式会社 Electrode, battery cell, cell stack, battery system, and method for manufacturing electrode

Similar Documents

Publication Publication Date Title
JP3505918B2 (en) Redox flow battery
US5656390A (en) Redox battery
EP0517217B1 (en) Redox battery
JP3601581B2 (en) Carbon electrode material for vanadium redox flow battery
JPH09223513A (en) Liquid circulating type battery
Ling et al. Porous composite membrane of PVDF/Sulfonic silica with high ion selectivity for vanadium redox flow battery
EP3815167A1 (en) Aqueous polysulfide-based electrochemical cell
JP3496385B2 (en) Redox battery
EP2876712A1 (en) Oxygen-vanadium redox flow battery with vanadium electrolyte having carbon particles dispersed therein
JPH0992321A (en) Redox cell
JPS59119680A (en) Electrode for flow type electrolytic cell
JPH11260390A (en) Redox flow battery
JP3163370B2 (en) Redox battery
JP3555303B2 (en) Redox battery
JPH1012260A (en) Redox flow battery
US20180190991A1 (en) Electrode for redox flow battery and redox flow battery system
JP4830190B2 (en) Redox flow battery
Seepana et al. Design and synthesis of highly stable poly (tetrafluoroethylene)-zirconium phosphate (PTFE-ZrP) ion-exchange membrane for vanadium redox flow battery (VRFB)
US20220153591A1 (en) Carbon electrode material for manganese/titanium-based redox flow battery
JPH05234612A (en) Carbon electrode material for electrolytic cell
CN108550905B (en) Nano composite vanadium electrolyte, preparation method thereof and static vanadium battery comprising nano composite vanadium electrolyte
JPS60253163A (en) Laminated electrolytic cell
JP2906241B2 (en) Liquid flow type electrolytic cell
JPH08138685A (en) Whole vanadium redox battery
JP3589285B2 (en) Carbon electrode material for redox flow batteries