JPH08138685A - Whole vanadium redox battery - Google Patents

Whole vanadium redox battery

Info

Publication number
JPH08138685A
JPH08138685A JP6269965A JP26996594A JPH08138685A JP H08138685 A JPH08138685 A JP H08138685A JP 6269965 A JP6269965 A JP 6269965A JP 26996594 A JP26996594 A JP 26996594A JP H08138685 A JPH08138685 A JP H08138685A
Authority
JP
Japan
Prior art keywords
electrode
vanadium
liquid
layer
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6269965A
Other languages
Japanese (ja)
Inventor
Toshiyuki Tayama
利行 田山
Toshihiko Tanimoto
敏彦 谷本
Sumie Sekiguchi
純恵 関口
Masato Nakajima
正人 中島
Kanji Sato
完二 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KASHIMA KITA KYODO HATSUDEN KK
Original Assignee
KASHIMA KITA KYODO HATSUDEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KASHIMA KITA KYODO HATSUDEN KK filed Critical KASHIMA KITA KYODO HATSUDEN KK
Priority to JP6269965A priority Critical patent/JPH08138685A/en
Publication of JPH08138685A publication Critical patent/JPH08138685A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE: To provide a whole vanadium redox battery suitable for a high current density wits a small internal resistance and a small pump power loss by providing a porous electrode of liquid permeability which has at least two layers of a high reactive layer having high reactivity to vanadium and a high conductive layer and forming the high reactive layer on the partition film side. CONSTITUTION: A high reactive porous electrode 3 which has high reactivity to vanadium and liquid permeability and a high conductive porous electrode 2 are disposed on both sides of a partition film 4 and pressed by collecting electrodes 1, 1' from the outside to form a cell. One of chambers partitioned by the partition film 4 is adopted as a positive electrode chamber and the other is adopted as a negative electrode chamber, and the thickness of the chambers is ensured by a spacer 5. The positive electrode electrolyte of pentavalent/ tetravalent vanadium is made to flow from the inlet Lp (in) of the positive electrode chamber to the outlet Lp (out) and the negative electrode electrolyte of divalent/trivalent vanadium is made to flow from the inlet Ln (in) of the negative electrode chamber to the outlet Ln (out), and charge and discharge are performed by oxidation reaction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、二次電池に関し、さら
に詳しくは、バナジウム(II/III)とバナジウム(V/I
V)をレドックス対とするレドックスフロー型二次電池
(略して、「レドックス電池」と呼ぶことがある)に関
するものであり、特に高電流密度で使用可能な、内部抵
抗及びポンプ動力損失の小さい、高出力の全バナジウム
レドックス電池の電極セル構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary battery, and more specifically to vanadium (II / III) and vanadium (V / I).
V) is a redox flow secondary battery having a redox pair (sometimes abbreviated as "redox battery" for short), which can be used especially at high current density and has a small internal resistance and pump power loss, The present invention relates to an electrode cell structure of a high output all vanadium redox battery.

【0002】[0002]

【発明の背景】現在、化石燃料の大量使用による大気中
の炭酸ガス濃度の増加が著しく、地球の温暖化が大きな
問題となっている。このために、クリーンなエネルギー
源である太陽電池の開発が活発に行われているが、太陽
電池は、夜間や雨天時は発電できないため適切な2次電
池の開発が待たれている。一方、従来の発電設備に於い
ても夜と昼、ピーク時の需要の差が激しく発電設備の負
荷率は低下しており、大型の電力貯蔵電池による運転の
平滑化は省エネルギーの面で大きな意味を持っている。
電気エネルギーを貯蔵することは電力関係者の長年の夢
であるが、現在のところ揚水発電以外は実用化されてお
らず、大型の電力貯蔵電池の必要性は大きなものであ
る。レドックス電池はタッピングによって太陽電池の出
力電圧に合わせて充電できることや、構造が比較的シン
プルで大型化しやすい等の特徴を持つために、新型の2
次電池として大きな可能性を秘めている。
BACKGROUND OF THE INVENTION At present, the concentration of carbon dioxide in the atmosphere is remarkably increased due to the large use of fossil fuels, and the global warming is a serious problem. For this reason, solar cells, which are clean energy sources, are being actively developed. However, since the solar cells cannot generate power at night or in rainy weather, the development of appropriate secondary batteries is awaited. On the other hand, even in the conventional power generation equipment, the load difference of the power generation equipment is decreasing due to the large difference in demand between night, daytime, and peak hours, and smoothing the operation with a large power storage battery is significant in terms of energy saving. have.
Storing electrical energy has been a dream of electric power companies for many years, but at present, there is no practical application other than pumped storage power generation, and there is a great need for large power storage batteries. The redox battery can be charged according to the output voltage of the solar cell by tapping, and the structure is relatively simple and easy to increase in size.
It has great potential as a secondary battery.

【0003】レドックス型二次電池とは、電池活物質が
液状であり、正、負極の電池活物質を液透過型の電解槽
に流通せしめ、酸化還元反応を利用して充放電を行うも
のである。従来の二次電池と比べレドックス型二次電池
は 次の利点を有する。 (1) 蓄電容量を大きくするためには、貯蔵容器の容量を
大きくし、活物質量を増加させるだけでよく、出力を大
きくしない限り、電解槽自体はそのままでよい。 (2) 正、負極活物質は容器に完全に分離して貯蔵できる
ので、活物質が電極に接しているような電池と異なり、
自己放電の可能性が小さい。 (3) この電池で使用される液透過型炭素多孔質電極にお
いては、活物質イオンの充放電反応(電極反応)は、単
に、電極表面で電子の交換を行うのみで、亜鉛ー臭素電
池における、亜鉛イオンのように電極に析出することは
ないので、電池の反応が単純である。
A redox type secondary battery is a battery in which the battery active material is liquid, and the positive and negative battery active materials are circulated in a liquid permeation type electrolytic cell and charged and discharged by utilizing an oxidation-reduction reaction. is there. Redox type secondary batteries have the following advantages over conventional secondary batteries. (1) In order to increase the storage capacity, it is sufficient to increase the capacity of the storage container and increase the amount of the active material, and the electrolytic cell itself can be used as long as the output is not increased. (2) Since the positive and negative electrode active materials can be completely separated and stored in a container, unlike a battery in which the active material is in contact with the electrodes,
The possibility of self-discharge is low. (3) In the liquid-permeable carbon porous electrode used in this battery, the charge / discharge reaction of the active material ions (electrode reaction) is simply carried out by exchanging electrons on the electrode surface. Since it does not deposit on the electrode like zinc ions, the reaction of the battery is simple.

【0004】[0004]

【従来の技術】レドックスフロー型二次電池として、鉄
−クロム系電池が知られているが、該電池はエネルギー
密度が小さいこと、イオン交換膜を介して鉄とクロムが
混合することなどの欠点があるために、これに代わるも
のとして全バナジウム系電池が提案されている(特開昭
62-186473号公報)。この電池は、起電力、電池容量など
に優れており、電解液が一金属系であるため隔膜を介し
て正、負極液が相互に混合しても充電によって簡単に再
生することができ、電池容量が低下せず、電解液を完全
にクローズド化できる等の利点を持っている。しかし、
従来の全バナジウム系電池では、使用可能な高電流密度
は高々60mA/cm2程度であり、さらに高い電流密度での
使用は不可能であった。
2. Description of the Related Art Iron-chromium batteries are known as redox flow type secondary batteries, but they have drawbacks such as low energy density and mixing of iron and chromium through an ion exchange membrane. Therefore, an all-vanadium-based battery has been proposed as an alternative to this (Japanese Patent Application Laid-Open No. Sho-06-1999).
62-186473). This battery is excellent in electromotive force, battery capacity, etc., and because the electrolyte is a single metal type, it can be easily regenerated by charging even if positive and negative electrode liquids are mixed with each other through the diaphragm. It has the advantage that the capacity does not decrease and the electrolyte can be completely closed. But,
In the conventional all-vanadium battery, the high current density that can be used is about 60 mA / cm 2 at most, and it is impossible to use it at a higher current density.

【0005】例えば80mA/cm2以上の高電流密度を採用
して、高い電力効率を維持するためには、セルの抵抗を
1.5Ωcm2以下にしなければならず、電極の電気抵
抗、電解液の導電率を考慮すると正極室及び負極室のセ
ル厚を薄くする必要があった。しかし、セル厚を薄くす
ることは、電解液を透過させるためのポンプ動力を大き
くしなければならず、結果として下記式−1で示される
エネルギー効率が低下する。従って、セル厚さを薄くす
ることなく電池セルの内部抵抗を低減できる液透過性多
孔質電極の開発、あるいは電池セルの内部抵抗を大きく
せずに電解液の透過性を向上させる新たなる液透過性多
孔質電極の開発が必要となってきた。
For example, in order to maintain high power efficiency by adopting a high current density of 80 mA / cm 2 or more, the resistance of the cell must be 1.5 Ωcm 2 or less, and the electric resistance of the electrode and the electrolyte solution Considering the electric conductivity of, it was necessary to reduce the cell thickness of the positive electrode chamber and the negative electrode chamber. However, reducing the cell thickness requires increasing the pump power for permeating the electrolytic solution, and as a result, the energy efficiency represented by the following formula-1 is reduced. Therefore, we have developed a liquid-permeable porous electrode that can reduce the internal resistance of the battery cell without reducing the cell thickness, or a new liquid-permeable material that improves the permeability of the electrolyte without increasing the internal resistance of the battery cell. The development of porous porous electrodes has become necessary.

【0006】[0006]

【数1】 [Equation 1]

【0007】上記式中の充放電電力量は、電池セルの内
部抵抗と隔膜のイオン選択性およびシャント電流損失等
に依存するので、内部抵抗の減少は電圧効率を向上さ
せ、イオン選択性の向上およびシャント電流損失の低減
は電流効率を向上させる。またポンプ電力量は、電池セ
ル内に最適な量の電解液を流通させるための電力量であ
り、その電力量は、特に電池の正極室及び負極室の厚さ
(セル厚さ)、液透過性多孔性電極の構造および電解液
導入口からのスリットの長さとその断面積の影響が大き
い。
Since the amount of charge / discharge power in the above equation depends on the internal resistance of the battery cell, the ion selectivity of the diaphragm, the shunt current loss, etc., the reduction of the internal resistance improves the voltage efficiency and improves the ion selectivity. And reducing shunt current loss improves current efficiency. The pump power amount is the amount of electric power for circulating the optimum amount of electrolyte solution in the battery cell. The power amount is particularly the thickness of the positive electrode chamber and the negative electrode chamber of the battery (cell thickness), the liquid permeation rate. The influence of the structure of the porous porous electrode, the length of the slit from the electrolyte inlet, and its cross-sectional area is large.

【0008】従来は、内部抵抗を低減するために液透過
性多孔質電極を過剰に押圧してセルの厚さを薄くする方
法、反応性液透過性多孔質電極の炭素繊維を高密度に充
填して単位体積あたりの酸化還元反応の活性化点の総数
を増加させる方法、電解液の酸濃度を上げ電解液の電導
度を上げる方法等が有効であった。一方、シャント電流
損失を低減するためには、電解液導入口からのスリット
の長さを長くし、断面積を小さくする方法が有効であ
る。しかしながら、これらの方法ではいずれもポンプ動
力損失を増大させることとなり、これらの方法により充
放電の効率は向上しても、ポンプ動力損失によって全体
のエネルギー効果は減少してしまう結果となっていた。
そのため特開平1-213964号公報では電解液を断続的に供
給する方法が提案され、また特開昭64-41167号公報では
セルの厚みと電解液の供給速度を規定している。
Conventionally, in order to reduce the internal resistance, a method of excessively pressing the liquid-permeable porous electrode to reduce the cell thickness, and filling the carbon fiber of the reactive liquid-permeable porous electrode with high density Then, a method of increasing the total number of activation points of the redox reaction per unit volume, a method of increasing the acid concentration of the electrolytic solution and increasing the electric conductivity of the electrolytic solution were effective. On the other hand, in order to reduce the shunt current loss, it is effective to increase the length of the slit from the electrolyte inlet and reduce the cross-sectional area. However, all of these methods increase the pump power loss, and even if the charging / discharging efficiency is improved by these methods, the overall energy effect is reduced by the pump power loss.
Therefore, Japanese Patent Application Laid-Open No. 1-213964 proposes a method of intermittently supplying an electrolytic solution, and Japanese Patent Application Laid-Open No. 64-41167 specifies a cell thickness and an electrolytic solution supplying rate.

【0009】一方、特開平2-148659号公報では集電炭素
板に電解液の流通方向に沿って通液溝を形成し、特開平
2-148658号公報では多孔質電極材と隔膜の間に液流通性
の高い多孔質絶縁材を配置して、ポンプ動力損失を低減
している。しかしこの時のセル抵抗は1.8Ωcm2程度で
あり、高電流密度レドックス電池には適さないものであ
る。
On the other hand, in Japanese Laid-Open Patent Publication No. 2-148659, liquid-flowing grooves are formed in a current collecting carbon plate along the flowing direction of the electrolytic solution.
In JP-A 2-148658, a porous insulating material having high liquid flowability is arranged between the porous electrode material and the diaphragm to reduce pump power loss. However, the cell resistance at this time is about 1.8 Ωcm 2 , which is not suitable for a high current density redox battery.

【0010】電流密度を上げて、高い効率を維持するた
めには、内部抵抗を小さくし、電流密度にあった電解液
の活性物質をセル内に供給しなければならない。すなわ
ち電流密度の向上は電解液流量の増加となる。従来のレ
ドックス電池セルは、40〜60mA/cm2程度の低電流密
度用に設計されており、この性能では、供給する電解液
量も少なくて良いためポンプ動力損失もあまり大きくな
らなかった。しかし、従来の電極構造での高電流密度化
においては、多量の電解液を供給する必要性からポンプ
動力損失が著しく大きくなることが明らかになってき
た。従って、ポンプ動力損失を減少させるためには、セ
ル厚を大きくするか、スリット部の長さを短くするか、
その断面積を大きくすること等が必要であるが、セル厚
さの増加は内部抵抗の増加になって電圧効率を低下させ
るし、スリット部の長さを短くし、その断面積を大きく
することは、シャント電流損失の増加による電流効率の
低下になる。これらの最適条件を得たとしても従来の液
透過性多孔質電極構造のレドックス電池セルでは、高電
流密度でポンプ動力損失を著しく低くすることは困難で
あった。
In order to increase the current density and maintain high efficiency, it is necessary to reduce the internal resistance and supply the active substance of the electrolytic solution suitable for the current density into the cell. That is, the improvement of the current density results in the increase of the electrolyte flow rate. The conventional redox battery cell is designed for a low current density of about 40 to 60 mA / cm 2 , and in this performance, the pump power loss did not become so large because the amount of the electrolyte solution to be supplied can be small. However, it has been clarified that the pump power loss becomes remarkably large due to the necessity of supplying a large amount of electrolytic solution when the current density is increased in the conventional electrode structure. Therefore, in order to reduce the pump power loss, whether to increase the cell thickness or shorten the slit length,
It is necessary to increase the cross-sectional area, but increasing the cell thickness increases the internal resistance, lowering the voltage efficiency, shortening the slit length, and increasing the cross-sectional area. Causes a decrease in current efficiency due to an increase in shunt current loss. Even if these optimum conditions were obtained, it was difficult for the conventional redox battery cell having the liquid-permeable porous electrode structure to significantly reduce the pump power loss at a high current density.

【0011】[0011]

【発明が解決しようとする課題】本発明の目的は、高電
流密度に適した、電池の内部抵抗が小さくでき、またポ
ンプ動力損失も小さい、高出力の新規なバナジウムレド
ックス電池セルを提供することにある。本発明における
高電流密度とは、80mA/cm2以上であり、詳しくは、8
0mA/cm2〜160mA/cm2である。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a novel vanadium redox battery cell having a high output, which is suitable for a high current density, has a small internal resistance of the battery, and has a small pump power loss. It is in. The high current density in the present invention means 80 mA / cm 2 or more, and more specifically, 8
It is a 0mA / cm 2 ~160mA / cm 2 .

【0012】[0012]

【課題を解決するための手段】本発明者らは、上記課題
の解決のために鋭意検討を重ねた結果、特殊な構造を有
する液透過性多孔質電極の開発に成功し、電池セル厚さ
を薄くすることなく電池セルの内部抵抗を低減すること
ができ、且つ電解液の流通によるポンプ動力損失を小さ
くできる全バナジウムレドックス電池を完成するに至っ
た。即ち、本発明は、隔膜を介して正および負の液透過
性多孔質電極が配設され、該電極をその外側から挟持す
るバイポーラ板により構成される正極室及び負極室から
なるセルを、該バイポーラ板を介して交互に複数個積層
して電気的に直列に接続し、該セル内に設けられたマニ
ホールドを通して複数個の正極室及び負極室に5価/4
価バナジウムからなる正極電解液および2価/3価バナ
ジウムからなる負極電解液を通液し、酸化還元反応によ
り充放電する電解液循環型の全バナジウムレドックス電
池において、該電極がバナジウムとの反応性の高い高反
応性層および高導電性層の少なくとも二層からなり、該
高反応性層が隔膜側に設置されることを特徴とする全バ
ナジウムレドックス電池である。
Means for Solving the Problems As a result of intensive studies for solving the above problems, the present inventors have succeeded in developing a liquid-permeable porous electrode having a special structure and have a battery cell thickness The present inventors have completed an all-vanadium redox battery that can reduce the internal resistance of the battery cell without reducing the thickness and can reduce the pump power loss due to the flow of the electrolytic solution. That is, the present invention provides a cell composed of a positive electrode chamber and a negative electrode chamber, which are provided with positive and negative liquid-permeable porous electrodes through a diaphragm and sandwich a bipolar plate sandwiching the electrodes from the outside. Plural layers are alternately stacked via bipolar plates and electrically connected in series, and pentavalent / 4 is provided in a plurality of positive electrode chambers and negative electrode chambers through a manifold provided in the cell.
Electrolytic solution circulation type all-vanadium redox battery in which a positive electrode electrolytic solution composed of vanadium valence and a negative electrode electrolytic solution composed of divalent / trivalent vanadium are passed through and charged and discharged by an oxidation-reduction reaction, the reactivity of the electrode with vanadium Is a high-reactivity layer and a high-conductivity layer, and the high-reactivity layer is provided on the diaphragm side, and is an all-vanadium redox battery.

【0013】電池セル内の電気化学反応は、電極表面で
起こり、そこで単位面積当たりの反応量、すなわち電流
密度を増すために電気化学反応場の三次元化が行われる
ようになった。電池セルの単セル構造は、図1に示すよ
うに二枚の集電板電極AとBおよび隔膜の両側に液透過
性多孔質電極を配置しこれらの部材を二枚の集電板電極
AとBによってサンドイッチ状態に押圧し、隔膜で仕切
られた室の一方を正極室、他方を負極室とし、その室の
厚さは適当なスペーサーによって確保される。この各
室、すなわち正極室にV4+/V5+からなる正極電解液
を、負極室にV3+/V2+からなる負極電解液を流通させ
ることによりレドックス電池が構成される。レドックス
フロー型電池の場合、充電時には正極室では、電子を放
出しV4+がV5+に酸化される。放出された電子は、外部
回路を通して負極室に供給される。負極室では、供給さ
れた電子によってV3+がV2+に還元される。この酸化還
元反応に伴って正極室では、水素イオンH+が過剰にな
る。一方、負極室では、水素イオンH+が不足する。隔
膜は、正極室の過剰な水素イオンH+を選択的に負極室
へ移動させ電気的中性が保たれる。放電時には、この逆
の反応が進む。
The electrochemical reaction in the battery cell takes place on the surface of the electrode, where the electrochemical reaction field is three-dimensionalized in order to increase the reaction amount per unit area, that is, the current density. As shown in FIG. 1, the single cell structure of the battery cell is such that two current collecting plate electrodes A and B and liquid permeable porous electrodes are arranged on both sides of the diaphragm, and these members are connected to the two current collecting plate electrodes A. One of the chambers partitioned by the diaphragm is pressed by A and B to form a positive electrode chamber and the other is a negative electrode chamber, and the thickness of the chamber is secured by an appropriate spacer. A redox battery is constructed by circulating a positive electrode electrolytic solution containing V 4+ / V 5+ in each of the chambers, that is, a positive electrode chamber, and a negative electrode electrolytic solution containing V 3+ / V 2+ in the negative electrode chamber. In the case of a redox flow type battery, in charging, in the positive electrode chamber, electrons are emitted and V 4+ is oxidized to V 5+ . The emitted electrons are supplied to the negative electrode chamber through the external circuit. In the negative electrode chamber, the supplied electrons reduce V 3+ to V 2+ . Along with this redox reaction, hydrogen ions H + become excessive in the positive electrode chamber. On the other hand, hydrogen ions H + are insufficient in the negative electrode chamber. The diaphragm selectively moves excess hydrogen ions H + in the positive electrode chamber to the negative electrode chamber to maintain electrical neutrality. At the time of discharge, the opposite reaction proceeds.

【0014】この反応におけるレドックス電池セルの内
部抵抗は、集電電極板抵抗,液透過性多孔性電極抵抗、
隔膜のイオン透過抵抗、電解液の電導率、活物質と電極
の反応抵抗、電気二重層の分極抵抗および各電極部材の
接触抵抗成分よりなる。本発明者らは、レドックス電池
セルの電気的等価回路は図2で示され、セル内の電気電
導は反応部位までは電子電導Reに支配され、反応後は
イオン電導Rhに支配されるものと考えた。イオン交換
膜は、イオン電導Rmであることが良く知られている。
しかし、イオン電導と電子電導では、電子電導の方が大
幅に抵抗を低減できることも良く知られている。
The internal resistance of the redox battery cell in this reaction is as follows: current collecting electrode plate resistance, liquid permeable porous electrode resistance,
It consists of the ion permeation resistance of the diaphragm, the electrical conductivity of the electrolyte, the reaction resistance of the active material and the electrode, the polarization resistance of the electric double layer, and the contact resistance component of each electrode member. The present inventors have shown that the electrical equivalent circuit of the redox battery cell is shown in FIG. 2, and the electric conduction in the cell is dominated by the electron conduction Re up to the reaction site and is dominated by the ion conduction Rh after the reaction. Thought. It is well known that the ion exchange membrane is an ion conductor Rm.
However, it is well known that electron conduction can significantly reduce resistance in ion conduction and electron conduction.

【0015】図1に示したような電池セルにおいて電気
集電板AおよびBに電位を負荷した場合、液透過性多孔
質電極内の電位は、そのオーム抵抗によってイオン交換
膜(隔膜)方向に進むにつれ減少する。このことは、電
気集電板近傍で反応が起こりやすくそれ以後はイオン電
導に支配されることを意味する。以上の考えに基づい
て、セルの内部抵抗を大幅に低減させるためには、反応
部位がイオン交換膜近傍にあり、その位置まではバナジ
ウムとの反応性が小さく、電気抵抗の小さい液透過性多
孔質電極によて電子を流せば電池セルの内部抵抗は、セ
ルの厚みに影響されないことがわかった。このことは、
電池セルの厚さを薄くせずに電池の内部抵抗を低減で
き、またセルの内部抵抗を大きくすることなく電池セル
の厚さを大きくでき、よって電解液の流通によるポンプ
動力損失を低減できることになる。一方、炭素電極の反
応性は、その炭素材料の導電性と関係していることがこ
れまでの検討から明らかとなった。すなわち、高電気導
電性の高い炭素材料は黒鉛化構造が著しく進行した材料
であってバナジウムとの反応性が小さく、高反応性炭素
材料は適度の微結晶黒鉛化構造を有し、かつ適度の非晶
質炭素構造を有していなければならず、電気抵抗は黒鉛
化の進んだ電極に比べ高い。
When a potential is applied to the current collectors A and B in the battery cell as shown in FIG. 1, the potential in the liquid-permeable porous electrode is in the direction of the ion exchange membrane (diaphragm) due to its ohmic resistance. It decreases as you progress. This means that the reaction is likely to occur in the vicinity of the electric current collector plate, and thereafter it is dominated by ion conduction. Based on the above idea, in order to significantly reduce the internal resistance of the cell, the reaction site is in the vicinity of the ion exchange membrane, the reactivity with vanadium is low up to that position, and the liquid-permeable porous material with low electrical resistance is present. It was found that the internal resistance of the battery cell is not affected by the cell thickness when electrons are made to flow through the porous electrode. This is
It is possible to reduce the internal resistance of the battery without reducing the thickness of the battery cell, and to increase the thickness of the battery cell without increasing the internal resistance of the cell, thus reducing the pump power loss due to the flow of the electrolyte. Become. On the other hand, it has been clarified from the previous studies that the reactivity of the carbon electrode is related to the conductivity of the carbon material. That is, a carbon material having high electric conductivity is a material having a significantly advanced graphitized structure and has low reactivity with vanadium, and the highly reactive carbon material has an appropriate microcrystalline graphitized structure and has an appropriate degree of crystallinity. It must have an amorphous carbon structure, and its electric resistance is higher than that of a highly graphitized electrode.

【0016】本発明で用いられる電極の一部を構成する
電気電導性の高い液透過性多孔性電極層は、図3に示し
た電気抵抗測定装置を用い、下記式−2から求められる
圧縮率が50%以下で、電流密度60mA/cm2において、
下記式−3から計算される体積抵抗値が1.0Ωcm以
下である液透過性多孔質炭素電極層であり、好ましくは
黒鉛化の進んだ炭素電極層である。この体積抵抗値より
高くなると電子を隔膜近傍の反応電極まで流す損失が大
きくなり効果が見られない。この条件に適合する液透過
性多孔性電極としては、例えばSGL CABON社製
の「Graphitefelt GFD2およびGFD5」(商品名)等を挙
げることができる。
The liquid permeable porous electrode layer having a high electric conductivity which constitutes a part of the electrode used in the present invention uses the electric resistance measuring apparatus shown in FIG. Is less than 50% and the current density is 60 mA / cm 2 ,
It is a liquid-permeable porous carbon electrode layer having a volume resistance value of 1.0 Ωcm or less calculated from the following formula-3, and is preferably a carbon electrode layer with advanced graphitization. If the volume resistance is higher than this value, the loss of electrons flowing to the reaction electrode in the vicinity of the diaphragm becomes large and no effect can be seen. Examples of the liquid-permeable porous electrode that meets this condition include "Graphitefelt GFD2 and GFD5" (trade name) manufactured by SGL CABON.

【0017】[0017]

【数2】 [Equation 2]

【0018】[0018]

【数3】 (Equation 3)

【0019】本発明で用いられる電極の一部を構成する
高反応性電極層としては、下記の条件および数式により
測定されるセル抵抗が1.5Ωcm2以下である液透過
性多孔質炭素電極層であり、厚み方向に液透過性が良
く、見かけ密度が0.1g/cm3以上に高密度に充填され
たものが好ましい。
The highly reactive electrode layer constituting a part of the electrode used in the present invention is a liquid-permeable porous carbon electrode layer having a cell resistance of 1.5 Ωcm 2 or less measured by the following conditions and mathematical formulas. It is preferable that the liquid permeability is good in the thickness direction and the apparent density is 0.1 g / cm 3 or more and the density is high.

【0020】[セル抵抗測定条件]電流密度60mA/cm2
において、単層電極を式2から求められる圧縮率が50
%以下となるセル厚で用い、バナジウムイオン濃度が2
mol/lでSO4 2-イオン濃度が4mol/lからなる電解液
を用いて、充放電させて測定され、式−4により計算さ
れる。
[Cell resistance measurement conditions] Current density 60 mA / cm 2
At a compression rate of 50 for the single-layer electrode
%, The vanadium ion concentration is 2
It is measured by charging and discharging using an electrolytic solution having a SO 4 2- ion concentration of 4 mol / l at mol / l, and is calculated by the formula-4.

【0021】[0021]

【数4】 [Equation 4]

【0022】高反応性の液透過性多孔質電極層として
は、例えば特開昭59-173338号公報、特開昭62-52861号
公報、特開昭63-2261号公報、特公平5-52033号公報、特
公平5-52034号公報および特開平1-67873号公報等に開示
された炭素繊維から得られる電極であり、電極の厚み方
向に液透過性が良いもの使用することができる。液透過
性が小さいとH+の移動が遅くなるためセル抵抗が大き
くなり、その効果が現れない。この条件に適合する液透
過性多孔性電極としては、例えば東洋紡社製のBN-069,
BW-309等を挙げることができる。
Examples of the highly reactive liquid-permeable porous electrode layer include, for example, JP-A-59-173338, JP-A-62-52861, JP-A-63-2261, and JP-B-5-52033. It is an electrode obtained from the carbon fiber disclosed in Japanese Patent Publication No. 5-52034, Japanese Patent Publication No. 5-67873, etc., which has good liquid permeability in the thickness direction of the electrode. If the liquid permeability is low, the movement of H + will be slow and the cell resistance will be high, and the effect will not be exhibited. Examples of liquid-permeable porous electrodes that meet this condition include BN-069, manufactured by Toyobo Co., Ltd.
BW-309 etc. can be mentioned.

【0023】また、電気電導性の高い液透過性多孔質電
極は、高反応性層への電子の移動以外に電解液を低圧力
で流通させる役割がある。特公平5-44779号公報におい
ては、多孔質電極の炭素繊維径と圧損および気孔径、炭
素量と電気抵抗および圧損、また気孔率と電気抵抗およ
び圧損の関係を開示している。これからも電解液を低圧
力で流通させるためには、空隙率が大きく、電解液との
接触表面積が小さいことが望ましい。高反応性液透過性
多孔質電極は、酸化還元反応とその反応によって生成す
る過剰H+を高反応性電極層の厚み方向へ素早く移動さ
せ隔膜を通して対の反応室へ移動させる役割がある。酸
化還元反応性は、反応電極表面上の活性化点の総数にも
比例する。このことは、炭素繊維を電解液の活性物質と
の接触面積を高く維持しつつ高密度に充填し、単位体積
あたりの活性化点を増加させることが有利である。ま
た、H+イオンの透過性を考えると、電極はできる限り
薄い方が有効であり、その厚さは1.5mm以下が最適で
ある。
Further, the liquid-permeable porous electrode having high electric conductivity has a role of allowing the electrolytic solution to flow at a low pressure in addition to the movement of electrons to the highly reactive layer. Japanese Patent Publication No. 5-44779 discloses the relationship between the carbon fiber diameter and pressure loss and pore diameter of the porous electrode, the carbon content and electrical resistance and pressure loss, and the porosity and electrical resistance and pressure loss. From this point of view, in order to allow the electrolytic solution to flow at a low pressure, it is desirable that the porosity is large and the contact surface area with the electrolytic solution is small. The highly-reactive liquid-permeable porous electrode has a role of causing the redox reaction and excess H + generated by the reaction to move quickly in the thickness direction of the highly-reactive electrode layer and move to the paired reaction chambers through the diaphragm. Redox reactivity is also proportional to the total number of activation points on the surface of the reaction electrode. For this reason, it is advantageous that the carbon fibers are packed at a high density while maintaining a high contact area of the electrolytic solution with the active substance to increase the activation points per unit volume. Further, considering the permeability of H + ions, it is effective that the electrode is as thin as possible, and the thickness thereof is optimally 1.5 mm or less.

【0024】以上のことから高反応性液透過性多孔質電
極は、厚み方向に液透過性が良く、さらに0.1g/cm3
以上に高密度に充填されたた電極が良い。これ以下の密
度では、液透過性は良いが反応抵抗が大きくなり結果的
に効果が小さくなる。これらの条件を満足する多孔質高
反応性電極としては、炭素繊維を平織り,メリヤス編
み,スダレ状編み等の織物および編み物,または厚み方
向に圧縮された不織布等に加工した電極部材がある。
From the above, the highly reactive liquid-permeable porous electrode has good liquid permeability in the thickness direction, and further has a thickness of 0.1 g / cm 3.
Electrodes filled with high density are preferable. When the density is less than this, the liquid permeability is good, but the reaction resistance increases, and as a result, the effect decreases. As the porous highly reactive electrode satisfying these conditions, there are an electrode member obtained by processing a carbon fiber into a woven fabric such as a plain weave, a knitting knitting or a woven knitting or a knitting, or a non-woven fabric compressed in the thickness direction.

【0025】本発明の液透過性多孔質電極は、上記の高
導電性層と高反応性層の少なくとも二層からなるもので
あり、該二層からなる電極はもとより、必要に応じて該
二層の間に他の層を介在させた三層以上の層構造であっ
てもよい。本発明の電極は、例えば高反応性電極と高導
電性電極とを積層することにより調製することができ
る。該電極の調製は、本発明の電池の組み立て前に、あ
らかじめ上記二種の電極を一体に積層して1枚の電極と
すること、あるいは電池の組み立て中に、高反応性電極
を隔膜に接するように配置し、ついで高導電性電極を設
置することにより行うことができる。また、高導電性電
極を用意し、その一方の面のみを酸素含有ガス雰囲気下
で高温処理することにより該処理面を高反応性化して、
高導電性層および高反応性層を有する電極を調製するこ
と、あるいは高反応性電極を用意し、その一方の面のみ
を不活性ガス(例えば窒素ガス)雰囲気下に高温処理す
ることにより該処理面を高導電性化して、高導電性層お
よび高反応性層を有する電極を調製することも可能であ
る。
The liquid-permeable porous electrode of the present invention is composed of at least two layers of the above-mentioned highly conductive layer and highly reactive layer. It may have a layered structure of three or more layers in which another layer is interposed between the layers. The electrode of the present invention can be prepared, for example, by stacking a highly reactive electrode and a highly conductive electrode. The electrode is prepared by previously laminating the above-mentioned two kinds of electrodes integrally into one electrode before assembling the battery of the present invention, or by contacting the highly reactive electrode with the diaphragm during the assembling of the battery. It is possible to do so by arranging in such a manner and then installing a highly conductive electrode. In addition, a highly conductive electrode is prepared, and the treated surface is made highly reactive by subjecting only one surface thereof to high temperature treatment in an oxygen-containing gas atmosphere,
The treatment is performed by preparing an electrode having a highly conductive layer and a highly reactive layer, or by preparing a highly reactive electrode and subjecting only one surface thereof to a high temperature treatment under an inert gas (for example, nitrogen gas) atmosphere. It is also possible to make the surface highly conductive to prepare an electrode having a highly conductive layer and a highly reactive layer.

【0026】[0026]

【発明の効果】本発明によれば、以下の効果が達成でき
る。 (1)電池セルの内部抵抗を大きくせずにポンプ動力損
失を低減できる。 (2)エネルギー効率を大幅に向上できる。 (3)電池セルの厚さを薄くする事なく電池セルの内部
抵抗を低減できる (4)特殊な切削加工が不要である。
According to the present invention, the following effects can be achieved. (1) Pump power loss can be reduced without increasing the internal resistance of the battery cell. (2) Energy efficiency can be significantly improved. (3) The internal resistance of the battery cell can be reduced without reducing the thickness of the battery cell. (4) No special cutting process is required.

【0027】[0027]

【実施例】以下、実施例及び比較例に基づいて、本発明
を具体的に説明する。なお、これらの例で使用した測定
装置および測定条件は次ぎのとおりである [測定装置および測定条件] (a)充放電実験 実施例及び比較例に用いたレドックスフロー電池セル構
造は、図1に示す単セル型電池を用い、電極面積=10
cm2,隔膜=ポリスルフォン系アニオン交換膜および電
解液=2M V+/2M H2SO4で実施した。 (b)多孔質電極の抵抗測定 円盤状電極(直径31.9mm;厚さ3mm)を調製し、図
3の装置を用いて電流密度 60mA/cm2で式−2より求め
た。 (c)圧力損失測定 液透過性多孔質電極(40mm×10mm)の圧力損失は、図4
の測定装置を用いて、純水の流量60cc/minにおける圧力
損失を測定した。圧力損失の大きさは、マノメーターの
水銀柱長さで示した。
EXAMPLES The present invention will be specifically described below based on Examples and Comparative Examples. The measuring devices and measuring conditions used in these examples are as follows: [Measuring device and measuring conditions] (a) Charge / Discharge Experiment The redox flow battery cell structure used in Examples and Comparative Examples is shown in FIG. Using the single cell type battery shown, the electrode area = 10
cm 2 , diaphragm = polysulfone-based anion exchange membrane and electrolyte = 2MV + / 2MH 2 SO 4 . (b) Measurement of Resistance of Porous Electrode A disk-shaped electrode (diameter 31.9 mm; thickness 3 mm) was prepared, and the current density was calculated from the formula-2 using the apparatus of FIG. 3 at a current density of 60 mA / cm 2 . (C) Pressure loss measurement The pressure loss of the liquid permeable porous electrode (40 mm x 10 mm) is shown in Fig. 4.
The pressure loss at a flow rate of pure water of 60 cc / min was measured by using the measuring device described in 1. The magnitude of the pressure loss was indicated by the length of the mercury column in the manometer.

【0028】実施例および比較例に用いた高導電性多孔
質電極,高反応性多孔質電極および従来の単層型多孔質
電極を表−1および表−2に示す。
Tables 1 and 2 show the highly conductive porous electrode, the highly reactive porous electrode and the conventional single layer type porous electrode used in Examples and Comparative Examples.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】実施例1 図1に示すようなレドックスフロー電池セルを用い正極
室および負極室の厚さを2mmとし、隔膜側に高反応性多
孔質電極として東洋紡社製「BN-069」を、集電板側に高
導電性多孔質電極としてSGL CABON社製の「Graphite fe
lt GFD2」を設置し、充放電実験を実施した。結果を表
−3に示す。
Example 1 Using a redox flow battery cell as shown in FIG. 1, the thickness of the positive electrode chamber and the negative electrode chamber was 2 mm, and "BN-069" manufactured by Toyobo Co., Ltd. was used as a highly reactive porous electrode on the diaphragm side. As a highly conductive porous electrode on the side of the current collector, SGL CABON's "Graphite fe"
lt GFD2 ”was installed and a charge / discharge experiment was conducted. The results are shown in Table-3.

【0032】実施例2 正極室および負極室の厚さを2.5mmとした以外は、実
施例1と同様の充放電実験を実施した。結果を表−3に
示す。
Example 2 The same charge and discharge experiment as in Example 1 was carried out except that the thickness of the positive electrode chamber and the negative electrode chamber was 2.5 mm. The results are shown in Table-3.

【0033】実施例3 正極室および負極室の厚さを3mmとし、隔膜側に高反応
性多孔質電極として東洋紡社製「BN-069」を、集電板側
に高導電性多孔質電極としてSGL CABON社製の「Graphit
e felt GFD5」を設置し、充放電実験を実施した。結果
を表−4に示す。
Example 3 The thickness of the positive electrode chamber and the negative electrode chamber was set to 3 mm, "BN-069" manufactured by Toyobo Co., Ltd. was used as a highly reactive porous electrode on the diaphragm side, and a highly conductive porous electrode was used on the collector plate side. SGL CABON's "Graphit
E-felt GFD5 "was installed and a charge / discharge experiment was conducted. The results are shown in Table-4.

【0034】実施例4 正極室および負極室の厚さを4mmとした以外は、実施例
3と同様の充放電実験を実施した。結果を表−4に示
す。
Example 4 The same charge and discharge experiment as in Example 3 was carried out except that the thickness of the positive electrode chamber and the negative electrode chamber was 4 mm. The results are shown in Table-4.

【0035】実施例5 正極室および負極室の厚さを2.5mmとし、隔膜側に高
反応性多孔質電極として東洋紡社製「BW-309」を、集電
板側に高導電性多孔質電極としてSGL CABON社製の「Gra
phite felt GFD2」を設置し、充放電実験を実施した。
結果を表−5に示す。
Example 5 The thickness of the positive electrode chamber and the negative electrode chamber was 2.5 mm, "BW-309" manufactured by Toyobo Co., Ltd. was used as the highly reactive porous electrode on the diaphragm side, and the highly conductive porous electrode was on the current collector side. SGL CABON's "Gra
"Phite felt GFD2" was installed and a charge / discharge experiment was conducted.
The results are shown in Table-5.

【0036】比較例1 実施例1の条件で隔膜側にSGL CABON社製の「Graphite
felt GFD2」電極を、集電板側に東洋紡社製「BN-069」
電極を設置し、充放電実験を実施した。結果を表−3に
示す。
Comparative Example 1 Under the conditions of Example 1, "Graphite" manufactured by SGL CABON on the diaphragm side.
"Gel FFD2" electrode on the side of the current collector made by Toyobo "BN-069"
An electrode was installed and a charge / discharge experiment was conducted. The results are shown in Table-3.

【0037】比較例2 実施例2の条件で隔膜側にSGL CABON社製の「Graphite
felt GFD2」電極を、集電板側に東洋紡社製「BN-069」
電極を設置し、充放電実験を実施した。結果を表−3に
示す。
Comparative Example 2 Under the conditions of Example 2, "Graphite" manufactured by SGL CABON Co., Ltd. on the diaphragm side.
"Gel FFD2" electrode on the side of the current collector made by Toyobo "BN-069"
An electrode was installed and a charge / discharge experiment was conducted. The results are shown in Table-3.

【0038】比較例3 従来の単層型反応電極(東洋紡社製XF−308)を用いる
以外は、実施例3と同じセル厚さで充放電実験を実施し
た。結果を表−4に示す。
Comparative Example 3 A charge / discharge experiment was carried out with the same cell thickness as in Example 3 except that a conventional single layer type reaction electrode (XF-308 manufactured by Toyobo Co., Ltd.) was used. The results are shown in Table-4.

【0039】比較例4 従来の単層型反応電極(東洋紡社製XF−308)を用いる
以外は、実施例4と同じセル厚さで充放電実験を実施し
た。結果を表−4に示す。
Comparative Example 4 A charge / discharge experiment was carried out with the same cell thickness as in Example 4 except that a conventional single-layer type reaction electrode (XF-308 manufactured by Toyobo Co., Ltd.) was used. The results are shown in Table-4.

【0040】比較例5 集電板側に高導電性多孔質電極として東洋紡社製XF−20
8(体積抵抗=4.26Ωcm)を用いる以外は実施例5と同
じ条件で充放電実験を実施した。結果を表−5に示す。
Comparative Example 5 XF-20 manufactured by Toyobo Co., Ltd. was used as a highly conductive porous electrode on the current collector side.
A charge / discharge experiment was carried out under the same conditions as in Example 5 except that 8 (volume resistance = 4.26 Ωcm) was used. The results are shown in Table-5.

【0041】比較例6 実施例2の条件で隔膜側に東洋紡社製BN-069電極を、集
電板側に東洋紡社製「XF-258」(体積抵抗=2.31Ωcm)
設置し、充放電実験を実施した。結果を表−5に示す。
Comparative Example 6 Under the conditions of Example 2, a BN-069 electrode manufactured by Toyobo Co., Ltd. was placed on the diaphragm side, and "XF-258" manufactured by Toyobo Co., Ltd. (volume resistance = 2.31 Ωcm) was placed on the collector plate side.
It was installed and a charge / discharge experiment was carried out. The results are shown in Table-5.

【0042】比較例7 正極室および負極室の厚さを2.0mmとし、多孔質電極
としてSGL CABON社製の「Graphite felt GFD2」のみを
設置し、充放電実験を実施した。結果を表−5に示す。
Comparative Example 7 The thickness of the positive electrode chamber and the negative electrode chamber was set to 2.0 mm, and only "Graphite felt GFD2" manufactured by SGL CABON Co., Ltd. was installed as a porous electrode, and a charge / discharge experiment was carried out. The results are shown in Table-5.

【0043】比較例8 正極室および負極室の厚さを3.0mmとし、多孔質電極と
してSGL CABON社製の「Graphite felt GFD5」のみを設
置し、充放電実験を実施した。結果を表−5に示す。
Comparative Example 8 The thickness of the positive electrode chamber and the negative electrode chamber was 3.0 mm, and only "Graphite felt GFD5" manufactured by SGL CABON Co., Ltd. was installed as a porous electrode, and a charge / discharge experiment was carried out. The results are shown in Table-5.

【0044】[0044]

【表3】 [Table 3]

【0045】[0045]

【表4】 [Table 4]

【0046】[0046]

【表5】 [Table 5]

【0047】表−4で示した電極と同じ構成で図−4の
装置を用いて圧力損失を測定した。圧力損失は、水銀柱
の高さ(mm)として表される。結果を図5に示す。図の電
力効率と圧力損失の関係より電極を二重構造にした効果
が認められた。上記実施例の結果からも明らかなように
レドックスフロー型電池の液透過性多孔質電極が隔膜側
に高反応性多孔質電極を、電極集電板(バイポーラ板)
側に高導電性多孔質電極を設置する二重電極構造は、従
来の単層電極構造より優れている。
The pressure loss was measured using the apparatus of FIG. 4 with the same configuration as the electrodes shown in Table-4. Pressure loss is expressed as the height of the mercury column (mm). Results are shown in FIG. From the relationship between the power efficiency and the pressure loss in the figure, the effect of the double structure of the electrode was confirmed. As is clear from the results of the above examples, the liquid permeable porous electrode of the redox flow type battery has a highly reactive porous electrode on the diaphragm side, and an electrode current collector plate (bipolar plate).
The double electrode structure in which the highly conductive porous electrode is installed on the side is superior to the conventional single layer electrode structure.

【0048】表−2からは、高反応性多孔質電極と高導
電性多孔質電極の設置する位置によて効率およびセル抵
抗が大きく異なることが明らかである。また表−3の比
較より同じセル厚さにおいても二重電極構造は、従来の
単層電極構造より優れている。表−4からは、導電性多
孔質電極の導電性が小さくなると効果が小さいことが実
施例2および5と比較例5および6の比較より明らかで
ある。尚、SGL CABON社製の「Graphite felt GFD2およ
びGFD5」は、酸化還元反応性が小さいことが比較例8お
よび9より明らかである。
From Table 2, it is clear that the efficiency and cell resistance greatly differ depending on the positions where the highly reactive porous electrode and the highly conductive porous electrode are installed. Further, from the comparison of Table 3, the double electrode structure is superior to the conventional single layer electrode structure even with the same cell thickness. From Table 4, it is clear from the comparison between Examples 2 and 5 and Comparative Examples 5 and 6 that the effect is small when the conductivity of the conductive porous electrode is small. It is apparent from Comparative Examples 8 and 9 that "Graphite felt GFD2 and GFD5" manufactured by SGL CABON have a small redox reactivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電池を構成する単一セルの概略説明図
である。
FIG. 1 is a schematic explanatory view of a single cell constituting a battery of the present invention.

【図2】電池セルの等価回路図を示す。FIG. 2 shows an equivalent circuit diagram of a battery cell.

【図3】実施例で使用した電気抵抗測定装置の概略説明
図である。
FIG. 3 is a schematic explanatory view of an electric resistance measuring device used in Examples.

【図4】実施例で使用した差圧測定装置の概略説明図で
ある。
FIG. 4 is a schematic explanatory diagram of a differential pressure measuring device used in Examples.

【図5】圧力損失とセル抵抗の関係を示す図である。FIG. 5 is a diagram showing the relationship between pressure loss and cell resistance.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中島 正人 茨城県稲敷郡阿見町中央8丁目3番1号 鹿島北共同発電株式会社V電池開発室内 (72)発明者 佐藤 完二 茨城県稲敷郡阿見町中央8丁目3番1号 鹿島北共同発電株式会社V電池開発室内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Masato Nakajima Inventor Masato Nakajima 8-3-1 Chuo, Ami-machi, Inashiki-gun, Ibaraki Kashima Kita Kyodo Power Co., Ltd. V battery development room (72) Kanji Sato Inami, Inashiki-gun, Ibaraki 8-3-1, Machichuo Kashima Kita Kyodo Power Co., Inc. V battery development room

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 隔膜を介して正および負の液透過性多孔
質電極が配設され、該電極をその外側から挟持するバイ
ポーラ板により構成される正極室及び負極室からなるセ
ルを、該バイポーラ板を介して交互に複数個積層して電
気的に直列に接続し、該セル内に設けられたマニホール
ドを通して複数個の正極室及び負極室に5価/4価バナ
ジウムからなる正極電解液および2価/3価バナジウム
からなる負極電解液を通液し、酸化還元反応により充放
電する電解液循環型の全バナジウムレドックス電池にお
いて、該電極がバナジウムとの反応性の高い高反応性層
および高導電性層の少なくとも二層からなり、該高反応
性層が隔膜側に設置されることを特徴とする全バナジウ
ムレドックス電池。
1. A cell comprising a positive electrode chamber and a negative electrode chamber, which is constituted by a bipolar plate in which positive and negative liquid-permeable porous electrodes are arranged with a diaphragm interposed therebetween and which sandwiches the electrodes from the outside thereof. A plurality of positive electrode electrolytic solutions composed of pentavalent / vanadium vanadium are provided in a plurality of positive electrode chambers and negative electrode chambers through a manifold provided in the cells by alternately stacking a plurality of plates and electrically connecting them in series. Electrolytic solution circulation type all-vanadium redox battery in which a negative electrode electrolyte composed of trivalent / trivalent vanadium is passed through and charged and discharged by an oxidation-reduction reaction, the electrode has a high reactivity layer with high reactivity with vanadium and a high conductivity. An all-vanadium redox battery comprising at least two active layers, wherein the highly reactive layer is provided on the diaphragm side.
【請求項2】 前記高導電性層が1.0オームcm以下
の体積抵抗値を有する液透過性多孔質の炭素電極層であ
る請求項1記載の電池。
2. The battery according to claim 1, wherein the highly conductive layer is a liquid-permeable porous carbon electrode layer having a volume resistance value of 1.0 ohm cm or less.
【請求項3】 前記高反応性層が1.5オームcm2
下のセル抵抗を有する液透過性多孔質の炭素電極層であ
る請求項1記載の電池。
3. The battery according to claim 1, wherein the highly reactive layer is a liquid-permeable porous carbon electrode layer having a cell resistance of 1.5 ohm cm 2 or less.
【請求項4】 前記高反応性層が厚み方向に液透過性が
よく、見掛け密度が0.1g/cm3以上に高密度に充填さ
れた液透過性多孔質炭素電極である請求項3記載の電
池。
4. The liquid permeable porous carbon electrode according to claim 3, wherein the highly reactive layer has good liquid permeability in the thickness direction and is densely packed with an apparent density of 0.1 g / cm 3 or more. Batteries.
JP6269965A 1994-11-02 1994-11-02 Whole vanadium redox battery Pending JPH08138685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6269965A JPH08138685A (en) 1994-11-02 1994-11-02 Whole vanadium redox battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6269965A JPH08138685A (en) 1994-11-02 1994-11-02 Whole vanadium redox battery

Publications (1)

Publication Number Publication Date
JPH08138685A true JPH08138685A (en) 1996-05-31

Family

ID=17479694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6269965A Pending JPH08138685A (en) 1994-11-02 1994-11-02 Whole vanadium redox battery

Country Status (1)

Country Link
JP (1) JPH08138685A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101370851B1 (en) * 2012-11-05 2014-03-07 한국과학기술원 Multi-layered electrode for redox flow battery and redox flow battery comprising said multi-layered electrode
JP2014508384A (en) * 2011-02-08 2014-04-03 ユナイテッド テクノロジーズ コーポレイション Flow battery with low resistance film
WO2016159348A1 (en) * 2015-04-01 2016-10-06 昭和電工株式会社 Electrode material, electrode of redox flow battery, and redox flow battery
JP2017027830A (en) * 2015-07-24 2017-02-02 住友電気工業株式会社 Electrode for Redox Flow Battery, Redox Flow Battery, and Method for Evaluating Characteristics of Electrode
WO2019030844A1 (en) * 2017-08-09 2019-02-14 住友電気工業株式会社 Redox flow battery
WO2019131232A1 (en) * 2017-12-26 2019-07-04 昭和電工株式会社 Electrode for redox flow battery, and redox flow battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60253163A (en) * 1984-05-30 1985-12-13 Toyobo Co Ltd Laminated electrolytic cell
JPS6340261A (en) * 1986-08-02 1988-02-20 Toho Rayon Co Ltd Electrode member for redox flow type cell
JPH01239767A (en) * 1988-03-18 1989-09-25 Toray Ind Inc Electrode substrate and manufacture thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60253163A (en) * 1984-05-30 1985-12-13 Toyobo Co Ltd Laminated electrolytic cell
JPS6340261A (en) * 1986-08-02 1988-02-20 Toho Rayon Co Ltd Electrode member for redox flow type cell
JPH01239767A (en) * 1988-03-18 1989-09-25 Toray Ind Inc Electrode substrate and manufacture thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014508384A (en) * 2011-02-08 2014-04-03 ユナイテッド テクノロジーズ コーポレイション Flow battery with low resistance film
KR101370851B1 (en) * 2012-11-05 2014-03-07 한국과학기술원 Multi-layered electrode for redox flow battery and redox flow battery comprising said multi-layered electrode
WO2016159348A1 (en) * 2015-04-01 2016-10-06 昭和電工株式会社 Electrode material, electrode of redox flow battery, and redox flow battery
JPWO2016159348A1 (en) * 2015-04-01 2018-02-15 昭和電工株式会社 Electrode material, redox flow battery electrode, redox flow battery
US10680248B2 (en) 2015-04-01 2020-06-09 Showa Denko K.K. Electrode material, electrode of redox flow battery, and redox flow battery
JP2017027830A (en) * 2015-07-24 2017-02-02 住友電気工業株式会社 Electrode for Redox Flow Battery, Redox Flow Battery, and Method for Evaluating Characteristics of Electrode
WO2017018132A1 (en) * 2015-07-24 2017-02-02 住友電気工業株式会社 Redox flow battery electrode, redox flox battery, and method for evaluating electrode properties
WO2019030844A1 (en) * 2017-08-09 2019-02-14 住友電気工業株式会社 Redox flow battery
US11342572B2 (en) 2017-08-09 2022-05-24 Sumitomo Electric Industries, Ltd. Redox flow battery
WO2019131232A1 (en) * 2017-12-26 2019-07-04 昭和電工株式会社 Electrode for redox flow battery, and redox flow battery

Similar Documents

Publication Publication Date Title
JP3505918B2 (en) Redox flow battery
US5656390A (en) Redox battery
EP0517217B1 (en) Redox battery
Hosseiny et al. A polyelectrolyte membrane-based vanadium/air redox flow battery
JP3496385B2 (en) Redox battery
JP2920230B2 (en) Redox flow battery
Pan et al. Preliminary study of alkaline single flowing Zn–O2 battery
JP2018186014A (en) Flow battery, flow battery system, and power generation system
WO2023169600A1 (en) Flow battery stack or battery cell, electrode-diaphragm composite assembly and composite electrode structure thereof
CN102867978A (en) Flow energy storage battery structure
JP6817548B2 (en) Electrodes for redox flow batteries and redox flow batteries
JP3163370B2 (en) Redox battery
JP3642697B2 (en) Fluid flow battery cell
JPH0992321A (en) Redox cell
JPH1012260A (en) Redox flow battery
JP3555303B2 (en) Redox battery
JPH08138685A (en) Whole vanadium redox battery
Noack et al. Aging studies of vanadium redox flow batteries
WO2020147635A1 (en) Aqueous hybrid super capacitor
JPH0534784B2 (en)
JPH0821415B2 (en) Fuel cell for rebalancing device for secondary battery
JP5690353B2 (en) Non-aqueous secondary battery
WO2013097595A1 (en) Use of proton exchange membrane in iron-chromium liquid fluid battery
JPS60253163A (en) Laminated electrolytic cell
JP2906241B2 (en) Liquid flow type electrolytic cell