JPH0821415B2 - Fuel cell for rebalancing device for secondary battery - Google Patents
Fuel cell for rebalancing device for secondary batteryInfo
- Publication number
- JPH0821415B2 JPH0821415B2 JP62168450A JP16845087A JPH0821415B2 JP H0821415 B2 JPH0821415 B2 JP H0821415B2 JP 62168450 A JP62168450 A JP 62168450A JP 16845087 A JP16845087 A JP 16845087A JP H0821415 B2 JPH0821415 B2 JP H0821415B2
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen
- electrode
- secondary battery
- fuel cell
- counter electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/18—Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
- H01M8/184—Regeneration by electrochemical means
- H01M8/188—Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04186—Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は二次電池用リバランス装置の燃料電池に関
し、さらに詳しくは安定な高電流密度運転が可能なレド
ックス・フロー型二次電池用リバランス装置の燃料電池
に関する。Description: TECHNICAL FIELD The present invention relates to a fuel cell of a rebalance device for a secondary battery, and more specifically, to a rechargeable battery for a redox flow type secondary battery capable of stable high current density operation. The present invention relates to a fuel cell of a balance device.
レドックス・フロー型二次電池は、鉄−クロム二次電
池を例にとれば、放電状態ではクロムイオン(Cr2+)の
水溶液と3価の鉄イオン(Fe3+)の水溶液とをそれぞれ
流通形電解槽の正極室および負極室に流すことにより、
正極ではFe3+が電子を1個受け取って、2価のFe2+とな
り、負極ではCr2+が電子を1個失い3価のCr3+となり、
負極と正極で授受された電子は、外部回路を通って仕事
をし、電力を放出し、一方、この逆の操作を行えば充電
が行なわれ、このように、電子の授受(広義の酸化と還
元)が別個の電極で行なわれ、その電子が外部回路を流
れて電気エネルギーを放出し、化学エネルギーが電気エ
ネルギーに変換されるような電池をいう。Taking an iron-chromium secondary battery as an example, the redox flow secondary battery distributes an aqueous solution of chromium ions (Cr 2+ ) and an aqueous solution of trivalent iron ions (Fe 3+ ) in a discharged state. By flowing into the positive electrode chamber and the negative electrode chamber of the electrolytic cell,
At the positive electrode, Fe 3+ receives one electron and becomes divalent Fe 2+ , and at the negative electrode, Cr 2+ loses one electron and becomes trivalent Cr 3+ .
The electrons transferred between the negative electrode and the positive electrode work through an external circuit to release electric power, and on the other hand, if the reverse operation is performed, charging is performed, and thus the transfer of electrons (oxidation in a broad sense and Reduction) is performed at a separate electrode, the electrons of which flow through an external circuit to release electric energy, and chemical energy is converted into electric energy.
前記レドックス・フロー型二次電池では僅かではある
が負極(クロム)側より水素ガスが副生するために正極
液と負極液の充放電深度に差が生じてくる。充放電を重
ねてゆくうちにこの差は拡大され、正極液の過充電状態
が進行して電池の容量が低下して行く。これを回避する
ためには、リバランス装置を設けて正極液の過充電状態
を解消しなければならない。In the redox flow type secondary battery, a small amount of hydrogen gas is produced as a by-product from the negative electrode (chromium) side in the redox flow secondary battery, so that a difference occurs in the charge and discharge depths of the positive electrode liquid and the negative electrode liquid. This difference widens as the charge and discharge are repeated, and the overcharged state of the positive electrode liquid progresses and the capacity of the battery decreases. In order to avoid this, a rebalance device must be provided to eliminate the overcharged state of the positive electrode liquid.
レドックス・フロー型二次電池用リバンランス装置に
は、負極の副反応生成物である水素を元のH+に戻す燃料
電池を用いることができる。このような燃料電地として
は、リバランス方式の選択によってFe3+−H2系、Ti4+−
H2系、Sn4+−H2系、Br2−H2系、Cl2−H2系などがある。For the redox flow secondary battery revanlance device, a fuel cell that returns hydrogen, which is a side reaction product of the negative electrode, to the original H + can be used. As such a fuel electric field, Fe 3+ − H 2 system, Ti 4+ −
There are H 2 system, Sn 4+ -H 2 system, Br 2 -H 2 system, Cl 2 -H 2 system and so on.
第2図は従来のリバランス用燃料電池本体の概略図で
ある。FIG. 2 is a schematic view of a conventional rebalancing fuel cell body.
この装置は水素極電解液2および水素極4からなる水
素極室Aと、対極電解液3および対極5からなる対極室
Bと、前記水素極室Aおよび前記対極室Bを区分するイ
オン交換膜1と、両極の電流分布を均一にするために設
けられる集電体6A、6Bとから構成される。このような構
成において、二次電池(図示せず)で副生した水素ガス
は水素極室Aに供給され、水素極4で酸化されてプロト
ン(H+)となるが、水素極電解液2の水を伴い、次式に
示すようにH3O+となって存在する。This device comprises a hydrogen electrode chamber A composed of a hydrogen electrode electrolyte 2 and a hydrogen electrode 4, a counter electrode chamber B composed of a counter electrode electrolyte 3 and a counter electrode 5, and an ion exchange membrane for partitioning the hydrogen electrode chamber A and the counter electrode chamber B. 1 and current collectors 6A and 6B provided to make the current distribution of both electrodes uniform. In such a configuration, the hydrogen gas by-produced in the secondary battery (not shown) is supplied to the hydrogen electrode chamber A and is oxidized at the hydrogen electrode 4 to become a proton (H + ). With water, it exists as H 3 O + as shown in the following formula.
H2+2H2O→2H3O++2e 該H3O+は水素極室Aからイオン交換膜1を通って対極
室Bの対極電解液3中に電気泳動し、対極5では例えば
対極活物質にTi(Ti4+/Ti3+)を用いた場合は Ti4+e→Ti3+ の還元が行なわれ、電流が流れる。H 2 + 2H 2 O → 2H 3 O + + 2e The H 3 O + is electrophoresed from the hydrogen electrode chamber A through the ion exchange membrane 1 into the counter electrolyte solution 3 of the counter electrode chamber B, and at the counter electrode 5, for example, the counter electrode active material. When Ti (Ti 4+ / Ti 3+ ) is used for, Ti 4+ e → Ti 3+ is reduced and a current flows.
しかしながら、前記した従来の燃料電池では、通電に
伴い水素極反応で生じたH3O+がイオン交換膜1を通過し
て対極室Bに移行するため、水素極電解液2中の水が不
足し、水素極室Aが乾いた状態となってセル抵抗が増大
し、一方、対極室Bでは対極電解液3中の水分が増加す
るため、安定な高電流密度運転ができず、またリバラン
ス装置の閉鎖系運転が困難となる。However, in the above-described conventional fuel cell, H 3 O + generated in the hydrogen electrode reaction due to energization passes through the ion exchange membrane 1 and moves to the counter electrode chamber B, so that the water in the hydrogen electrode electrolyte solution 2 is insufficient. However, the hydrogen electrode chamber A becomes dry and the cell resistance increases. On the other hand, in the counter electrode chamber B, the water content in the counter electrode electrolyte 3 increases, so stable high current density operation cannot be performed and rebalancing is not performed. The closed system operation of the device becomes difficult.
本発明の目的は、前記レドックス・フロー二次電池用
リバランス装置に用いられる燃料電池の電解液中の水の
移動がなく、安定な高電流密度運転を持続でき、かつ閉
鎖系運転が可能な二次電池用リバランス装置の燃料電池
を提供することにある。An object of the present invention is to prevent the movement of water in the electrolyte of the fuel cell used in the rebalance device for the redox flow secondary battery, to maintain stable high current density operation, and to enable closed system operation. It is to provide a fuel cell for a rebalance device for a secondary battery.
本発明は、レドックス・フロー型二次電池の負極側で
副生した水素ガスが導入される、水素極電解液および水
素酸化用水素極からなる水素極室と、水素を酸化しうる
対極活物質を含有する対極電解液および対極活物質還元
用対極からなる対極室とが、イオン交換膜を介して隣接
し、これらの両極室に集電体をそれぞれ備えた二次電池
用リバランス装置の燃料電池において、前記水素極室の
水素酸化用水素極を、前記イオン交換膜に電極触媒を付
着させて形成し、該水素酸化用水素極に隣接して導電性
部材に水素極電解液を含浸させた水素拡散層を配置し、
該水素拡散層に前記副生水素ガスを導入するようにした
ことを特徴とする。The present invention provides a hydrogen electrode chamber including a hydrogen electrode electrolyte and a hydrogen electrode for hydrogen oxidation, into which hydrogen gas by-produced on the negative electrode side of a redox flow type secondary battery is introduced, and a counter electrode active material capable of oxidizing hydrogen. A counter electrode chamber composed of a counter electrode electrolytic solution containing a counter electrode and a counter electrode for reducing a counter electrode active material is adjacent to each other via an ion exchange membrane, and a fuel for a rebalance device for a secondary battery, each of which is provided with a current collector. In a battery, a hydrogen electrode for hydrogen oxidation in the hydrogen electrode chamber is formed by attaching an electrode catalyst to the ion exchange membrane, and a conductive member is impregnated with a hydrogen electrode electrolyte adjacent to the hydrogen electrode for hydrogen oxidation. A hydrogen diffusion layer,
It is characterized in that the by-product hydrogen gas is introduced into the hydrogen diffusion layer.
以下、本発明を図面に示す実施例によりさらに詳細に
説明する。Hereinafter, the present invention will be described in more detail with reference to the embodiments shown in the drawings.
第1図は、本発明における燃料電池内部の概略図であ
る。FIG. 1 is a schematic view of the inside of a fuel cell according to the present invention.
第1図において、第2図と異なる点は、イオン交換膜
(PEM(Polymer Electrolyte Membrane)材料)に水
素電極、例えば白金族の金属を無電解メッキまたはその
他の方法で密接に接合させたPEM水素極Cを設け、該PEM
水素極Cの水素極8の外側に水素拡散層7を設け、かつ
PEM水素極Cのイオン交換膜の外側に対極室Bを設けた
ことである。1 is different from FIG. 2 in that a hydrogen electrode, for example, a platinum group metal is closely bonded to an ion exchange membrane (PEM (Polymer Electrolyte Membrane) material) by electroless plating or another method. Pole C is provided and the PEM
A hydrogen diffusion layer 7 is provided outside the hydrogen electrode 8 of the hydrogen electrode C, and
The counter electrode chamber B was provided outside the ion exchange membrane of the PEM hydrogen electrode C.
このような構成において、レドックス・フロー型二次
電池(図示せず)の負極側で副生する水素は水素拡散層
7に導入され、イオン交換膜と一体化されたPEM水素極
Cで酸化され、生じたH+はイオン交換膜1に保持された
水分を伴って生じたH3O+となって直接対極室Bに電気泳
動し、さらに対極5ではT4++e→Ti3+の還元反応が行
なわれ、電気が流れる。このとき前記H3O+の移動は、対
極電解液3からイオン交換膜1への電気的中性の水の拡
散移動と平衡状態を保つ。このため水素極室内の水の減
少による抵抗増大はなくなり、安定な高電流密度運転の
持続およびリバランス装置の閉鎖系運転が可能となる。In such a configuration, hydrogen produced as a by-product on the negative electrode side of the redox flow type secondary battery (not shown) is introduced into the hydrogen diffusion layer 7 and is oxidized by the PEM hydrogen electrode C integrated with the ion exchange membrane. , The generated H + becomes H 3 O + generated along with the water retained in the ion exchange membrane 1 and is directly electrophoresed in the counter electrode chamber B, and further, at the counter electrode 5, reduction of T 4+ + e → Ti 3+ . The reaction takes place and electricity flows. At this time, the movement of H 3 O + is in equilibrium with the diffusion movement of electrically neutral water from the counter electrolyte 3 to the ion exchange membrane 1. For this reason, the increase in resistance due to the decrease in water in the hydrogen electrode chamber is eliminated, and stable high current density operation can be maintained and the rebalancing device can be operated in a closed system.
(実験結果) 一例として、Nafion117(Du Pout社製登録商標)を
イオン交換膜として用い、この片面にタテ100mm×ヨコ1
0mmの長方形状に白金をめっきしてSPE電極を作製した。
めっきは、膜の片面に1%H2PtO6水溶液を、もう一面に
アルカリ性2M NaBH4を約3時間ほど接触させ、NaBH4の
膜内への浸透によって白金を還元析出させることで行な
った。白金析出量は約0.2mgcm-2であった。アノード
(白金析出面)の集電体兼H2ガス拡散層としては、厚さ
1mm・目付量300gm-2のグラファイトクロスをめっき面と
同形状に切って使用した。カソードには、化学的な活性
化処理を行なった厚さ3mm・目付量400gm-2の炭素室フェ
ルトをめっき面と同形状に切って使用した。(Experimental Results) As an example, Nafion 117 (registered trademark manufactured by Du Pout) is used as an ion exchange membrane, and one side of this is 100 mm in length × 1 side.
An SPE electrode was prepared by plating platinum in a 0 mm rectangular shape.
The plating was carried out by bringing 1% H 2 PtO 6 aqueous solution into contact with one surface of the film and alkaline 2M NaBH 4 on the other surface for about 3 hours to reduce and precipitate platinum by permeating NaBH 4 into the film. The amount of platinum deposited was about 0.2 mgcm -2 . The thickness of the anode (platinum deposition surface) collector and H 2 gas diffusion layer
Graphite cloth with 1 mm and basis weight of 300 gm -2 was cut into the same shape as the plated surface. For the cathode, a chemically activated carbon chamber felt with a thickness of 3 mm and a basis weight of 400 gm -2 was cut into the same shape as the plated surface.
これらを2枚のリード付グラファイト板ではさみ込ん
で圧着し、周囲をEPDMでパッキングして小型燃料電池を
構成した。These were sandwiched between two leaded graphite plates, pressure-bonded, and the periphery was packed with EPDM to form a small fuel cell.
この電池のカソードに0.5M Ti3+/Ti4+(基礎液は2M F
eCl2、3NHBr、1NHCl混合液)を4mlmin-1の速さでタテ方
向に送液した。アノードへは10mlmin-1の速さでH2ガス
を通じた。0.5M Ti 3+ / Ti 4+ (basic solution is 2M F
A mixed solution of eCl 2 , 3NHBr, and 1NHCl) was fed vertically at a rate of 4 mlmin −1 . H 2 gas was passed through the anode at a rate of 10 mlmin −1 .
40℃において、この電池の開路電圧は約0.1V、短絡電
流は170mA(17mAcm-2)となり、総括セル抵抗は約6Ωc
m2であった。このセル抵抗は20000クーロン発電して全
く変化しなかった。At 40 ℃, the open circuit voltage of this battery is about 0.1V, the short-circuit current is 170mA (17mAcm -2 ), and the overall cell resistance is about 6Ωc.
It was m 2 . This cell resistance did not change at all after generating 20,000 coulombs.
(対照実験) アノードとして、厚さ2.5mm、目付量200gm-2の固体多
孔質炭素に1mgcm-2白金を担持させた電極を用いて、同
じ実験を行なった。初期総括セル抵抗は約20Ωcm2であ
ったが、発電とともにこれが上昇し、2000クーロン通電
時ではほとんど電流値が0になった。(Control experiment) The same experiment was performed using an electrode in which 1 mgcm -2 platinum was supported on solid porous carbon having a thickness of 2.5 mm and a basis weight of 200 gm -2 as an anode. The initial overall cell resistance was about 20 Ωcm 2 , but this increased with power generation, and the current value became almost zero when 2000 Coulomb was energized.
本発明の燃料電池は、一般に水素発生を伴う他の二次
電池用リバランス法にも応用されることはいうまでもな
い。It is needless to say that the fuel cell of the present invention is generally applied to other rebalancing methods for secondary cells that generate hydrogen.
本発明によれば、燃料電池の水素極をPEM水素極とし
てイオン交換膜と一体化することにより、水素イオンの
移動に伴う水の移動をなくし、安定な高電流密度運転と
リバランス装置の閉鎖系運転が可能となった。According to the present invention, by integrating the hydrogen electrode of the fuel cell as a PEM hydrogen electrode with the ion exchange membrane, the movement of water accompanying the movement of hydrogen ions is eliminated, and stable high current density operation and rebalancing device closure are achieved. System operation has become possible.
第1図は、本発明におけるリバランス用燃料電池本体の
概略図、第2図は、従来のリバランス用燃料電池本体の
概略図である。 1……イオン交換膜、2……水素極電解液、3……対極
電解液、4、8……水素極、5……対極、6A、6B……集
電体、7……水素拡散層、A……水素極室、B……対極
室、C……PEM水素極。FIG. 1 is a schematic view of a rebalancing fuel cell body according to the present invention, and FIG. 2 is a schematic view of a conventional rebalancing fuel cell body. 1 ... Ion exchange membrane, 2 ... Hydrogen electrolyte, 3 ... Counter electrolyte, 4, 8 ... Hydrogen electrode, 5 ... Counter electrode, 6A, 6B ... Current collector, 7 ... Hydrogen diffusion layer , A ... Hydrogen electrode chamber, B ... Counter electrode chamber, C ... PEM hydrogen electrode.
Claims (1)
副生した水素ガスが導入される、水素極電解液および水
素酸化用水素極からなる水素極室と、水素を酸化しうる
対極活物質を含有する対極電解液および対極活物質還元
用対極からなる対極室とが、イオン交換膜を介して隣接
し、これらの両極室に集電体をそれぞれ備えた二次電池
用リバランス装置の燃料電池において、前記水素極室の
水素酸化用水素極を、前記イオン交換膜に電極触媒を付
着させて形成し、該水素酸化用水素極に隣接して導電性
部材に水素極電解液を含浸させた水素拡散層を配置し、
該水素拡散層に前記副生水素ガスを導入するようにした
ことを特徴とする二次電池用リバランス装置の燃料電
池。1. A hydrogen electrode chamber comprising a hydrogen electrode electrolyte and a hydrogen electrode for hydrogen oxidation, into which hydrogen gas by-produced on the negative electrode side of a redox flow secondary battery is introduced, and a counter electrode active for oxidizing hydrogen. A counter electrode chamber comprising a counter electrode electrolytic solution containing a substance and a counter electrode for reducing a counter electrode active material is adjacent to each other via an ion exchange membrane, and a rebalance device for a secondary battery is provided with a current collector in each of these two electrode chambers. In a fuel cell, a hydrogen electrode for hydrogen oxidation in the hydrogen electrode chamber is formed by attaching an electrode catalyst to the ion exchange membrane, and a conductive member is impregnated with a hydrogen electrode electrolyte adjacent to the hydrogen electrode for hydrogen oxidation. Arrange the hydrogen diffusion layer,
A fuel cell for a rebalance device for a secondary battery, wherein the by-product hydrogen gas is introduced into the hydrogen diffusion layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62168450A JPH0821415B2 (en) | 1987-07-06 | 1987-07-06 | Fuel cell for rebalancing device for secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62168450A JPH0821415B2 (en) | 1987-07-06 | 1987-07-06 | Fuel cell for rebalancing device for secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6412466A JPS6412466A (en) | 1989-01-17 |
JPH0821415B2 true JPH0821415B2 (en) | 1996-03-04 |
Family
ID=15868333
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62168450A Expired - Lifetime JPH0821415B2 (en) | 1987-07-06 | 1987-07-06 | Fuel cell for rebalancing device for secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0821415B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3063819A4 (en) * | 2013-11-01 | 2017-05-24 | Lockheed Martin Advanced Energy Storage, LLC | Driven electrochemical cell for electrolyte state of charge balance in energy storage devices |
US10249897B2 (en) | 2013-09-25 | 2019-04-02 | Lockheed Martin Energy, Llc | Electrolyte balancing strategies for flow batteries |
US10347925B2 (en) | 2016-04-29 | 2019-07-09 | Lockheed Martin Energy, Llc | Three-chamber electrochemical balancing cells for simultaneous modification of state of charge and acidity within a flow battery |
US10411285B2 (en) | 2015-04-14 | 2019-09-10 | Lockheed Martin Energy, Llc | Flow battery balancing cells having a bipolar membrane for simultaneous modification of a negative electrolyte solution and a positive electrolyte solution |
US10461352B2 (en) | 2017-03-21 | 2019-10-29 | Lockheed Martin Energy, Llc | Concentration management in flow battery systems using an electrochemical balancing cell |
US10581103B2 (en) | 2015-04-14 | 2020-03-03 | Lockheed Martin Energy, Llc | Flow battery balancing cells having a bipolar membrane and methods for use thereof |
WO2020106549A1 (en) * | 2018-11-20 | 2020-05-28 | Ess Tech, Inc. | Electrolyte health management for redox flow battery |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7820321B2 (en) | 2008-07-07 | 2010-10-26 | Enervault Corporation | Redox flow battery system for distributed energy storage |
US8980484B2 (en) | 2011-03-29 | 2015-03-17 | Enervault Corporation | Monitoring electrolyte concentrations in redox flow battery systems |
US8916281B2 (en) | 2011-03-29 | 2014-12-23 | Enervault Corporation | Rebalancing electrolytes in redox flow battery systems |
US8980454B2 (en) | 2013-03-15 | 2015-03-17 | Enervault Corporation | Systems and methods for rebalancing redox flow battery electrolytes |
-
1987
- 1987-07-06 JP JP62168450A patent/JPH0821415B2/en not_active Expired - Lifetime
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10249897B2 (en) | 2013-09-25 | 2019-04-02 | Lockheed Martin Energy, Llc | Electrolyte balancing strategies for flow batteries |
EP3063819A4 (en) * | 2013-11-01 | 2017-05-24 | Lockheed Martin Advanced Energy Storage, LLC | Driven electrochemical cell for electrolyte state of charge balance in energy storage devices |
US10411285B2 (en) | 2015-04-14 | 2019-09-10 | Lockheed Martin Energy, Llc | Flow battery balancing cells having a bipolar membrane for simultaneous modification of a negative electrolyte solution and a positive electrolyte solution |
US10581103B2 (en) | 2015-04-14 | 2020-03-03 | Lockheed Martin Energy, Llc | Flow battery balancing cells having a bipolar membrane and methods for use thereof |
US10833347B2 (en) | 2015-04-14 | 2020-11-10 | Lockheed Martin Energy, Llc | Flow battery balancing cells having a bipolar membrane for simultaneous modification of a negative electrolyte solution and a positive electrolyte solution |
US10347925B2 (en) | 2016-04-29 | 2019-07-09 | Lockheed Martin Energy, Llc | Three-chamber electrochemical balancing cells for simultaneous modification of state of charge and acidity within a flow battery |
US10461352B2 (en) | 2017-03-21 | 2019-10-29 | Lockheed Martin Energy, Llc | Concentration management in flow battery systems using an electrochemical balancing cell |
WO2020106549A1 (en) * | 2018-11-20 | 2020-05-28 | Ess Tech, Inc. | Electrolyte health management for redox flow battery |
US11201343B2 (en) | 2018-11-20 | 2021-12-14 | Ess Tech, Inc. | Electrolyte health management for redox flow battery |
Also Published As
Publication number | Publication date |
---|---|
JPS6412466A (en) | 1989-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2866479B2 (en) | Bifunctional air electrode | |
US3577281A (en) | Rechargeable moving tape cell | |
PL171936B1 (en) | Electrochemical power supply unit employing air electrode | |
EP0068508A2 (en) | Methanol fuel cell | |
GB2030349A (en) | Process and Accumulator, for Storing and Releasing Electrical Energy | |
US20220411938A1 (en) | Method and device for the electrolysis of water | |
Savinell et al. | Discharge Characteristics of a Soluble Iron‐Titanium Battery System | |
US4492741A (en) | Boron monoxide-hydrogen peroxide fuel cell | |
JPH0821415B2 (en) | Fuel cell for rebalancing device for secondary battery | |
US3749608A (en) | Primary electrochemical energy cell | |
JP3163370B2 (en) | Redox battery | |
US3300343A (en) | Fuel cell including electrodes having two dissimilar surfaces | |
JP4428774B2 (en) | Manufacturing method of fuel cell electrode | |
US3597275A (en) | Process of operating fuel cell | |
JP3454838B2 (en) | Solid polymer electrolyte membrane fuel cell | |
JPH03222261A (en) | Electrode for solid electrolytic fuel cell | |
US3261717A (en) | Process of operating a fuel cell containing inorganic acid electrolyte | |
GB1448788A (en) | Fuel cell battery | |
US10511051B1 (en) | Li-water secondary electrochemical battery | |
JP2001110431A (en) | Electrode of fuel cell | |
JPH08138685A (en) | Whole vanadium redox battery | |
US4461812A (en) | Lightweight storage battery | |
JPS61211960A (en) | Secondary cell | |
JP2616061B2 (en) | Phosphoric acid fuel cell | |
JP5817419B2 (en) | Secondary battery type fuel cell |