JPH01239767A - Electrode substrate and manufacture thereof - Google Patents

Electrode substrate and manufacture thereof

Info

Publication number
JPH01239767A
JPH01239767A JP63066994A JP6699488A JPH01239767A JP H01239767 A JPH01239767 A JP H01239767A JP 63066994 A JP63066994 A JP 63066994A JP 6699488 A JP6699488 A JP 6699488A JP H01239767 A JPH01239767 A JP H01239767A
Authority
JP
Japan
Prior art keywords
fibers
woven
fabric
base material
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63066994A
Other languages
Japanese (ja)
Inventor
Hiroaki Fukui
裕明 福井
Onori Kawachi
河内 大典
Kishio Miwa
輝之男 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP63066994A priority Critical patent/JPH01239767A/en
Publication of JPH01239767A publication Critical patent/JPH01239767A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To obtain an electrode substrate having thick size, good conductivity, and large compression repulsion by stacking fabrics or knits made of fire resistant fibers and a nonwoven fabric, punching to entangle the fibers, and carbonizing. CONSTITUTION:Fire resistant fibers which are a precursor of carbon fiber such as polyacrylonitrile fiber are heated at 150-400 deg.C, and fabrics or knits made of these fibers and nonwoven fabrics are alternately stacked to obtain specified thickness. The stack obtained is punched with a needle punch to entangle fibers, then heated in a nitrogen atmosphere, for example, at 1300-3000 deg.C to obtain carbon fibers. By this process, an electrode substrate having a specified thickness, low electric resistance in the thickness direction, and large compression repulsion is obtained. This substrate is effective as the electrode substrate of a redox-flow cell or a sodium-sulfur battery.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、レドックスフロー型電池やナトリウム−硫
黄型電池等の二次電池や、有機化合物の電解、電解によ
る合成、酸化、還元反応に使用する電解櫓等の電極を構
成するのに好適な基材おにびその製造方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] This invention is applicable to secondary batteries such as redox flow batteries and sodium-sulfur batteries, and to electrolysis of organic compounds, synthesis by electrolysis, oxidation, and reduction reactions. The present invention relates to a base material suitable for forming electrodes of electrolytic towers, etc., and a method of manufacturing the same.

[従来の技術] 近年、二次電池を用いて夜間等にあ【プる余剰電力を貯
蔵し、それを需要増大時に放出して需要の変動に対応し
ようとする試みがなされている。
[Prior Art] In recent years, attempts have been made to use secondary batteries to store surplus power generated at night, etc., and release it when demand increases to respond to fluctuations in demand.

そのような目的に使用される二次電池には、いろいろな
ものがあるが、なかでも、レドックスフロー型電池は、
充放電時に電気化学的エネルギー変化を行なわせる電解
室と、電解液であるレドックス水溶液のタンクとが別々
に設【ノられるため、タンク容量を大きくすることによ
って電力貯蔵量を容易に増大させることができ、大容量
の蓄電に適しているばかりか、自己放′市か比較的少な
いためtこ注目されている。また、同じような目的に使
用されるものとして、ナトリウム−硫黄型電池がある。
There are various types of secondary batteries used for such purposes, but among them, redox flow batteries are
The electrolytic chamber, which performs electrochemical energy changes during charging and discharging, and the tank for the redox aqueous solution, which is the electrolytic solution, are installed separately, making it easy to increase the amount of electricity stored by increasing the tank capacity. Not only is it suitable for storing large amounts of electricity, but it is also attracting a lot of attention because it has relatively little self-discharge. Also, there is a sodium-sulfur type battery that is used for a similar purpose.

これは、よく知られているにうに、活物質として、陰極
にナトリウムを、陽極に硫黄または多硫化す1〜リウム
をそれぞれ用い、300’C前後の高温下で、両店物質
をナトリウムイオンのみを通す固体電解質を介して反1
芯させ、起電力を得るものである。
This is a well-known method that uses sodium at the cathode and sulfur or polysulfide monolithium at the anode as active materials, and converts both materials into only sodium ions at a high temperature of around 300'C. anti-1 through a solid electrolyte that passes through
It is used to generate electromotive force.

さて、そのようなレドックスフロー型電池やナトリウム
−硫黄型電池等の電極を構成覆るのに使用する基材には
、導電性が高いこと、電解液や活物質に対して耐食性を
有づること、表面での電解液や活物質の反応性がよいこ
となど、いろいろな特性が要求されている。そのため、
炭素繊維がよく使われている。
Now, the base material used to cover the electrodes of such redox flow batteries and sodium-sulfur batteries must have high conductivity, corrosion resistance against electrolytes and active materials, etc. Various properties are required, such as good reactivity of the electrolyte and active material on the surface. Therefore,
Carbon fiber is often used.

たとえば、特公昭53−18603丹公報、特公昭53
−43920号公報、特開昭57−129814号公報
、特開昭57−166354号公報、特開昭60−44
963号公報(こは、二次元または三次元的にランダム
配向せしめた炭素yJ織繊維炭素で結着してなる電極基
材が記載されている。ところが、この従来の基材は、短
繊維間に形成される空隙が小さいために電解液が流れる
ときの抵抗が大きいといった問題がある。また、炭素短
繊維同士を炭素で結着しているために剛性が高く、その
ため、適当な厚みまで圧縮させたときの反発力を利用し
て、たとえば集電電極との電気的接触を向上させようと
しても、」−分な反発力が1qられないという問題がお
る。
For example, Special Publication No. 53-18603 Tan Publication, Special Publication No. 53-18603,
-43920, JP 57-129814, JP 57-166354, JP 60-44
Publication No. 963 (this publication describes an electrode base material made of carbon YJ woven fiber carbon that is randomly oriented two-dimensionally or three-dimensionally. However, in this conventional base material, the short fibers are There is a problem that the resistance when the electrolyte flows is large because the voids formed in the carbon fibers are small.Also, since the short carbon fibers are bonded together with carbon, they have high rigidity, so they can be compressed to an appropriate thickness. Even if an attempt is made to improve electrical contact with, for example, a current collecting electrode by utilizing the repulsive force generated when the repulsive force is applied, there is a problem that the repulsive force cannot be increased by 1q.

また、特公昭52−24972号公報、特開昭59−1
19680号公報、特開昭60−232669号公報、
特開昭63−21754号公報、特開昭63−2175
5号公報には、炭素繊維の織物や編物からなる電極基材
が記載されている。
Also, Japanese Patent Publication No. 52-24972, Japanese Patent Publication No. 59-1
No. 19680, Japanese Patent Application Laid-open No. 60-232669,
JP-A-63-21754, JP-A-63-2175
No. 5 describes an electrode base material made of a woven or knitted fabric of carbon fibers.

そのような基材は、織目や編目によって形成される空隙
が大きいために上)ホした流glJ抵抗は低くなるもの
の、電解液や活物質等が、織糸ヤ編糸、つまり繊維束と
接触しやすく、それを溝成している単繊維とは接触しに
くいため、反応にあずかる面積を大きくとれないという
問題がある。電極の反応面積を大ぎくとれないというこ
とは、電池にしろ、電解槽にしろ、コンパクト化ないし
は大容量化が難しいということでもある。
Although such a base material has large voids formed by weaves and stitches, the flow glJ resistance (see above) is low, but the electrolyte, active material, etc. The problem is that it is difficult to make contact with the single fibers that form the grooves, so it is difficult to secure a large area for the reaction. The fact that the reaction area of the electrode cannot be made too large also means that it is difficult to make the size of the battery or electrolytic cell larger or to increase its capacity.

ざらに、特公昭56−33826号公報、特開昭61−
198576号公報、特開昭63−2261号公報には
、炭素繊維の、フェル1〜等の不織イ5からなる電極基
材が記載されている。しかしながら、この基材は、炭素
単繊維が分散しているために反応面積を大きくとれると
いう利点はおるものの、圧縮時に単繊維か面方向に動き
やすいために反発力が小さいといった問題や、繊維が短
いためlこ、特に面方向における導電性が低いという問
題がある。
Zarani, JP 56-33826, JP 61-
No. 198576 and Japanese Unexamined Patent Publication No. 63-2261 disclose electrode base materials made of carbon fiber non-woven materials such as FEL 1 to FEL 5. However, although this base material has the advantage of having a large reaction area because the carbon single fibers are dispersed, it also has problems such as a small repulsive force because the single fibers tend to move in the planar direction when compressed, and the fact that the fibers are Since it is short, there is a problem that the conductivity is low, especially in the plane direction.

上述した電(sli %+材に共通している問題は、厚
く、しかも形態保持性に陵れているものがなかなか得ら
れないということでおる。電池や電解槽等の電極におい
ては、ある程度の厚みが要求されるため、厚みを確保す
るために幾枚かの基材を積層して用いる必要がでてくる
が、そう”すると基材同士の接触面で電気抵抗が大きく
増大するので、厚み方向における電気抵抗が大きくなっ
てしまう。
A common problem with the above-mentioned sli%+ materials is that it is difficult to obtain materials that are thick and have good shape retention.For electrodes for batteries, electrolytic cells, etc. Since thickness is required, it becomes necessary to stack several base materials to ensure the thickness, but this greatly increases the electrical resistance at the contact surface between the base materials, so the thickness The electrical resistance in this direction becomes large.

一方、特開昭60−235371号公報は、ナ1〜リウ
ムー硫黄型電池にJ5いて、陽極室の固体電解質側には
炭素単繊維を配置し、缶体側にはグラファイトフェルト
を配置することを提案している。
On the other hand, Japanese Patent Application Laid-Open No. 60-235371 proposes placing carbon single fibers on the solid electrolyte side of the anode chamber and graphite felt on the can body side in J5 for sodium to lium-sulfur type batteries. are doing.

これは、形態の異なる2種類の基材を1)1用すること
によって活物質の反応性を向上させようとするものであ
るが、やはり基材の接触面にあける電気抵抗が大きいし
、組立もやっかいである。
This is an attempt to improve the reactivity of the active material by using two types of base materials with different shapes (1), but it still creates a large electrical resistance on the contact surface of the base materials, and it is difficult to assemble. It's also troublesome.

このように、従来の電極基材にはいずれし一長一短があ
り、改善が望まれている。
As described above, conventional electrode base materials have both advantages and disadvantages, and improvements are desired.

[発明が解決しようとする課題] この発明の目的は、従来の電極基材の上)ボした問題点
を解決し、厚くでき、しかも厚み方向の電気抵抗が大変
低く、また圧縮反発力が優れていて集電電4画等との十
分な接触を保つことができるぽかつか、形態保持性にも
優れた電(参基材およびその製造方法を提供するにある
[Problems to be Solved by the Invention] The purpose of the present invention is to solve the problems of conventional electrode base materials, to make them thicker, to have very low electrical resistance in the thickness direction, and to have excellent compressive repulsion. An object of the present invention is to provide an electric current base material that is flexible enough to maintain sufficient contact with a current collector, and has excellent shape retention properties, and a method for producing the same.

[課題を解決するための手段] 上記目的を達成するために、この発明においては、炭素
繊維からなる織物または編物と炭素繊維からなる不織布
jとが層状に配置され、かつ、それら織物または編物と
不織布とが上記織物または編物を構成している炭素繊維
と上記不織布を構成している炭素繊維との交絡によって
一体化されていることを特徴とする電極基材が提供され
る。また、この発明においては、そのような基材を製造
する方法として、炭素繊維の前駆体繊維たる耐炎化繊維
からなる織物または編物と上記耐炎イヒ繊維からなる不
織了5とを重ね合わせ、その重合せ体をパンチングして
上記織物または編物を構成している上記耐炎化a!維と
上記不織15を構成している上記耐炎化繊維とを交絡ぜ
しめて上記織物または編物と不織イ「とを一体止した後
、非酸化性雰囲気中にて加熱処理して上記耐炎化繊維を
炭素化することを特徴とする電極基材の製造方法が提供
される。
[Means for Solving the Problems] In order to achieve the above object, in the present invention, a woven or knitted fabric made of carbon fibers and a nonwoven fabric j made of carbon fibers are arranged in a layered manner, and these woven or knitted fabrics and There is provided an electrode base material characterized in that a nonwoven fabric is integrated by intertwining carbon fibers forming the woven or knitted fabric with carbon fibers forming the nonwoven fabric. In addition, in the present invention, as a method for manufacturing such a base material, a woven or knitted fabric made of flame-resistant fiber, which is a precursor fiber of carbon fiber, and a non-woven fabric 5 made of the above-mentioned flame-resistant fiber are superimposed, and the The above-mentioned flame-resistant a! which constitutes the above-mentioned woven or knitted fabric by punching a polymer! After the woven or knitted fabric and the non-woven fabric are intertwined with the flame-retardant fibers constituting the non-woven fabric 15, the woven fabric or knitted fabric and the non-woven fabric are integrated, and then heat-treated in a non-oxidizing atmosphere to make the flame-retardant fibers. A method for manufacturing an electrode base material is provided, which comprises carbonizing fibers.

この発明をさらに詳細に説明するに、この発明において
は、まず、炭素繊維の前駆体繊維たる耐炎化繊維を準備
する。この製造は、炭素繊維の製造における周知の方法
によればよい。すなわら、たとえばポリアクリロニトリ
ル繊維、セルロース繊維、ピッチ繊維など、耐炎化工程
と炭素化工程を経て炭素繊維とすることができる原料繊
維(繊維束〉を、酸化性雰囲気中で、かつ発火させない
で150〜400’Cで熱処理し、耐炎化することによ
って準備することができる。なお、原料繊維としては、
最終的に(qられる電極基材にa3いて電解液の含浸性
がよく、また電解液との接触効率がより向上するように
、単糸径が3〜20μmでおるようなものを使用するの
が好ましい。
To explain this invention in more detail, in this invention, first, a flame-resistant fiber that is a precursor fiber of carbon fiber is prepared. This production may be performed by a well-known method for producing carbon fibers. In other words, raw material fibers (fiber bundles), such as polyacrylonitrile fibers, cellulose fibers, and pitch fibers, which can be made into carbon fibers through a flame-retardant process and a carbonization process, in an oxidizing atmosphere and without being ignited. It can be prepared by heat-treating at 150 to 400'C to make it flame resistant.The raw material fibers include:
Finally, in order to improve the impregnability of the electrolytic solution to the electrode base material (A3) and improve the contact efficiency with the electrolytic solution, it is recommended to use a material with a single thread diameter of 3 to 20 μm. is preferred.

ここで、耐炎化繊維は原料繊維はど結節強力が高いわけ
ではなく、扱いにくいが、それによって後述する織物ま
たは編物や不織イ「の製造が困難にならないように、上
記耐炎化工程は、LOI値が20〜40%程度になるよ
うに行うのが好ましい。
Here, the flame-resistant fiber is not a raw material fiber that has high knot strength and is difficult to handle, but in order to avoid making it difficult to manufacture woven fabrics, knitted fabrics, and non-woven fabrics described later, the above-mentioned flame-resistant process is carried out. It is preferable to perform this so that the LOI value is about 20 to 40%.

ここでLOI値は、耐炎化の程度を表わす指)票であり
、式、 LOI値=[耐炎化繊維が燃え続けるのに必要な酸素量
/(耐炎化繊維が燃え続け るのに必要な酸素量+窒素の量)] X100(%) で表されるものでおる。ここで、LOI値は、JIs 
 K7201に規定される方法に準じ、次のように測定
される。
Here, the LOI value is a score indicating the degree of flame resistance, and the formula is: LOI value = [Amount of oxygen required for the flame resistant fiber to continue burning / (Amount of oxygen necessary for the flame resistant fiber to continue burning) + amount of nitrogen)] X100 (%). Here, the LOI value is JIs
It is measured as follows according to the method specified in K7201.

すなわち、直径が約Q、3mmの針金に、耐炎化繊維を
直径が約7mmになるように巻き付けて試験片を作り、
その試験片を燃焼筒内に設置する。次に、燃焼筒内に酸
素と窒素の混合ガスを流し、試験片の上端に点火し、試
験片が3分以上燃え続けるか、5’Qmm以上の長さに
わたって燃え続けるのに必要な最低酸素量と、そのとき
の窒素量とを決定する。それから、上式によって針師す
る。
That is, a test piece was made by winding a flame-resistant fiber around a wire with a diameter of about Q, 3 mm to a diameter of about 7 mm.
Place the test piece inside the combustion cylinder. Next, a mixed gas of oxygen and nitrogen is flowed into the combustion tube and ignited at the upper end of the test piece. Determine the amount of nitrogen and the amount of nitrogen at that time. Then, use the above formula to make a needle.

さて、この発明においては、上述した耐炎化繊維(、繊
維束)を用いて、織物または1偏物と不織45とを準備
1−る。
Now, in this invention, a woven fabric or a non-woven material 45 is prepared using the above-mentioned flame-resistant fiber (fiber bundle).

織物は、耐炎化繊維を通常の方法によって製織すること
によって1qることができる。織組織は、平組織、綾組
織、朱子組織等、いずれであってもよいが、製織性がよ
いという意味では平組織であるのが好ましい。
The fabric can be made 1q by weaving flame-resistant fibers by conventional methods. The weave structure may be any one of a plain weave, a twill weave, a satin weave, etc., but a plain weave is preferable in the sense that it has good weavability.

編物も、また、通常の方法によって得ることができるが
、編組織は、伸縮性が比較的小さいラッセル組織やトリ
コット組織等の経編組織でおるのが好ましい。
A knitted fabric can also be obtained by a conventional method, but it is preferable that the knitted structure is a warp knitted structure such as a raschel structure or a tricot structure, which has relatively low elasticity.

不織布は、耐炎化繊維に捲縮をかけ、好ましくは20〜
200mm、より好ましくは30〜100mmの艮ざに
切断し、不織イ5の製造に通常用いられるローラーカー
ド、フラットカードや、高速気流を用いるランダムウニ
バーによって製)青することができる。しかして、不織
布は、必要であれば幾枚か重ね合わせ、ニードルパンチ
やウォータージェットパンチ等の手法を用いてパンチン
グし、耐炎化繊維を絡み合わせる。この操作は、形態保
持性や電気的特性を向上させるうえで好ましいが、必須
のものではない。このときのパンヂング密度は、多いほ
ど上述した特性が向上する。少なり°二も30本/Cm
2とするのがよい。
The nonwoven fabric is made by crimping flame-resistant fibers, preferably having a
It can be cut into strips of 200 mm, more preferably 30 to 100 mm, and printed by roller cards, flat cards, or random uniforms using high-speed airflow, which are commonly used in the production of nonwoven fabrics. If necessary, several pieces of the nonwoven fabric are stacked one on top of the other and punched using a method such as needle punching or water jet punching to entangle the flame-resistant fibers. Although this operation is preferable for improving shape retention and electrical properties, it is not essential. At this time, the higher the panning density, the better the above-mentioned characteristics will be. Less than 30 pieces/cm
It is better to set it to 2.

さて、この発明においては、次に、上記織物または編物
と不織布とを重ね合わせ、パンチングして、織物または
編物を構成している耐炎化、繊維と不織布を構成してい
る耐炎化繊維とを交絡せしめ、両者を一体化して、いわ
ゆる中間基材を得る。ここで、織物または編物と不織布
との重ね合せは、任意であってよい。たとえば、織物ま
たは編物の片面または両面に不織イ5を重ね合わせても
よいし、逆に、不織布の片面または両面に織物または編
物を重ね合わせてもよい。また、織物または編物と不織
布とを交互に重ね合わせることもできる。用途や要求特
性等に応じて決めればよい。なお、パンチングは、ニー
ドルパンチやウォータージェットパンチ等、周知の方法
を採ることができる。また、織物または編物と不織布と
は、それぞれ1枚づつ用いても、複数枚を1組として用
いても、いずれでもよい。ざらに、たとえば、織物また
は編物の一面には目付の低い不織布を、他面にはそれよ
りも目付の高い不織布をそれぞれ重ね合わせるなどすれ
ば、厚み方向で反応面積や電気抵抗等が異なる電極基材
とすることができる。
Now, in this invention, next, the above-mentioned woven or knitted fabric and non-woven fabric are overlapped and punched to make the woven or knitted fabric flame-resistant, and the fibers and the non-woven fabric are interlaced with the flame-resistant fibers that make up the non-woven fabric. Then, the two are integrated to obtain a so-called intermediate base material. Here, the woven or knitted fabric and the nonwoven fabric may be overlaid in any manner. For example, the nonwoven fabric 5 may be superimposed on one or both sides of a woven or knitted fabric, or conversely, the woven or knitted fabric may be superimposed on one or both sides of a nonwoven fabric. Furthermore, woven or knitted fabrics and nonwoven fabrics can be alternately layered. It may be determined depending on the purpose, required characteristics, etc. Note that punching can be performed using a well-known method such as needle punching or water jet punching. Further, the woven fabric or knitted fabric and the nonwoven fabric may be used either individually or as a set of a plurality of woven fabrics or knitted fabrics. In general, for example, by overlapping a nonwoven fabric with a low basis weight on one side of a woven or knitted fabric and a nonwoven fabric with a higher basis weight on the other side, electrode groups with different reaction areas, electrical resistances, etc. can be created in the thickness direction. It can be used as a material.

この発明においては、次に、上記中間、ll、Jを、不
活性雰囲気、たとえば窒素雰囲気中にて1300〜30
00 ’Cで7JO熱処理し、耐炎化繊維を炭素化する
。つまり、炭素繊維とする。このとき耐炎化繊維はわず
かに収縮する。かくして、この発明の電極基材が得られ
るが、電池反応における活性等を向上させるために、こ
れに空気酸化、硝酸酸化、電解酸化、プラズマ酸化等の
酸化処理を施したり、上記加熱処理中にハロゲンガスを
流してハロゲン化処理を施すなどしてもよい。
In this invention, next, the above-mentioned intermediate, 11, and J are heated to 1300 to 300
The flame-resistant fiber is carbonized by 7JO heat treatment at 00'C. In other words, carbon fiber is used. At this time, the flame-resistant fibers shrink slightly. In this way, the electrode base material of the present invention is obtained, but in order to improve its activity in battery reactions, it may be subjected to oxidation treatment such as air oxidation, nitric acid oxidation, electrolytic oxidation, plasma oxidation, etc., or may be subjected to oxidation treatment during the heat treatment. Halogenation treatment may be performed by flowing halogen gas.

電極基材の全体目付や全体厚みは、電池反応や電解反応
における反応面積、電解液の流動抵抗、活物質の保持量
等に影響を与える。この全体目付や全体厚みは、織物ま
たは編物と不織布とをどのような組み合せ、枚数で層状
に配置するがといったことや、個々の材料の組織や目付
、炭素繊維の太さや長さ等、いろいろな要因によって変
わる。
The overall basis weight and overall thickness of the electrode base material affect the reaction area in battery reactions and electrolytic reactions, the flow resistance of the electrolytic solution, the amount of active material retained, and the like. The overall basis weight and overall thickness are determined by various factors, such as the combination and number of woven or knitted fabrics and nonwoven fabrics arranged in layers, the structure and basis weight of individual materials, and the thickness and length of carbon fibers. It depends on the factors.

たとえば、織物や編物に関しては、組織や、目付や、炭
素繊維束の太さや撚の有無等、また、不織布に関しては
、日付や、炭素繊維の長さや、パンチングする場合には
その密度等によって変わる。
For example, for woven and knitted fabrics, it depends on the structure, basis weight, thickness of carbon fiber bundles, whether or not they are twisted, etc. For nonwoven fabrics, it depends on the date, length of carbon fibers, and density when punching. .

そのため、これらの要因を逆に利用して全体目付や全体
厚みを変え、特定の用途に特に適した電極基材とするこ
とができる。たとえば、レドックスフロー型二次電池用
としては、全体目付が300〜1500CI/m2で、
全体厚みが3〜251111Tl程度であるのが好まし
い。また、ナトリウム−硫黄型二次電池用や流通型電解
槽用としては、全体目付が500〜1500g/m2で
、全体厚みが10〜25mm程度であるのが好ましい。
Therefore, by using these factors inversely, the overall basis weight and overall thickness can be changed to make an electrode base material particularly suitable for a specific application. For example, for redox flow type secondary batteries, the overall basis weight is 300 to 1500 CI/m2,
It is preferable that the total thickness is about 3 to 251111 Tl. Further, for sodium-sulfur type secondary batteries and flow-through type electrolytic cells, it is preferable that the overall basis weight is 500 to 1500 g/m2 and the overall thickness is about 10 to 25 mm.

同様に、上述した要因によって圧縮反発力も変わってく
る。この圧縮反発力は、上記いずれの用途にあっても、
0.4〜2Kg/c+n2稈度であるのが好ましい。
Similarly, the compressive repulsion force also changes depending on the factors mentioned above. This compressive repulsion force is used for any of the above applications.
Preferably, the culm degree is 0.4 to 2 Kg/c+n2.

[実施態様] 第1図において、電極基材は、炭素繊維からなる織物ま
たは編物1の片面に炭素繊維からなる不織イb2を配置
し、かつそれら織物または編物1と不織布2とを、織物
または編物1を構成している炭素繊維と不織イ52を構
成している炭素繊維とをパンチングによって交絡せしめ
ることによって一体化せしめてなる。織物または編物1
と不織子52とは、それぞれ複数枚が使われている。第
2図に示すものは、不織布2の両面に織物または編物1
.1が配置された構成を有するものであり、第3図に示
すものは、織物または編物1と不織布2との交互積層構
成を有するものでおる。これらの態様の電極基材におい
ても、第1図に示したものと同様、交絡による一体化が
行われていることはいうまでもない。
[Embodiment] In FIG. 1, the electrode base material has a nonwoven fabric b2 made of carbon fibers arranged on one side of a woven fabric or knitted fabric 1 made of carbon fibers, and a woven fabric or knitted fabric 1 and a nonwoven fabric 2 made of carbon fibers. Alternatively, the carbon fibers constituting the knitted fabric 1 and the carbon fibers constituting the non-woven fabric 52 are intertwined by punching to be integrated. Woven or knitted fabric 1
A plurality of sheets of each of the nonwoven material 52 and the nonwoven material 52 are used. In the case shown in FIG. 2, woven or knitted fabrics are placed on both sides of the nonwoven fabric.
.. 1 is arranged, and the one shown in FIG. 3 has a structure in which woven or knitted fabrics 1 and nonwoven fabrics 2 are alternately laminated. It goes without saying that the electrode base materials of these embodiments are also integrated by intertwining, similar to that shown in FIG.

第4図は、この発明の電極基材を陽極および陰極に用い
たレドックスフロー型二次電池のセルユニットの分解図
でおり、セルユニット9は、電解液の供給管3a (3
b>と排出管4a (4b)とを有するスペーサー58
 (5b)に、この発明の電極基材を使用した電極6a
 (6b)を保持したものをポリスチレンスルホン酸等
からなる陽イオン交換膜7を介して対抗させてなる。一
方の電)か6a (6b)は陽滲として、他方の電極6
b(6a)は陰極として、それぞれ作用する。しかして
、セルユニット9は、積層に際して、隣接するセルユニ
ット間にグラツシーカーボン等からなる分離板8が介挿
される。
FIG. 4 is an exploded view of a cell unit of a redox flow type secondary battery using the electrode base material of the present invention for the anode and cathode.
b> and a spacer 58 having a discharge pipe 4a (4b)
(5b) is an electrode 6a using the electrode base material of the present invention.
(6b) is opposed via a cation exchange membrane 7 made of polystyrene sulfonic acid or the like. One electrode) or 6a (6b) is a positive electrode, and the other electrode 6a (6b) is
b(6a) each act as a cathode. When the cell units 9 are stacked, a separation plate 8 made of glassy carbon or the like is inserted between adjacent cell units.

第5図は、第4図に示したようなセルユニットを多数積
層して構成したレドックスフロー型二次電池を示すもの
である。第5図において、積層したn個のセルユニット
91〜9nについて陽極用の電解液タンク10と循環ポ
ンプ11とを右する配管系に、各セルユニツ1〜が並列
をなすように電解液の供給管3aと排出管4aとを接続
し、同様に、陰極用の電解液タンク12と循環ポンプ1
3とを有する配管系に、各セルユニットが並列をなすよ
うに電解液の供給管3bと排出管4bとを接続し、各セ
ルユニットの、第4図に示す電極6a(6b)に循環ポ
ンプ11 (13)によって電解液タンク10(12)
の電解液を循環、接触させながら充放電を行わせるよう
にしている。セルユニッ1〜91〜9nは、電気的には
直列に接続されている。電解液は、陽極にはJnn銑鉄
塩酸溶液等が、陰極には塩化クロムの塩酸溶液等がそれ
ぞれ用いられる。
FIG. 5 shows a redox flow type secondary battery constructed by laminating a large number of cell units as shown in FIG. 4. In FIG. 5, for the stacked n cell units 91 to 9n, the electrolyte supply pipes are connected to the piping system that connects the anode electrolyte tank 10 and the circulation pump 11 so that the cell units 1 to 1 are connected in parallel. 3a and the discharge pipe 4a, and similarly connect the cathode electrolyte tank 12 and the circulation pump 1.
The electrolyte supply pipe 3b and the discharge pipe 4b are connected to the piping system having 3 so that each cell unit is in parallel, and a circulation pump is connected to the electrode 6a (6b) shown in FIG. 4 of each cell unit. 11 (13) by electrolyte tank 10 (12)
Charging and discharging are performed while circulating and contacting the electrolyte. Cell units 1-91-9n are electrically connected in series. As the electrolyte, a Jnn pig iron hydrochloric acid solution or the like is used for the anode, and a chromium chloride hydrochloric acid solution or the like is used for the cathode.

第6図は、この発明の電極基材を陽極に用いたナトリウ
ム−硫黄型二次電池を示すもので、缶体16内に管状の
固体電解質17を配置し、その固体電解質]7と缶体1
6との間に、陽極活物質である硫黄または多硫化ナトリ
ウムを含浸した、円筒状の電極基材を使用した陽極1B
を配置し、−方、固体N解質17の内部は、陰極活物質
であるナトリウムを収容するとともに、それと接触する
陰極15を配置し、蓋体14で密閉してなる。陽極1B
に使用されている基材は、圧縮状態で固体電解質17と
缶体16との間に配置されてあり、基材の反発力によっ
て固体電IW4f17.15よび缶体16と電気的に接
触しているが、この発明の基材は圧縮反発力が大きいた
めに両者間の電気的な接触抵抗が小さくなり、電池の内
部抵抗が小さくなって電池性能が向上する。
FIG. 6 shows a sodium-sulfur type secondary battery using the electrode base material of the present invention as an anode, in which a tubular solid electrolyte 17 is placed inside a can 16, and the solid electrolyte 7 and the can 1
Anode 1B using a cylindrical electrode base material impregnated with sulfur or sodium polysulfide, which is an anode active material, between
On the other hand, the inside of the solid N solute 17 accommodates sodium, which is a cathode active material, and the cathode 15 in contact with it is arranged, and the solid N solute 17 is sealed with a lid 14. Anode 1B
The base material used in this is placed between the solid electrolyte 17 and the can body 16 in a compressed state, and is brought into electrical contact with the solid electrolyte IW4f17.15 and the can body 16 due to the repulsive force of the base material. However, since the base material of the present invention has a large compressive repulsion force, the electrical contact resistance between the two is reduced, the internal resistance of the battery is reduced, and the battery performance is improved.

[実施例] 実施例1 東し株式会社製炭素繊維パトレカ”Ta2Oの前駆体繊
維である耐炎化繊維の繊維束を繊維長約5”1mmに切
断し、ローラーカードで不織布とした。
[Example] Example 1 A fiber bundle of flame-resistant fiber, which is a precursor fiber of the carbon fiber Patreca "Ta2O" manufactured by Toshi Co., Ltd., was cut into a fiber length of about 5''1 mm and made into a nonwoven fabric using a roller card.

さらに、この不織了5を5枚重ねてニードルパンチし、
厚手の耐炎化繊維不織イ5を得た。なお、パンチング密
度は100本/cm2とした。
Furthermore, 5 layers of this nonwoven 5 are stacked and needle punched,
A thick flame-resistant fiber nonwoven A5 was obtained. Note that the punching density was 100 punches/cm2.

次に、上記厚手の不織布を東邦レーヨン株式会社製耐炎
化繊維織物“′パイロメツクス″の両面に重ね合わけ、
ニードルパンチして、その不織布を構成している耐炎化
繊維と織物を構成している耐炎化繊維とを交絡させ、両
者を一体化して中間基材を得た。パンチング密度は20
0本/Cm2とした。
Next, the above-mentioned thick non-woven fabric was layered on both sides of the flame-resistant fiber fabric “Pyromex” manufactured by Toho Rayon Co., Ltd.
Needle punching was performed to intertwine the flame-resistant fibers constituting the nonwoven fabric with the flame-resistant fibers constituting the woven fabric, and the two were integrated to obtain an intermediate base material. Punching density is 20
It was set to 0 pieces/Cm2.

次に、上記中間基材を窒素雰囲気中にて1500′Cで
30分加熱処理して耐炎化繊維を炭素化し、炭素繊維と
なして、電、)低基材8得た。
Next, the above intermediate base material was heat-treated at 1500'C for 30 minutes in a nitrogen atmosphere to carbonize the flame-resistant fibers and obtain a low base material 8 as a carbon fiber.

この電極基材1,1、全体厚みが約Qmmで、全体目イ
」が640Q/m2で必り、圧縮反発力は0.8kg/
 Cll12でおり、厚み方向の電気抵抗は9mΩでめ
った。圧縮反発力と電気抵抗は、次のようにして測定し
た。
The overall thickness of this electrode base material 1,1 is approximately Qmm, the overall thickness is 640Q/m2, and the compressive repulsion force is 0.8kg/m2.
Cll12, and the electrical resistance in the thickness direction was 9 mΩ. Compressive repulsive force and electrical resistance were measured as follows.

すなわち、反発力は、50mmx 50mmに切り出し
た電極基(Aを、株式会社島津製作所製圧縮試験機AG
−500Bにゼットし、1 mm/分(7)クロ、71
゜ヘッドスピードで基材を圧縮し、荷車が20CI/C
m2のときの基材の厚みを初期厚みとして、基材の厚み
がその初期厚みの1/2になったときの荷重(kMCm
2 >をもって反発力とした。
In other words, the repulsive force was determined by measuring the electrode group (A) cut into a size of 50 mm x 50 mm using a compression testing machine AG manufactured by Shimadzu Corporation.
-500B, 1 mm/min (7) black, 71
゜The base material is compressed at head speed, and the cart is 20CI/C
The thickness of the base material at m2 is taken as the initial thickness, and the load when the thickness of the base material becomes 1/2 of the initial thickness (kMCm
2> was defined as the repulsive force.

また、厚み方向の電気抵抗は、面積が2acm2の電極
基材に100Q/cm2の荷重をかけ、厚み方向に1A
の電流を流したときの電位外から求めた。
In addition, the electrical resistance in the thickness direction is determined by applying a load of 100Q/cm2 to an electrode base material with an area of 2acm2, and applying a load of 1A in the thickness direction.
It was determined from the outside potential when a current of .

実施例2 実施例1で得た電極基材を用いて第4図に示したような
セルユニットを組み立て、充放電試験をしたところ、電
流効率は約96%、電気伝導度は約0.253/cm2
であった。ここで、電流効率および電気伝導度は次のよ
うにして測定した。
Example 2 When a cell unit as shown in Figure 4 was assembled using the electrode base material obtained in Example 1 and a charge/discharge test was performed, the current efficiency was approximately 96% and the electrical conductivity was approximately 0.253. /cm2
Met. Here, current efficiency and electrical conductivity were measured as follows.

電流効率: 第4図に示したようなセルユニツ1〜(電極基材面積:
’lQcm2、スペーサー厚み:3mm、隔壁板:クラ
ラシーカ−ボン)を用い、また、陽極用電解液として1
モル/1塩化鉄の4規定塩酸溶液を、陰、極用電解液と
して1モル/口n化クロムの4規定塩酸溶液をそれぞれ
用い、これらの電解液を電極基材に0.5cm/分の速
度で接触させながら電流密度40mA/cm2で定電流
充電し、次に電流密a40mA/cm2で定電流放電し
、さらに0.8Vで定電圧放電を行い、このときの定電
流充電電気量を01、定電流放電電気量をQ2、定電圧
放電電気量を03としたとき、式、 [(Q2十03)/Ql ]X100 で求められる値が電流効率である。
Current efficiency: Cell unit 1~ (electrode base material area:
'lQcm2, spacer thickness: 3mm, partition plate: Clara Sea Carbon), and as an anode electrolyte,
A 4N hydrochloric acid solution containing 1 mole of iron chloride was used as the negative and electrode electrolytes, and a 4N hydrochloric acid solution containing 1 mole of n-chromium chloride was used as the negative and electrode electrolytes, and these electrolytes were applied to the electrode base material at a rate of 0.5 cm/min. Constant current charging is performed at a current density of 40 mA/cm2 while contacting at a speed, then constant current discharge is performed at a current density of 40 mA/cm2, and further constant voltage discharge is performed at 0.8 V. The amount of electricity charged at this time is 0.1 , when the amount of electricity discharged at constant current is Q2, and the amount of electricity discharged at constant voltage is 03, the value obtained by the formula: [(Q203)/Ql]X100 is the current efficiency.

電気伝導度: 1モル/1塩化クロムの4規定塩酸溶液のすべてのOr
 をCr2+に還元するのに要する電気量3十 を理論電気量とし、この理論電気量の50%充電時およ
び放電時の電流−電圧曲線の傾きを抵抗値としたとき、
その抵抗値の逆数が電気伝導度で必る。
Electrical conductivity: All Or of 4N hydrochloric acid solution of 1 mol/1 chromium chloride
When the amount of electricity required to reduce Cr2+ to Cr2+ is the theoretical amount of electricity, and the slope of the current-voltage curve when charging and discharging to 50% of this theoretical amount of electricity is the resistance value,
The reciprocal of the resistance value is the electrical conductivity.

実施例3 実施例2で用いたセルユニットを10個積層して第5図
に示すように接続し、充放電を行った。
Example 3 Ten cell units used in Example 2 were stacked and connected as shown in FIG. 5, and charged and discharged.

このときの、電流効率は約95%、セルユニット当りの
電気伝導度は約0.233/cm2であった。
At this time, the current efficiency was about 95%, and the electrical conductivity per cell unit was about 0.233/cm2.

[発明の効果] この発明の電極基材は、層状に配置された、炭素繊維か
らなる織物または編物と炭素繊維からなる不織布とをそ
れら織物または編物を構成している炭素繊維と上記不織
布を構成している炭素繊維とを交絡せしめることによっ
て一体化してなるものであり、厚み方向にも炭素繊維が
延在していて、複数枚の基材を重ね合わせて使用すると
きの接触面における電気抵抗、ひいては厚み方向の電気
抵抗を大きく低減することができるようになる。また、
反応面積や面方向における導電性、電解液の流動抵抗等
に関して、織物または編物がもつ長所と不織イ「がもつ
長所とを合わせて引き出すことができるようになり、コ
ンバク1−で大容量の電池や電解、igを容易に構成す
ることができるようになる。
[Effects of the Invention] The electrode base material of the present invention comprises a woven or knitted fabric made of carbon fibers and a nonwoven fabric made of carbon fibers arranged in a layered manner. It is integrated by intertwining carbon fibers, and the carbon fibers extend in the thickness direction, reducing the electrical resistance at the contact surface when multiple base materials are stacked together. As a result, the electrical resistance in the thickness direction can be significantly reduced. Also,
In terms of reaction area, conductivity in the plane direction, flow resistance of electrolyte, etc., it is now possible to combine the advantages of woven or knitted fabrics with those of non-woven fabrics. It becomes possible to easily configure batteries, electrolyzers, and IG.

ざらに、パンチングしているために炭素繊維の拘束力が
適度であるために圧縮反発力を大きくとれ、集電電極等
との良好な電気的接触状態が得られるようになる。また
、織物または編物と不織布との組み合せ等を変更するこ
とにJ:つて全体目付や全体厚みを変更したり、厚み方
向で目付等を変更することによってその方向において反
応面積や電気抵抗を変えることもできるようになるから
、用途等に応じた設h1の自由度が向上する。ざらにま
た、厚いものでも容易に1qられるばかりか、形態保持
・[(1にも優れているから電池等の組立作業も容易に
なる。
In other words, since the carbon fibers are punched, the binding force of the carbon fibers is moderate, so a large compressive repulsion force can be obtained, and good electrical contact with the current collecting electrode etc. can be obtained. In addition, by changing the combination of woven or knitted fabrics and non-woven fabrics, etc., it is possible to change the overall basis weight or overall thickness, or by changing the basis weight in the thickness direction, the reaction area or electrical resistance can be changed in that direction. Since it becomes possible to do this, the degree of freedom in setting h1 according to the purpose etc. is improved. In addition, not only can even thick objects be easily reduced to 1Q, but they also have excellent shape retention and make it easier to assemble batteries, etc.

また、この発明は、上)ホしたような電極基材を、炭素
繊維の前駆体繊維たる耐炎化繊維からなる織物または編
物と、上記耐炎化繊維からなる不織ン5との重合せ体を
パンチングして上記織物または編物を構成している上記
耐炎化繊維と上記不織布を構成している上記耐炎化繊維
とを交絡ぜしめて上記1減物または編物と不織布とを一
体化することによって製造するから、パンチング時にあ
ける不織イロの形くずれ等を防止することができ、厚く
、しかも圧縮反発力の大きい基材を容易に製造すること
ができる。また、パンチングを耐炎化繊維の段階で施す
から、抗折強度が大変低い炭素繊維を、いわゆる出発原
料とする場合にくらべて製造が大変容易でおる。
The present invention also provides an electrode base material as described above in which a polymer of a woven or knitted fabric made of a flame-resistant fiber as a precursor fiber of carbon fiber and a non-woven fabric 5 made of the above-mentioned flame-resistant fiber is used. Manufactured by punching and intertwining the flame resistant fibers constituting the woven or knitted fabric with the flame resistant fibers constituting the nonwoven fabric to integrate the 1-reduced fabric or knitted fabric and the nonwoven fabric. Therefore, it is possible to prevent the nonwoven iron from deforming during punching, and it is possible to easily produce a thick base material with a large compressive repulsion force. In addition, since punching is performed at the stage of flame-retardant fibers, production is much easier than when carbon fibers, which have very low bending strength, are used as the so-called starting material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は、それぞれ異なる実施態様のこの発明
の電極基材を示すWXX正正面図第4図は、この発明の
電極基材を使用したレドックスフロー型二次電池のセル
ユニツ1〜の概略分解斜視図、第5図は、上記第4図に
示したセルユニットを使用したレドックスフロー型二次
電池の概略ブロック図、第6図は、この発明の電極基材
を使用したすトリウム−硫黄型二次電池の概略縦断面図
でおる。 1:炭素繊維の織物または編物 2:炭素繊維の不織イI 3a、3b:電解液の供給管 4a、4b:電解液の排出管 5a、5bニスペーサ− 6a、6b:電(か 7:陽イオン交換膜 8:分離板 9.91〜9n:セルユニット ]O:陽極用の電解液タンク 11:循環ポンプ 12:陰極用の電解液タンク 13:循環ポンプ 14:益体 15:陰極 16:缶体 17:固体電解質 18:陽極
Figures 1 to 3 are WXX front views showing different embodiments of the electrode base material of the present invention. Figure 4 is cell units 1 to 1 of a redox flow type secondary battery using the electrode base material of the present invention. FIG. 5 is a schematic block diagram of a redox flow type secondary battery using the cell unit shown in FIG. 4, and FIG. 6 is a schematic exploded perspective view of a redox flow type secondary battery using the cell unit shown in FIG. - A schematic vertical cross-sectional view of a sulfur type secondary battery. 1: Woven or knitted fabric of carbon fiber 2: Non-woven fabric of carbon fiber Ion exchange membrane 8: Separation plates 9.91 to 9n: Cell unit] O: Anode electrolyte tank 11: Circulation pump 12: Cathode electrolyte tank 13: Circulation pump 14: Benefit body 15: Cathode 16: Can body 17: Solid electrolyte 18: Anode

Claims (5)

【特許請求の範囲】[Claims] (1)炭素繊維からなる織物または編物と炭素繊維から
なる不織布とが層状に配置され、かつ、それら織物また
は編物と不織布とが前記織物または編物を構成している
炭素繊維と前記不織布を構成している炭素繊維との交絡
によって一体化されていることを特徴とする電極基材。
(1) A woven fabric or knitted fabric made of carbon fibers and a nonwoven fabric made of carbon fibers are arranged in a layered manner, and the woven fabric or knitted fabric and the nonwoven fabric constitute the carbon fibers and the nonwoven fabric that make up the woven fabric or knitted fabric. An electrode base material characterized by being integrated by intertwining with carbon fibers.
(2)請求項(1)記載の電極基材を有するレドックス
フロー型二次電池用セルユニット。
(2) A cell unit for a redox flow type secondary battery having the electrode base material according to claim (1).
(3)請求項(2)記載のセルユニットを有するレドッ
クスフロー型二次電池。
(3) A redox flow type secondary battery comprising the cell unit according to claim (2).
(4)請求項(1)記載の電極基材を有するナトリウム
−硫黄型二次電池。
(4) A sodium-sulfur secondary battery comprising the electrode base material according to claim (1).
(5)炭素繊維の前駆体繊維たる耐炎化繊維からなる織
物または編物と前記耐炎化繊維からなる不織布とを重ね
合わせ、その重合せ体をパンチングして前記織物または
編物を構成している前記耐炎化繊維と前記不織布を構成
している前記耐炎化繊維とを交絡せしめて前記織物また
は編物と不織布とを一体化した後、非酸化性雰囲気中に
て加熱処理して前記耐炎化繊維を炭素化することを特徴
とする電極基材の製造方法。
(5) The flame-resistant fabric is constructed by laminating a woven or knitted fabric made of flame-resistant fibers that are precursor fibers of carbon fibers and a non-woven fabric made of the flame-resistant fibers, and punching the polymer. After the woven or knitted fabric and the nonwoven fabric are intertwined with the flame resistant fibers constituting the nonwoven fabric, the flame resistant fibers are carbonized by heat treatment in a non-oxidizing atmosphere. A method for manufacturing an electrode base material, characterized in that:
JP63066994A 1988-03-18 1988-03-18 Electrode substrate and manufacture thereof Pending JPH01239767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63066994A JPH01239767A (en) 1988-03-18 1988-03-18 Electrode substrate and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63066994A JPH01239767A (en) 1988-03-18 1988-03-18 Electrode substrate and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH01239767A true JPH01239767A (en) 1989-09-25

Family

ID=13332067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63066994A Pending JPH01239767A (en) 1988-03-18 1988-03-18 Electrode substrate and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH01239767A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08138685A (en) * 1994-11-02 1996-05-31 Kashima Kita Kyodo Hatsuden Kk Whole vanadium redox battery
JP2000030715A (en) * 1998-07-10 2000-01-28 Sumitomo Electric Ind Ltd Battery electrode material, its manufacture, and electrochemical battery
JP2001028268A (en) * 1998-07-10 2001-01-30 Sumitomo Electric Ind Ltd Battery electrode material manufacture thereof and electrochemical battery
JP2001279566A (en) * 2000-03-29 2001-10-10 Toho Tenax Co Ltd Carbon fiber felt for electrode material and method for producing the same
EP2829569A4 (en) * 2012-03-19 2015-09-09 Toray Industries Carbon fiber preform, carbon fiber reinforced plastic, and method for producing carbon fiber preform
WO2015146234A1 (en) * 2014-03-27 2015-10-01 住友電気工業株式会社 Carbon fiber felt, manufacturing method therefor, and liquid circulation-type electrolytic cell
JP2020501298A (en) * 2016-11-09 2020-01-16 大連融科儲能技術発展有限公司 Electrode structure of flow battery, flow battery bank and sealed structure of flow battery bank

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08138685A (en) * 1994-11-02 1996-05-31 Kashima Kita Kyodo Hatsuden Kk Whole vanadium redox battery
JP2000030715A (en) * 1998-07-10 2000-01-28 Sumitomo Electric Ind Ltd Battery electrode material, its manufacture, and electrochemical battery
JP2001028268A (en) * 1998-07-10 2001-01-30 Sumitomo Electric Ind Ltd Battery electrode material manufacture thereof and electrochemical battery
JP2001279566A (en) * 2000-03-29 2001-10-10 Toho Tenax Co Ltd Carbon fiber felt for electrode material and method for producing the same
EP2829569A4 (en) * 2012-03-19 2015-09-09 Toray Industries Carbon fiber preform, carbon fiber reinforced plastic, and method for producing carbon fiber preform
WO2015146234A1 (en) * 2014-03-27 2015-10-01 住友電気工業株式会社 Carbon fiber felt, manufacturing method therefor, and liquid circulation-type electrolytic cell
JP2015190066A (en) * 2014-03-27 2015-11-02 東邦テナックス株式会社 Carbon fiber felt, manufacturing method thereof, and liquid circulation type electrolytic cell
JP2020501298A (en) * 2016-11-09 2020-01-16 大連融科儲能技術発展有限公司 Electrode structure of flow battery, flow battery bank and sealed structure of flow battery bank

Similar Documents

Publication Publication Date Title
JP3560181B2 (en) Electrode material for liquid flow type electrolytic cell
TWI557977B (en) High surface area flow battery electrodes
JP6018450B2 (en) Carbon fiber felt, method for producing the same, and electrode
JP6577697B2 (en) Carbon fiber felt, method for producing the same, and liquid flow electrolytic cell
JPS59119680A (en) Electrode for flow type electrolytic cell
JP4531768B2 (en) Precursor felt material for electrode conductive material and method for producing electrode conductive material
JP2000357520A (en) Carbon electrode material for vanadium-based redox flow battery
JP6669784B2 (en) Process for the preparation of carbon felt electrodes for redox flow batteries
JPH01239767A (en) Electrode substrate and manufacture thereof
US10276874B2 (en) High surface area flow battery electrodes
JP2013144857A (en) Carbon fiber felt, method for producing the same, and electrode
JP4823446B2 (en) Irregular surface felt material
JP2018133141A (en) Redox battery using thin diaphragm
US10811644B2 (en) Conductive yarn-based nickel-zinc textile batteries
JPS5929385A (en) Metal-halogen secondary battery
JPH0546668B2 (en)
JP2021125385A (en) Electrode for redox flow battery and redox flow cell
JPH0711969B2 (en) Metal-halogen secondary battery
JP2003308851A (en) Electrode material and its manufacturing method
JP2001085028A (en) Carbon electrode material assembly
JP2001085022A (en) Carbon electrode material and carbon electrode material assembly
US20220140355A1 (en) Carbon electrode material for redox flow battery and redox flow battery provided with the same
JP4578594B2 (en) Felt-like conductive material
JP2020161388A (en) Flow battery electrode
JP2000357521A (en) Carbon electrode material for redox flow battery