JP2001279566A - Carbon fiber felt for electrode material and method for producing the same - Google Patents

Carbon fiber felt for electrode material and method for producing the same

Info

Publication number
JP2001279566A
JP2001279566A JP2000090261A JP2000090261A JP2001279566A JP 2001279566 A JP2001279566 A JP 2001279566A JP 2000090261 A JP2000090261 A JP 2000090261A JP 2000090261 A JP2000090261 A JP 2000090261A JP 2001279566 A JP2001279566 A JP 2001279566A
Authority
JP
Japan
Prior art keywords
carbon fiber
felt
fiber
thickness
fiber felt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000090261A
Other languages
Japanese (ja)
Other versions
JP4407854B2 (en
Inventor
Kenji Shimazaki
賢司 島崎
Hiroshi Tsunekawa
浩 恒川
Takeshi Ono
毅 小野
Koji Kawasaki
紘二 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Tenax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Tenax Co Ltd filed Critical Toho Tenax Co Ltd
Priority to JP2000090261A priority Critical patent/JP4407854B2/en
Publication of JP2001279566A publication Critical patent/JP2001279566A/en
Application granted granted Critical
Publication of JP4407854B2 publication Critical patent/JP4407854B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Inorganic Fibers (AREA)
  • Nonwoven Fabrics (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a carbon fiber felt which has excellent heat resistance and oxidation resistance and is useful as a material for the electrodes of sodium- sulfur batteries and the like, and to provide a method for producing the same. SOLUTION: This carbon fiber felt which comprises polyacrylonitrile-based carbon fibers and is useful as a material for battery electrodes, has a resiliency of 2.0 to 4.0 kg/cm2, when the thickness of the felt is compressed at a rate of 50% based on the thickness of the non-compressed felt, a thickness recovery of >=98%, when the compression pressure is removed, and a resistivity of <=0.11 Ω.cm in the thickness direction of the carbon fiber felt.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電極材用炭素繊維フ
ェルトに関し、更に詳述すれば、形態安定性に優れ、し
かも厚さ方向の通電抵抗及び液透過抵抗の低いポリアク
リロニトリル系炭素繊維フェルトに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon fiber felt for an electrode material, and more particularly, to a polyacrylonitrile-based carbon fiber felt which is excellent in form stability and has low current-flow resistance and liquid permeation resistance in the thickness direction. .

【0002】[0002]

【従来の技術】従来、ナトリウム−硫黄電池などの二次
電池の充放電効率の向上を図る目的で、電極材として炭
素繊維フェルトを用いることは知られている。
2. Description of the Related Art Conventionally, it has been known to use carbon fiber felt as an electrode material for the purpose of improving the charge / discharge efficiency of a secondary battery such as a sodium-sulfur battery.

【0003】この炭素繊維フェルト電極材は、ポリアク
リロニトリル系繊維、セルロ−ズ繊維、ピッチ繊維など
の有機繊維を用いて製造している。
[0003] The carbon fiber felt electrode material is manufactured using organic fibers such as polyacrylonitrile fiber, cellulosic fiber and pitch fiber.

【0004】炭素繊維は高い導電性を有し、繊維直径が
0.5〜30μmと微細であり、電気エネルギ−の伝達
効率に優れているので、今後各種分野、特に電極材分野
への応用が期待されている。
[0004] Since carbon fibers have high conductivity, a fine fiber diameter of 0.5 to 30 µm, and excellent electric energy transmission efficiency, carbon fibers are expected to be applied to various fields, especially electrode materials in the future. Expected.

【0005】特に炭素繊維フェルトを電極材へ適用する
ためには、下記の項目が重要な要件になる。 (1)通電方向の電気抵抗値(比抵抗値)が低いこと。 (2)電池への装着時および電池作動時の変形が少な
く、賦形性に優れていること。 (3)単電池内部壁面への密着性に優れていること。 (4)単電池内の他の材料に過度な応力が加わらない材
料であること。 (5)単電池作動時の電解質の流れが円滑であること。
[0005] In particular, in order to apply carbon fiber felt to an electrode material, the following items are important requirements. (1) The electric resistance value (specific resistance value) in the direction of conduction is low. (2) Deformation during mounting on the battery and operation of the battery is small, and the shapeability is excellent. (3) Excellent adhesion to the inner wall surface of the cell. (4) Materials that do not apply excessive stress to other materials in the cell. (5) The flow of the electrolyte during the operation of the unit cell is smooth.

【0006】上記要件のうち、(1)のフェルト構造体
としての比抵抗値を低下させるためには、焼成温度、繊
維表面酸化度、および繊維の配列度の適正化が必要であ
る。
Of the above requirements, in order to lower the specific resistance of the felt structure of (1), it is necessary to optimize the firing temperature, the degree of fiber surface oxidation, and the degree of fiber arrangement.

【0007】上記要件のうち、(2)の変形の少ない炭
素繊維フェルトを得る為には、用いる単繊維の剛直性を
向上させると共に、フェルト加工時の加工条件を適正化
することにより、繊維配列度を制御する必要がある。
Of the above requirements, in order to obtain the carbon fiber felt with little deformation described in (2), the rigidity of the single fiber used is improved and the processing conditions at the time of felt processing are optimized to obtain a fiber arrangement. You need to control the degree.

【0008】上記要件のうち、(5)の単電池作動時の
電解質の流れを円滑にさせるためには、単繊維の太さお
よび前述した繊維配列度を制御する必要がある。
[0008] Of the above requirements, it is necessary to control the thickness of the single fiber and the degree of fiber arrangement described above in order to smooth the flow of the electrolyte during the operation of the single cell of (5).

【0009】例えば、ナトリウム−硫黄電池用の電極材
用炭素繊維フェルトとしては、厚さ方向の配向度を高く
する事によって、電池の内部抵抗が低くなり、電池の出
力が向上することが、例えば特開平7−326384
号、同3−145069号、同3−145069号等に
おいて報告されている。
For example, as a carbon fiber felt for an electrode material for a sodium-sulfur battery, increasing the degree of orientation in the thickness direction lowers the internal resistance of the battery and improves the output of the battery. JP-A-7-326384
And Nos. 3-145069 and 3-145069.

【0010】これらの既知の発明において開示される電
極材は、有機繊維を円筒状に形成し、焼成工程を経て円
筒状の電極材用炭素繊維フェルトを製造している。
In the electrode materials disclosed in these known inventions, organic fibers are formed into a cylindrical shape, and a cylindrical carbon fiber felt for an electrode material is manufactured through a firing step.

【0011】このような工程による場合は、円筒状とい
う形態的特性に起因して自己支持性が高くなり、形態安
定性が優れる反面、有機繊維の焼成時の収縮によって炭
素繊維フェルトが緻密なものとなり、その結果フェルト
の通液抵抗が高くなる。
According to such a process, the self-supporting property is enhanced due to the morphological characteristics of the cylindrical shape, and the morphological stability is excellent, but the carbon fiber felt is dense due to shrinkage during firing of the organic fibers. As a result, the flow resistance of the felt increases.

【0012】また、焼成時の反応熱や熱分解物の除去、
及び加熱処理を均一に行う必要性があることから緩慢な
熱処理を行う必要があり、その結果焼成に長時間を要す
るという作業上の問題点がある。
[0012] Further, removal of heat of reaction and pyrolysis products during firing,
In addition, since it is necessary to perform the heat treatment uniformly, it is necessary to perform a slow heat treatment, and as a result, there is a problem in that a long time is required for firing.

【0013】一方、アクリロニトリル系繊維を耐炎化処
理(酸化処理)した後、フェルト加工し、その後更に炭
素化処理する方法も知られている(特開平2−1394
64号、同11−158737号公報)。
On the other hand, a method is also known in which acrylonitrile-based fibers are subjected to a flame-resistant treatment (oxidation treatment), then felted, and then further subjected to a carbonization treatment (JP-A-2-1394).
No. 64 and No. 11-158737).

【0014】特開平2−139464号公報において
は、酸化処理された後の所謂アクリロニトリル系酸化繊
維をフェルト加工し、更に不活性雰囲気中300〜90
0℃に500℃/分以下、900℃〜最高温度に100
0℃/分以下の昇温条件で処理し後、更に不活性雰囲気
下で最高温度1800℃以上で1分間以上処理する方法
が提案されている。
In Japanese Patent Application Laid-Open No. 2-139464, a so-called acrylonitrile-based oxidized fiber which has been subjected to an oxidizing treatment is subjected to felt processing, and further subjected to a 300-90
500 ° C / min or less at 0 ° C, 100 ° C at the maximum temperature of 900 ° C
A method has been proposed in which a treatment is carried out at a temperature raising condition of 0 ° C./min or less, and then a treatment is carried out in an inert atmosphere at a maximum temperature of 1800 ° C. or more for 1 minute or more.

【0015】しかし、この方法で製造された炭素繊維フ
ェルトは、寸法回復率で表示される形態安定性は高いも
のの、比抵抗値が0.4Ω・cm程度と高い。このよう
に、更に高性能の電池を製造するためには、より高い導
電性を有する電極材用炭素繊維フェルトを供給すること
が不可欠な要件になっている。
However, the carbon fiber felt produced by this method has high morphological stability expressed by the dimensional recovery rate, but has a high specific resistance of about 0.4 Ω · cm. As described above, in order to manufacture a battery with higher performance, it is an essential requirement to supply a carbon fiber felt for an electrode material having higher conductivity.

【0016】特開平11−158737号公報には、ア
クリロニトリル系耐炎化繊維を含む前駆体フェルトを1
100〜1500℃の温度領域で炭素化処理する方法、
及びこのような方法によって比抵抗値を0.5Ω・cm
以下とする技術が記載されている。
Japanese Patent Application Laid-Open No. 11-158737 discloses that a precursor felt containing an acrylonitrile-based oxidized fiber is made of one felt.
A method of carbonizing in a temperature range of 100 to 1500 ° C.,
And a specific resistance value of 0.5 Ω · cm by such a method.
The following technologies are described.

【0017】しかしながら、この公報の実施例に記載さ
れた炭素繊維フェルトの比抵抗値は最小値で0.38Ω
・cmであり、この値は電極材用炭素繊維フェルトとし
て満足できるものではない。
However, the specific resistance of the carbon fiber felt described in the examples of this publication is 0.38 Ω at the minimum.
Cm, which is not satisfactory as a carbon fiber felt for electrode materials.

【0018】電極材用炭素繊維フェルトは、セラミック
等の電極用枠体に装着されて電池用電極材として使用す
るが、この際炭素繊維フェルトが形態安定性を備えてい
ることが重要である。即ち、電極用枠体に装着する際、
炭素繊維フェルトは加圧圧縮され、枠体に装着後圧力が
解除される事によって枠体内に安定に装着・固定される
形式を採っている。このため、圧縮圧解除後の復元性
と、枠内における形態維持性および流体の通過に起因す
る経時変化の安定性等が重要である。
The carbon fiber felt for an electrode material is mounted on an electrode frame made of ceramic or the like and used as an electrode material for a battery. At this time, it is important that the carbon fiber felt has form stability. That is, when mounting on the electrode frame,
The carbon fiber felt is pressurized and compressed, and after being mounted on the frame, the pressure is released, so that the carbon fiber felt is stably mounted and fixed in the frame. For this reason, the resilience after the compression pressure is released, the shape retention in the frame, the stability of the temporal change due to the passage of the fluid, and the like are important.

【0019】炭素繊維フェルトの形態が前記した先行文
献に記載してあるような、円筒状であれば、即ち電池構
造が同心円構造であれば、炭素繊維フェルトの形態は比
較的安定している。
When the form of the carbon fiber felt is cylindrical as described in the above-mentioned prior art document, that is, when the battery structure is a concentric structure, the form of the carbon fiber felt is relatively stable.

【0020】ところで、ナトリウムー硫黄電池等の二次
電池は、電極材面積が大きいほど大容量の充放電に適し
たものになる。
A secondary battery such as a sodium-sulfur battery is suitable for large-capacity charging and discharging as the electrode material area is larger.

【0021】しかしながら、面積が大きな平面構造の炭
素繊維フェルトを電極材として使用する場合、電解液の
液圧によってフェルトに歪みが生じやすいので、この場
合は円筒形の炭素繊維フェルトより高い形態安定性が必
要である。
However, when a carbon fiber felt having a large area and a planar structure is used as an electrode material, the felt tends to be distorted due to the liquid pressure of the electrolytic solution. In this case, the form stability is higher than that of the cylindrical carbon fiber felt. is necessary.

【0022】さらに、電極材の炭素繊維フェルトは前述
のとおり、高い導電性が要求される。高い導電性と高い
形態安定性を維持するためには、高密度で繊維を充填す
る方法がある。しかし、このようにすると炭素繊維フェ
ルトの厚さ方向の通液性が低下するという問題がある。
また、充填の密度が高くなると弾力性が減少し、電極材
を枠体に装着するのが難しくなる問題がある。
Further, as described above, the carbon fiber felt as the electrode material is required to have high conductivity. In order to maintain high conductivity and high form stability, there is a method of filling fibers at high density. However, this causes a problem that the liquid permeability in the thickness direction of the carbon fiber felt is reduced.
In addition, when the filling density increases, the elasticity decreases, and there is a problem that it is difficult to mount the electrode material on the frame.

【0023】前記公報においては、電極材用炭素繊維フ
ェルトは、電池装着前に他の不織布またはフェルトと一
体化するため、厚さ方向にニ−ドルパンチ等で二次加工
する。
In the above publication, the carbon fiber felt for an electrode material is subjected to secondary processing in the thickness direction with a needle punch or the like in order to integrate it with another nonwoven fabric or felt before mounting the battery.

【0024】また二次加工したフェルト等は、電池装着
前に圧縮した後、電池内の所定の空隙に装着し、その後
常温〜400℃の作動温度において使用する。この時フ
ェルトの厚さは、元の厚さにできるだけ復元し、電池の
枠体空隙が無い状態に充填されている必要がある。
The secondary processed felt or the like is compressed before mounting the battery, then mounted in a predetermined space in the battery, and then used at an operating temperature of room temperature to 400 ° C. At this time, the thickness of the felt must be restored to the original thickness as much as possible, and the battery must be filled without any voids in the battery frame.

【0025】厚さ方向の圧縮復元率が低い場合、炭素繊
維フェルトが電池に装着される際、および長期の電池作
動中に空隙が生じ、重要な電池性能である充放電効率の
低下を生じさせる。
When the compression / restoration rate in the thickness direction is low, voids are generated when the carbon fiber felt is mounted on the battery and during long-term operation of the battery, which causes a reduction in charge / discharge efficiency, which is an important battery performance. .

【0026】また、同様に炭素繊維フェルトの圧縮時の
反発力が低いと、長期間の電池作動中に空隙が生じ易
い。但し、復元力が高すぎると、例えばナトリウムー硫
黄電池に装着した場合、炭素繊維フェルトより内層部に
配置されているナトリウム内蔵用セラミック管に過度の
応力が加えられてセラミック管損傷の原因になる。
Similarly, if the repulsion of the carbon fiber felt during compression is low, voids are likely to be formed during long-term battery operation. However, if the restoring force is too high, for example, when the battery is mounted on a sodium-sulfur battery, excessive stress is applied to the sodium built-in ceramic tube disposed in the inner layer portion from the carbon fiber felt, causing damage to the ceramic tube.

【0027】[0027]

【発明が解決しようとする課題】本発明者等は、上記の
課題を解決するために種々検討した結果、本発明ポリア
クリロニトリル系炭素繊維フェルトは、厚さ方向の比抵
抗値、形態安定性等に優れ、これを電池用電極材に使用
する場合、単電池内部壁面への密着性、単電池内の他の
材料に加わる応力の度合い、及び電池作動時の電解質の
流れの円滑性等に優れ、更に有機繊維から炭素繊維への
焼成時間が短い等の電極材の製造方法に要求される利点
を備えていることを知得し、本発明を完成するに至った
ものである。
The present inventors have conducted various studies to solve the above-mentioned problems, and as a result, the polyacrylonitrile-based carbon fiber felt of the present invention has a specific resistance value in the thickness direction, shape stability and the like. When this is used as a battery electrode material, it has excellent adhesion to the inner wall of the cell, the degree of stress applied to other materials in the cell, and the smooth flow of electrolyte during battery operation. Further, the present invention has been found to have advantages required for a method of manufacturing an electrode material, such as a short firing time from organic fibers to carbon fibers, and has completed the present invention.

【0028】従って、本発明の目的とするところは、上
記の課題を解決し、電池の電極材等の用途に用いて有用
な炭素繊維フェルト及びその製造方法を提供することに
ある。
Accordingly, it is an object of the present invention to solve the above-mentioned problems and to provide a carbon fiber felt useful for use as an electrode material of a battery and a method for producing the same.

【0029】[0029]

【課題を解決するための手段】上記の目的を達成する本
発明は、以下に記載するものである。
The present invention that achieves the above objects is as described below.

【0030】〔1〕 ポリアクリロニトリル系炭素繊維
からなり、圧縮前の厚さに対して、厚さを50%圧縮時
の反発力が2〜4kg/cm2で、除圧後の厚さ復元率
が98%以上、かつ炭素繊維フェルト厚さ方向の比抵抗
値が0.11Ω・cm以下であることを特徴とする電極
材用炭素繊維フェルト。
[1] The polyacrylonitrile-based carbon fiber has a rebound of 2 to 4 kg / cm 2 when the thickness is compressed to 50% of the thickness before compression, and the thickness recovery rate after decompression. Is 98% or more and the specific resistance in the thickness direction of the carbon fiber felt is 0.11 Ω · cm or less.

【0031】〔2〕 ポリアクリロニトリル系炭素繊維
の表面酸素濃度O/Cが0.08以下である〔1〕に記
載の電極材用炭素繊維フェルト。
[2] The carbon fiber felt for an electrode material according to [1], wherein the surface oxygen concentration O / C of the polyacrylonitrile-based carbon fiber is 0.08 or less.

【0032】〔3〕 ポリアクリロニトリル系炭素繊維
のX線結晶サイズ(Lc)が1.3nm以上、繊維直径
が6〜20μmである〔1〕に記載の電極材用炭素繊維
フェルト。
[3] The carbon fiber felt for an electrode material according to [1], wherein the polyacrylonitrile-based carbon fiber has an X-ray crystal size (Lc) of at least 1.3 nm and a fiber diameter of 6 to 20 μm.

【0033】〔4〕 炭素繊維フェルトの厚さ方向の繊
維配列度が30〜80%である〔1〕に記載の電極材用
炭素繊維フェルト。
[4] The carbon fiber felt for an electrode material according to [1], wherein the degree of fiber arrangement in the thickness direction of the carbon fiber felt is 30 to 80%.

【0034】〔5〕 下記工程(1)、(2)、
(3)、 (1)0.57〜3.40デシテックス(dtex)
で、且つ繊維断面の真円度が0.80〜1のポリアクリ
ロニトリル系繊維を空気中で酸化処理して酸化繊維とす
る、(2)酸化繊維をクリンプ処理した後、厚さ方向の
繊維配列度が30〜80%にニードルパンチし、酸化繊
維フェルトを作製する、(3)酸化繊維フェルトを不活
性ガス中、600〜1300℃で1〜10分間処理後、
更に1700℃以上の温度で0.5〜10分間処理す
る、を含むことを特徴とする〔1〕乃至〔4〕の何れか
に記載の電極材用炭素繊維フェルトの製造方法。
[5] The following steps (1) and (2)
(3), (1) 0.57 to 3.40 decitex (dtex)
The polyacrylonitrile fiber having a roundness of the fiber cross section of 0.80 to 1 is oxidized in the air to be oxidized fiber. (2) Fiber arrangement in the thickness direction after crimping the oxidized fiber (3) Treating the oxidized fiber felt in an inert gas at 600 to 1300 ° C for 1 to 10 minutes,
The method for producing a carbon fiber felt for an electrode material according to any one of [1] to [4], further comprising treating at a temperature of 1700 ° C. or more for 0.5 to 10 minutes.

【0035】[0035]

【発明の実施の形態】(炭素繊維フェルト)本発明の電
極材用炭素繊維フェルトは、上記のようにポリアクリロ
ニトリル系炭素繊維からなり、圧縮前の厚さに対して、
厚さを50%圧縮時の反発力が2〜4kg/cm2で、
除圧後の厚さ復元率が98%以上、かつ炭素繊維フェル
ト厚さ方向の比抵抗値が0.11Ω・cm以下のもので
ある。
BEST MODE FOR CARRYING OUT THE INVENTION (Carbon fiber felt) The carbon fiber felt for an electrode material of the present invention is made of polyacrylonitrile-based carbon fiber as described above.
The repulsion force when compressing the thickness by 50% is 2-4 kg / cm 2 ,
The thickness recovery rate after depressurization is 98% or more, and the specific resistance in the carbon fiber felt thickness direction is 0.11 Ω · cm or less.

【0036】本発明において、厚さ方向50%加圧圧縮
時の反発力とは、炭素繊維フェルトを厚さ方向に圧縮し
たときの反発力である。この反発力が強いことは、電極
材として枠体に装着した際、空隙なく装着できることを
意味する。しかしこの反発力が強すぎると、電極材とし
ての作動時において、反発力や液圧の影響で枠体、セラ
ミック内装材等が破損する危険性を有する。このため反
発力は、後に説明する測定方法によって求められる値
で、2kg/cm2〜 4kg/cm2の範囲が必要であ
る。
In the present invention, the repulsive force at 50% compression in the thickness direction is the repulsion force when the carbon fiber felt is compressed in the thickness direction. The strong repulsion means that when the electrode material is mounted on the frame, it can be mounted without gaps. However, if the repulsive force is too strong, there is a risk that the frame, the ceramic interior material, and the like may be damaged by the repulsive force and the influence of the liquid pressure during operation as an electrode material. For this reason, the repulsion force is a value obtained by a measurement method described later and needs to be in a range of 2 kg / cm 2 to 4 kg / cm 2 .

【0037】炭素繊維フェルトの反発力が2kg/cm
2未満の場合、炭化繊維フェルトを電池に装着時及び充
放電繰り返し時に電池内に空隙を生じやすい。このよう
な空隙が生じた場合、電解液の炭素繊維電極への透過性
が不均一となり、単電池間の性能のバラツキ及び充放電
効率の低下を生ずるので好ましくない。
The resilience of carbon fiber felt is 2 kg / cm
If it is less than 2 , voids are likely to occur in the battery when the carbonized fiber felt is attached to the battery and when charging and discharging are repeated. When such voids are formed, the permeability of the electrolyte to the carbon fiber electrode becomes non-uniform, which causes variations in performance between cells and a decrease in charge / discharge efficiency, which is not preferable.

【0038】反発力が4kg/cm2を超える場合、電
池装着時の炭素繊維フェルトの圧縮操作が難しくなると
共に、装着後に炭素繊維の微粉末が発生し易くなり、電
池性能の低下の原因になる。更に、炭素繊維フェルトと
厚さ方向に内接又は外接する材料に過度の応力を与える
ことになり、これら材料の損傷や破壊を生じやすくな
る。
When the resilience exceeds 4 kg / cm 2 , the operation of compressing the carbon fiber felt at the time of mounting the battery becomes difficult, and the fine powder of carbon fiber is easily generated after the mounting, which causes the deterioration of the battery performance. . In addition, excessive stress is applied to materials inscribed or circumscribed in the thickness direction with the carbon fiber felt, and these materials are easily damaged or broken.

【0039】前述のように、ナトリウム−硫黄電池の場
合、円筒型炭素繊維フェルトの内側にナトリウムの充填
用セラミック管が配置してある。このため、炭素繊維フ
ェルトの過度な反発力は、セラミック管の破壊や損傷の
原因となる。従って、反発力が4kg/cm2を超える
ことは好ましくない。
As described above, in the case of a sodium-sulfur battery, a ceramic tube for filling sodium is disposed inside a cylindrical carbon fiber felt. For this reason, excessive repulsion of the carbon fiber felt causes breakage and damage of the ceramic tube. Therefore, it is not preferable that the repulsion exceeds 4 kg / cm 2 .

【0040】反発力の調整は、原料繊維の太さ、真円
度、フェルト加工時の厚さ方向の繊維配列度の調整によ
り行うことができる。
The repulsion can be adjusted by adjusting the thickness and roundness of the raw fibers and the degree of fiber arrangement in the thickness direction during felting.

【0041】炭素繊維フェルト自体の特性としての除圧
後の厚さ復元率は、炭素繊維フェルトを枠体に装着時、
枠体への圧接状態、配設の安定状態に影響を与える。即
ち、炭素繊維フェルトは枠体に装着する際に圧縮され、
枠体挿入後除圧状態で装着されている。この時に炭素繊
維フェルトは枠体へ圧接され固定されている。しかし、
除圧後の復元率は高くても圧縮時の反発力が低いと、装
着安定性が悪くなる。このため、前述の反発力とこの除
圧後の復元力とは、両者相まって装着時及び電極材とし
ての作動時の安定性に重要な影響を与える。
The thickness recovery rate after depressurization as a characteristic of the carbon fiber felt itself is as follows when the carbon fiber felt is mounted on the frame.
It affects the state of pressure contact with the frame and the stable state of installation. That is, the carbon fiber felt is compressed when mounted on the frame,
It is mounted in a decompressed state after the frame is inserted. At this time, the carbon fiber felt is pressed and fixed to the frame. But,
Even if the restoration rate after decompression is high, if the resilience during compression is low, the mounting stability will be poor. For this reason, the above-described repulsive force and the restoring force after decompression together have an important influence on the stability during mounting and operation as an electrode material.

【0042】炭素繊維フェルトにおいて高い除圧後の厚
さ復元率が求められることは既に知られている(特開平
2−154047号公報参照)。
It is already known that a high thickness restoration ratio after depressurization is required for carbon fiber felt (see Japanese Patent Application Laid-Open No. 2-15447).

【0043】この炭素繊維フェルトの除圧後の復元率
は、後に説明する方法により測定するものであるが、こ
の測定値が98%未満の場合は、炭素繊維フェルトを圧
縮して電池の隙間に装着後の復元性が悪い為隙間が生じ
る。このため、電池の作動時に炭素繊維フェルト内の電
解質の透過性が不均一になって短期及び長期の電池作動
特性に影響を及ぼし、その結果電池の充放電効率を低下
させる。
The restoration rate of the carbon fiber felt after depressurization is measured by the method described later. If the measured value is less than 98%, the carbon fiber felt is compressed and inserted into the gap of the battery. There is a gap due to poor restorability after mounting. As a result, the permeability of the electrolyte in the carbon fiber felt during the operation of the battery becomes non-uniform, which affects the short-term and long-term battery operation characteristics, thereby lowering the charge / discharge efficiency of the battery.

【0044】圧縮時の反発力、及び除圧後の厚さ復元率
は次の方法によって求めることができる。
The repulsive force during compression and the thickness restoration rate after decompression can be determined by the following methods.

【0045】圧縮時の反発力 直径1.0cmの円板状に打ち抜いた炭素繊維フェルト
を厚さ方向に加圧して圧縮させる。圧縮前の厚さに対
し、50%圧縮時の圧縮荷重(kg/cm2)を反発力
とする。
Repulsion Force During Compression A carbon fiber felt punched into a disk having a diameter of 1.0 cm is pressed in the thickness direction and compressed. The repulsive force is the compression load (kg / cm 2 ) at the time of 50% compression with respect to the thickness before compression.

【0046】除圧後の厚さ復元率 上記と同じ形状の炭素繊維フェルトを圧縮前の厚さに対
し厚さ方向に50%圧縮する。次いで、除圧10分間後
の厚さを求め、下記式により復元率を求める。
Thickness restoration rate after pressure reduction A carbon fiber felt having the same shape as above is compressed by 50% in the thickness direction with respect to the thickness before compression. Next, the thickness after 10 minutes of depressurization is determined, and the restoration rate is determined by the following equation.

【0047】復元率(%)=[除圧10分後の厚さ(m
m)/圧縮前の厚さ(mm)]×100 復元率の調整も反発力と同様、原料繊維の太さ、真円
度、及びフェルト加工時の厚さ方向の繊維配列度の調整
により行うことができる。
Restoration rate (%) = [thickness (m
m) / thickness before compression (mm)] × 100 The restoration rate is also adjusted by adjusting the thickness, roundness, and the degree of fiber arrangement in the thickness direction at the time of felting, as in the case of the repulsive force. be able to.

【0048】炭素繊維フェルトの比抵抗値は0.11Ω
・cm以下である。炭素繊維フェルトの比抵抗値が0.
11Ω・cmを超える場合は、電池電極材として用いた
場合、電池の充放電効率が低下する。
The specific resistance of the carbon fiber felt is 0.11Ω.
-Cm or less. The specific resistance value of the carbon fiber felt is 0.
If it exceeds 11 Ω · cm, the charge / discharge efficiency of the battery decreases when used as a battery electrode material.

【0049】従来、電極材用炭素繊維フェルトの電気伝
導度を向上させる努力は図られているが、その値は、比
抵抗値で0.4Ω・cmが精々であり、0.2Ω・cm
を下回ることは出来なかった。
Conventionally, efforts have been made to improve the electrical conductivity of carbon fiber felt for electrode materials, but the specific value is 0.4 Ω · cm in specific resistance, and 0.2 Ω · cm.
Could not be less than.

【0050】本発明者らは、炭素繊維フェルトの厚さ方
向の繊維配列度を高めると共に、最高焼成温度が170
0℃以上の不活性ガス雰囲気下で、炭素繊維表面の酸素
濃度O/Cを0.08以下に制御することによって上記
比抵抗値を実現し得たものである。
The present inventors increased the degree of fiber arrangement in the thickness direction of the carbon fiber felt and set the maximum firing temperature to 170.
The above specific resistance value can be realized by controlling the oxygen concentration O / C on the carbon fiber surface to 0.08 or less under an inert gas atmosphere of 0 ° C. or more.

【0051】更に、炭素繊維フェルトを構成している炭
素繊維の結晶子サイズは、X線結晶サイズ(Lc)で
1.3nm以上が好ましい。より好ましくは2nm以上
である。
Further, the crystallite size of the carbon fiber constituting the carbon fiber felt is preferably 1.3 nm or more in X-ray crystal size (Lc). More preferably, it is 2 nm or more.

【0052】X線結晶サイズ(Lc)が1.3nm未満
の場合、炭素繊維自体の電気伝導性が低くなる。このた
め炭素繊維フェルトの厚さ方向の配列度を高めても、炭
素繊維フェルトの比抵抗値を0.11Ω・cmより低く
し難くなる。またこのようにX線結晶サイズ(Lc)を
高めることによって、炭素繊維ひいては炭素繊維フェル
トの耐酸化性を高めることが出来る。
When the X-ray crystal size (Lc) is less than 1.3 nm, the electric conductivity of the carbon fiber itself becomes low. For this reason, even if the degree of arrangement in the thickness direction of the carbon fiber felt is increased, it is difficult to make the specific resistance value of the carbon fiber felt lower than 0.11 Ω · cm. In addition, by increasing the X-ray crystal size (Lc) in this manner, the oxidation resistance of the carbon fiber and thus the carbon fiber felt can be increased.

【0053】一方、X線結晶サイズ(Lc)が4.0n
mを超える場合は、炭素繊維の強度低下や伸度低下が生
じ易くなり、更に炭素繊維の微粉末が発生し易くなるの
で好ましくない。
On the other hand, the X-ray crystal size (Lc) is 4.0 n
If it exceeds m, the strength and elongation of the carbon fiber tend to decrease, and fine powder of the carbon fiber tends to occur, which is not preferable.

【0054】炭素繊維フェルトにおける炭素繊維の配列
度は30%以上が好ましく、特に40%以上が好まし
い。
The degree of arrangement of the carbon fibers in the carbon fiber felt is preferably at least 30%, particularly preferably at least 40%.

【0055】炭素繊維の配列度が30%未満の場合は、
厚さ方向の反発力及び除圧後の厚さ復元率が低いものと
なると共に、電解質の透過性が悪くなり、電池としての
充放電効率の低下を招くので好ましくない。
When the degree of arrangement of the carbon fibers is less than 30%,
The repulsion in the thickness direction and the thickness recovery rate after depressurization are low, and the permeability of the electrolyte is deteriorated, resulting in a decrease in the charge / discharge efficiency of the battery.

【0056】一方、炭素繊維の配列度が80%を超える
場合は、酸化繊維をフェルト加工する際に繊維切れが発
生し、炭素繊維フェルトの微粉末発生量が多くなり、炭
素繊維フェルトの強度が低下するので好ましくない。
On the other hand, when the degree of arrangement of the carbon fibers exceeds 80%, fiber breakage occurs when the oxidized fibers are subjected to felt processing, the amount of fine powder of the carbon fiber felt increases, and the strength of the carbon fiber felt decreases. It is not preferable because it decreases.

【0057】この炭素繊維フェルトにおける炭素繊維厚
さ方向の配列度は、次の方法によって求める。
The degree of arrangement in the carbon fiber thickness direction of the carbon fiber felt is determined by the following method.

【0058】炭素繊維の厚さ方向の繊維配列度(%) X線回折ピ−ク角度(2θ=26.0°付近)でのZ−
X面及びZ−Y面で360°試料を回転させる。
Fiber arrangement degree (%) in the thickness direction of carbon fiber Z- axis at X-ray diffraction peak angle (around 2θ = 26.0 °)
Rotate the sample 360 ° in the X and ZY planes.

【0059】この時得られるX線回折強度変化より結晶
子の配向ピークを得る。結晶子が繊維軸方向に高配向し
ていることを利用し、この配向ピーク面積を測定して下
式により繊維配列度を算出する。 厚さ方向(Z)の繊維配列度(%)=(Z方向の配向ピ
ーク面積)÷(X+Y+Z)方向の配向ピーク面積 ここで、炭素繊維フェルトの厚さ方向をZ、幅方向を
X、長さ方向をYとする。
The orientation peak of the crystallite is obtained from the change in the X-ray diffraction intensity obtained at this time. Utilizing the fact that crystallites are highly oriented in the fiber axis direction, the orientation peak area is measured, and the degree of fiber arrangement is calculated by the following equation. Degree of fiber arrangement in the thickness direction (Z) (%) = (Orientation peak area in the Z direction) ÷ (X + Y + Z) orientation peak area Here, the thickness direction of the carbon fiber felt is Z, the width direction is X, and the length is X. The vertical direction is Y.

【0060】炭素繊維フェルトの厚さ方向の繊維配列度
は、炭素化前の原料である酸化繊維フェルトの厚さ方向
の繊維配列度によりコントロールされる。(炭素繊維フ
ェルトの製造)次に、上記構成の本発明の電極材用炭素
繊維フェルトの製造方法に付、説明する。本発明の炭素
繊維フェルトの製造方法の大筋は、先ずポリアクリロニ
トリル系繊維を空気中で酸化処理して酸化繊維を得、次
いで得られた酸化繊維を用いて酸化繊維フェルトを製造
し、最後に前記製造した酸化繊維フェルトを不活性ガス
中で炭素化処理をすることにより炭素繊維フェルトを得
るものである。
The degree of fiber arrangement in the thickness direction of the carbon fiber felt is controlled by the degree of fiber arrangement in the thickness direction of the oxidized fiber felt which is a raw material before carbonization. (Production of carbon fiber felt) Next, a method for producing the carbon fiber felt for an electrode material of the present invention having the above-described structure will be described. The outline of the method for producing a carbon fiber felt according to the present invention is as follows. First, an oxidized fiber is obtained by oxidizing polyacrylonitrile-based fiber in air, and then an oxidized fiber felt is produced using the obtained oxidized fiber. The carbon fiber felt is obtained by subjecting the produced oxidized fiber felt to carbonization in an inert gas.

【0061】ポリアクリロニトリル系繊維 出発原料のポリアクリロニトリル系繊維は、アクリロニ
トリル単量体を単独重合させたもの、またはアクリル
酸、イタコン酸、若しくはこれらのエステル類、塩類、
更にはアクリルアミド等のアクリロニトリル単量体と共
重合可能なその他の単量体とアクリロニトリル単量体と
を共重合させたものが使用出来る。その他の単量体の共
重合割合は、12質量%以下が好ましい。
Polyacrylonitrile fiber The starting material polyacrylonitrile fiber is obtained by homopolymerizing acrylonitrile monomer, acrylic acid, itaconic acid, or esters or salts thereof.
Further, those obtained by copolymerizing an acrylonitrile monomer with another monomer copolymerizable with an acrylonitrile monomer such as acrylamide can be used. The copolymerization ratio of the other monomers is preferably 12% by mass or less.

【0062】原料のポリアクリロニトリル系繊維は、
0.57〜3.40dtexのものが好ましい。また繊
維断面は円形に近く、真円度が0.80以上の繊維が好
ましい。
The raw material polyacrylonitrile fiber is
Those having a dtex of 0.57 to 3.40 dtex are preferred. Further, the fiber cross section is close to circular, and a fiber having a roundness of 0.80 or more is preferable.

【0063】0.57dtexより細い繊維を用いる場
合、本発明において規定する反発力及び圧縮復元率の炭
素繊維フェルトを得ることができない。また嵩密度が高
くなり電解質の透過性が低下する。
When fibers smaller than 0.57 dtex are used, it is impossible to obtain a carbon fiber felt having a repulsion force and a compression recovery specified in the present invention. Also, the bulk density increases and the permeability of the electrolyte decreases.

【0064】3.40dtexより太いポリアクリロニ
トリル繊維を用いる場合、これを用いて製造した酸化繊
維をニードルパンチでフェルト加工する際、フェルトの
厚さ方向の繊維配列度及び嵩密度を高くすることが難し
く、このため炭素化後の比抵抗値を目標値に到達させる
ことが難しくなる。
When a polyacrylonitrile fiber having a thickness of more than 3.40 dtex is used, it is difficult to increase the fiber arrangement degree and the bulk density in the thickness direction of the felt when the oxidized fiber produced using the fiber is subjected to felt processing by needle punching. Therefore, it is difficult to make the specific resistance value after carbonization reach the target value.

【0065】原料のポリアクリロニトリル系繊維の真円
度が0.8未満の場合、得られる炭素繊維の剛直性が低
くなり、炭素繊維フェルトの厚さ方向の反発力及び圧縮
復元率が低下する。
When the roundness of the raw material polyacrylonitrile fiber is less than 0.8, the rigidity of the obtained carbon fiber becomes low, and the resilience in the thickness direction of the carbon fiber felt and the compression recovery rate decrease.

【0066】原料のポリアクリロニトリル系繊維の直径
は、ノズルの孔径、紡糸時の吐出量、吐出速度、及び延
伸条件により調整できる。また、真円度は、ノズル孔の
形状、洗浄速度、及び繊維の延伸条件により調整でき
る。ノズルの孔形状としては、真円が好ましい。
The diameter of the raw material polyacrylonitrile fiber can be adjusted by the nozzle hole diameter, the discharge amount during spinning, the discharge speed, and the drawing conditions. In addition, the roundness can be adjusted by the shape of the nozzle hole, the cleaning speed, and the fiber drawing conditions. The hole shape of the nozzle is preferably a perfect circle.

【0067】酸化処理 原料のポリアクリロニトリル系繊維の酸化処理は、上記
原料のポリアクリロニトリル系繊維を空気中で加熱する
ことにより行なう。酸化処理は、酸化処理条件を選択す
ることにより、得られる酸化繊維の比重を1.33〜
1.45にする。
The oxidation treatment of the polyacrylonitrile-based fiber as the raw material for oxidation treatment is performed by heating the polyacrylonitrile-based fiber as the raw material in the air. In the oxidation treatment, the specific gravity of the oxidized fiber obtained is selected from 1.33 to 0.33 by selecting the oxidation treatment conditions.
Set to 1.45.

【0068】酸化繊維の比重が1.33未満の場合、酸
化繊維を用いて製造した酸化繊維フェルトを炭素化する
際、炭素繊維の収率の低下と炭素繊維の異常収縮を生
じ、得られる炭素繊維フェルトが硬くなると共に、フェ
ルト強度が低下する。酸化繊維の比重が1.45を超え
る場合は、酸化繊維の引張り伸度が低下し、これを用い
て酸化繊維フェルトを製造する際の加工性が低下する。
When the specific gravity of the oxidized fiber is less than 1.33, when carbonizing the oxidized fiber felt produced using the oxidized fiber, the yield of the carbon fiber is reduced and the carbon fiber is abnormally shrunk. As the fiber felt becomes harder, the felt strength decreases. When the specific gravity of the oxidized fiber exceeds 1.45, the tensile elongation of the oxidized fiber is reduced, and the processability when producing the oxidized fiber felt using the oxidized fiber is reduced.

【0069】酸化繊維の比重の調整は酸化温度及び酸化
処理時間により調整する。
The specific gravity of the oxidized fiber is adjusted by the oxidation temperature and the oxidation treatment time.

【0070】酸化繊維の引張り強度は15kgf/mm
2以上、伸度は10%以上が好ましい。酸化繊維の引張
り強度が15kgf/mm2未満の場合フェルトの加工
性が低下すると共に、フェルトの強度が低下する。酸化
繊維の伸度が10%未満の場合、酸化繊維フェルトを製
造する際の加工性が低下する。
The tensile strength of the oxidized fiber is 15 kgf / mm
The elongation is preferably 2 % or more and 10% or more. When the tensile strength of the oxidized fiber is less than 15 kgf / mm 2 , the workability of the felt is reduced and the strength of the felt is reduced. When the elongation of the oxidized fiber is less than 10%, the processability in producing the oxidized fiber felt is reduced.

【0071】酸化繊維のクリンプ処理 上記のようにして製造した酸化繊維を、次いで、クリン
プ処理する。酸化繊維のクリンプ数は4〜20ヶ/イン
チ、クリンプ率は5〜25%が好ましい。
Crimp Treatment of Oxidized Fiber The oxidized fiber produced as described above is then crimped. The number of crimps of the oxidized fibers is preferably 4 to 20 / inch, and the crimp rate is preferably 5 to 25%.

【0072】酸化繊維フェルト 次いで、上記クリンプ処理をした酸化繊維をニードルパ
ンチ処理して酸化繊維フェルトを製造する。
Oxidized fiber felt Next, the oxidized fiber subjected to the crimp treatment is needle-punched to produce an oxidized fiber felt.

【0073】酸化繊維のフェルトに加工する加工方法に
おいては、フェルトの厚さ方向の流体の透過性を向上さ
せるため、フェルトの厚さ方向に繊維を高配列させ必要
がある。この目的には、ニードルパンチング法を採用す
ることが好ましい。
In the processing method for processing oxidized fiber into felt, it is necessary to arrange fibers in a high direction in the thickness direction of the felt in order to improve fluid permeability in the thickness direction of the felt. For this purpose, it is preferable to adopt a needle punching method.

【0074】用いる酸化繊維の好ましい繊維長は20〜
100mmであり、更に好ましくは25〜80mmであ
る。繊維長が20mm未満の場合は、フェルト加工時に
フェルトの引張り強度が低下する為、焼成時に炭素繊維
フェルトが伸び、厚さ、及び幅が長さ方向にバラツキを
生ずる。繊維長が100mmを超える場合は、フェルト
の厚さ方向に繊維を高配列させることが難しい。
The preferred fiber length of the oxidized fiber used is 20 to
It is 100 mm, more preferably 25 to 80 mm. If the fiber length is less than 20 mm, the tensile strength of the felt is reduced during felting, so that the carbon fiber felt is stretched during firing, and the thickness and width vary in the length direction. When the fiber length exceeds 100 mm, it is difficult to arrange the fibers in a high direction in the thickness direction of the felt.

【0075】フェルト加工前の酸化繊維の水分率は10
〜18質量%に調整することが好ましい。10質量%未
満の場合は、フェルトの嵩密度が低下すると共にフェル
トの強度が低下する。18質量%を超える場合は、嵩密
度が高くなり、炭素繊維フェルトとして用いる場合、電
解質の透過性が低下する。
The water content of the oxidized fiber before felting is 10
It is preferable to adjust to 18% by mass. If it is less than 10% by mass, the bulk density of the felt decreases and the strength of the felt decreases. When the content exceeds 18% by mass, the bulk density increases, and when used as a carbon fiber felt, the permeability of the electrolyte decreases.

【0076】これら酸化繊維のフェルト加工において
は、ニードルの太さ及び打ち込み本数を調整し、酸化繊
維フェルトの厚さ方向に繊維を高配列させる。厚さ方向
の酸化繊維の繊維配列度は30〜80%が好ましく、特
に40〜80%がより好ましい。
In the felt processing of these oxidized fibers, the thickness of the needles and the number of driving fibers are adjusted, and the fibers are arranged in a high direction in the thickness direction of the oxidized fiber felt. The fiber orientation degree of the oxidized fibers in the thickness direction is preferably from 30 to 80%, particularly preferably from 40 to 80%.

【0077】酸化繊維の繊維配列度の測定は、溶融した
樹脂に酸化繊維フェルトを浸漬、冷却固化後、カットし
顕微鏡写真を画像解析することにより求める。酸化繊維フェルトの炭素化処理 以上のようにしてフェルト加工して製造した酸化繊維フ
ェルトを、不活性雰囲気中で焼成して炭素化処理する。
The fiber arrangement degree of the oxidized fiber is measured by immersing the oxidized fiber felt in a molten resin, solidifying it by cooling, cutting, and image-analyzing a micrograph. Carbonization treatment of oxidized fiber felt The oxidized fiber felt produced by felting as described above is calcined in an inert atmosphere by firing.

【0078】酸化繊維フェルトの炭素化は600〜13
00℃で1〜10分間、好ましくは2〜10分間焼成
し、その後更に1700℃以上、特に好ましくは180
0〜2500℃で一段で焼成することが望ましい。17
00℃以上の焼成処理は、0.5〜10分間が好まし
い。焼成時の不活性ガスとしては高純度の窒素、ヘリウ
ム、アルゴンガス等が例示できる。
The carbonization of the oxidized fiber felt is from 600 to 13
Firing at 00 ° C. for 1 to 10 minutes, preferably 2 to 10 minutes, and then further at 1700 ° C. or more, particularly preferably 180 ° C.
It is desirable to bake in one step at 0 to 2500 ° C. 17
The baking treatment at a temperature of 00 ° C. or more is preferably performed for 0.5 to 10 minutes. Examples of the inert gas at the time of firing include high-purity nitrogen, helium, and argon gases.

【0079】不活性ガス中の酸素濃度は20ppm以下
が望ましい。酸素濃度が20ppmを超える場合、炭素
繊維の表面酸素濃度O/Cが高くなり、炭素繊維の酸化
に伴う強度低下及び電気伝導度低下を生じ、その結果こ
れを用いた電池は充放電特性が低下する。また高温電解
質中での耐熱性及び耐化学薬品性が低下する。
The oxygen concentration in the inert gas is desirably 20 ppm or less. When the oxygen concentration exceeds 20 ppm, the surface oxygen concentration O / C of the carbon fiber becomes high, and the strength and electric conductivity of the carbon fiber decrease due to oxidation. As a result, the charge / discharge characteristics of the battery using this decrease. I do. In addition, heat resistance and chemical resistance in a high-temperature electrolyte are reduced.

【0080】O/Cを0.08以下にするには、基本的
には酸化性ガス及び酸化性の不純物(有機物及び金属)
の混入を避ける必要がある。これは、焼成前の原料への
不純物の混入防止及び焼成時の不活性ガスの種類、投入
量及び投入方法により調整できる。
In order to reduce the O / C to 0.08 or less, basically, an oxidizing gas and oxidizing impurities (organic substances and metals) are used.
It is necessary to avoid contamination. This can be adjusted by preventing impurities from being mixed into the raw material before firing, and by adjusting the type, amount and method of inert gas used during firing.

【0081】炭素繊維フェルトのX線結晶サイズ(L
c)は1.3nm以上、好ましくは2.0nm以上であ
り、これは焼成時の焼成温度及び時間を調節することに
より調整する。
The X-ray crystal size (L
c) is at least 1.3 nm, preferably at least 2.0 nm, which is adjusted by adjusting the firing temperature and time during firing.

【0082】このようにして製造した炭素繊維フェルト
の炭素繊維の直径は、6〜20μmが好ましい。直径6
μm未満の炭素繊維フェルトを電極材に用いる場合は、
電池作動時の電解質の流れが悪くなるので好ましくな
い。一方、直径20μmを超える炭素繊維のフェルトを
電極に用いる場合は、炭素繊維フェルトの反発力が高く
なり過ぎ、電池への装着時に炭素繊維が折れ微粉末を発
生し易くなるので好ましくない。
The diameter of the carbon fiber of the carbon fiber felt thus produced is preferably 6 to 20 μm. Diameter 6
When using carbon fiber felt of less than μm for the electrode material,
It is not preferable because the flow of the electrolyte during the operation of the battery is deteriorated. On the other hand, when a carbon fiber felt having a diameter of more than 20 μm is used for the electrode, the resilience of the carbon fiber felt becomes too high, and the carbon fiber is easily broken at the time of attachment to a battery, and thus it is not preferable.

【0083】炭素繊維フェルトの厚さは、40mm以下
が好ましい。40mmを超える場合は、焼成時不活性ガ
スの浸透性が低下し、厚さ方向に焼成ムラを生じ易くな
る。またフェルトの厚さ方向の繊維配列を高める為の加
工が難しくなり、ニードルパンチの針折れが生じ易い。
The thickness of the carbon fiber felt is preferably 40 mm or less. If it exceeds 40 mm, the permeability of the inert gas during firing decreases, and firing unevenness tends to occur in the thickness direction. Further, processing for increasing the fiber arrangement in the thickness direction of the felt becomes difficult, and the needle punch is likely to be broken.

【0084】更に好ましい炭素繊維フェルトの厚さは、
特に限定されないが8〜25mmである。原料の酸化繊
維フェルトの厚さは、炭素化時の収縮率を考慮に入れた
場合10〜30mmの範囲が好ましい。
Further preferred thickness of the carbon fiber felt is
Although not particularly limited, it is 8 to 25 mm. The thickness of the oxidized fiber felt as the raw material is preferably in the range of 10 to 30 mm in consideration of the shrinkage during carbonization.

【0085】炭素繊維フェルトの嵩密度は、0.08〜
0.15g/cm3が好ましい。この炭素繊維フェルト
を電池用電極材に用いる場合、炭素繊維フェルトの嵩密
度が0.08g/cm3未満の場合は、炭素繊維フェル
トの比抵抗値が大きくなるので好ましくない。一方、炭
素繊維フェルトの嵩密度が0.15g/cm3を超える
場合は、電解質の流動性が低下するので好ましくない。
The bulk density of the carbon fiber felt is 0.08 to
0.15 g / cm 3 is preferred. When this carbon fiber felt is used as an electrode material for a battery, if the bulk density of the carbon fiber felt is less than 0.08 g / cm 3 , the specific resistance value of the carbon fiber felt increases, which is not preferable. On the other hand, if the bulk density of the carbon fiber felt exceeds 0.15 g / cm 3 , the fluidity of the electrolyte decreases, which is not preferable.

【0086】[0086]

【実施例】次に実施例を挙げて本発明を具体的に説明す
るが、本発明はこれら実施例により限定されるものでは
ない。なお、実施例1〜5及び比較例1〜8において、
「%」は特に断りのない限り「質量%」を示す。また、
各物性値は次のように定義される。
Next, the present invention will be described specifically with reference to examples, but the present invention is not limited to these examples. In Examples 1 to 5 and Comparative Examples 1 to 8,
“%” Indicates “% by mass” unless otherwise specified. Also,
Each physical property value is defined as follows.

【0087】X線結晶サイズ(nm) 広角X線回折測定での2θのピ−クの半値幅と下記のシ
ェラーの式より求めた。 X線結晶サイズLc= (k×λ)/β×cosθ K:装置定数 0.90 λ:X線波長 0.15406nm β:2θ=26.0°付近の最大ピ−クの半値幅表面酸素濃度O/C X線光電子分析法(XPS)により求めた。C1Sの結合
エネルギ−値を284.6eVに合わせ、C1Sのピ−ク
面積を求める。更にO1Sのピ−ク面積を結合エネルギ−
528〜540eVのO1Sピ−クより求め、このO1S
1S比を装置固有の感度補正値で補正した値を表面酸素
濃度O/Cとした。
X-ray crystal size (nm) The peak half width at 2θ in wide-angle X-ray diffraction measurement was determined from the following Scherrer's formula. X-ray crystal size Lc = (k × λ) / β × cos θ K: Equipment constant 0.90 λ: X-ray wavelength 0.15406 nm β: 2θ = half-peak width half-maximum surface oxygen concentration near 26.0 ° O / C Determined by X-ray photoelectron analysis (XPS). Binding energy of C 1S - combined value to 284.6 eV, peak of C 1S - Request click area. Further, the peak area of O 1S is changed to the binding energy.
Obtained from an O 1S peak of 528 to 540 eV, this O 1S /
The value obtained by correcting the C 1S ratio with the sensitivity correction value unique to the apparatus was defined as the surface oxygen concentration O / C.

【0088】酸化繊維フェルトの厚さ方向の繊維配列度
(%) 酸化繊維フェルトを3cm角にカットし、断面(厚さ方
向と平行な断面)の顕微鏡写真を撮影した。この写真を
拡大し、厚さ方向の繊維数と、断面全体に観察される繊
維数を計測し、下記式を用いて厚さ方向の繊維配列度を
算出した。
The degree of fiber arrangement in the thickness direction of oxidized fiber felt
(%) The oxidized fiber felt was cut into a 3 cm square, and a micrograph of a cross section (a cross section parallel to the thickness direction) was taken. This photograph was enlarged, the number of fibers in the thickness direction and the number of fibers observed in the entire cross section were measured, and the degree of fiber arrangement in the thickness direction was calculated using the following equation.

【0089】酸化繊維フェルトの厚さ方向の繊維配列度
(%)=100×(厚さ方向の繊維数)/(断面全体に
観察される繊維数)炭素繊維フェルトの厚さ方向の繊維配列度(%) X線回折ピ−ク角度(2θ=26.0°付近)でのZ−
X面及びZ−Y面で360°試料を回転させる。この時
得られるX線回折強度変化より結晶子の配向ピークを得
る。結晶子が繊維軸方向に高配向していることを利用
し、この配向ピーク面積を測定し下式により求めた。 厚さ方向(Z)の繊維配列度(%)=(Z方向の配向ピ
ーク面積)÷(X+Y+Z)方向の配向ピーク面積 ここで、炭素繊維フェルトの厚さ方向をZ、幅方向を
X、長さ方向をYとする。
The degree of fiber arrangement in the thickness direction of the oxidized fiber felt (%) = 100 × (the number of fibers in the thickness direction) / (the number of fibers observed in the entire cross section) The degree of fiber arrangement in the thickness direction of the carbon fiber felt (%) Z- at X-ray diffraction peak angle (around 2θ = 26.0 °)
Rotate the sample 360 ° in the X and ZY planes. The crystallite orientation peak is obtained from the change in X-ray diffraction intensity obtained at this time. Utilizing that crystallites are highly oriented in the fiber axis direction, the orientation peak area was measured and determined by the following equation. Degree of fiber arrangement in the thickness direction (Z) (%) = (Orientation peak area in the Z direction) ÷ (X + Y + Z) orientation peak area Here, the thickness direction of the carbon fiber felt is Z, the width direction is X, and the length is X. The vertical direction is Y.

【0090】比抵抗値 直径5.0cmに打ち抜いた円盤状の炭素繊維フェルト
を厚さ方向に10%圧縮した厚さにおける電気抵抗値よ
り、下記式により計算した値を示す。比抵抗値(Ω・c
m)=RXS÷LR:10%圧縮時の厚さ方向の電気抵
抗値(Ω) S:圧縮面積(2.5cm×2.5cm×π:cm2) L:圧縮時の厚さ(cm)充放電効率 電池の充放電サイクル3回目の充放電量を用いて下式に
より充放電効率(%)を算出し、実施例1の充放電効率
を100(基準値)として、その他の実施例及び比較例
の充電効率を相対値で表示した。 充放電効率(%)=[放電量(kWh)/充電量(kW
h)] × 100繊維断面の真円度 繊維断面の電子顕微鏡写真より、繊維断面の最大直径
(A:μm)と最小直径(B:μm)を測定し下式より
求めた。 真円度 = B/A (実施例1〜5)表1又は下記の条件で炭素繊維フェル
トを作製し、得られた炭素繊維フェルトについて、ナト
リウム−硫黄単電池の充放電試験を行い、これらの試験
結果を表1又は下記に示す。
Specific resistance value : A value calculated by the following equation from the electric resistance value at a thickness obtained by compressing a disk-shaped carbon fiber felt punched to a diameter of 5.0 cm by 10% in the thickness direction is shown. Specific resistance (Ω · c
m) = RXS ÷ LR: Electric resistance in the thickness direction at 10% compression (Ω) S: Compression area (2.5 cm × 2.5 cm × π: cm 2 ) L: Thickness at compression (cm) The charge / discharge efficiency (%) was calculated by the following equation using the charge / discharge amount of the third charge / discharge cycle of the battery, and the charge / discharge efficiency of Example 1 was set to 100 (reference value), and the values of other examples and The charging efficiency of the comparative example was indicated by a relative value. Charge / discharge efficiency (%) = [discharge amount (kWh) / charge amount (kW)
h)] × 100 Fiber cross section The maximum diameter (A: μm) and the minimum diameter (B: μm) of the fiber cross section were measured from the electron micrograph of the fiber cross section, and determined by the following formula. Circularity = B / A (Examples 1 to 5) Carbon fiber felts were prepared under Table 1 or the following conditions, and the obtained carbon fiber felts were subjected to a charge / discharge test of a sodium-sulfur unit cell. The test results are shown in Table 1 or below.

【0091】(実施例1)1.7dtex、真円度0.
98のポリアクリロニトリル系繊維(アクリロニトリ
ル:アクリル酸メチル=96:4(質量比))を空気中
で200〜300℃で酸化処理した。得られた比重1.
41、引張り強度21kgf/mm2、伸度21%の酸
化繊維をクリンプ7ヶ/インチ、クリンプ率13%でク
リンプ処理後、繊維長51mmにカットした。
(Embodiment 1) 1.7 dtex, circularity of 0.
98 polyacrylonitrile fibers (acrylonitrile: methyl acrylate = 96: 4 (mass ratio)) were oxidized at 200 to 300 ° C. in air. Specific gravity obtained 1.
41. An oxidized fiber having a tensile strength of 21 kgf / mm 2 and an elongation of 21% was crimped at 7 crimps / inch and a crimp rate of 13%, and then cut into a fiber length of 51 mm.

【0092】次いで水スプレーにより水分率を16%に
調整した。この酸化繊維を、厚さ方向に繊維が高配列す
るようにフェルトの加工条件(針の打ち込み本数、針の
太さ)を調整しフェルト加工を行った。(厚さ方向の繊
維配列が70%) 得られた厚さ14.5mm、嵩密度0.175g/cm
3の酸化繊維フェルトを1000℃で5分間窒素(酸素
含有10ppm)中で焼成し、更に1900℃で3分間
窒素(酸素含有10ppm)雰囲気中で焼成した。その
結果、厚さ12.8mm、嵩密度0.119/cm3
繊維直径11μm、X線結晶サイズ2.8nm、炭素繊
維断面の真円度0.98、O/Cが0.05、反発力
2.7kgf/cm2、圧縮復元率99%、厚さ方向の
繊維配列度が70%、比抵抗値0.07Ω・cmの炭素
繊維フェルトが得られた。
Next, the water content was adjusted to 16% by water spray. This oxidized fiber was subjected to felt processing by adjusting the felt processing conditions (the number of needles to be driven and the thickness of the needle) so that the fibers were arranged in a high direction in the thickness direction. (The fiber arrangement in the thickness direction is 70%.) The obtained thickness is 14.5 mm, and the bulk density is 0.175 g / cm.
The oxidized fiber felt of No. 3 was fired at 1000 ° C. for 5 minutes in nitrogen (10 ppm of oxygen), and further fired at 1900 ° C. for 3 minutes in a nitrogen (10 ppm of oxygen) atmosphere. As a result, the thickness was 12.8 mm, the bulk density was 0.119 / cm 3 ,
Fiber diameter 11 μm, X-ray crystal size 2.8 nm, roundness of carbon fiber cross section 0.98, O / C is 0.05, repulsive force 2.7 kgf / cm 2 , compression recovery rate 99%, thickness direction A carbon fiber felt having a fiber arrangement degree of 70% and a specific resistance value of 0.07 Ω · cm was obtained.

【0093】この炭素繊維フェルトに硫黄を含浸させ、
ナトリウム−硫黄単電池を製造した。この電池の充放電
効率を測定し、この値を前述のように充放電効率の基準
値100とした。
The carbon fiber felt is impregnated with sulfur,
A sodium-sulfur cell was manufactured. The charge / discharge efficiency of this battery was measured, and this value was used as the reference value 100 of the charge / discharge efficiency as described above.

【0094】(実施例2)1.7dtex、真円度0.
98のポリアクリロニトリル系繊維(アクリロニトリ
ル:アクリル酸メチル=96:4(質量比))を空気中
で200〜300℃で酸化処理した。得られた比重1.
40、引張り強度24kgf/mm2 、伸度21%の酸
化繊維をクリンプ7ヶ/インチ、クリンプ率13%でク
リンプ処理後、繊維長を51mmにカットした。
(Embodiment 2) 1.7 dtex, circularity of 0.
98 polyacrylonitrile fibers (acrylonitrile: methyl acrylate = 96: 4 (mass ratio)) were oxidized at 200 to 300 ° C. in air. Specific gravity obtained 1.
An oxidized fiber having a tensile strength of 24 kgf / mm 2 and an elongation of 21% was crimped at 7 crimps / inch and a crimp rate of 13%, and then cut to a fiber length of 51 mm.

【0095】次いで水スプレーにより水分率を16%に
調整した。この酸化繊維を、厚さ方向に繊維が高配列す
るようにフェルトの加工条件(針の打ち込み本数、針の
太さ)を調整してフェルト加工を行った。(厚さ方向の
繊維配列度75%) 得られた厚さ15.0mm、嵩密度0.165g/cm
3の酸化繊維フェルトを1000℃で5分間窒素(酸素
含有10ppm)中で焼成し、更に2200℃で3分間
窒素(酸素含有10ppm)雰囲気中で焼成した。その
結果、厚さ13.5mm、嵩密度0.117g/c
3、繊維直径11μm、X線結晶サイズ3.4nm、
炭素繊維断面の真円度0.98、O/Cが0.04、反
発力2.8kgf/cm2、圧縮復元率99%、厚さ方
向の繊維配列度が75%、電気抵抗値0.06Ω・cm
の炭素繊維フェルトが得られた。
Next, the water content was adjusted to 16% by water spray. This oxidized fiber was subjected to felt processing by adjusting the felt processing conditions (the number of needles to be driven and the thickness of the needle) so that the fibers were arranged in a high direction in the thickness direction. (The degree of fiber arrangement in the thickness direction is 75%) The obtained thickness is 15.0 mm and the bulk density is 0.165 g / cm.
The oxidized fiber felt No. 3 was fired at 1000 ° C. for 5 minutes in nitrogen (10 ppm of oxygen), and further fired at 2200 ° C. for 3 minutes in a nitrogen (10 ppm of oxygen) atmosphere. As a result, the thickness was 13.5 mm, and the bulk density was 0.117 g / c.
m 3 , fiber diameter 11 μm, X-ray crystal size 3.4 nm,
Roundness of carbon fiber cross section is 0.98, O / C is 0.04, repulsive force is 2.8 kgf / cm 2 , compression recovery rate is 99%, fiber arrangement degree in the thickness direction is 75%, and electric resistance value is 0. 06Ω · cm
Was obtained.

【0096】この炭素繊維フェルトに硫黄を含浸させ、
ナトリウム−硫黄単電池を製造した。この電池の充放電
効率を測定したところ、実施例1に対する相対値で10
1の値が得られた。
The carbon fiber felt is impregnated with sulfur,
A sodium-sulfur cell was manufactured. When the charging / discharging efficiency of this battery was measured, it was found to be 10 relative to Example 1.
A value of 1 was obtained.

【0097】(実施例3)2.26dtex、真円度
0.97のポリアクリロニトリル系繊維(アクリロニト
リル:イタコン酸=98:2(質量比))を空気中で2
00〜300℃で酸化処理した。得られた比重1.4
1、引張り強度18kgf/mm2、伸度21%の酸化
繊維をクリンプ7ヶ/インチ、クリンプ率11%でクリ
ンプ処理後、繊維長を38mmにカットした。
(Example 3) Polyacrylonitrile fiber (acrylonitrile: itaconic acid = 98: 2 (mass ratio)) having a roundness of 2.26 dtex and a roundness of 0.97 was air-mixed in air.
Oxidation treatment was performed at 00 to 300 ° C. Specific gravity 1.4 obtained
1. An oxidized fiber having a tensile strength of 18 kgf / mm 2 and an elongation of 21% was crimped at 7 crimps / inch and a crimp rate of 11%, and then the fiber length was cut to 38 mm.

【0098】次いで水スプレーにより水分率を15%に
調整した。この酸化繊維を、厚さ方向に繊維が高配列す
るようにフェルトの加工条件(針の打ち込み本数、針の
太さ)を調整してフェルト加工を行った。(厚さ方向の
繊維配列度が55%) 得られた厚さ14.5mm、嵩密度0.160g/cm
3の酸化繊維フェルトを1000℃で5分間窒素(酸素
含有10ppm)中で焼成し、更に2000℃で3分間
窒素(酸素含有10ppm)雰囲気中で焼成した。その
結果、厚さ13.0mm、嵩密度0.10g/cm3
繊維直径13μm、X線結晶サイズ2.7nm、炭素繊
維断面の真円度0.97、O/Cが0.05、反発力
2.2kgf/cm2、圧縮復元率99%、厚さ方向の
繊維配列が55%、比抵抗値0.05Ω・cmの炭素繊
維フェルトが得られた。
Next, the water content was adjusted to 15% by water spray. This oxidized fiber was subjected to felt processing by adjusting the felt processing conditions (the number of needles to be driven and the thickness of the needle) so that the fibers were arranged in a high direction in the thickness direction. (The degree of fiber arrangement in the thickness direction is 55%) The obtained thickness is 14.5 mm, and the bulk density is 0.160 g / cm.
The oxidized fiber felt of No. 3 was fired at 1000 ° C. for 5 minutes in nitrogen (10 ppm of oxygen), and further fired at 2000 ° C. for 3 minutes in a nitrogen (10 ppm of oxygen) atmosphere. As a result, the thickness was 13.0 mm, the bulk density was 0.10 g / cm 3 ,
Fiber diameter 13 μm, X-ray crystal size 2.7 nm, roundness of carbon fiber cross section 0.97, O / C 0.05, repulsion 2.2 kgf / cm 2 , compression recovery 99%, thickness direction A carbon fiber felt having a fiber arrangement of 55% and a specific resistance value of 0.05 Ω · cm was obtained.

【0099】この炭素繊維フェルトに硫黄を含浸させ、
ナトリウム−硫黄単電池を製造した。この電池の充放電
効率を測定したところ、実施例1に対する相対値で10
1の値が得られた。
The carbon fiber felt is impregnated with sulfur,
A sodium-sulfur cell was manufactured. When the charging / discharging efficiency of this battery was measured, it was found to be 10 relative to Example 1.
A value of 1 was obtained.

【0100】(実施例4)1.7dtex、真円度0.
90のポリアクリロニトリル系繊維(アクリロニトリ
ル:アクリル酸メチル=96:4(質量比))を空気中
で200〜300℃で酸化処理した。得られた比重1.
41、引張り強度20kgf/mm2、伸度23%の酸
化繊維をクリンプ9ヶ/インチ、クリンプ率15%でク
リンプ処理後、繊維長38mmにカットした。
(Embodiment 4) 1.7 dtex, roundness of 0.
90 polyacrylonitrile fibers (acrylonitrile: methyl acrylate = 96: 4 (mass ratio)) were oxidized at 200 to 300 ° C. in air. Specific gravity obtained 1.
41. An oxidized fiber having a tensile strength of 20 kgf / mm 2 and an elongation of 23% was crimped at 9 crimps / inch and a crimp rate of 15%, and then cut into a fiber length of 38 mm.

【0101】次いで水スプレーにより水分率を16%に
調整した。この酸化繊維を、厚さ方向に繊維が高配列す
るようにフェルトの加工条件(針の打ち込み本数、針の
太さ)を調整しフェルト加工を行った。(厚さ方向の繊
維配列度が75%) 得られた厚さ15.0mm、嵩密度0.170g/cm
3の酸化繊維フェルトを1000℃で3分間窒素(酸素
含有10ppm)中で焼成し、更に2000℃で3分間
窒素(酸素含有10ppm)雰囲気中で焼成した。その
結果、厚さ13.2mm、嵩密度0.113g/c
3、繊維直径11μm、X線結晶サイズ2.7nm、
炭素繊維断面の真円度0.9、O/Cが0.04、反発
力2.2kgf/cm2、圧縮回復率98%、厚さ方向
の繊維配列が75%、電気抵抗値0.08Ω・cmの炭
素繊維フェルトが得られた。
Next, the water content was adjusted to 16% by water spray. This oxidized fiber was subjected to felt processing by adjusting the felt processing conditions (the number of needles to be driven and the thickness of the needle) so that the fibers were arranged in a high direction in the thickness direction. (The degree of fiber arrangement in the thickness direction is 75%) The obtained thickness is 15.0 mm and the bulk density is 0.170 g / cm.
3 of oxidized fiber felt was calcined in 3 minutes with nitrogen (oxygen-containing 10 ppm) at 1000 ° C., and further calcined at 3 minutes with nitrogen (oxygen-containing 10 ppm) atmosphere at 2000 ° C.. As a result, the thickness was 13.2 mm, and the bulk density was 0.113 g / c.
m 3 , fiber diameter 11 μm, X-ray crystal size 2.7 nm,
Roundness of carbon fiber cross section is 0.9, O / C is 0.04, repulsion force is 2.2 kgf / cm 2 , compression recovery rate is 98%, fiber arrangement in thickness direction is 75%, electric resistance value is 0.08Ω Cm carbon fiber felt was obtained.

【0102】この炭素繊維フェルトに硫黄を含浸させ、
ナトリウム−硫黄単電池を製造した。この電池の充放電
効率を測定したところ、実施例1に対する相対値で10
0の値が得られた。
The carbon fiber felt is impregnated with sulfur,
A sodium-sulfur cell was manufactured. When the charging / discharging efficiency of this battery was measured, it was found to be 10 relative to Example 1.
A value of 0 was obtained.

【0103】(実施例5)1.7dtex、真円度0.
98のポリアクリロニトリル系繊維(アクリロニトリ
ル:アクリルアミド=98:2(質量比))を空気中で
200〜300℃で酸化処理した。得られた比重1.3
7、引張り強度21kgf/mm2、伸度28%の酸化
繊維をクリンプ9ヶ/インチ、クリンプ率15%でクリ
ンプ処理後、繊維長38mmにカットした。
(Embodiment 5) 1.7 dtex, roundness of 0.
98 polyacrylonitrile fibers (acrylonitrile: acrylamide = 98: 2 (mass ratio)) were oxidized at 200 to 300 ° C. in air. Specific gravity 1.3 obtained
7. An oxidized fiber having a tensile strength of 21 kgf / mm 2 and an elongation of 28% was crimped at 9 crimps / inch and a crimp rate of 15%, and then cut into a fiber length of 38 mm.

【0104】次いで水スプレーにより水分率を15%に
調整した。この酸化繊維を、厚さ方向に繊維が高配列す
るようにフェルトの加工条件(針の打ち込み本数、針の
太さ)を調整しフェルト加工を行った。(厚さ方向の繊
維配列度が75%) 得られた厚さ14.7mm、嵩密度0.165g/cm
3の酸化繊維フェルトを1000℃で1分間窒素(酸素
含有10ppm)中で焼成し、更に2000℃で3分間
窒素(酸素含有10ppm)雰囲気中で焼成した。その
結果、厚さ12.9mm、嵩密度0.115g/c
3、繊維直径11μm、X線結晶サイズ2.6nm、
炭素繊維断面の真円度0.98、O/Cが0.04、反
発力2.9kgf/cm2、圧縮復元率99%、厚さ方
向の繊維配列が78%、比抵抗値0.04Ω・cmの炭
素繊維フェルトが得られた。
Next, the water content was adjusted to 15% by water spray. This oxidized fiber was subjected to felt processing by adjusting the felt processing conditions (the number of needles to be driven and the thickness of the needle) so that the fibers were arranged in a high direction in the thickness direction. (The degree of fiber arrangement in the thickness direction is 75%) The obtained thickness is 14.7 mm, and the bulk density is 0.165 g / cm.
3 of oxidized fiber felt was calcined in 1 minute nitrogen (oxygen-containing 10 ppm) at 1000 ° C., and further calcined at 3 minutes with nitrogen (oxygen-containing 10 ppm) atmosphere at 2000 ° C.. As a result, the thickness was 12.9 mm and the bulk density was 0.115 g / c.
m 3 , fiber diameter 11 μm, X-ray crystal size 2.6 nm,
Roundness of carbon fiber cross section is 0.98, O / C is 0.04, repulsive force is 2.9 kgf / cm 2 , compression recovery rate is 99%, fiber arrangement in thickness direction is 78%, specific resistance value is 0.04Ω Cm carbon fiber felt was obtained.

【0105】この炭素繊維フェルトに硫黄を含浸させ、
ナトリウム−硫黄単電池を製造した。この電池の充放電
効率を測定したところ、実施例1に対する相対値で10
0の値が得られた。
The carbon fiber felt is impregnated with sulfur,
A sodium-sulfur cell was manufactured. When the charging / discharging efficiency of this battery was measured, it was 10 relative to Example 1.
A value of 0 was obtained.

【0106】[0106]

【表1】 [Table 1]

【0107】(比較例1〜8)表2又は下記の条件で炭
素繊維フェルトを作製し、得られた炭素繊維フェルトに
ついて、ナトリウム−硫黄単電池の充放電試験を行い、
これらの試験結果を表2又は下記に示す。
(Comparative Examples 1 to 8) Carbon fiber felts were prepared under Table 2 or the following conditions, and the obtained carbon fiber felts were subjected to a charge / discharge test of a sodium-sulfur unit cell.
The test results are shown in Table 2 or below.

【0108】(比較例1)1.7dtex、真円度0.
98のポリアクリロニトリル系繊維(アクリロニトリ
ル:アクリル酸メチル=96:4(質量比))を空気中
で200〜300℃で酸化処理した。得られた比重1.
41、引張り強度23kgf/mm2、伸度22%の酸
化繊維をクリンプ8ヶ/インチ、クリンプ率12%でク
リンプ処理後、繊維長38mmにカットした。
(Comparative Example 1) 1.7 dtex, circularity of 0.
98 polyacrylonitrile fibers (acrylonitrile: methyl acrylate = 96: 4 (mass ratio)) were oxidized at 200 to 300 ° C. in air. Specific gravity obtained 1.
41. An oxidized fiber having a tensile strength of 23 kgf / mm 2 and an elongation of 22% was crimped at 8 crimps / inch and a crimp rate of 12%, and then cut into a fiber length of 38 mm.

【0109】次いで水スプレーにより水分率を15%に
調整した。この酸化繊維を、厚さ方向に繊維が高配列す
るようにフェルトの加工条件(針の打ち込み本数、針の
太さ)を調整しフェルト加工を行った。(厚さ方向の繊
維配列が75%) 得られた厚さ14.7mm、嵩密度0.170g/cm
3の酸化繊維フェルトを1000℃で5分間窒素(酸素
含有率10ppm)中で焼成し、更に1650℃で10
分間窒素(酸素含有率10ppm)雰囲気中で焼成し
た。その結果、厚さ12.9mm、嵩密度0.115g
/cm3、繊維直径11μm、X線結晶サイズ1.8n
m、炭素繊維断面の真円度0.98、O/Cが0.0
5、反発力2.7kgf/cm2、圧縮回復率99%、
厚さ方向の繊維配列度75%、比抵抗値0.35Ω・c
mの炭素繊維フェルトが得られた。
Next, the water content was adjusted to 15% by water spray. This oxidized fiber was subjected to felt processing by adjusting the felt processing conditions (the number of needles to be driven and the thickness of the needle) so that the fibers were arranged in a high direction in the thickness direction. (The fiber arrangement in the thickness direction is 75%.) The obtained thickness is 14.7 mm and the bulk density is 0.170 g / cm.
The oxidized fiber felt of No. 3 was calcined at 1000 ° C. for 5 minutes in nitrogen (oxygen content: 10 ppm), and further fired at 1650 ° C. for 10 minutes.
It was fired in a nitrogen (oxygen content 10 ppm) atmosphere for minutes. As a result, the thickness was 12.9 mm and the bulk density was 0.115 g.
/ Cm 3 , fiber diameter 11 μm, X-ray crystal size 1.8 n
m, roundness of carbon fiber cross section 0.98, O / C is 0.0
5, repulsive force 2.7 kgf / cm 2 , compression recovery rate 99%,
75% fiber orientation in the thickness direction, 0.35Ω · c specific resistance
m of carbon fiber felt was obtained.

【0110】この炭素繊維フェルトに硫黄を含浸させ、
ナトリウム−硫黄単電池を製造し、その電池の充放電効
率を測定したところ、実施例1に対する相対値で91で
あった。
The carbon fiber felt is impregnated with sulfur,
A sodium-sulfur single battery was manufactured, and the charge / discharge efficiency of the battery was measured. As a result, the relative value to that of Example 1 was 91.

【0111】(比較例2)1.7dtex、真円度0.
90のポリアクリロニトリル系繊維(アクリロニトリ
ル:アクリル酸メチル=96:4(質量比))を空気中
で200〜300℃で酸化処理した。得られた比重1.
41、引張り強度22kgf/mm2、伸度21%の酸
化繊維をクリンプ8ケ/インチ、クリンプ率12%でク
リンプ処理後、繊維長38mmにカットした。
(Comparative Example 2) 1.7 dtex, roundness of 0.
90 polyacrylonitrile fibers (acrylonitrile: methyl acrylate = 96: 4 (mass ratio)) were oxidized at 200 to 300 ° C. in air. Specific gravity obtained 1.
41. An oxidized fiber having a tensile strength of 22 kgf / mm 2 and an elongation of 21% was crimped at 8 crimps / inch and a crimp rate of 12%, and then cut into a fiber length of 38 mm.

【0112】次いで水スプレーにより水分率を15%に
調整した。この酸化繊維を、厚さ方向に繊維が高配列す
るようにフェルトの加工条件(針の打ち込み本数、針の
太さ)を調整しフェルト加工を行った。(厚さ方向の繊
維配列度が25%) 得られた厚さ14.9mm、嵩密度0.180g/cm
3の酸化繊維フェルトを1000℃で2分間窒素(酸素
含有率10ppm)中で焼成し、更に1650℃で10
分間窒素(酸素含有率10ppm)雰囲気中で焼成し
た。その結果、厚さ13.0mm、嵩密度0.121g
/cm3、繊維直径11μm、X線結晶サイズ1.8n
m、炭素繊維断面の真円度0.90、O/Cが0.0
5、反発力2.2kgf/cm2、圧縮復元率95%、
厚さ方向の繊維配列が25%、比抵抗値0.40Ω・c
mの炭素繊維フェルトが得られた。
Next, the water content was adjusted to 15% by water spray. This oxidized fiber was subjected to felt processing by adjusting the felt processing conditions (the number of needles to be driven and the thickness of the needle) so that the fibers were arranged in a high direction in the thickness direction. (The degree of fiber arrangement in the thickness direction is 25%) The obtained thickness is 14.9 mm, and the bulk density is 0.180 g / cm.
The oxidized fiber felt of Example 3 was calcined at 1000 ° C. for 2 minutes in nitrogen (oxygen content: 10 ppm), and further baked at 1650 ° C. for 10 minutes.
It was fired in a nitrogen (oxygen content 10 ppm) atmosphere for minutes. As a result, the thickness was 13.0 mm and the bulk density was 0.121 g.
/ Cm 3 , fiber diameter 11 μm, X-ray crystal size 1.8 n
m, roundness of carbon fiber cross section 0.90, O / C is 0.0
5. Rebound force 2.2 kgf / cm 2 , 95% compression recovery
Fiber arrangement in the thickness direction is 25%, specific resistance 0.40Ω · c
m of carbon fiber felt was obtained.

【0113】この炭素繊維フェルトに硫黄を含浸させ、
ナトリウム−硫黄単電池を製造した。この単電池の充放
電効率を測定したところ、実施例1に対する相対値で8
9であった。
This carbon fiber felt is impregnated with sulfur,
A sodium-sulfur cell was manufactured. When the charging / discharging efficiency of this cell was measured, it was 8 relative to Example 1.
Nine.

【0114】(比較例3)1.7dtex、真円度0.
92のポリアクリロニトリル系繊維(アクリロニトリ
ル:アクリル酸メチル=96:4(質量比))を空気中
で200〜300℃で酸化処理した。得られた比重1.
37、引張り強度23kgf/mm2、伸度24%の酸
化繊維をクリンプ8ヶ/インチ、クリンプ率12%でク
リンプ処理後、繊維長38mmにカットした。
(Comparative Example 3) 1.7 dtex, circularity of 0.
Ninety-two polyacrylonitrile fibers (acrylonitrile: methyl acrylate = 96: 4 (mass ratio)) were oxidized at 200 to 300 ° C. in air. Specific gravity obtained 1.
An oxidized fiber having a tensile strength of 23 kgf / mm 2 and an elongation of 24% was crimped at 8 crimps / inch and a crimp rate of 12%, and then cut into a fiber length of 38 mm.

【0115】次いで水スプレーにより水分率を15%に
調整した。この酸化繊維を、厚さ方向に繊維が高配列す
るようにフェルトの加工条件(針の打ち込み本数、針の
太さ)を調整しフェルト加工を行った。(厚さ方向の繊
維配列度が75%) 得られた厚さ15.2mm、嵩密度0.170g/cm
3の酸化繊維フェルトを1000℃で2分間窒素(酸素
含有率10ppm)中で焼成し、更に2000℃で3分
間窒素(酸素含有率10ppm)雰囲気中で焼成した。
その結果、厚さ13.3mm、嵩密度0.113g/c
3、繊維直径11μm、X線結晶サイズ2.7nm、
炭素繊維断面の真円度0.92、O/Cが0.05、反
発力2.1kgf/cm2、圧縮復元率94%、厚さ方
向の繊維配列が75%、電気抵抗値0.09Ω・cmの
炭素繊維フェルトが得られた。
Next, the water content was adjusted to 15% by water spray. This oxidized fiber was subjected to felt processing by adjusting the felt processing conditions (the number of needles to be driven and the thickness of the needle) so that the fibers were arranged in a high direction in the thickness direction. (The degree of fiber arrangement in the thickness direction is 75%) The obtained thickness is 15.2 mm, and the bulk density is 0.170 g / cm.
The oxidized fiber felt No. 3 was fired at 1000 ° C. for 2 minutes in nitrogen (oxygen content: 10 ppm), and further fired at 2000 ° C. for 3 minutes in a nitrogen (oxygen content: 10 ppm) atmosphere.
As a result, the thickness was 13.3 mm and the bulk density was 0.113 g / c.
m 3 , fiber diameter 11 μm, X-ray crystal size 2.7 nm,
Roundness of carbon fiber cross section is 0.92, O / C is 0.05, repulsion force is 2.1 kgf / cm 2 , compression recovery rate is 94%, fiber arrangement in thickness direction is 75%, electric resistance value is 0.09Ω Cm carbon fiber felt was obtained.

【0116】この炭素繊維フェルトに硫黄を含浸させ、
ナトリウム−硫黄単電池を製造した。この単電池の充放
電効率を測定したところ、実施例1に対する相対値で9
5であった。
This carbon fiber felt is impregnated with sulfur,
A sodium-sulfur cell was manufactured. When the charging / discharging efficiency of this single cell was measured, it was 9 relative to Example 1.
It was 5.

【0117】(比較例4)1.02dtex、真円度
0.98のポリアクリロニトリル系繊維(アクリロニト
リル:アクリル酸メチル=96:4(質量比))を空気
中で200〜300℃で酸化処理した。得られた比重
1.41、引張り強度24kgf/mm2、伸度25%
の酸化繊維をクリンプ9ヶ/インチ、クリンプ率13%
でクリンプ処理後、繊維長38mmにカットした。
Comparative Example 4 Polyacrylonitrile fibers (acrylonitrile: methyl acrylate = 96: 4 (mass ratio)) having a roundness of 1.02 dtex and a roundness of 0.98 were oxidized in air at 200 to 300 ° C. . Obtained specific gravity 1.41, tensile strength 24 kgf / mm 2 , elongation 25%
Oxidized fiber of 9 crimps / inch, crimp rate 13%
And then cut to a fiber length of 38 mm.

【0118】次いで水スプレーにより水分率を15%に
調整した。この酸化繊維を、厚さ方向に繊維が高配列す
るようにフェルトの加工条件(針の打ち込み本数、針の
太さ)を調整しフェルト加工を行った。(厚さ方向の繊
維配列度が75%) 得られた厚さ15.5mm、嵩密度0.140g/cm
3の酸化繊維フェルトを1000℃で3分間窒素(酸素
含有率10ppm)中で焼成し、更に2000℃で3分
間窒素(酸素含有率10ppm)雰囲気中で焼成した。
その結果、厚さ13.8mm、嵩密度0.118g/c
3、X線結晶サイズ2.6nm、炭素繊維断面の真円
度0.98、O/Cが0.05、反発力1.4kgf/
cm2、圧縮回復率98%、厚さ方向の繊維配列が75
%、電気抵抗値0.09Ω・cmの炭素繊維フェルトが
得られた。
Next, the water content was adjusted to 15% by water spray. This oxidized fiber was subjected to felt processing by adjusting the felt processing conditions (the number of needles to be driven and the thickness of the needle) so that the fibers were arranged in a high direction in the thickness direction. (The degree of fiber arrangement in the thickness direction is 75%) The obtained thickness is 15.5 mm, and the bulk density is 0.140 g / cm.
3 of oxidized fiber felt was calcined in 3 minutes with nitrogen (oxygen content 10 ppm) at 1000 ° C., and further calcined at 3 minutes with nitrogen (oxygen content 10 ppm) atmosphere at 2000 ° C..
As a result, the thickness was 13.8 mm, and the bulk density was 0.118 g / c.
m 3 , X-ray crystal size 2.6 nm, roundness of carbon fiber cross section 0.98, O / C 0.05, repulsive force 1.4 kgf /
cm 2 , 98% compression recovery, 75 fibers in the thickness direction
%, And a carbon fiber felt having an electric resistance value of 0.09 Ω · cm was obtained.

【0119】この炭素繊維フェルトに硫黄を含浸させ、
ナトリウム−硫黄単電池を製造した。この単電池の充放
電効率を測定したところ、実施例1に対する相対値で9
4であった。
This carbon fiber felt is impregnated with sulfur,
A sodium-sulfur cell was manufactured. When the charging / discharging efficiency of this single cell was measured, it was 9 relative to Example 1.
It was 4.

【0120】(比較例5)1.02dtex、真円度0.
71のポリアクリロニトリル系繊維(アクリロニトリ
ル:アクリル酸メチル=96:4(質量比))を空気中
で200〜300℃で酸化処理した。得られた比重1.
41、引張り強度21kgf/mm2、伸度18%の酸
化繊維をクリンプ7ヶ/インチ、クリンプ率10%でク
リンプ処理後、繊維長38mmにカットした。
(Comparative Example 5) 1.02 dtex, roundness: 0.
Seventy-one polyacrylonitrile fibers (acrylonitrile: methyl acrylate = 96: 4 (mass ratio)) were oxidized at 200 to 300 ° C. in air. Specific gravity obtained 1.
41. An oxidized fiber having a tensile strength of 21 kgf / mm 2 and an elongation of 18% was crimped at 7 crimps / inch and a crimp rate of 10%, and then cut into a fiber length of 38 mm.

【0121】次いで水スプレーにより水分率を15%に
調整した。この酸化繊維を、厚さ方向に繊維が高配列す
るようにフェルトの加工条件(針の打ち込み本数、針の
太さ)を調整しフェルト加工を行った。
Next, the water content was adjusted to 15% by water spray. This oxidized fiber was subjected to felt processing by adjusting the felt processing conditions (the number of needles to be driven and the thickness of the needle) so that the fibers were arranged in a high direction in the thickness direction.

【0122】得られた厚さ14.5mm、嵩密度0.1
56g/cm3の酸化繊維フェルトを1000℃で3分
間窒素(酸素含有率10ppm)中で焼成し、更に20
00℃で3分間窒素(酸素含有率10ppm)雰囲気中
で焼成した。その結果、厚さ12.8mm、嵩密度0.
113g/cm3、X線結晶サイズ2.6nm、炭素繊
維断面の真円度0.71、O/Cが0.06、反発力
0.9kgf/cm2、圧縮復元率91%、厚さ方向の
繊維配列45%、電気抵抗値0.10Ω・cmの炭素繊
維フェルトが得られた。
The obtained thickness was 14.5 mm and the bulk density was 0.1
56 g / cm 3 of oxidized fiber felt was fired at 1000 ° C. for 3 minutes in nitrogen (10 ppm oxygen content),
Firing was performed at 00 ° C. for 3 minutes in a nitrogen (oxygen content: 10 ppm) atmosphere. As a result, the thickness was 12.8 mm, and the bulk density was 0.
113 g / cm 3 , X-ray crystal size 2.6 nm, roundness of carbon fiber cross section 0.71, O / C 0.06, repulsive force 0.9 kgf / cm 2 , compression recovery 91%, thickness direction Of carbon fiber felt having a fiber arrangement of 45% and an electric resistance value of 0.10 Ω · cm.

【0123】この炭素繊維フェルトに硫黄を含浸させ、
ナトリウム−硫黄単電池を製造した。この単電池の充放
電効率を測定したところ、実施例1に対する相対値で9
4であった。
The carbon fiber felt is impregnated with sulfur,
A sodium-sulfur cell was manufactured. When the charging / discharging efficiency of this single cell was measured, it was 9 relative to Example 1.
It was 4.

【0124】(比較例6)1.02dtex、真円度
0.71の ポリアクリロニトリル系繊維(アクリロニ
トリル:アクリル酸メチル=96:4(質量比))を空
気中で200〜300℃で酸化処理した。得られた比重
1.41、引張り強度20kgf/mm2、伸度18%
の酸化繊維をクリンプ8ヶ/インチ、クリンプ率12%
でクリンプ処理後、繊維長38mmにカットした。
Comparative Example 6 A polyacrylonitrile fiber (acrylonitrile: methyl acrylate = 96: 4 (mass ratio)) having a roundness of 1.02 dtex and a roundness of 0.71 was oxidized in air at 200 to 300 ° C. . Obtained specific gravity 1.41, tensile strength 20kgf / mm 2 , elongation 18%
Oxidized fiber of 8 crimps / inch, crimp rate 12%
And then cut to a fiber length of 38 mm.

【0125】次いで水スプレーにより水分率を15%に
調整した。この酸化繊維を、厚さ方向に繊維が高配列す
るようにフェルトの加工条件(針の打ち込み本数、針の
太さ)を調整しフェルト加工を行った。
Next, the water content was adjusted to 15% by water spray. This oxidized fiber was subjected to felt processing by adjusting the felt processing conditions (the number of needles to be driven and the thickness of the needle) so that the fibers were arranged in a high direction in the thickness direction.

【0126】得られた厚さ15.0mm、嵩密度0.1
57g/cm3の酸化繊維フェルトを1000℃で3分
間窒素(酸素含有35ppm)中で焼成し、更に125
0℃で3分間窒素(酸素含有35ppm)雰囲気中で焼
成した。その結果、厚さ13.5mm、嵩密度0.11
1g/cm3、X線結晶サイズ1.2nm、炭素繊維断
面の真円度0.71、O/Cが0.17、反発力0.7
kgf/cm2、圧縮復元率84%、厚さ方向の繊維配
列75%、電気抵抗値0.37Ω・cmの炭素繊維フェ
ルトが得られた。
The obtained thickness was 15.0 mm and the bulk density was 0.1
57 g / cm 3 of oxidized fiber felt was fired at 1000 ° C. for 3 minutes in nitrogen (35 ppm oxygen),
Calcination was carried out at 0 ° C. for 3 minutes in a nitrogen (oxygen-containing 35 ppm) atmosphere. As a result, the thickness was 13.5 mm and the bulk density was 0.11.
1 g / cm 3 , X-ray crystal size 1.2 nm, roundness of carbon fiber cross section 0.71, O / C 0.17, repulsion 0.7
A carbon fiber felt having a kgf / cm 2 , a compression recovery ratio of 84%, a fiber arrangement in the thickness direction of 75%, and an electric resistance value of 0.37 Ω · cm was obtained.

【0127】この炭素繊維フェルトに硫黄を含浸させ、
ナトリウム−硫黄単電池を製造した。この単電池の充放
電効率を測定したところ、実施例1に対する相対値で8
9であった。
The carbon fiber felt is impregnated with sulfur,
A sodium-sulfur cell was manufactured. When the charging / discharging efficiency of this cell was measured, it was 8 relative to Example 1.
Nine.

【0128】(比較例7)1.02dtex、真円度
0.98のポリアクリロニトリル系繊維(アクリロニト
リル:アクリル酸メチル=96:4(質量比))を空気
中で200〜300℃で酸化処理した。得られた比重
1.41、引張り強度25kgf/mm2、伸度23%
の酸化繊維をクリンプ9ヶ/インチ、クリンプ率13%
でクリンプ処理後、繊維長38mmにカットした。
Comparative Example 7 Polyacrylonitrile fiber (acrylonitrile: methyl acrylate = 96: 4 (mass ratio)) having a roundness of 1.02 dtex and a roundness of 0.98 was oxidized at 200 to 300 ° C. in air. . Obtained specific gravity 1.41, tensile strength 25 kgf / mm 2 , elongation 23%
Oxidized fiber of 9 crimps / inch, crimp rate 13%
And then cut to a fiber length of 38 mm.

【0129】次いで水スプレーにより水分率を15%に
調整した。この酸化繊維を、厚さ方向に繊維が高配列す
るようにフェルトの加工条件(針の打ち込み本数、針の
太さ)を調整しフェルト加工を行った。
Next, the water content was adjusted to 15% by water spray. This oxidized fiber was subjected to felt processing by adjusting the felt processing conditions (the number of needles to be driven and the thickness of the needle) so that the fibers were arranged in a high direction in the thickness direction.

【0130】得られた厚さ15.5mm、嵩密度0.1
62g/cm3の酸化繊維フェルトを1000℃で3分
間窒素(酸素含有25ppm)中で焼成し、更に200
0℃で3分間窒素(酸素含有25ppm)雰囲気中で焼
成した。その結果、厚さ13.7mm、嵩密度0.11
3g/cm3、X線結晶サイズ26nm、炭素繊維断面
の真円度0.98、O/Cが0.13、反発力1.7k
gf/cm2、圧縮復元率98%、厚さ方向の繊維配列
75%、電気抵抗値0.15Ω・cmの炭素繊維フェル
トが得られた。
The obtained thickness was 15.5 mm and the bulk density was 0.1
The oxidized fiber felt of 62 g / cm 3 was calcined at 1000 ° C. for 3 minutes in nitrogen (25 ppm of oxygen),
Firing was performed at 0 ° C. for 3 minutes in a nitrogen (oxygen-containing 25 ppm) atmosphere. As a result, the thickness was 13.7 mm and the bulk density was 0.11.
3 g / cm 3 , X-ray crystal size 26 nm, roundness of carbon fiber cross section 0.98, O / C 0.13, repulsive force 1.7 k
A carbon fiber felt having a gf / cm 2 , a compression recovery rate of 98%, a fiber arrangement in the thickness direction of 75%, and an electric resistance value of 0.15 Ω · cm was obtained.

【0131】この炭素繊維フェルトに硫黄を含浸させ、
ナトリウム−硫黄単電池を製造した。この単電池の充放
電効率を測定したところ、実施例1に対する相対値で9
5であった。
This carbon fiber felt is impregnated with sulfur,
A sodium-sulfur cell was manufactured. When the charging / discharging efficiency of this single cell was measured, it was 9 relative to Example 1.
It was 5.

【0132】(比較例8)4.52dtex、真円度
0.97のポリアクリロニトリル系繊維(アクリロニト
リル:アクリル酸メチル=96:4(質量比))を空気
中で200〜300℃で酸化処理した。得られた比重
1.40、引張り強度18kgf/mm2、伸度16%
の酸化繊維をクリンプ7ヶ/インチ、クリンプ率10%
でクリンプ処理後、繊維長38mmにカットした。
Comparative Example 8 Polyacrylonitrile fiber (acrylonitrile: methyl acrylate = 96: 4 (mass ratio)) having a roundness of 4.52 dtex and a roundness of 0.97 was oxidized at 200 to 300 ° C. in air. . Obtained specific gravity 1.40, tensile strength 18 kgf / mm 2 , elongation 16%
Oxidized fiber of 7 crimps / inch, crimp rate 10%
And then cut to a fiber length of 38 mm.

【0133】次いで水スプレーにより水分率を16%に
調整した。この酸化繊維を、厚さ方向に繊維が高配列す
るようにフェルトの加工条件(針の打ち込み本数、針の
太さ)を調整しフェルト加工を行った。
Next, the water content was adjusted to 16% by water spray. This oxidized fiber was subjected to felt processing by adjusting the felt processing conditions (the number of needles to be driven and the thickness of the needle) so that the fibers were arranged in a high direction in the thickness direction.

【0134】得られた厚さ14.6mm、嵩密度0.1
48g/cm3の酸化繊維フェルトを1000℃で3分
間窒素(酸素含有率10ppm)中で焼成し、更に20
00℃で3分間窒素(酸素含有率10ppm)雰囲気中
で焼成した。その結果、厚さ13.1mm、嵩密度0.
102g/cm3、X線結晶サイズ2.5nm、炭素繊
維断面の真円度0.97、O/Cが0.06、反発力
4.3kgf/cm2、圧縮復元率98%、厚さ方向の
繊維配列60%、電気抵抗値0.10Ω・cmの炭素繊
維フェルトが得られた。
Obtained thickness 14.6 mm, bulk density 0.1
48 g / cm 3 of oxidized fiber felt was baked at 1000 ° C. for 3 minutes in nitrogen (oxygen content 10 ppm),
Firing was performed at 00 ° C. for 3 minutes in a nitrogen (oxygen content: 10 ppm) atmosphere. As a result, the thickness was 13.1 mm and the bulk density was 0.1.
102 g / cm 3 , X-ray crystal size 2.5 nm, roundness of carbon fiber cross section 0.97, O / C 0.06, repulsive force 4.3 kgf / cm 2 , compression recovery 98%, thickness direction A carbon fiber felt having a fiber arrangement of 60% and an electric resistance value of 0.10 Ω · cm was obtained.

【0135】この炭素繊維フェルトに硫黄を含浸させ、
ナトリウム−硫黄単電池を製造した。この単電池の充放
電効率を測定したところ、実施例1に対する相対値で9
4であった。
This carbon fiber felt is impregnated with sulfur,
A sodium-sulfur cell was manufactured. When the charging / discharging efficiency of this single cell was measured, it was 9 relative to Example 1.
It was 4.

【0136】[0136]

【表2】 [Table 2]

【0137】なお、表2中、○は好ましいと思われる結
果を、×は好ましくないと思われる結果を表している。
In Table 2, .largecircle. Indicates a result which seems to be preferable, and X indicates a result which is not preferable.

【0138】[0138]

【発明の効果】本発明の炭素繊維フェルトは、圧縮前の
厚さに対して厚さを50%圧縮した時の反発力、除圧後
の厚さ復元率、及び炭素繊維フェルト厚さ方向の比抵抗
値を所定の範囲にしたので、通電方向の電気抵抗値、形
態安定性、単電池内部壁面への密着性、単電池内の他の
材料に加わる応力の度合い、及び作動時の電解質の流れ
の円滑性などの電池用電極材としての要求される要件を
十分満足させる炭素繊維フェルトである。
The carbon fiber felt of the present invention has a repulsive force when the thickness is compressed by 50% of the thickness before compression, a thickness recovery rate after decompression, and a thickness in the carbon fiber felt thickness direction. Since the specific resistance value is within a predetermined range, the electric resistance value in the direction of conduction, the form stability, the adhesion to the inner wall surface of the unit cell, the degree of stress applied to other materials in the unit cell, and the electrolyte during operation It is a carbon fiber felt that sufficiently satisfies the requirements for a battery electrode material such as flow smoothness.

【0139】また、この炭素繊維フェルトを電極材とし
て用いたナトリウム−硫黄電池などの二次電池は、充放
電効率が極めて高いものである。
A secondary battery such as a sodium-sulfur battery using the carbon fiber felt as an electrode material has a very high charge / discharge efficiency.

【0140】更に、本発明の炭素繊維フェルトの製造方
法によれば、酸化繊維から炭素繊維への焼成時間が短時
間で済むという利点も有するものである。
Further, according to the method for producing a carbon fiber felt of the present invention, there is an advantage that the firing time from the oxidized fiber to the carbon fiber can be shortened.

フロントページの続き (72)発明者 小野 毅 静岡県駿東郡長泉町上土狩234 東邦レー ヨン株式会社研究所内 (72)発明者 川崎 紘二 兵庫県伊丹市西野7−3−1 A−602 Fターム(参考) 4L031 AA27 AB01 AB26 BA08 CA02 DA11 4L037 CS03 FA02 FA03 FA05 FA17 FA19 PA54 PC03 PC05 PC11 PS02 UA04 UA20 4L047 AA03 BA03 CC12 5H029 AJ02 AK05 AL13 BJ16 CJ28 DJ07 DJ15 EJ04 HJ00 HJ04 HJ05 HJ13 HJ14 HJ15 HJ20Continuing from the front page (72) Inventor Takeshi Ono 234 Kamidogari, Nagaizumi-cho, Sunto-gun, Shizuoka Prefecture Inside of the laboratory of Toho Rayon Co., Ltd. (72) Inventor Koji Kawasaki 7-3-1 Nishino Nishino, Itami-shi, Hyogo A-602 F-term 4L031 AA27 AB01 AB26 BA08 CA02 DA11 4L037 CS03 FA02 FA03 FA05 FA17 FA19 PA54 PC03 PC05 PC11 PS02 UA04 UA20 4L047 AA03 BA03 CC12 5H029 AJ02 AK05 AL13 BJ16 CJ28 DJ07 DJ15 EJ04 HJ00 HJ04 HJH HJH

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ポリアクリロニトリル系炭素繊維からな
り、圧縮前の厚さに対して、厚さを50%圧縮時の反発
力が2〜4kg/cm2で、除圧後の厚さ復元率が98
%以上、かつ炭素繊維フェルト厚さ方向の比抵抗値が
0.11Ω・cm以下であることを特徴とする電極材用
炭素繊維フェルト。
1. A polyacrylonitrile-based carbon fiber having a rebound force of 2 to 4 kg / cm 2 when the thickness is compressed to 50% of the thickness before compression, and a thickness recovery rate after decompression. 98
%, And a specific resistance value in a thickness direction of the carbon fiber felt is 0.11 Ω · cm or less.
【請求項2】 ポリアクリロニトリル系炭素繊維の表面
酸素濃度O/Cが0.08以下である請求項1に記載の
電極材用炭素繊維フェルト。
2. The carbon fiber felt for an electrode material according to claim 1, wherein the surface oxygen concentration O / C of the polyacrylonitrile-based carbon fiber is 0.08 or less.
【請求項3】 ポリアクリロニトリル系炭素繊維のX線
結晶サイズ(Lc)が1.3nm以上、繊維直径が6〜
20μmである請求項1に記載の電極材用炭素繊維フェ
ルト。
3. The polyacrylonitrile-based carbon fiber has an X-ray crystal size (Lc) of at least 1.3 nm and a fiber diameter of 6 to 6.
The carbon fiber felt for an electrode material according to claim 1, which has a thickness of 20 µm.
【請求項4】 炭素繊維フェルトの厚さ方向の繊維配列
度が30〜80%である請求項1に記載の電極材用炭素
繊維フェルト。
4. The carbon fiber felt for an electrode material according to claim 1, wherein the degree of fiber arrangement in the thickness direction of the carbon fiber felt is 30 to 80%.
【請求項5】 次の工程(1)、(2)、(3)、
(1)0.57〜3.40デシテックス(dtex)
で、かつ繊維断面の真円度が0.8〜1のポリアクリロ
ニトリル系繊維を空気中で酸化処理し酸化繊維とする、
(2)酸化繊維をクリンプ処理した後、厚さ方向の繊維
配列度が30〜80%にニ−ドルパンチし、酸化繊維フ
ェルトを作製する、(3)酸化繊維フェルトを不活性ガ
ス中、600〜1300℃で1〜10分間処理後、更に
1700℃以上の温度で0.5〜10分間処理する、を
含むことを特徴とする請求項1乃至4の何れかに記載の
電極材用炭素繊維フェルトの製造方法。
5. The following steps (1), (2), (3),
(1) 0.57 to 3.40 decitex (dtex)
And the polyacrylonitrile-based fiber having a roundness of the fiber cross section of 0.8 to 1 is oxidized in the air to be an oxidized fiber.
(2) After crimping the oxidized fiber, needle punching is performed so that the degree of fiber arrangement in the thickness direction is 30 to 80% to produce an oxidized fiber felt. The carbon fiber felt for an electrode material according to any one of claims 1 to 4, further comprising: treating at 1300 ° C for 1 to 10 minutes, and further treating at a temperature of 1700 ° C or more for 0.5 to 10 minutes. Manufacturing method.
JP2000090261A 2000-03-29 2000-03-29 Carbon fiber felt for electrode material and method for producing the same Expired - Fee Related JP4407854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000090261A JP4407854B2 (en) 2000-03-29 2000-03-29 Carbon fiber felt for electrode material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000090261A JP4407854B2 (en) 2000-03-29 2000-03-29 Carbon fiber felt for electrode material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001279566A true JP2001279566A (en) 2001-10-10
JP4407854B2 JP4407854B2 (en) 2010-02-03

Family

ID=18605889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000090261A Expired - Fee Related JP4407854B2 (en) 2000-03-29 2000-03-29 Carbon fiber felt for electrode material and method for producing the same

Country Status (1)

Country Link
JP (1) JP4407854B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031912A (en) * 2005-07-29 2007-02-08 Toho Tenax Co Ltd Polyacrylonitrile-based oxidized fiber felt, carbon fiber felt and method for producing them
US20130295811A1 (en) * 2010-10-13 2013-11-07 Mitsubishi Rayon Co., Ltd. Carbon-fiber-precursor fiber bundle, carbon fiber bundle, and uses thereof
WO2015146234A1 (en) * 2014-03-27 2015-10-01 住友電気工業株式会社 Carbon fiber felt, manufacturing method therefor, and liquid circulation-type electrolytic cell
JP2016000885A (en) * 2014-05-23 2016-01-07 東レ株式会社 Carbon fiber non-woven fabric, gas diffusion electrode for solid high molecular weight form fuel cell and solid high molecular weight form fuel cell
CN113789607A (en) * 2021-09-22 2021-12-14 辽宁兴汇碳材料科技有限公司 Polyacrylonitrile-based fibrofelt and preparation method and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239767A (en) * 1988-03-18 1989-09-25 Toray Ind Inc Electrode substrate and manufacture thereof
JPH02154047A (en) * 1988-12-05 1990-06-13 Mitsubishi Rayon Co Ltd Carbon fiber felt
JPH06322616A (en) * 1993-05-11 1994-11-22 Toray Ind Inc Acrylic-derived carbon fiber and its production
JPH10154527A (en) * 1996-11-22 1998-06-09 Ngk Insulators Ltd Positive electrode conductive material for sodium-sulfur battery
JPH11241230A (en) * 1997-12-11 1999-09-07 Toray Ind Inc Carbon fiber, precursor fiber for carbon fiber, composite material and production of carbon fiber
JPH11350259A (en) * 1998-06-12 1999-12-21 Mitsubishi Rayon Co Ltd Production of carbon fiber felt

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239767A (en) * 1988-03-18 1989-09-25 Toray Ind Inc Electrode substrate and manufacture thereof
JPH02154047A (en) * 1988-12-05 1990-06-13 Mitsubishi Rayon Co Ltd Carbon fiber felt
JPH06322616A (en) * 1993-05-11 1994-11-22 Toray Ind Inc Acrylic-derived carbon fiber and its production
JPH10154527A (en) * 1996-11-22 1998-06-09 Ngk Insulators Ltd Positive electrode conductive material for sodium-sulfur battery
JPH11241230A (en) * 1997-12-11 1999-09-07 Toray Ind Inc Carbon fiber, precursor fiber for carbon fiber, composite material and production of carbon fiber
JPH11350259A (en) * 1998-06-12 1999-12-21 Mitsubishi Rayon Co Ltd Production of carbon fiber felt

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031912A (en) * 2005-07-29 2007-02-08 Toho Tenax Co Ltd Polyacrylonitrile-based oxidized fiber felt, carbon fiber felt and method for producing them
JP4632043B2 (en) * 2005-07-29 2011-02-16 東邦テナックス株式会社 Polyacrylonitrile-based oxidized fiber felt, carbon fiber felt, and production method thereof
US20130295811A1 (en) * 2010-10-13 2013-11-07 Mitsubishi Rayon Co., Ltd. Carbon-fiber-precursor fiber bundle, carbon fiber bundle, and uses thereof
US9920456B2 (en) * 2010-10-13 2018-03-20 Mitsubishi Chemical Corporation Carbon-fiber-precursor fiber bundle, carbon fiber bundle, and uses thereof
US10233569B2 (en) 2010-10-13 2019-03-19 Mitsubishi Chemical Corporation Carbon-fiber-precursor fiber bundle, carbon fiber bundle, and uses thereof
US10662556B2 (en) 2010-10-13 2020-05-26 Mitsubishi Chemical Corporation Carbon-fiber-precursor fiber bundle, carbon fiber bundle, and uses thereof
US11332852B2 (en) 2010-10-13 2022-05-17 Mitsubishi Chemical Corporation Carbon-fiber-precursor fiber bundle, carbon fiber bundle, and uses thereof
WO2015146234A1 (en) * 2014-03-27 2015-10-01 住友電気工業株式会社 Carbon fiber felt, manufacturing method therefor, and liquid circulation-type electrolytic cell
JP2016000885A (en) * 2014-05-23 2016-01-07 東レ株式会社 Carbon fiber non-woven fabric, gas diffusion electrode for solid high molecular weight form fuel cell and solid high molecular weight form fuel cell
CN113789607A (en) * 2021-09-22 2021-12-14 辽宁兴汇碳材料科技有限公司 Polyacrylonitrile-based fibrofelt and preparation method and application thereof

Also Published As

Publication number Publication date
JP4407854B2 (en) 2010-02-03

Similar Documents

Publication Publication Date Title
Lee et al. Anodic properties of hollow carbon nanofibers for Li-ion battery
US7052803B2 (en) Lithium rechargeable battery
CN108923035B (en) Preparation method of nano silicon-carbon composite negative electrode material for lithium ion battery
EP0742295B1 (en) Carbon fibre for secondary battery and process for producing the same
TWI653779B (en) Electrode material for metal air battery
WO2008026380A1 (en) Carbon material for negative electrode for lithium ion rechargeable battery, carbon material for negative electrode for low crystalline carbon-impregnated lithium ion rechargeable battery, negative electrode plate, and lithium ion rechargeable battery
TWI672854B (en) Electrode material, lithium sulfur battery electrode, lithium sulfur battery, and electrode material manufacturing method
KR101348200B1 (en) Carbon nanofiber composite containing silicon nanoparticles coated with stabilizer, preparation of the same and lithium secondary battery using the same
US5795678A (en) Negative electrode for use in lithium secondary battery and process for producing the same
EP0644603A1 (en) Negative electrode for use in a secondary battery
JP4863443B2 (en) Carbon fiber mixed oxidized fiber felt, carbon fiber felt, and manufacturing method thereof
EP1550766A1 (en) Carbonaceous fiber fabric, roll of carbonaceous fiber fabric, gas diffusion layer material for solid polymer fuel cell, method for production of carbonaceous fiber fabric, and method for production of solid polymer fuel cell
CN113224292A (en) High-performance lithium ion battery polyacrylonitrile carbon fiber negative electrode material and preparation method thereof
CN113454815A (en) Negative electrode composite material, negative electrode, electrochemical device, and electronic device
JP4407854B2 (en) Carbon fiber felt for electrode material and method for producing the same
KR20090055299A (en) Carbonaceous material and method of preparing same
JP3617550B2 (en) Negative electrode for lithium secondary battery, lithium secondary battery including the negative electrode, and method for producing the negative electrode for lithium secondary battery
CN109904420B (en) Nitrogen-doped graphene film and preparation method and application thereof
JP2664819B2 (en) Graphite fiber and method for producing the same
JPH0963584A (en) Carbon material for lithium secondary battery and manufacture thereof
JP4632043B2 (en) Polyacrylonitrile-based oxidized fiber felt, carbon fiber felt, and production method thereof
JP2002100359A (en) Graphite material for negative electrode of lithium secondary battery, and its manufacturing method
JPH11158737A (en) Production of carbon fiber felt
JPH09320590A (en) Lithium ton secondary battery negative electrode material and its manufacture
KR102198468B1 (en) Method for manufacturing a porous carbon nanofiber structure and a porous carbon nanofiber structured manufactured thereby

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091104

R150 Certificate of patent or registration of utility model

Ref document number: 4407854

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees