JPH10154527A - Positive electrode conductive material for sodium-sulfur battery - Google Patents
Positive electrode conductive material for sodium-sulfur batteryInfo
- Publication number
- JPH10154527A JPH10154527A JP8311768A JP31176896A JPH10154527A JP H10154527 A JPH10154527 A JP H10154527A JP 8311768 A JP8311768 A JP 8311768A JP 31176896 A JP31176896 A JP 31176896A JP H10154527 A JPH10154527 A JP H10154527A
- Authority
- JP
- Japan
- Prior art keywords
- conductive material
- sodium
- sulfur battery
- anode
- positive electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Cell Electrode Carriers And Collectors (AREA)
- Secondary Cells (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】 本発明は、ナトリウム−硫
黄電池の陽極活物質である硫黄を含浸させるためのナト
リウム−硫黄電池用陽極導電材に関する。TECHNICAL FIELD The present invention relates to an anode conductive material for a sodium-sulfur battery for impregnating sulfur which is an anode active material of a sodium-sulfur battery.
【0002】[0002]
【従来の技術】 ナトリウム−硫黄電池は、一方に陰極
活物質である溶融金属ナトリウム、他方には陽極活物質
である溶融硫黄を配し、両者をナトリウムイオンに対し
て選択的な透過性を有するβ−アルミナ固体電解質で隔
離し、300〜350℃で作動させる高温二次電池であ
る。2. Description of the Related Art A sodium-sulfur battery has molten metal sodium as a cathode active material on one side and molten sulfur as an anode active material on the other side, and both have selective permeability to sodium ions. This is a high-temperature secondary battery operated at 300 to 350 ° C. isolated by a β-alumina solid electrolyte.
【0003】 このようなナトリウム−硫黄電池は、例
えば図2に示すように、陽極導電材12に硫黄を含浸し
て成る円筒状の陽極モールド6、陽極モールド6を収容
する陽極容器3、陽極容器3の内部に配置され、ナトリ
ウムイオンを選択的に透過させる機能を有する有底円筒
状の固体電解質管(β−アルミナ管)5、及び固体電解
質管5の内部に配置され、底部に開口17を有するナト
リウム収容容器10とから成っている。Such a sodium-sulfur battery includes, as shown in FIG. 2, for example, a cylindrical anode mold 6 formed by impregnating an anode conductive material 12 with sulfur, an anode container 3 containing the anode mold 6, and an anode container. 3 and a bottomed cylindrical solid electrolyte tube (β-alumina tube) 5 having a function of selectively transmitting sodium ions, and an opening 17 at the bottom portion. And a sodium storage container 10.
【0004】 以上の構成を有するナトリウム−硫黄電
池4において、放電時には溶融ナトリウム7が電子を放
出してナトリウムイオンとなり、これが固体電解質管5
内を透過して陽極側に移動し、陽極導電材12中の硫黄
及び外部回路を通ってきた電子と反応して多硫化ナトリ
ウムを生成し、2V程度の電圧を発生させる。一方、充
電時には、放電とは逆に、多硫化ナトリウムからのナト
リウム及び硫黄の生成反応が起こる。In the sodium-sulfur battery 4 having the above-described configuration, at the time of discharge, the molten sodium 7 emits electrons to become sodium ions, which are converted into solid electrolyte tubes 5.
It passes through the inside and moves to the anode side, reacts with the sulfur in the anode conductive material 12 and the electrons passed through the external circuit to generate sodium polysulfide, and generates a voltage of about 2V. On the other hand, at the time of charging, the reaction of generating sodium and sulfur from sodium polysulfide occurs, contrary to the discharging.
【0005】 ところで、ナトリウム−硫黄電池の充放
電効率を高めるためには、電池の内部抵抗を低減させる
ことが必要であり、具体的には、固体電解質管5、陽極
容器3、陽極導電材12等、通電時の電流又はナトリウ
ムイオンの経路となる個々の部材の導電性に関する特性
を改善すること、上記各部材間の接触抵抗を低減するこ
と等が考えられる。Incidentally, in order to increase the charge / discharge efficiency of the sodium-sulfur battery, it is necessary to reduce the internal resistance of the battery. Specifically, the solid electrolyte tube 5, the anode container 3, the anode conductive material 12 For example, it is conceivable to improve the conductivity-related characteristics of the individual members serving as a path for the current or sodium ions when energized, and to reduce the contact resistance between the above-mentioned members.
【0006】 このような観点より、従来より、図3に
示すように、陽極導電材12の固体電解質管5側に配置
される面よりニードルパンチを施すことが行われてい
る。即ち、ニードルパンチを施すことにより、陽極導電
材12の繊維を固体電解質管5の周面に対して垂直に配
向させることができるため、導電経路が短縮され、導電
性が向上する。又、陽極導電材12の密度が固体電解質
管5側で小さく、陽極容器3側で大きくなるため、充電
時には、陽極容器3側における多硫化ナトリウムの反応
箇所を増やすことができ、多硫化ナトリウムの反応が促
進される。放電時についても、充電時の逆の反応におい
て、同様のことがいえる。From such a viewpoint, conventionally, as shown in FIG. 3, needle punching has been performed from the surface of the anode conductive material 12 disposed on the solid electrolyte tube 5 side. That is, by performing the needle punch, the fibers of the anode conductive material 12 can be oriented perpendicular to the peripheral surface of the solid electrolyte tube 5, so that the conductive path is shortened and the conductivity is improved. Further, since the density of the anode conductive material 12 is small on the solid electrolyte tube 5 side and large on the anode container 3 side, the number of reaction sites of sodium polysulfide on the anode container 3 side can be increased at the time of charging. The reaction is accelerated. The same can be said for the reverse reaction during charging as well as during discharging.
【0007】[0007]
【発明が解決しようとする課題】 しかしながら、ニー
ドルパンチを施した陽極導電材においては、図3に示す
ように、陽極導電材12の内部においては、繊維が固体
電解質管の周面に対して垂直に配向する割合が高いもの
の、陽極導電材の表面近傍においては、繊維の向きは固
体電解質管の周面に対して垂直に配向していない割合が
高いため、陽極導電材と陽極容器との接触抵抗の低減が
効率良く行われず、又、陽極導電材の固体電解質管近傍
においては、ナトリウムイオンの移動が効率良く行われ
ず、ナトリウム−硫黄電池の充放電効率を改善できる余
地を残していた。However, in the anode conductive material subjected to needle punching, as shown in FIG. 3, inside the anode conductive material 12, the fibers are perpendicular to the peripheral surface of the solid electrolyte tube. In the vicinity of the surface of the anode conductive material, the orientation of the fibers is not high in the direction perpendicular to the peripheral surface of the solid electrolyte tube, so the contact between the anode conductive material and the anode container is high. The resistance is not efficiently reduced, and the movement of sodium ions is not efficiently performed in the vicinity of the solid electrolyte tube of the anode conductive material, leaving room for improving the charge / discharge efficiency of the sodium-sulfur battery.
【0008】 更に、詳しく説明すると、そもそも陽極
導電材の除荷状態での厚みは、電池の運転状態において
反発力が生じるように、陽極導電材の設置間隙(固体電
解質外周面と陽極容器内周面との間)よりも厚くなって
いる。図3に示す陽極導電材を除々に圧縮していくと、
ニードルパンチにより圧縮方向に反発力を生じるように
配向された繊維が存在しているにもかかわらず、その反
発効果は顕著に現れなかった。その原因は、ニードルパ
ンチにより配向された繊維の両端が丸くなっており、わ
ずかな荷重で容易に変形することにあることが判明し
た。従って、反発力が低いために、接触抵抗の低減が効
率良く行われていなかった。又、ナトリウムイオンは、
繊維の配向方向に移動しやすいが、繊維の先端に丸みが
あると、移動が阻害される傾向にあると推測された。More specifically, in the first place, the thickness of the anode conductive material in the unloaded state is set so that a repulsive force is generated in the operating state of the battery. Between the surface). When the anode conductive material shown in FIG. 3 is gradually compressed,
Despite the presence of fibers oriented so as to generate a repulsive force in the compression direction by needle punching, the repulsive effect did not appear significantly. It has been found that the cause is that both ends of the fiber oriented by the needle punch are rounded and easily deformed by a slight load. Therefore, the contact resistance has not been efficiently reduced due to the low repulsive force. Also, sodium ion
It was presumed that the fibers tended to move in the orientation direction, but if the fiber had a rounded tip, the movement tended to be hindered.
【0009】 本発明はかかる状況に鑑みてなされたも
のであり、その目的とするところはナトリウム−硫黄電
池の充放電効率を改善することができるナトリウム−硫
黄電池用陽極導電材を提供することにある。The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an anode conductive material for a sodium-sulfur battery that can improve the charge / discharge efficiency of the sodium-sulfur battery. is there.
【0010】[0010]
【課題を解決するための手段】 即ち、本発明によれ
ば、ナトリウム−硫黄電池の陽極活物質である硫黄を含
浸させるためのナトリウム−硫黄電池用陽極導電材であ
って、両面又は片面よりニードルパンチを施した炭素繊
維フェルトを厚み方向において切断により2又は3以上
に等分して成るナトリウム−硫黄電池用陽極導電材が提
供される。That is, according to the present invention, there is provided an anode conductive material for a sodium-sulfur battery for impregnating sulfur which is an anode active material of a sodium-sulfur battery. Provided is an anode conductive material for a sodium-sulfur battery, which is obtained by cutting a punched carbon fiber felt into two or more equal parts by cutting in a thickness direction.
【0011】 上記のナトリウム−硫黄電池用陽極導電
材は、切断面をナトリウム−硫黄電池の固体電解質管側
若しくは陽極容器側又はこれらの双方に向けて配置して
用いるものであるが、固体電解質管側に向けて配置する
切断面にα−アルミナパウダーを散布するか、又はガラ
ス繊維フェルトから成る層を設けてもよい。The above-described anode conductive material for a sodium-sulfur battery is used by disposing the cut surface toward the solid electrolyte tube side or the anode container side of the sodium-sulfur battery or both of them. Α-alumina powder may be sprayed on the cut surface arranged toward the side, or a layer made of glass fiber felt may be provided.
【0012】[0012]
【発明の実施の形態】 本発明のナトリウム−硫黄電池
用陽極導電材は、図1(a)、(b)又は(c)に示す
ように、両面又は片面よりニードルパンチを施した炭素
繊維フェルトを厚み方向において切断により2又は3以
上に等分することによって構成される。従って、切断に
よって生じた切断面14をナトリウム−硫黄電池の陽極
容器側に向けて配置すれば、切断面14近傍において、
繊維が陽極容器の周面に対して垂直に配向しているた
め、陽極導電材12の厚み方向に反発力が生じ、陽極導
電材12と陽極容器との密着性が大きくなる。そのた
め、陽極導電材12と陽極容器との接触抵抗が小さくな
るため、陽極導電材12と陽極容器間の電子の移動が効
率良く行われ、ナトリウム−硫黄電池の充放電効率を改
善することができる。BEST MODE FOR CARRYING OUT THE INVENTION The anode conductive material for a sodium-sulfur battery according to the present invention is, as shown in FIG. 1 (a), (b) or (c), a carbon fiber felt which has been needle-punched from both sides or one side. Is cut into two or more equal parts by cutting in the thickness direction. Therefore, if the cut surface 14 generated by cutting is arranged toward the anode container side of the sodium-sulfur battery, in the vicinity of the cut surface 14,
Since the fibers are oriented perpendicular to the peripheral surface of the anode container, a repulsive force is generated in the thickness direction of the anode conductive material 12, and the adhesion between the anode conductive material 12 and the anode container increases. Therefore, since the contact resistance between the anode conductive material 12 and the anode container is reduced, the transfer of electrons between the anode conductive material 12 and the anode container is efficiently performed, and the charge / discharge efficiency of the sodium-sulfur battery can be improved. .
【0013】 又、切断面14をナトリウム−硫黄電池
の固体電解質に向けて配置すれば、切断面14近傍にお
いて、ナトリウムイオンの移動を阻害する要因となる固
体電解質管周面方向に配向する繊維に対して、同周面の
垂直方向に配向する繊維の割合が大きくなるため、ナト
リウムイオンの移動が効率良く行われ、ナトリウム−硫
黄電池の充放電効率の低下を防ぐことができる。Further, if the cut surface 14 is arranged toward the solid electrolyte of the sodium-sulfur battery, the fibers oriented in the circumferential direction of the solid electrolyte tube, which is a factor that inhibits the movement of sodium ions, in the vicinity of the cut surface 14 can be formed. On the other hand, since the proportion of the fibers oriented in the vertical direction on the same peripheral surface increases, the movement of sodium ions can be performed efficiently, and a decrease in the charge / discharge efficiency of the sodium-sulfur battery can be prevented.
【0014】 又、陽極導電材は、カーボン化までの処
理工程において、表面が酸化されたり、異物が付着した
りして、表面近傍の接触抵抗が大きくなる。しかし、本
発明においては、切断により生じた、新鮮な面を固体電
解質管若しくは陽極容器又はその双方と接触させるた
め、この点においても接触抵抗を低減することができ、
ナトリウム−硫黄電池の充放電効率を改善することがで
きる。[0014] Furthermore, the surface of the anode conductive material is oxidized or adheres to foreign matters in the processing steps up to carbonization, and the contact resistance near the surface increases. However, in the present invention, a fresh surface generated by cutting is brought into contact with the solid electrolyte tube or the anode container or both, so that the contact resistance can be reduced also in this regard,
The charge / discharge efficiency of the sodium-sulfur battery can be improved.
【0015】 本発明の陽極導電材においては、ナトリ
ウム−硫黄電池の固体電解質管側に向けて配置する切断
面にα−アルミナパウダーを散布するか、又はガラス繊
維フェルトから成る層を設けることにより、陽極導電材
の固体電解質管側への硫黄の析出を防ぐことが好まし
い。即ち、多硫化ナトリウムの反応により生じる硫黄は
電気絶縁体であるため、陽極導電材の固体電解質管側に
硫黄が大量に析出したのでは、その後の充電反応が妨げ
られることになる。そのため、陽極導電材の固体電解質
管側の表面に、多硫化ナトリウムに対して濡れ性の良い
ガラス繊維、α−アルミナ等の高抵抗体を配置すれば、
このような事態を回避することができるのである。[0015] In the anode conductive material of the present invention, α-alumina powder is sprayed on a cut surface arranged toward the solid electrolyte tube side of the sodium-sulfur battery, or a layer made of glass fiber felt is provided. It is preferable to prevent the deposition of sulfur on the solid electrolyte tube side of the anode conductive material. That is, since the sulfur generated by the reaction of sodium polysulfide is an electric insulator, a large amount of sulfur deposited on the solid electrolyte tube side of the anode conductive material impedes the subsequent charging reaction. Therefore, if a glass fiber with good wettability to sodium polysulfide and a high-resistance body such as α-alumina are arranged on the surface of the anode conductive material on the solid electrolyte tube side,
Such a situation can be avoided.
【0016】[0016]
【実施例】 以下、本発明を図示の実施例を用いてさら
に詳しく説明するが、本発明はこれらの実施例に限られ
るものではない。Hereinafter, the present invention will be described in more detail with reference to the illustrated embodiments, but the present invention is not limited to these embodiments.
【0017】(実施例1−1〜1−4) 本発明の陽極
導電材を組み込んだナトリウム−硫黄電池を製造し、そ
の充放電効率を測定した。Examples 1-1 to 1-4 A sodium-sulfur battery incorporating the anode conductive material of the present invention was manufactured, and its charge / discharge efficiency was measured.
【0018】 陽極導電材は以下のように製造した。ま
ず、ポリアクリロニトリルを耐炎化処理により酸化し、
黒色の耐炎化繊維を得た。次に、この耐炎化繊維から未
焼成フェルトを製造し、片面より約2000回/cm2
のニードルパンチを施した後、約2000℃で焼成を行
うことによりカーボン化処理を施し、炭素繊維フェルト
とした。なお、炭素繊維フェルトの厚さは、陽極導電材
に対する所望の厚さの2倍となるようにした。最後に、
上記の炭素繊維フェルトを厚み方向において、ワイヤカ
ッターにより2等分することにより、陽極導電材を得
た。The anode conductive material was manufactured as follows. First, polyacrylonitrile is oxidized by oxidizing treatment,
A black flame-resistant fiber was obtained. Next, an unsintered felt is manufactured from the flame-resistant fiber, and is 2,000 times / cm 2 from one side.
After performing needle punching, carbonization was performed by baking at about 2000 ° C. to obtain a carbon fiber felt. The thickness of the carbon fiber felt was set to be twice the desired thickness for the anode conductive material. Finally,
The anode conductive material was obtained by bisecting the carbon fiber felt in the thickness direction using a wire cutter.
【0019】 ここで、図1(a)に示すように、切断
前の炭素繊維フェルトのニードルパンチを施した面を上
面15、他方の面を下面16とした場合、切断後におい
て、上面15を含む陽極導電材を陽極導電材a、下面を
含む陽極導電材を陽極導電材bとする。Here, as shown in FIG. 1A, when the surface of the carbon fiber felt before the cutting is subjected to needle punching is the upper surface 15 and the other surface is the lower surface 16, the upper surface 15 is cut after the cutting. The anode conductive material including the anode conductive material a and the anode conductive material including the lower surface are referred to as the anode conductive material b.
【0020】(実施例1−1) 陽極導電材aの切断面
を陽極容器側に配置し、図2に示すようなナトリウム−
硫黄電池を製造し、充放電効率を測定した。表1に結果
を示す。(Example 1-1) A cut surface of the anode conductive material a was arranged on the anode container side, and sodium
A sulfur battery was manufactured and charge / discharge efficiency was measured. Table 1 shows the results.
【0021】 なお、充放電効率とは、充電電力量に対
する放電電力量の割合を示す値である。Note that the charge / discharge efficiency is a value indicating a ratio of a discharge power amount to a charge power amount.
【0022】(実施例1−2) 陽極導電材aの切断面
を固体電解質管側に配置したナトリウム−硫黄電池を製
造し、充放電効率を測定した。表1に結果を示す。Example 1-2 A sodium-sulfur battery in which the cut surface of the anode conductive material a was arranged on the solid electrolyte tube side was manufactured, and the charge / discharge efficiency was measured. Table 1 shows the results.
【0023】(実施例1−3) 陽極導電材bの切断面
を陽極容器側に配置したナトリウム−硫黄電池を製造
し、充放電効率を測定した。表1に結果を示す。(Example 1-3) A sodium-sulfur battery in which the cut surface of the anode conductive material b was arranged on the anode container side was manufactured, and the charge / discharge efficiency was measured. Table 1 shows the results.
【0024】(実施例1−4) 陽極導電材bの切断面
を固体電解質管側に配置したナトリウム−硫黄電池を製
造し、充放電効率を測定した。表1に結果を示す。(Example 1-4) A sodium-sulfur battery in which the cut surface of the anode conductive material b was arranged on the solid electrolyte tube side was manufactured, and the charge / discharge efficiency was measured. Table 1 shows the results.
【0025】[0025]
【表1】 [Table 1]
【0026】(実施例2−1〜2−4) 実施例1と同
様に製造した未焼成フェルトの両面より、各面に対して
約1000回/cm2のニードルパンチを施した後、約
2000℃で焼成を行うことによりカーボン化処理を施
し、炭素繊維フェルトとした。なお、炭素繊維フェルト
の厚さは、陽極導電材に対する所望の厚さの2倍となる
ようにした。最後に、上記の炭素繊維フェルトを厚み方
向において、ワイヤカッターにより2等分することによ
り、陽極導電材を得た。(Examples 2-1 to 2-4) After performing needle punching of about 1000 times / cm 2 on both sides of both sides of the unsintered felt manufactured in the same manner as in Example 1, about 2,000 times Carbonization treatment was performed by firing at ℃ to obtain a carbon fiber felt. The thickness of the carbon fiber felt was set to be twice the desired thickness for the anode conductive material. Finally, the carbon fiber felt was divided into two equal parts by a wire cutter in the thickness direction to obtain an anode conductive material.
【0027】 得られた2つの陽極導電材の繊維は、ほ
ぼ同様の配向状態を示すが、図1(b)に示すように、
それぞれ陽極導電材c、陽極導電材dとする。Although the obtained two fibers of the anode conductive material show almost the same orientation state, as shown in FIG.
These are referred to as an anode conductive material c and an anode conductive material d, respectively.
【0028】(実施例2−1) 陽極導電材cの切断面
を陽極容器側に配置したナトリウム−硫黄電池を製造
し、充放電効率を測定した。表1に結果を示す。(Example 2-1) A sodium-sulfur battery in which a cut surface of the anode conductive material c was arranged on the anode container side was manufactured, and charge / discharge efficiency was measured. Table 1 shows the results.
【0029】(実施例2−2) 陽極導電材cの切断面
を固体電解質管側に配置したナトリウム−硫黄電池を製
造し、充放電効率を測定した。表1に結果を示す。(Example 2-2) A sodium-sulfur battery in which the cut surface of the anode conductive material c was arranged on the solid electrolyte tube side was manufactured, and the charge / discharge efficiency was measured. Table 1 shows the results.
【0030】(実施例2−3) 陽極導電材dの切断面
を陽極容器側に配置したナトリウム−硫黄電池を製造
し、充放電効率を測定した。表1に結果を示す。Example 2-3 A sodium-sulfur battery in which the cut surface of the anode conductive material d was arranged on the anode container side was manufactured, and the charge / discharge efficiency was measured. Table 1 shows the results.
【0031】(実施例2−4) 陽極導電材dの切断面
を固体電解質管側に配置したナトリウム−硫黄電池を製
造し、充放電効率を測定した。表1に結果を示す。Example 2-4 A sodium-sulfur battery in which the cut surface of the anode conductive material d was arranged on the solid electrolyte tube side was manufactured, and the charge / discharge efficiency was measured. Table 1 shows the results.
【0032】(比較例) 実施例1と同様に製造した未
焼成フェルトの片面より約2000回/cm2のニード
ルパンチを施した後、約2000℃で焼成を行うことに
よりカーボン化処理を施し、実施例1の切断後の陽極導
電材と同等の厚さを有する陽極導電材を得た。(Comparative Example) After performing needle punching of about 2,000 times / cm 2 from one side of the unfired felt manufactured in the same manner as in Example 1, carbonization treatment was performed by firing at about 2000 ° C. An anode conductive material having a thickness equivalent to the anode conductive material after cutting in Example 1 was obtained.
【0033】 この陽極導電材のニードルパンチを施し
た面が固体電解質管側に来るようにナトリウム−硫黄電
池を製造し、充放電効率を測定した。表1に結果を示
す。A sodium-sulfur battery was manufactured so that the surface of the anode conductive material on which the needle punch was performed was located on the solid electrolyte tube side, and the charge / discharge efficiency was measured. Table 1 shows the results.
【0034】 表1より、切断面を設けた陽極導電材を
用いることにより、従来の陽極導電材を用いる場合に比
べ、ナトリウム−硫黄電池の充放電効率が向上したこと
がわかる。From Table 1, it can be seen that the use of the anode conductive material provided with the cut surface improved the charge / discharge efficiency of the sodium-sulfur battery compared to the case of using the conventional anode conductive material.
【0035】[0035]
【発明の効果】 本発明のナトリウム−硫黄電池用陽極
導電材は、両面又は片面よりニードルパンチを施した炭
素繊維フェルトを厚み方向において切断により2又は3
以上に等分することによって構成されているため、切断
面近傍において、繊維が固体電解質管又は陽極容器の周
面に対して垂直に配向しており、電子及びナトリウムイ
オンの移動が効率良く行われるため、ナトリウム−硫黄
電池の充放電効率の低下を防ぐことができる。EFFECT OF THE INVENTION The anode conductive material for a sodium-sulfur battery of the present invention is obtained by cutting a carbon fiber felt needle-punched from both sides or one side by cutting in a thickness direction 2 or 3
Since it is constituted by equally dividing the above, in the vicinity of the cut surface, the fibers are oriented perpendicular to the peripheral surface of the solid electrolyte tube or the anode container, and the movement of electrons and sodium ions is performed efficiently. Therefore, it is possible to prevent a decrease in charge / discharge efficiency of the sodium-sulfur battery.
【図1】 本発明のナトリウム−硫黄電池用陽極導電材
の(a)一例、(b)他の例及び(c)さらに他の例を
示す陽極導電材の厚み方向の断面図である。FIG. 1 is a sectional view in the thickness direction of an anode conductive material showing (a) an example, (b) another example, and (c) still another example of the anode conductive material for a sodium-sulfur battery of the present invention.
【図2】 ナトリウム−硫黄電池の構成を示す模式断面
図である。FIG. 2 is a schematic sectional view showing a configuration of a sodium-sulfur battery.
【図3】 従来のナトリウム−硫黄電池用陽極導電材の
一例を示す陽極導電材の厚み方向の断面図である。FIG. 3 is a sectional view in the thickness direction of an anode conductive material showing an example of a conventional anode conductive material for a sodium-sulfur battery.
1・・・絶縁体リング、3・・・陽極容器、4・・・ナトリウム
−硫黄電池、5・・・固体電解質管、6・・・陽極モールド、
7・・・ナトリウム、10・・・ナトリウム収容容器、11・・
・陰極金具、12・・・陽極導電材、13・・・ニードルパン
チを施した面近傍の部分、14・・・切断面、15・・・上
面、16・・・下面、17・・・開口。DESCRIPTION OF SYMBOLS 1 ... Insulator ring, 3 ... Anode container, 4 ... Sodium-sulfur battery, 5 ... Solid electrolyte tube, 6 ... Anode mold,
7 ... sodium, 10 ... sodium container, 11 ...
・ Cathode fitting, 12 ・ ・ ・ Anode conductive material, 13 ・ ・ ・ Part near the face on which needle punching is performed, 14 ・ ・ ・ Cut face, 15 ・ ・ ・ Top face, 16 ・ ・ ・ Bottom face, 17 ・ ・ ・ Opening .
Claims (4)
る硫黄を含浸させるためのナトリウム−硫黄電池用陽極
導電材であって、 両面又は片面よりニードルパンチを施した炭素繊維フェ
ルトを厚み方向において切断により2又は3以上に等分
して成ることを特徴とするナトリウム−硫黄電池用陽極
導電材。An anode conductive material for a sodium-sulfur battery for impregnating sulfur, which is an anode active material for a sodium-sulfur battery, in which a carbon fiber felt needle-punched from both sides or one side is cut in a thickness direction. Anode-conductive material for sodium-sulfur battery, characterized in that the anode-conductive material is divided into two or three or more parts by the following method.
体電解質管側若しくは陽極容器側又はこれらの双方に向
けて配置して用いる請求項1に記載のナトリウム−硫黄
電池用陽極導電材。2. The anode conductive material for a sodium-sulfur battery according to claim 1, wherein the cut surface is disposed toward the solid electrolyte tube side or the anode container side of the sodium-sulfur battery or both of them.
にα−アルミナパウダーを散布した請求項2に記載のナ
トリウム−硫黄電池用陽極導電材。3. The anode conductive material for a sodium-sulfur battery according to claim 2, wherein α-alumina powder is sprayed on a cut surface arranged toward the solid electrolyte tube side.
にガラス繊維フェルトから成る層を設けた請求項2に記
載のナトリウム−硫黄電池用陽極導電材。4. The anode conductive material for a sodium-sulfur battery according to claim 2, wherein a layer made of glass fiber felt is provided on a cut surface arranged toward the solid electrolyte tube side.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8311768A JPH10154527A (en) | 1996-11-22 | 1996-11-22 | Positive electrode conductive material for sodium-sulfur battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8311768A JPH10154527A (en) | 1996-11-22 | 1996-11-22 | Positive electrode conductive material for sodium-sulfur battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10154527A true JPH10154527A (en) | 1998-06-09 |
Family
ID=18021252
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8311768A Withdrawn JPH10154527A (en) | 1996-11-22 | 1996-11-22 | Positive electrode conductive material for sodium-sulfur battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10154527A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001279566A (en) * | 2000-03-29 | 2001-10-10 | Toho Tenax Co Ltd | Carbon fiber felt for electrode material and method for producing the same |
KR101104801B1 (en) * | 2009-10-14 | 2012-01-12 | 주식회사 효성 | Sulfur Positive Electrodes and Method for Preparing the Same |
KR101281758B1 (en) * | 2010-12-28 | 2013-07-02 | 재단법인 포항산업과학연구원 | SODIUM SULFUR(NaS) CELL AND MANUFACTURING METHOD THEREOF |
KR20140085757A (en) * | 2012-12-27 | 2014-07-08 | 재단법인 포항산업과학연구원 | Method for manufacturing felt of sodium sulfur battery and felt thereof |
US9876223B2 (en) | 2014-06-24 | 2018-01-23 | Hyundai Motor Company | Cathode for lithium-sulfur battery |
-
1996
- 1996-11-22 JP JP8311768A patent/JPH10154527A/en not_active Withdrawn
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001279566A (en) * | 2000-03-29 | 2001-10-10 | Toho Tenax Co Ltd | Carbon fiber felt for electrode material and method for producing the same |
KR101104801B1 (en) * | 2009-10-14 | 2012-01-12 | 주식회사 효성 | Sulfur Positive Electrodes and Method for Preparing the Same |
KR101281758B1 (en) * | 2010-12-28 | 2013-07-02 | 재단법인 포항산업과학연구원 | SODIUM SULFUR(NaS) CELL AND MANUFACTURING METHOD THEREOF |
KR20140085757A (en) * | 2012-12-27 | 2014-07-08 | 재단법인 포항산업과학연구원 | Method for manufacturing felt of sodium sulfur battery and felt thereof |
US9876223B2 (en) | 2014-06-24 | 2018-01-23 | Hyundai Motor Company | Cathode for lithium-sulfur battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4076331B2 (en) | Positive electrode current collector and sodium-sulfur battery using the same | |
EP1113511A4 (en) | Lithium secondary cell and its producing method | |
CA2161076A1 (en) | An anode with an anode active material retaining body having a number ofpores distributed therein for rechargeable battery, rechargeable batteryprovided with said anode, and process for the production of said anode | |
US4333994A (en) | Cell employing a coiled electrode assembly | |
JPH06283203A (en) | Electrochemical energy storage single cell | |
JP2000082484A (en) | Electrode roll for secondary battery | |
JPH01235167A (en) | Rechargeable cell | |
JPH02181367A (en) | Separator for fuel cell and manufacture thereof | |
JPH10154527A (en) | Positive electrode conductive material for sodium-sulfur battery | |
US4461816A (en) | Solid lithium nitride electrolyte battery comprising lithium alloy anode | |
JP2000503162A (en) | Simplified zinc cathode with multiple electrode assemblies | |
KR20210034917A (en) | Cathode and Metal-air battery comprising cathode and Preparing method thereof | |
JP2820376B2 (en) | Carbon felt for sodium-sulfur battery and method for producing the same | |
JPH10188998A (en) | Positive electrode conductive material for sodium-sulfur battery | |
JP2919269B2 (en) | Method for producing carbon felt for sodium-sulfur battery | |
US3527612A (en) | Electrochemical cell including electrodes provided with elongated recesses therein | |
JP2832155B2 (en) | Carbon felt for sodium-sulfur battery and method for producing the same | |
JPH10199502A (en) | Separator and battery using the same | |
JP3422682B2 (en) | Sodium-sulfur battery | |
JP2004103421A (en) | Positive electrode structure for sodium sulfur battery | |
JPH01253171A (en) | Sodium-sulfur battery | |
KR100404934B1 (en) | Nickel/metal hydryde secondary battery | |
JP2744061B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH07122294A (en) | Solidum-sulfur battery | |
JPH1097867A (en) | Sodium-sulfur battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20040203 |