JP2001028268A - Battery electrode material manufacture thereof and electrochemical battery - Google Patents

Battery electrode material manufacture thereof and electrochemical battery

Info

Publication number
JP2001028268A
JP2001028268A JP2000121290A JP2000121290A JP2001028268A JP 2001028268 A JP2001028268 A JP 2001028268A JP 2000121290 A JP2000121290 A JP 2000121290A JP 2000121290 A JP2000121290 A JP 2000121290A JP 2001028268 A JP2001028268 A JP 2001028268A
Authority
JP
Japan
Prior art keywords
fiber
electrode material
treatment
carbon
battery electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000121290A
Other languages
Japanese (ja)
Other versions
JP3474828B2 (en
Inventor
Seiji Ogino
誠司 荻野
Nobuyuki Tokuda
信幸 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP19557298A external-priority patent/JP3167295B2/en
Application filed by Kansai Electric Power Co Inc, Sumitomo Electric Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2000121290A priority Critical patent/JP3474828B2/en
Publication of JP2001028268A publication Critical patent/JP2001028268A/en
Application granted granted Critical
Publication of JP3474828B2 publication Critical patent/JP3474828B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Fuel Cell (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Inert Electrodes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an improved battery electrode material allowing enhancing in battery efficiency. SOLUTION: This battery electrode material is made of fiber fabric selected from among a group comprising carbon fiber, graphite fiber and carbon fiber/ graphite fiber. C-O bonds introduced by plasma treatment, photochemical treatment or ion-implanting treatment are present on a surface of the fiber fabric. The concentration of the C-O bonds gradually decreases toward the inside form the surface of the fiber fabric. The fiber has degree of oxidation such that a ratio (the umber of oxygen atoms)/(the number of carbon atoms) determined by X-ray photoelectron spectroscopy is in a range of 0.1-3.0, while having such a graphitization degree such that an R-value determined by Raman spectroscopic analysis is in a range of 0.1-1.2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、一般に、電池電
極材に関するものであり、より特定的には、電池効率を
高めることができるように改良された電池電極材に関す
る。この発明は、また、そのような電池電極材の製造方
法に関する。この発明は、さらにそのような電池電極材
を用いた、電気化学電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention generally relates to a battery electrode material, and more particularly, to an improved battery electrode material capable of improving battery efficiency. The present invention also relates to a method for producing such a battery electrode material. The present invention further relates to an electrochemical battery using such a battery electrode material.

【0002】[0002]

【従来の技術】近年、電力需要の年負荷率は年々低下
し、発電設備および送電設備の効率的な運用の必要性か
ら負荷平準化を目的とした電力貯蔵用電池への期待が高
まっている。電力貯蔵用電池として、特に、レドックス
フロー型2次電池の開発が進められている。
2. Description of the Related Art In recent years, the annual load factor of power demand has been decreasing year by year, and the need for efficient operation of power generation equipment and power transmission equipment has increased expectations for power storage batteries for load leveling. . As a power storage battery, in particular, a redox flow secondary battery has been developed.

【0003】図1は、従来の全バナジウムレドックスフ
ロー型電池の概念図である。正負極の電解液としてバナ
ジウム等の金属イオンを溶解させた酸性水溶液を用い
る。正負極の電解液は、各々のタンクに貯蔵され、電池
セルへと送液循環される。電池セル内で充放電に生じる
反応は、次式で表わされる。
FIG. 1 is a conceptual diagram of a conventional all-vanadium redox flow battery. An acidic aqueous solution in which metal ions such as vanadium are dissolved is used as an electrolyte for the positive and negative electrodes. The positive and negative electrode electrolytes are stored in respective tanks, and circulated to the battery cells. The reaction that occurs in charging and discharging in the battery cell is represented by the following equation.

【0004】[0004]

【化1】 Embedded image

【0005】図2は、電池セルスタックの斜視図であ
る。図2を参照して、単電池セルは、隔膜によって隔て
られた正極および負極から構成される。電極はたとえば
1m×1m×3mmのカーボンフェルトである。高電圧
を得るため、電池セルは双極板を用いて積層することに
よって直列接続し、電池セルスタックと称する。実際の
電池システムでは、この電池セルスタックを、複数個、
直列・並列に組合せ、所要の電力を得る。
FIG. 2 is a perspective view of a battery cell stack. Referring to FIG. 2, the unit cell includes a positive electrode and a negative electrode separated by a diaphragm. The electrodes are, for example, 1 m × 1 m × 3 mm carbon felt. In order to obtain a high voltage, the battery cells are connected in series by stacking using bipolar plates, and are referred to as a battery cell stack. In an actual battery system, a plurality of battery cell stacks
Combine in series and parallel to obtain the required power.

【0006】[0006]

【発明が解決しようとする課題】さて、従来より、電池
に使う電極材として、炭素材料、特に炭素繊維材料が検
討されている。
Conventionally, carbon materials, particularly carbon fiber materials, have been studied as electrode materials used in batteries.

【0007】特開昭63−22615号公報は、炭素繊
維を、耐炎化処理、炭素化処理、活性化処理、塩素付加
処理等によって改質する技術を提案している。しかし、
この方法によっては、電池効率が十分な電池電極材が得
られないという問題点があった。
Japanese Patent Application Laid-Open No. Sho 63-22615 proposes a technique for modifying carbon fibers by a flame-resistant treatment, a carbonization treatment, an activation treatment, a chlorine addition treatment and the like. But,
This method has a problem that a battery electrode material having sufficient battery efficiency cannot be obtained.

【0008】特開平8−13868号公報は、全バナジ
ウムレドックスフロー電池において、バナジウムとの反
応性の高い反応性層および高導電性層の少なくとも2層
からなる電池電極材を提案している。しかし、この方法
によっても、電池効率の十分な電池電極材は得られてい
ないというのが現状である。
JP-A-8-13868 proposes a battery electrode material in an all-vanadium redox flow battery comprising at least two layers, a reactive layer having high reactivity with vanadium and a highly conductive layer. However, at present, even with this method, a battery electrode material with sufficient battery efficiency has not been obtained.

【0009】それゆえに、この発明の目的は、電池効率
を十分に高めることができるように改良された電池電極
材を提供することにある。
Therefore, an object of the present invention is to provide an improved battery electrode material so that the battery efficiency can be sufficiently improved.

【0010】この発明の目的は、また、そのような電池
電極材の製造方法を提供することにある。
Another object of the present invention is to provide a method for producing such a battery electrode material.

【0011】この発明のさらに他の目的は、そのような
電池電極材を用いた電気化学電池を提供することにあ
る。
Still another object of the present invention is to provide an electrochemical cell using such a battery electrode material.

【0012】この発明のさらに他の目的は、そのような
電池電極材を用いた、電池電解質が流通式である電気化
学電池を提供することにある。
Still another object of the present invention is to provide an electrochemical battery using such a battery electrode material, wherein the battery electrolyte is of a flow type.

【0013】この発明のさらに他の目的は、そのような
電池電極材を用いた、全バナジウムレドックスフロー電
池を提供することにある。
It is still another object of the present invention to provide an all-vanadium redox flow battery using such a battery electrode material.

【0014】[0014]

【課題を解決するための手段】この発明の第1の局面に
従う電池電極材は、炭素繊維、黒鉛繊維および炭素繊維
/黒鉛繊維からなる群より選ばれた繊維布からなる。繊
維布の表面には、プラズマ処理、光化学処理またはイオ
ン注入処理により導入されたC−O結合が存在してい
る。上記C−O結合の濃度は、上記繊維布の表面から内
部へ向かって、徐々に減少している。上記繊維は、X線
光電子分光法により求めた(酸素原子数)/(炭素原子
数)の比が0.1〜3.0の酸化度を有する。上記繊維
は、ラマン分光法解析により求めたR値が0.1〜1.
2の黒鉛化度を有する。
The battery electrode material according to the first aspect of the present invention comprises a fiber cloth selected from the group consisting of carbon fiber, graphite fiber and carbon fiber / graphite fiber. On the surface of the fiber cloth, C—O bonds introduced by plasma treatment, photochemical treatment or ion implantation treatment are present. The concentration of the C—O bond gradually decreases from the surface to the inside of the fiber cloth. The fiber has a degree of oxidation of 0.1 to 3.0 in the ratio of (number of oxygen atoms) / (number of carbon atoms) determined by X-ray photoelectron spectroscopy. The fiber has an R value determined by Raman spectroscopy analysis of 0.1 to 1.
It has a degree of graphitization of 2.

【0015】この発明の第2の局面に従う電池電極材の
製造方法においては、まず、炭素繊維、黒鉛繊維および
炭素繊維/黒鉛繊維からなる群より選ばれた繊維布を準
備する。上記繊維布の表面を、酸素を用いるプラズマ法
により処理する。上記プラズマ法による処理の条件は、
C−O結合の濃度が、上記繊維布の表面から内部へ向か
って徐々に減少し、X線光電子分光法により求めた(酸
素原子数)/(炭素原子数)比が0.1〜3.0の酸化
度を有し、上記繊維が、ラマン分光法解析により求めた
R値が0.1〜1.2の黒鉛化度を有するように選ばれ
ている。
In the method for manufacturing a battery electrode material according to the second aspect of the present invention, first, a fiber cloth selected from the group consisting of carbon fiber, graphite fiber and carbon fiber / graphite fiber is prepared. The surface of the fiber cloth is treated by a plasma method using oxygen. The processing conditions by the plasma method are as follows:
The concentration of the CO bond gradually decreases from the surface of the fiber cloth toward the inside, and the (oxygen atom) / (carbon atom) ratio obtained by X-ray photoelectron spectroscopy is 0.1 to 3. The fibers are selected such that they have an oxidation degree of 0 and the fiber has a degree of graphitization of 0.1 to 1.2 as determined by Raman spectroscopy.

【0016】この発明の第3の局面に従う電池電極材の
製造方法においては、炭素繊維、黒鉛繊維および炭素繊
維/黒鉛繊維からなる群より選ばれた繊維布を準備す
る。上記繊維布の表面を、酸素を用い、光化学法により
処理する。上記光化学法による処理の条件は、C−O結
合の濃度が、上記繊維布の表面から内部に向かって徐々
に減少し、X線光電子分光法により求めた(酸素原子
数)/(炭素原子数)比が0.1〜3.0の酸化度を有
し、上記繊維が、ラマン分光法解析により求めたR値が
0.1〜1.2の黒鉛化度を有するように選ばれてい
る。
In the method for producing a battery electrode material according to a third aspect of the present invention, a fiber cloth selected from the group consisting of carbon fiber, graphite fiber and carbon fiber / graphite fiber is prepared. The surface of the fiber cloth is treated by a photochemical method using oxygen. The condition of the photochemical treatment is that the CO bond concentration gradually decreases from the surface to the inside of the fiber cloth, and is obtained by X-ray photoelectron spectroscopy (number of oxygen atoms) / (number of carbon atoms). ) The ratio is selected such that the fiber has a degree of oxidation of 0.1 to 3.0, and the fiber has a degree of graphitization of 0.1 to 1.2 with an R value determined by Raman spectroscopy analysis. .

【0017】この発明の第4の局面に従う電池電極材の
製造方法においては、まず、炭素繊維、黒鉛繊維および
炭素繊維/黒鉛繊維からなる群より選ばれた繊維布を準
備する。上記繊維布の表面を、酸素を用いるイオン注入
法により処理する。上記イオン注入法による処理の条件
は、C−O結合の濃度が、上記繊維布の表面から内部に
向かって徐々に減少し、X線光電子分光法により求めた
(酸素原子数)/(炭素原子数)比が0.1〜3.0の
酸化度を有し、上記繊維が、ラマン分光法解析により求
めたR値が0.1〜1.2の黒鉛化度を有するように選
ばれている。
In the method for manufacturing a battery electrode material according to the fourth aspect of the present invention, first, a fiber cloth selected from the group consisting of carbon fiber, graphite fiber and carbon fiber / graphite fiber is prepared. The surface of the fiber cloth is treated by an ion implantation method using oxygen. The conditions of the treatment by the ion implantation method are as follows: the concentration of the CO bond gradually decreases from the surface of the fiber cloth toward the inside, and the number of oxygen atoms / (the number of carbon atoms) was determined by X-ray photoelectron spectroscopy. The number is selected so that the ratio has a degree of oxidation of 0.1 to 3.0 and the fiber has a degree of graphitization of 0.1 to 1.2 with an R value determined by Raman spectroscopy analysis. I have.

【0018】この発明の第5の局面に従う電気化学電池
は、電池電極材を有する。上記電池電極材は、炭素繊
維、黒鉛繊維および炭素繊維/黒鉛繊維からなる群より
選ばれた繊維布からなる。上記繊維布の表面には、プラ
ズマ処理、光化学法またはイオン注入処理により導入さ
れたC−O結合が存在している。上記C−O結合の濃度
は、上記繊維布の表面から内部へ向かって徐々に減少し
ている。上記繊維は、X線光電子分光法により求めた
(酸素原子数)/(炭素原子数)比が0.1〜3.0の
酸化度を有する。上記繊維は、ラマン分光法解析により
求めたR値が0.1〜1.2の黒鉛化度を有する。
An electrochemical cell according to a fifth aspect of the present invention has a battery electrode material. The battery electrode material is made of a fiber cloth selected from the group consisting of carbon fiber, graphite fiber, and carbon fiber / graphite fiber. On the surface of the fiber cloth, a C—O bond introduced by a plasma treatment, a photochemical method, or an ion implantation treatment is present. The concentration of the CO bond gradually decreases from the surface to the inside of the fiber cloth. The fiber has an oxidation degree of (oxygen atom number) / (carbon atom number) ratio of 0.1 to 3.0 determined by X-ray photoelectron spectroscopy. The fiber has a degree of graphitization of an R value of 0.1 to 1.2 determined by Raman spectroscopy analysis.

【0019】この発明の第6の局面に従う電気化学電池
は、電池電極材を備え、電池電解式が流通式である電気
化学電池に関する。上記電池電極材は、炭素繊維、黒鉛
繊維および炭素繊維/黒鉛繊維からなる群より選ばれた
繊維布からなる。上記繊維布の表面には、プラズマ処
理、光化学処理またはイオン注入処理により導入された
C−O結合が存在している。上記C−O結合の濃度は、
上記繊維布の表面から内部へ向かって徐々に減少してい
る。上記繊維は、X線光電子分光法により求めた(酸素
原子数)/(炭素原子数)比が0.1〜3.0の酸化度
を有する。上記繊維は、ラマン分光法解析により求めた
R値が0.1〜1.2の黒鉛化度を有する。
An electrochemical cell according to a sixth aspect of the present invention relates to an electrochemical cell provided with a battery electrode material, wherein a battery electrolytic type is a flow type. The battery electrode material is made of a fiber cloth selected from the group consisting of carbon fiber, graphite fiber, and carbon fiber / graphite fiber. On the surface of the fiber cloth, a C—O bond introduced by a plasma treatment, a photochemical treatment or an ion implantation treatment is present. The concentration of the CO bond is:
It gradually decreases from the surface of the fiber cloth toward the inside. The fiber has an oxidation degree of (oxygen atom number) / (carbon atom number) ratio of 0.1 to 3.0 determined by X-ray photoelectron spectroscopy. The fiber has a degree of graphitization of an R value of 0.1 to 1.2 determined by Raman spectroscopy analysis.

【0020】この発明の第7の局面に従う電気化学電池
は、2価および/または3価のバナジウムイオンを含む
電解液に浸漬された負の電極と、5価および/または4
価のバナジウムイオンを含む電解液に浸漬された正の電
極とを備える。上記正および負の電極は、炭素繊維、黒
鉛繊維および炭素繊維/黒鉛繊維からなる群より選ばれ
た繊維布からなる。上記繊維布の表面には、プラズマ処
理、光化学処理またはイオン注入処理により導入された
C−O結合が存在している。上記C−O結合の濃度は、
上記繊維布の表面から内部へ向かって徐々に減少してい
る。上記繊維は、X線光電子分光法により求めた(酸素
原子数)/(炭素原子数)の比が0.1〜3.0の酸化
度を有する。上記繊維は、ラマン分光法解析により求め
たR値が0.1〜1.2の黒鉛化度を有する。
An electrochemical cell according to a seventh aspect of the present invention comprises a negative electrode immersed in an electrolyte containing divalent and / or trivalent vanadium ions, and a pentavalent and / or four-valent electrode.
A positive electrode immersed in an electrolytic solution containing valent vanadium ions. The positive and negative electrodes are made of a fiber cloth selected from the group consisting of carbon fiber, graphite fiber and carbon fiber / graphite fiber. On the surface of the fiber cloth, a C—O bond introduced by a plasma treatment, a photochemical treatment or an ion implantation treatment is present. The concentration of the CO bond is:
It gradually decreases from the surface of the fiber cloth toward the inside. The fiber has a degree of oxidation of 0.1 to 3.0 in the ratio of (number of oxygen atoms) / (number of carbon atoms) determined by X-ray photoelectron spectroscopy. The fiber has a degree of graphitization of an R value of 0.1 to 1.2 determined by Raman spectroscopy analysis.

【0021】[0021]

【発明の実施の形態】実施の形態1 炭素繊維、黒鉛繊維または炭素繊維/黒鉛繊維(複合繊
維)からなる、繊維布を準備する。繊維布の表面を、プ
ラズマ処理、光化学処理、またはイオン注入処理する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 A fiber cloth made of carbon fiber, graphite fiber or carbon fiber / graphite fiber (composite fiber) is prepared. The surface of the fiber cloth is subjected to a plasma treatment, a photochemical treatment, or an ion implantation treatment.

【0022】繊維布のプラズマ処理は、印加電圧200
W,ガス種酸素,ガス圧10Pa,温度常温,時間5分
で行なった。
The plasma treatment of the fiber cloth is performed at an applied voltage of 200
W, gas species oxygen, gas pressure 10 Pa, temperature normal temperature, time 5 minutes.

【0023】光化学法による処理は、光源として低圧水
銀ランプ(メインピークで、254μm)を用い、出力
500W,ガス種大気雰囲気(大気圧),温度常温,時
間5分で行なった。
The treatment by the photochemical method was performed using a low-pressure mercury lamp (254 μm in main peak) as a light source, an output of 500 W, a gas atmosphere (atmospheric pressure), a normal temperature and a temperature of 5 minutes.

【0024】光化学法による処理は、光源としてYAG
レーザを用い、出力100W,ガス種酸素,ガス圧10
Pa,温度常温,時間5分で行なった。
The treatment by the photochemical method uses YAG as a light source.
Using laser, output 100W, gas type oxygen, gas pressure 10
The test was performed at Pa, a normal temperature and a time of 5 minutes.

【0025】イオン注入法による処理は、イオン種に酸
素を選び、加速電圧360keV,時間5分で行なっ
た。
The treatment by the ion implantation method was performed by selecting oxygen as an ion species at an acceleration voltage of 360 keV for 5 minutes.

【0026】また、ガス種として、酸素以外にも、窒
素,塩素、ホウ素、アルミニウム、イオウ、リンを用い
ての処理も行なった。
In addition, a treatment using nitrogen, chlorine, boron, aluminum, sulfur, and phosphorus in addition to oxygen as a gas species was also performed.

【0027】このような処理によって、繊維布の表面
に、C−O結合、C−N結合、C−Cl結合、C−B結
合、C−Al結合、C−S結合またはC−P結合を導入
することができた。これらの結合の濃度は、繊維布の表
面から内部に向かって、徐々に減少していることもわか
った。この点で、全体が酸化される熱処理品と異なって
いた。
By such a treatment, a CO bond, a CN bond, a CC bond, a CB bond, a C-Al bond, a CS bond or a CP bond is formed on the surface of the fiber cloth. Could be introduced. It was also found that the concentration of these bonds gradually decreased from the surface of the fiber cloth toward the inside. In this respect, it was different from the heat-treated product in which the whole was oxidized.

【0028】得られた繊維布を電極として用い、全バナ
ジウムレドックスフロー電池を構成し、電池効率を測定
した。結果を表1に示す。
Using the obtained fiber cloth as an electrode, an all-vanadium redox flow battery was constructed, and the battery efficiency was measured. Table 1 shows the results.

【0029】[0029]

【表1】 [Table 1]

【0030】本発明によると、表1から明らかなよう
に、電池効率の高められた電池電極材が得られる。ま
た、この発明によれば、従来、電池効率が低い、内部抵
抗が大きいという理由で、使用ができなかった黒鉛繊維
を、電極材に用いることができる。また、従来の熱処理
と比べ、酸化度を上げることができた。したがって、酸
化度を上げにくく、使用できなかった黒鉛繊維にも使用
できるようになるのである。また、繊維の表面だけを短
時間で処理できる。繊維に微妙なクラックが生じ、実効
的な反応表面積を増やすこともできるという効果も奏す
る。
According to the present invention, as is apparent from Table 1, a battery electrode material with improved battery efficiency can be obtained. Further, according to the present invention, it is possible to use, as an electrode material, a graphite fiber which could not be used conventionally because of low battery efficiency and high internal resistance. Further, the degree of oxidation was increased as compared with the conventional heat treatment. Therefore, it is difficult to increase the degree of oxidation, and it can be used for graphite fibers that could not be used. Further, only the surface of the fiber can be treated in a short time. A subtle crack is generated in the fiber, and the effect that the effective reaction surface area can be increased is also exerted.

【0031】実施の形態2 従来、黒鉛化度はX線解析で求めていた。しかしこの方
法では、不正確であった。なぜなら、この方法は、電極
全体のバルク分析法であり、電極は繊維表面と内部で構
造が違う。電池は表面反応に基づいているという理由か
ら、上記方法は不正確であった。本実施の形態では、表
面分析法であるラマン分析法で、黒鉛化度を測定した。
Embodiment 2 Conventionally, the degree of graphitization was determined by X-ray analysis. However, this method was inaccurate. Because this method is a bulk analysis method for the entire electrode, the electrode has a different structure between the fiber surface and the inside. The above method was inaccurate because the cell was based on a surface reaction. In the present embodiment, the degree of graphitization was measured by Raman analysis which is a surface analysis method.

【0032】カーボンのラマンスペクトルはその結晶構
造によって、およそ2タイプに分かれることが報告され
ている。1600cm-1に現われるピークは黒鉛(グラ
ファイト)構造に、1300cm-1に現われるピークは
黒鉛構造の乱れ(未組織炭素構造)に起因するものであ
る。電極に用いる炭素材料は、黒鉛と未組織炭素が混在
した状態であり、原材料、黒鉛化焼成条件によって決ま
る。
It has been reported that the Raman spectrum of carbon is roughly divided into two types depending on its crystal structure. Peak appearing at 1600 cm -1 in the graphite structure, the peak appearing at 1300 cm -1 is due to the graphite structure disturbance (unorganized carbon structure). The carbon material used for the electrode is a state in which graphite and unorganized carbon are mixed, and is determined by the raw material and the graphitization firing conditions.

【0033】図3および図4は、本発明によって得られ
た電池電極材のラマン分析結果を示す図である。図3の
ラマンスペクトルを示す資料は、R値(I1360
1580)が1.21のものである。
FIGS. 3 and 4 show the results of Raman analysis of the battery electrode material obtained by the present invention. The data showing the Raman spectrum of FIG. 3 is based on the R value (I 1360 /
I 1580 ) is 1.21.

【0034】図4に示すラマンスペクトルを与えた資料
は、R値が0.35の値を示すものである。
The material given the Raman spectrum shown in FIG. 4 shows an R value of 0.35.

【0035】0.1〜1.2の範囲のものは、電池使用
開始後の、電池効率の低下率が低い。電池効率の低下
は、電極の結晶構造が崩れるとともに酸素等が脱離する
ためである。そこで、炭素間結合が強い黒鉛構造の比率
を上げることにより効率低下を抑えることができること
がわかった。
In the range of 0.1 to 1.2, the rate of decrease in battery efficiency after starting use of the battery is low. The decrease in the battery efficiency is due to the destruction of the crystal structure of the electrode and the release of oxygen and the like. Thus, it has been found that a decrease in efficiency can be suppressed by increasing the ratio of the graphite structure having a strong carbon-carbon bond.

【0036】表2に、R値と電池効率との間の見いださ
れた関係を整理する。
Table 2 summarizes the relationship found between R value and battery efficiency.

【0037】[0037]

【表2】 [Table 2]

【0038】実施の形態3 上記処理を行なって、種々の酸化度を有する電池電極材
を用いて、全バナジウムレドックスフロー電池を構成
し、電池効率を求めた。
Embodiment 3 By performing the above-described treatment, all vanadium redox flow batteries were constructed using battery electrode materials having various degrees of oxidation, and the battery efficiency was determined.

【0039】結果を表3に示す。Table 3 shows the results.

【0040】[0040]

【表3】 [Table 3]

【0041】実施の形態4 繊維布の、片面だけを、上記プラズマ処理、光化学処
理、またはイオン注入処理し、親水化した電池電極材を
作った。酸化面を隔膜側に配置し、非酸化面を双極板側
に配置した。このようにすると、電池効率が上がること
が見いだされた。また、2枚重ねでないので、製造コス
トが下がるという効果も奏する。
Embodiment 4 Only one side of the fiber cloth was subjected to the above-described plasma treatment, photochemical treatment, or ion implantation treatment to produce a battery electrode material which was made hydrophilic. The oxidized surface was arranged on the diaphragm side, and the non-oxidized surface was arranged on the bipolar plate side. It has been found that this increases the battery efficiency. In addition, since the two sheets are not stacked, an effect of reducing the manufacturing cost is also achieved.

【0042】実施の形態5 本実施の形態に用いる電池電極材は、繊維布の、一方の
面を、親水化処理し、他方の面を、フッ素含有するプラ
ズマで処理し、フッ化面とした。非フッ化面を隔膜側に
配置し、フッ化面を双極板側に配置し、全バナジウムレ
ドックスフロー電池を構成し、電池効率を測定した。結
果を表4に示す。
Embodiment 5 The battery electrode material used in the present embodiment was made to have a fluorinated surface by treating one surface of a fiber cloth with a hydrophilic treatment and treating the other surface with a plasma containing fluorine. . A non-fluorinated surface was disposed on the diaphragm side, and a fluorinated surface was disposed on the bipolar plate side, thereby forming an all-vanadium redox flow battery, and the battery efficiency was measured. Table 4 shows the results.

【0043】[0043]

【表4】 [Table 4]

【0044】表4から明らかなように、このような処理
を行なうことにより、電池効率が向上するという効果を
奏した。また、2枚重ねでないので、コストを安くし
て、製造できるという利点もある。
As is clear from Table 4, the effect of improving the battery efficiency was obtained by performing such a process. In addition, there is also an advantage that the cost can be reduced and the device can be manufactured because it is not a stack of two.

【0045】実施の形態6 光化学処理として、0.1〜38μmの範囲内の波長を
含む光を用いて、電池電極材を製造した。また、光源と
して波長0.1〜0.6μmの範囲内の波長を含む水銀
ランプを用いて、光化学処理を行なった。さらに、波長
0.1〜38μmの範囲内の波長を含むレーザ光を用い
て、光化学処理を行なった。いずれの場合も、光子エネ
ルギが大きくなり、電池効率のよい電池電極材を与え
た。
Embodiment 6 As photochemical treatment, a battery electrode material was manufactured using light having a wavelength in the range of 0.1 to 38 μm. The photochemical treatment was performed using a mercury lamp having a wavelength in the range of 0.1 to 0.6 μm as a light source. Further, photochemical treatment was performed using laser light having a wavelength in the range of 0.1 to 38 μm. In each case, the photon energy was increased, and a battery electrode material with high battery efficiency was provided.

【0046】実施の形態7 本実施の形態では、繊維布を、光化学処理する光とし
て、0.2〜38μmの範囲内の波長を含む自由電子レ
ーザ光を用いた。この実施の形態によれば、自由電子レ
ーザの短パルス(数PS)効果で、酸化度が、短時間で
上がるという効果を奏する。
Embodiment 7 In this embodiment, a free electron laser beam having a wavelength in the range of 0.2 to 38 μm is used as light for photochemically treating a fiber cloth. According to this embodiment, there is an effect that the degree of oxidation is increased in a short time by the short pulse (several PS) effect of the free electron laser.

【0047】実施の形態8 本実施の形態では、繊維布の上記処理を、5〜12μm
の範囲内の波長を含む自由電子レーザ光を用いた。自由
電子レーザの波長選択制御に、炭素結合振動モードを励
起することによって、さらに、酸化度を上げることがで
きるという効果を奏した。
Embodiment 8 In this embodiment, the above treatment of the fiber cloth is carried out at 5 to 12 μm.
A free electron laser beam having a wavelength within the range of was used. Excitation of the carbon bond vibration mode for wavelength selection control of the free electron laser has the effect of further increasing the degree of oxidation.

【0048】実施の形態9 本実施の形態では、繊維布の上記処理を、処理後の繊維
径/処理前の繊維径が0.5〜0.9の範囲になるよう
に、上記処理を行なった。繊維径は、電子顕微鏡による
測定により求めた。
Embodiment 9 In this embodiment, the above treatment of the fiber cloth is performed so that the fiber diameter after treatment / fiber diameter before treatment is in the range of 0.5 to 0.9. Was. The fiber diameter was determined by measurement using an electron microscope.

【0049】繊維径が小さくなることにより、電解液の
流れがよくなり、ポンプの動力の損失を低減できるとい
う効果を奏した。
By reducing the fiber diameter, the flow of the electrolytic solution was improved, and the effect of reducing the power loss of the pump was obtained.

【0050】実施の形態10 繊維布の上記処理により、一方の面を酸化面とし、反対
面をフッ化面になるように処理を行なった。両面での反
応度を、片面処理よりもさらに大きく変えることがで
き、ひいては電池効率をさらに上げることができた。つ
ぎに、フッ化度を種々変えて、電池効率を測定した。結
果を表5に示す。
Embodiment 10 By the above treatment of the fiber cloth, treatment was performed such that one surface was an oxidized surface and the other surface was a fluorinated surface. The reactivity on both sides could be changed much more than on single-sided treatment, and the battery efficiency could be further increased. Next, the battery efficiency was measured while varying the degree of fluorination. Table 5 shows the results.

【0051】[0051]

【表5】 [Table 5]

【0052】実施の形態11 本実施の形態によれば、上記処理を行なって繊維布の、
少なくとも片面に、図5に示すような、溝2を形成し
た。繊維布1に溝2を形成することにより、電解液の流
れがよくなり、ポンプ動力の損失を低減できるという効
果を奏した。
Embodiment 11 According to this embodiment, the above processing is performed to reduce the
A groove 2 as shown in FIG. 5 was formed on at least one side. By forming the grooves 2 in the fiber cloth 1, the flow of the electrolytic solution was improved, and the effect of reducing the loss of the pump power was achieved.

【0053】処理前後の繊維径比を変えた場合と、溝を
有するものと有しないものとの、それぞれの圧力損失を
求めた結果を表6にまとめる。
Table 6 summarizes the results of determining the pressure loss of each of the fiber diameter ratios before and after the treatment and those with and without the grooves.

【0054】[0054]

【表6】 [Table 6]

【0055】なお、上記実施例では、本発明を、全バナ
ジウムレドックスフロー電池に適用する場合を例示した
が、この発明はこれに限られるものではなく、その他の
電気化学的電池、流通式(フロー式)電池に適用できる
ことは言うまでもない。本発明を適用することにより、
従来電池より、電池効率をさらに一層高めることができ
る。
In the above-described embodiment, the case where the present invention is applied to an all-vanadium redox flow battery is exemplified. However, the present invention is not limited to this. Formula) It goes without saying that the present invention can be applied to batteries. By applying the present invention,
Battery efficiency can be further improved as compared with conventional batteries.

【0056】以上、具体的な実施例を挙げてこの発明に
ついて説明したが、本発明は、その精神または主要な特
徴から逸脱することなく、他のいろいろな形で実施する
ことができる。それゆえ、前述の実施例はあらゆる点で
単なる例示にすぎず、限定的に解釈してはならない。本
発明の範囲は特許請求の範囲によって示すものであっ
て、明細書本文には何ら拘束されない。さらに、特許請
求の範囲の均等範囲に属する変形や変更は、すべて本発
明の範囲内のものである。
Although the present invention has been described with reference to specific embodiments, the present invention can be embodied in various other forms without departing from the spirit or main features of the present invention. Therefore, the above-described embodiments are merely illustrative in every respect and should not be construed as limiting. The scope of the present invention is defined by the appended claims, and is not limited by the text of the specification. Furthermore, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 レドックスフロー型2次電池の構成を示す図
である。
FIG. 1 is a diagram showing a configuration of a redox flow type secondary battery.

【図2】 電池セルスタックの構成を示す図である。FIG. 2 is a diagram showing a configuration of a battery cell stack.

【図3】 ラマン分光法解析により、黒鉛化度を求める
方法を示す図である。
FIG. 3 is a diagram showing a method of obtaining a degree of graphitization by Raman spectroscopy analysis.

【図4】 ラマン分光法解析により、黒鉛化度を求める
方法を示す、他の図である。
FIG. 4 is another diagram showing a method of obtaining a degree of graphitization by Raman spectroscopy analysis.

【図5】 その表面に溝を有する電池電極材の断面図で
ある。
FIG. 5 is a sectional view of a battery electrode material having a groove on its surface.

【符号の説明】[Explanation of symbols]

1 繊維布、2 溝。 1 fiber cloth, 2 grooves.

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 炭素繊維、黒鉛繊維および炭素繊維/黒
鉛繊維からなる群より選ばれた繊維布からなり、 その表面には、プラズマ処理、光化学処理またはイオン
注入処理により導入されたC−O結合が存在しており、 前記C−O結合の濃度は、前記繊維布の表面から内部へ
向かって、徐々に減少しており、 前記繊維は、X線光電子分光法により求めた(酸素原子
数)/(炭素原子数)比が0.1〜3.0の酸化度を有
し、 前記繊維は、ラマン分光法解析により求めたR値が0.
1〜1.2の黒鉛化度を有する、電池電極材。
1. A fiber cloth selected from the group consisting of carbon fiber, graphite fiber and carbon fiber / graphite fiber, and a CO bond introduced by plasma treatment, photochemical treatment or ion implantation treatment on the surface thereof. The concentration of the CO bond is gradually decreasing from the surface of the fiber cloth toward the inside, and the fiber is obtained by X-ray photoelectron spectroscopy (oxygen atom number). The fiber has a degree of oxidation of 0.1 to 3.0, and the fiber has an R value of 0. 0 determined by Raman spectroscopy analysis.
A battery electrode material having a degree of graphitization of 1 to 1.2.
【請求項2】 前記繊維布の片面または両面が、酸素を
含有するプラズマで処理されている、請求項1に記載の
電池電極材。
2. The battery electrode material according to claim 1, wherein one or both surfaces of said fiber cloth are treated with oxygen-containing plasma.
【請求項3】 前記繊維布の片面または両面が、酸素を
用いて、光化学処理されている、請求項1に記載の電池
電極材。
3. The battery electrode material according to claim 1, wherein one or both surfaces of the fiber cloth are photochemically treated using oxygen.
【請求項4】 前記繊維布の片面または両面が、酸素を
用いて、イオン注入法により処理されている、請求項1
に記載の電池電極材。
4. The fiber fabric according to claim 1, wherein one or both surfaces of the fabric are treated by ion implantation using oxygen.
2. The battery electrode material according to 1.
【請求項5】 前記繊維布の一方の面に溝が形成されて
いる、請求項1に記載の電池電極材。
5. The battery electrode material according to claim 1, wherein a groove is formed on one surface of the fiber cloth.
【請求項6】 前記処理後の繊維の径を分子とし、前記
処理前の繊維の径を分母とする比が0.5〜0.9であ
る、請求項1に記載の電池電極材。
6. The battery electrode material according to claim 1, wherein a ratio of the diameter of the fiber after the treatment as a numerator and the diameter of the fiber before the treatment as a denominator is 0.5 to 0.9.
【請求項7】 炭素繊維、黒鉛繊維および炭素繊維/黒
鉛繊維からなる群より選ばれた繊維布を準備する工程
と、 前記繊維布の表面を、酸素を用いるプラズマ法により処
理する工程と、を備え、 前記プラズマ法による処理の条件は、 C−O結合の濃度が、前記繊維布の表面から内部へ向か
って徐々に減少し、 X線光電子分光法により求めた(酸素原子数)/(炭素
原子数)比が0.1〜3.0の酸化度を有し、 前記繊維が、ラマン分光法解析により求めたR値が0.
1〜1.2の黒鉛化度を有するように選ばれている、電
池電極材の製造方法。
7. A step of preparing a fiber cloth selected from the group consisting of carbon fiber, graphite fiber and carbon fiber / graphite fiber, and a step of treating the surface of the fiber cloth by a plasma method using oxygen. The processing conditions by the plasma method are as follows: the concentration of C—O bonds gradually decreases from the surface of the fiber cloth toward the inside thereof, and is determined by X-ray photoelectron spectroscopy (number of oxygen atoms) / (carbon The fiber has an oxidation degree of 0.1 to 3.0, and the fiber has an R value of 0.5 obtained by Raman spectroscopy analysis.
A method for producing a battery electrode material selected to have a degree of graphitization of 1 to 1.2.
【請求項8】 炭素繊維、黒鉛繊維および炭素繊維/黒
鉛繊維からなる群より選ばれた繊維布を準備する工程
と、 前記繊維布の表面を、酸素を用い、光化学法により処理
する工程と、を備え、 前記光化学法による処理の条件は、 C−O結合の濃度が、前記繊維布の表面から内部に向か
って、徐々に減少し、 X線光電子分光法により求めた(酸素原子数)/(炭素
原子数)比が0.1〜3.0の酸化度を有し、 前記繊維が、ラマン分光法解析により求めたR値が0.
1〜1.2の黒鉛化度を有するように選ばれている、電
池電極材の製造方法。
8. A step of preparing a fiber cloth selected from the group consisting of carbon fiber, graphite fiber and carbon fiber / graphite fiber, and a step of treating the surface of the fiber cloth by a photochemical method using oxygen. The condition of the treatment by the photochemical method is as follows: the concentration of the CO bond gradually decreases from the surface of the fiber cloth toward the inside thereof, and is determined by X-ray photoelectron spectroscopy (number of oxygen atoms) / (The number of carbon atoms) has an oxidation degree of 0.1 to 3.0, and the fiber has an R value of 0 determined by Raman spectroscopy analysis.
A method for producing a battery electrode material selected to have a degree of graphitization of 1 to 1.2.
【請求項9】 炭素繊維、黒鉛繊維および炭素繊維/黒
鉛繊維からなる群より選ばれた繊維布を準備する工程
と、 前記繊維布の表面を、酸素を用い、イオン注入法により
処理する工程と、を備え、 前記イオン注入法により処理する条件は、 C−O結合の濃度が、前記繊維布の表面から内部に向か
って、徐々に減少し、 X線光電子分光法により求めた(酸素原子数)/(炭素
原子数)比が0.1〜3.0の酸化度を有し、 前記繊維が、ラマン分光法解析により求めたR値が0.
1〜1.2の黒鉛化度を有するように選ばれている、電
池電極材の製造方法。
9. A step of preparing a fiber cloth selected from the group consisting of carbon fiber, graphite fiber and carbon fiber / graphite fiber, and a step of treating the surface of the fiber cloth by ion implantation using oxygen. The conditions for the treatment by the ion implantation method are as follows: the concentration of C—O bond gradually decreases from the surface of the fiber cloth toward the inside thereof, and is determined by X-ray photoelectron spectroscopy (the number of oxygen atoms). ) / (Number of carbon atoms) has an oxidation degree of 0.1 to 3.0, and the fiber has an R value of 0.5 obtained by Raman spectroscopy analysis.
A method for producing a battery electrode material selected to have a degree of graphitization of 1 to 1.2.
【請求項10】 前記イオン注入を、注入エネルギを1
00keV〜2MeVで行なう、請求項9に記載の電池
電極材の製造方法。
10. The method according to claim 1, wherein the ion implantation is performed with an implantation energy of one.
The method for producing a battery electrode material according to claim 9, wherein the method is performed at 00 keV to 2 MeV.
【請求項11】 前記光化学処理を、0.1〜38μm
の波長を含む光を用いて行なう、請求項8に記載の電池
電極材の製造方法。
11. The photochemical treatment is performed at 0.1 to 38 μm.
9. The method for producing a battery electrode material according to claim 8, wherein the method is performed using light having a wavelength of:
【請求項12】 前記光化学処理を、0.1〜0.6μ
mの波長を含む水銀ランプを用いて行なう、請求項11
に記載の電池電極材の製造方法。
12. The method according to claim 1, wherein the photochemical treatment is carried out at 0.1 to 0.6 μm.
12. Performed by using a mercury lamp having a wavelength of m.
3. The method for producing a battery electrode material according to item 1.
【請求項13】 前記光化学処理を、0.1〜38μm
の波長を含むレーザ光を用いて行なう、請求項11に記
載の電池電極材の製造方法。
13. The method according to claim 1, wherein the photochemical treatment is carried out at 0.1 to 38 μm.
The method for producing a battery electrode material according to claim 11, wherein the method is performed using a laser beam having a wavelength of:
【請求項14】 前記レーザ光に、5〜12μmの波長
を含む自由電子レーザ光を用いる、請求項13に記載の
電池電極材の製造方法。
14. The method for producing a battery electrode material according to claim 13, wherein a free electron laser light having a wavelength of 5 to 12 μm is used as the laser light.
【請求項15】 炭素繊維、黒鉛繊維および炭素繊維/
黒鉛繊維からなる群より選ばれた繊維布からなり、 その表面には、プラズマ処理、光化学法またはイオン注
入処理により導入されたC−O結合が存在しており、 前記C−O結合の濃度は、前記繊維布の表面から内部へ
向かって、徐々に減少しており、 前記繊維は、X線光電子分光法により求めた(酸素原子
数)/(炭素原子数)比が0.1〜3.0の酸化度を有
し、 前記繊維は、ラマン分光法解析により求めたR値が0.
1〜1.2の黒鉛化度を有する電極材を備える、電気化
学電池。
15. Carbon fiber, graphite fiber and carbon fiber /
It is made of a fiber cloth selected from the group consisting of graphite fibers, and on the surface thereof, C—O bonds introduced by plasma treatment, photochemical method, or ion implantation treatment are present, and the concentration of the C—O bonds is The fiber gradually decreases from the surface toward the inside, and the fiber has an (oxygen atom number) / (carbon atom number) ratio of 0.1 to 3 obtained by X-ray photoelectron spectroscopy. The fiber has an oxidation degree of 0, and the fiber has an R value of 0. 0 determined by Raman spectroscopy analysis.
An electrochemical cell comprising an electrode material having a degree of graphitization of 1 to 1.2.
【請求項16】 炭素繊維、黒鉛繊維および炭素繊維/
黒鉛繊維からなる群より選ばれた繊維布からなり、 その表面には、プラズマ処理、光化学処理またはイオン
注入処理により導入されたC−O結合が存在しており、 前記C−O結合の濃度は、前記繊維布の表面から内部へ
向かって、徐々に減少しており、 前記繊維は、X線光電子分光法により求めた(酸素原子
数)/(炭素原子数)比が0.1〜3.0の酸化度を有
し、 前記繊維は、ラマン分光法解析により求めたR値が0.
1〜1.2の黒鉛化度を有する電池電極材を備え、電池
電解式が流通式である、電気化学電池。
16. Carbon fiber, graphite fiber and carbon fiber /
It is made of a fiber cloth selected from the group consisting of graphite fibers, and on the surface thereof, C—O bonds introduced by plasma treatment, photochemical treatment or ion implantation treatment are present, and the concentration of the C—O bonds is The fiber gradually decreases from the surface toward the inside, and the fiber has an (oxygen atom number) / (carbon atom number) ratio of 0.1 to 3 obtained by X-ray photoelectron spectroscopy. The fiber has an oxidation degree of 0, and the fiber has an R value of 0. 0 determined by Raman spectroscopy analysis.
An electrochemical battery comprising a battery electrode material having a degree of graphitization of 1 to 1.2, and wherein a battery electrolytic type is a flow type.
【請求項17】 2価および/または3価のバナジウム
イオンを含む電解液に浸漬された負の電極と、 5価および/または4価のバナジウムイオンを含む電解
液に浸漬された正の電極とを備え、 前記正および負の電極は、炭素繊維、黒鉛繊維および炭
素繊維/黒鉛繊維からなる群より選ばれた繊維布からな
り、 前記繊維布の表面には、プラズマ処理、光化学処理また
はイオン注入処理により導入されたC−O結合が存在し
ており、 前記C−O結合の濃度は、前記繊維布の表面から内部へ
向かって徐々に減少しており、 前記繊維は、X線光電子分光法により求めた(酸素原子
数)/(炭素原子数)の比が0.1〜3.0の酸化度を
有し、 前記繊維は、ラマン分光法解析により求めたR値が0.
1〜1.2の黒鉛化度を有する、電気化学電池。
17. A negative electrode immersed in an electrolyte containing divalent and / or trivalent vanadium ions, and a positive electrode immersed in an electrolyte containing pentavalent and / or tetravalent vanadium ions. The positive and negative electrodes are made of a fiber cloth selected from the group consisting of carbon fiber, graphite fiber and carbon fiber / graphite fiber, and the surface of the fiber cloth is plasma-treated, photochemically treated or ion-implanted. The CO bond introduced by the treatment is present, and the concentration of the CO bond is gradually reduced from the surface of the fiber cloth toward the inside, and the fiber is subjected to X-ray photoelectron spectroscopy. The ratio of (number of oxygen atoms) / (number of carbon atoms) determined by (1) has an oxidation degree of 0.1 to 3.0, and the fiber has an R value of 0 determined by Raman spectroscopy analysis.
An electrochemical cell having a degree of graphitization of 1 to 1.2.
JP2000121290A 1998-07-10 2000-04-21 Electrode material for all-vanadium redox flow battery and method for manufacturing all-vanadium redox flow battery Expired - Fee Related JP3474828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000121290A JP3474828B2 (en) 1998-07-10 2000-04-21 Electrode material for all-vanadium redox flow battery and method for manufacturing all-vanadium redox flow battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP19557298A JP3167295B2 (en) 1998-07-10 1998-07-10 Battery electrode material
JP2000121290A JP3474828B2 (en) 1998-07-10 2000-04-21 Electrode material for all-vanadium redox flow battery and method for manufacturing all-vanadium redox flow battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP19557298A Division JP3167295B2 (en) 1998-07-10 1998-07-10 Battery electrode material

Publications (2)

Publication Number Publication Date
JP2001028268A true JP2001028268A (en) 2001-01-30
JP3474828B2 JP3474828B2 (en) 2003-12-08

Family

ID=30117266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000121290A Expired - Fee Related JP3474828B2 (en) 1998-07-10 2000-04-21 Electrode material for all-vanadium redox flow battery and method for manufacturing all-vanadium redox flow battery

Country Status (1)

Country Link
JP (1) JP3474828B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180102078A (en) 2016-01-07 2018-09-14 스미토모덴키고교가부시키가이샤 Redox flow battery, electrode for redox flow battery, and method for evaluating characteristics of electrode
JP2019175833A (en) * 2018-03-29 2019-10-10 東レ株式会社 Redox flow battery electrode and redox flow battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6252861A (en) * 1985-08-31 1987-03-07 Toyobo Co Ltd Carbon system electrode material for electrolytic cell
JPS6467873A (en) * 1987-09-08 1989-03-14 Toray Industries Electrode basic material
JPH01239767A (en) * 1988-03-18 1989-09-25 Toray Ind Inc Electrode substrate and manufacture thereof
JPH02195650A (en) * 1989-01-23 1990-08-02 Sumitomo Electric Ind Ltd Electrode for redox flow battery
JPH02281564A (en) * 1989-04-20 1990-11-19 Toyobo Co Ltd Carbon electrode material for electrolytic bath
JPH08287923A (en) * 1995-04-13 1996-11-01 Toyobo Co Ltd Electrode material for flowing liquid electrolytic cell
JPH08287938A (en) * 1995-02-16 1996-11-01 Kashimakita Kyodo Hatsuden Kk Redox battery
JPH09231984A (en) * 1996-02-23 1997-09-05 Tokai Carbon Co Ltd Carbon fiber for porous electrode base board for phosphoric acid fuel cell

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6252861A (en) * 1985-08-31 1987-03-07 Toyobo Co Ltd Carbon system electrode material for electrolytic cell
JPS6467873A (en) * 1987-09-08 1989-03-14 Toray Industries Electrode basic material
JPH01239767A (en) * 1988-03-18 1989-09-25 Toray Ind Inc Electrode substrate and manufacture thereof
JPH02195650A (en) * 1989-01-23 1990-08-02 Sumitomo Electric Ind Ltd Electrode for redox flow battery
JPH02281564A (en) * 1989-04-20 1990-11-19 Toyobo Co Ltd Carbon electrode material for electrolytic bath
JPH08287938A (en) * 1995-02-16 1996-11-01 Kashimakita Kyodo Hatsuden Kk Redox battery
JPH08287923A (en) * 1995-04-13 1996-11-01 Toyobo Co Ltd Electrode material for flowing liquid electrolytic cell
JPH09231984A (en) * 1996-02-23 1997-09-05 Tokai Carbon Co Ltd Carbon fiber for porous electrode base board for phosphoric acid fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180102078A (en) 2016-01-07 2018-09-14 스미토모덴키고교가부시키가이샤 Redox flow battery, electrode for redox flow battery, and method for evaluating characteristics of electrode
JP2019175833A (en) * 2018-03-29 2019-10-10 東レ株式会社 Redox flow battery electrode and redox flow battery
JP7305935B2 (en) 2018-03-29 2023-07-11 東レ株式会社 Electrodes for redox flow batteries and redox flow batteries

Also Published As

Publication number Publication date
JP3474828B2 (en) 2003-12-08

Similar Documents

Publication Publication Date Title
JP3167295B2 (en) Battery electrode material
US5589297A (en) Lithium secondary cell
JP3203665U (en) Improved electrode for flow battery
JP6577697B2 (en) Carbon fiber felt, method for producing the same, and liquid flow electrolytic cell
CN113571836A (en) Solid composite fluoropolymer membranes
WO2003081700A1 (en) Electrolyte film electrode union, fuel cell containing the same and process for producing them
JPH07135004A (en) Solid high molecular electrolytic film and fuel cell
KR20200134276A (en) Carbon foam, composite and manufacturing method
WO2014109957A1 (en) Improved bipolar plate for flow batteries
JP2013145640A (en) Manufacturing method of diffusion layer for fuel cell and diffusion layer for fuel cell
Ferreira-Aparicio et al. Anode degradation effects in PEMFC stacks by localized fuel starvation
US20020192538A1 (en) Current collector for fuel cell and method of producing the same
JP7056397B2 (en) Titanium material, separator, cell, and fuel cell stack
US20150295247A1 (en) Perforated Electrodes for Achieving High Power in Flow Batteries
US10714760B2 (en) Electrode for redox flow batteries, redox flow battery cell, and redox flow battery
JP2001028268A (en) Battery electrode material manufacture thereof and electrochemical battery
JP6809257B2 (en) Carbon material and batteries using it
JP5328407B2 (en) Moisture management sheet, gas diffusion sheet, membrane-electrode assembly, and polymer electrolyte fuel cell
US20220149370A1 (en) Carbon electrode material and redox battery
KR101913695B1 (en) Pre-treatment method of electrode using alkaline earth metal oxide and electrode for vanadium redox flow battery using the same
JP6557824B2 (en) Carbon electrode and carbon electrode manufacturing method
JP2001216974A (en) Battery electrode material, method of producing battery electrode material, electrochemical battery, whole vanadium redox flow battery and electrode reactivating method for whole vanadium redox flow battery
KR101876372B1 (en) Method for manufacturing vanadium redox flow battery electrode
WO2020158797A1 (en) Electrode, method for producing same and battery
KR102497391B1 (en) Electrode for Vanadium Redox Flow Battery and Manufacturing method for the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030902

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees