JPH08287938A - Redox battery - Google Patents

Redox battery

Info

Publication number
JPH08287938A
JPH08287938A JP8027001A JP2700196A JPH08287938A JP H08287938 A JPH08287938 A JP H08287938A JP 8027001 A JP8027001 A JP 8027001A JP 2700196 A JP2700196 A JP 2700196A JP H08287938 A JPH08287938 A JP H08287938A
Authority
JP
Japan
Prior art keywords
electrode
surface area
layer
carbon
redox battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8027001A
Other languages
Japanese (ja)
Other versions
JP3496385B2 (en
Inventor
Yoshiteru Kageyama
芳輝 景山
Toshiyuki Tayama
利行 田山
Kanji Sato
完二 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KASHIMAKITA KYODO HATSUDEN KK
Original Assignee
KASHIMAKITA KYODO HATSUDEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KASHIMAKITA KYODO HATSUDEN KK filed Critical KASHIMAKITA KYODO HATSUDEN KK
Priority to JP02700196A priority Critical patent/JP3496385B2/en
Publication of JPH08287938A publication Critical patent/JPH08287938A/en
Application granted granted Critical
Publication of JP3496385B2 publication Critical patent/JP3496385B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE: To provide a redox battery which has high electric current density and has high output and by which an electrolyte passing pressure loss is reduced by giving the high surface area to a diaphragm side layer of a liquid permeable porous electrode composed of carbon fiber, and giving the low surface area to a bipolar plate side layer. CONSTITUTION: Positive and negative liquid permeable electrodes composed of carbon fiber are arranged on both sides of a diaphragm 4 of an ion exchange membrane, and are sandwiched from its outside by bipolar plates 1 and 1' of collector plates composed of sintered carbon, and a cell composed of a positive electrode chamber and a negative electrode chamber is formed. This single cell is layered in a plurality, and they are electrically connected in series to each other, and a redox battery is obtained. In that case, the electrodes are formed as a two-layer structure of a high conductive porous electrode 2 and a high reactive porous electrode 3. A diaphragm side layer of these electrodes is composed of carbon fiber having a fiber diameter of 2 to 20μm, and the surface area is set not less than 2m<2> /g, and preferably, it is set to 6 to 100m<2> /g. A bipolar plate side layer of the electrodes is composed of carbon fiber having a fiber diameter of 2 to 20μm, and the surface area is set not more than 2m<2> /g.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、二次電池に関し、
さらに詳しくは、レドックスフロー型二次電池(略し
て、「レドックス電池」と呼ぶことがある)に関するも
のであり、特に高電流密度で使用可能な、内部抵抗及び
ポンプ動力損失の小さい、高出力のレドックス電池の電
極構造に関する。
TECHNICAL FIELD The present invention relates to a secondary battery,
More specifically, it relates to a redox flow secondary battery (which may be abbreviated as “redox battery” for short), and particularly, it can be used at a high current density, has a small internal resistance and low pump power loss, and has a high output. The present invention relates to an electrode structure of a redox battery.

【0002】現在、化石燃料の大量使用による大気中の
炭酸ガス濃度の増加が著しく、地球の温暖化が大きな問
題となっている。このために、クリーンなエネルギー源
である太陽電池の開発が活発に行われているが、太陽電
池は、夜間や雨天時は発電できないため適切な2次電池
の開発が待たれている。一方、従来の発電設備に於いて
も夜と昼、ピーク時の需要の差が激しく発電設備の負荷
率は低下しており、大型の電力貯蔵電池による運転の平
滑化は省エネルギーの面で大きな意味を持っている。電
気エネルギーを貯蔵することは電力関係者の長年の夢で
あるが、現在のところ揚水発電以外は実用化されておら
ず、大型の電力貯蔵電池の必要性は大きなものである。
レドックス電池はタッピングによって太陽電池の出力電
圧に合わせて充電できることや、構造がシンプルで大型
化しやすい等の特徴を持つために、新型の2次電池とし
て大きな可能性を秘めている。
At present, carbon dioxide concentration in the atmosphere is remarkably increased by using a large amount of fossil fuel, and global warming is a serious problem. For this reason, solar cells, which are clean energy sources, are being actively developed. However, since the solar cells cannot generate power at night or in rainy weather, the development of appropriate secondary batteries is awaited. On the other hand, even in the conventional power generation equipment, the load difference of the power generation equipment is decreasing due to the large difference in demand between night, daytime, and peak hours, and smoothing the operation with a large power storage battery is significant in terms of energy saving. have. Storing electrical energy has been a dream of electric power companies for many years, but at present, there is no practical application other than pumped storage power generation, and there is a great need for large power storage batteries.
Redox batteries have great potential as a new type of secondary battery because they can be charged according to the output voltage of solar cells by tapping and have a simple structure and are easily enlarged.

【0003】レドックス型電池とは、電池活物質が液状
であり、正、負極の電池活物質を液透過型の電解槽に流
通せしめ、酸化還元反応を利用して充放電を行うもので
ある。従来の2次電池と比べレドックス型電池は次の利
点を有する。 (1)備蓄容量を大きくするためには、貯蔵容器の容量
を大きくし、活物質量を増加させるだけでよく、出力を
大きくしない限り、電解槽自体はそのままでよい。 (2)正、負極活物質は容器に完全に分離して貯蔵でき
るので、活物質が電極に接しているような電池と異な
り、自己放電の可能性が小さい。 (3)この電池で使用される液透過型炭素多孔質電極に
おいては、活物質イオンの充放電反応(電極反応)は、
単に、電極表面で電子の交換を行うのみで、亜鉛−臭素
電池における、亜鉛イオンのように電極に析出すること
はないので、電池の反応が単純である。
The redox type battery is a battery in which the battery active material is in a liquid state, and the positive and negative battery active materials are circulated in a liquid-permeable type electrolytic cell and charged and discharged by utilizing an oxidation-reduction reaction. Redox type batteries have the following advantages over conventional secondary batteries. (1) In order to increase the stockpiling capacity, it is sufficient to increase the capacity of the storage container and increase the amount of the active material, and the electrolytic cell itself may be used as it is, unless the output is increased. (2) Since positive and negative electrode active materials can be completely separated and stored in a container, unlike a battery in which the active material is in contact with the electrodes, the possibility of self-discharge is small. (3) In the liquid permeable carbon porous electrode used in this battery, the charge / discharge reaction (electrode reaction) of the active material ions is
The reaction of the battery is simple because the electrons are simply exchanged on the surface of the electrode, and the zinc-bromine battery does not deposit on the electrode like zinc ions.

【0004】[0004]

【従来の技術】レドックスフロー型二次電池として、鉄
−クロム系電池が知られているが、該電池はエネルギー
密度が小さいこと、イオン交換膜を介して鉄とクロムが
混合することなどの欠点があるために、これに代わるも
のとして全バナジウム系電池が提案されている(特開昭
62ー186473号公報)。この電池は、起電力、電池容量な
どに優れており、電解液が一金属系であるため隔膜を介
して正、負極液が相互に混合しても充電によって簡単に
再生することができ、電池容量が低下せず、電解液を完
全にクローズ化できる利点を持っている。しかし、これ
ら従来のレドックス電池では、使用可能な高電流密度は
高々60mA/cm2 程度であり、さらに高い電流密
度での使用は不可能であった。これは、80mA/cm
2以上、とりわけ100mA/cm2以上の高電流密度を
採用して、高い電力効率を維持するためには、セルの抵
抗を1.5Ω・cm2以下、好ましくは、1.0Ω・c
2にしなければならず、電極の電気抵抗、電解液の導
電率を考慮すると正極室及び負極室のセル厚を薄くする
必要があった。しかし、セル厚を薄くすることは、電解
液を透過させるためのポンプ動力を大きくしなければな
らず、結果として下記式−1で示されるエネルギー効率
が低下する。従って、セル厚さを薄くすることなく電池
セルの内部抵抗を低減できる液透過性多孔質電極の開
発、あるいは電池セルの内部抵抗を大きくせずに電解液
の透過性を向上させる新たなる液透過性多孔質電極の開
発が必要となってきた。
2. Description of the Related Art Iron-chromium batteries are known as redox flow type secondary batteries, but they have drawbacks such as low energy density and mixing of iron and chromium through an ion exchange membrane. Therefore, an all-vanadium-based battery has been proposed as an alternative to this (Japanese Patent Application Laid-Open No. Sho-06-1999).
62-186473). This battery is excellent in electromotive force, battery capacity, etc., and because the electrolyte is a single metal type, it can be easily regenerated by charging even if positive and negative electrode liquids are mixed with each other through the diaphragm. It has the advantage that the capacity does not decrease and the electrolyte can be completely closed. However, in these conventional redox batteries, the high current density that can be used is about 60 mA / cm 2 at most, and it was impossible to use it at a higher current density. This is 80mA / cm
In order to maintain high power efficiency by employing a high current density of 2 or more, especially 100 mA / cm 2 or more, the resistance of the cell is 1.5 Ω · cm 2 or less, preferably 1.0 Ω · c.
must be in m 2, the electrical resistance of the electrode, it is necessary to reduce the cell thickness of the consideration of the positive electrode chamber and negative electrode chamber the conductivity of the electrolyte. However, reducing the cell thickness requires increasing the pump power for permeating the electrolytic solution, and as a result, the energy efficiency represented by the following formula-1 is reduced. Therefore, we have developed a liquid-permeable porous electrode that can reduce the internal resistance of the battery cell without reducing the cell thickness, or a new liquid-permeable material that improves the permeability of the electrolyte without increasing the internal resistance of the battery cell. The development of porous porous electrodes has become necessary.

【0005】[0005]

【数1】 [Equation 1]

【0006】次に、電解液が液透過性多孔質電極を通過
する際の圧力差ΔPは、一般に下記式−2で表される
(光武 量著「化学工学演習」産業図書(株)発行(1
970年))。
[0006] Next, the pressure difference ΔP when the electrolytic solution passes through the liquid-permeable porous electrode is generally expressed by the following equation-2 (published by Kou Mitsutake, "Chemical Engineering Exercise", Sangyo Tosho Co., Ltd. ( 1
970)).

【0007】[0007]

【数2】 [Equation 2]

【0008】従って、圧力差ΔPを低減するには、電極
の空隙率εを大きくするか、電極の表面積sを小さくす
ることが効果的であることがわかる。しかし、空隙率ε
を大きくした場合は、単位体積当たりの電極体積が減少
するので、一般に、反応性の低下をもたらし、内部抵抗
率が増大するので好ましくなく、また、電極の表面積s
を小さくすることも、単位体積当たりの電極面積が減少
するので、同じく、反応性の低下をもたらし、好ましく
ない。それゆえ、レドックス電池の内部抵抗を低減する
ことと圧力差ΔPを低減することとは相反する技術であ
ることがわかる。
Therefore, in order to reduce the pressure difference ΔP, it is effective to increase the porosity ε of the electrode or decrease the surface area s of the electrode. However, the porosity ε
If the value is increased, the electrode volume per unit volume decreases, which generally leads to a decrease in reactivity and an increase in internal resistivity, which is not preferable.
It is also unfavorable to reduce the value of .alpha. Because the area of the electrode per unit volume is reduced, which also lowers the reactivity. Therefore, it can be seen that reducing the internal resistance of the redox battery and reducing the pressure difference ΔP are contradictory technologies.

【0009】従来行われた内部抵抗を低減する方法とし
ては、例えば、液透過性多孔質電極を過剰に押圧してセ
ルの厚さを薄くしたり、反応性液透過性多孔質電極の炭
素繊維を高密度に充填して単位体積あたりの酸化還元反
応の活性化点の総数を増加させるなどの方法があった。
しかし、いずれの方法も、電極の空隙率を小さくさせる
もので、その結果として、電力の圧力差ΔPを大きくし
ていた。従って、これらの方法では、充放電の効率は向
上しても、ポンプ動力損失によって全体のエネルギー効
果は減少してしまう結果となっていた。
As a conventional method for reducing the internal resistance, for example, the liquid permeable porous electrode is excessively pressed to reduce the cell thickness, or the carbon fiber of the reactive liquid permeable porous electrode is used. Was densely packed to increase the total number of activation points of the redox reaction per unit volume.
However, both methods reduce the porosity of the electrode, and as a result, the pressure difference ΔP of the electric power is increased. Therefore, in these methods, although the charging / discharging efficiency is improved, the overall energy effect is reduced due to the pump power loss.

【0010】一方、特開平2−148659号公報では
集電炭素板に電解液の流通方向に沿って通液溝を形成
し、特開平2−148658号公報では多孔質電極材と
隔膜の間に流通通性の高い多孔質絶縁材を配置して、ポ
ンプ動力損失を低減している。しかし、この時のセル抵
抗は1.8Ω・cm2程度であり、高電流密度レドック
ス電池に適さないものである。
On the other hand, in Japanese Patent Laid-Open No. 2-148659, liquid-flowing grooves are formed in the current collecting carbon plate along the flow direction of the electrolytic solution. In Japanese Patent Laid-Open No. 2-148658, a porous electrode material and a diaphragm are provided. A highly insulating porous insulating material is placed to reduce pump power loss. However, the cell resistance at this time is about 1.8 Ω · cm 2, which is not suitable for a high current density redox battery.

【0011】以上述べたように、高電流密度化において
は、多量の電解液を供給することが必須となるが、従来
の電極構造では、内部抵抗を小さくするため、セルの厚
みを薄くするか、あるいは電極の抵抗を小さくするため
に単位体積あたりの電極の密度を増やして通液溝を小さ
くする構造となっており、これらはいずれも電極内の通
液圧損を増大し、ポンプ動力損失が著しく大きくなると
いう問題が生じている。
As described above, in order to increase the current density, it is essential to supply a large amount of electrolytic solution. However, in the conventional electrode structure, in order to reduce the internal resistance, is it necessary to reduce the cell thickness? Or, in order to reduce the resistance of the electrode, the structure is such that the density of the electrode per unit volume is increased and the liquid passage groove is made smaller, and both of these increase the liquid passage pressure loss in the electrode and the pump power loss. The problem is that it becomes significantly larger.

【0012】[0012]

【発明が解決しようとする課題】本発明の目的は、電池
の内部電気抵抗が小さくでき、かつ電極内の液通過圧損
も小さくできる電極を開発することにより、高電流密度
で、かつポンプ動力圧損も小さい、高出力の新規なレド
ックス電池を提供することにある。本発明における高電
流密度とは、60mA/cm2以上であり、好ましく
は、80mA/cm2以上であり、更に好ましくは、1
20mA/cm2以上である。
SUMMARY OF THE INVENTION An object of the present invention is to develop an electrode capable of reducing the internal electric resistance of a battery and the pressure loss of liquid passing through the electrode, thereby achieving high current density and pump power pressure loss. It is to provide a new redox battery with high output and small size. The high current density in the present invention, at 60 mA / cm 2 or more, or preferably, 80 mA / cm 2 or more, more preferably, 1
It is 20 mA / cm 2 or more.

【0013】[0013]

【課題を解決するための手段】本発明者らは、上記課題
の解決のために鋭意検討を重ねた結果、特殊な性質を有
する液透過性多孔質電極の開発に成功し、電池セルの厚
さを薄くすることなく電池セルの内部抵抗を低減するこ
とができ、かつ電解液の流通によるポンプ動力損失を小
さくできるレドックス電池を完成するに至った。即ち、
本発明は、隔膜を介して正および負の液透過性電極が配
設され、該電極をその外側から挟持するバイポーラ板に
より構成される正極室及び負極室からなるセルを、該バ
イポーラ板を介して交互に複数個積層して、電気的に直
列に接続し、該セル内に設けられたマニホールドを通し
て複数個の正極室及び負極室に正極電解液および負極電
解液を通液し、酸化還元反応により充放電する電解液循
環型のレドックス電池において、該液透過性電極が少な
くとも下記(1)および(2)の特性を有する2層の多
孔質炭素電極からなることを特徴とするレドックス電池
である。 (1)該液透過性電極の隔膜側の層が繊維径2〜20μ
mの炭素繊維からなる多孔質電極であり、その表面積が
3m2/g以上であること (2)該液透過性電極のバイポーラ板側の層が、繊維径
2〜20μmの炭素繊維からなる多孔質電極であり、そ
の表面積が2m2/g以下であること さらに、本発明の態様によれば、電極内の液通過圧損を
より小さくするために、前記多孔質炭素電極の少なくと
も一層の表面に溝が形成された電極を提供するものであ
る。
As a result of intensive studies to solve the above-mentioned problems, the present inventors succeeded in developing a liquid-permeable porous electrode having a special property, and The present inventors have completed a redox battery that can reduce the internal resistance of the battery cell without reducing the thickness and can reduce the pump power loss due to the flow of the electrolytic solution. That is,
According to the present invention, a positive and negative liquid-permeable electrode is arranged via a diaphragm, and a cell composed of a positive electrode chamber and a negative electrode chamber constituted by a bipolar plate sandwiching the electrode from the outside is provided with a bipolar plate interposed therebetween. Alternately stacked in multiple layers and electrically connected in series, and the positive electrode electrolyte and the negative electrode electrolyte are passed through the manifold provided in the cell to the positive electrode chamber and the negative electrode chamber to carry out the redox reaction. In the redox battery of the electrolytic solution circulation type charged and discharged according to the above, the liquid permeable electrode comprises at least two layers of porous carbon electrodes having the following characteristics (1) and (2). . (1) The layer on the diaphragm side of the liquid-permeable electrode has a fiber diameter of 2 to 20 μm.
m is a porous electrode made of carbon fiber and has a surface area of 3 m 2 / g or more. (2) The layer on the bipolar plate side of the liquid permeable electrode is made of carbon fiber having a fiber diameter of 2 to 20 μm. And a surface area of 2 m 2 / g or less. Further, according to an embodiment of the present invention, in order to further reduce the pressure loss of liquid passing through the electrode, the surface of at least one layer of the porous carbon electrode is The electrode is provided with a groove.

【0014】以下、本発明を具体的に説明する。本発明
のレドックス電池の構造は、図1に示すように、イオン
交換膜からなる隔膜とその両側に設けられた電解液の通
過性を有する炭素繊維電極(正極及び負極)と、更にそ
の外側に設けられた燒結炭素板製のバイポーラ板(集電
板)からなり、正極液(例えば、5価/4価バナジウム
溶液)及び負極液(例えば、2価/3価バナジウム溶
液)はそれぞれ正極タンクと負極タンクから正極と負極
に送られる構造となっている。本発明のレドックス電池
用電極は、隔膜側に炭素繊維からなる高表面積多孔質電
極の層、およびバイポーラ板側に炭素繊維からなる低表
面積多孔質電極を配置した複層多孔質炭素電極の層を備
えている。
The present invention will be specifically described below. The structure of the redox battery of the present invention is, as shown in FIG. 1, a diaphragm made of an ion-exchange membrane, carbon fiber electrodes (positive electrode and negative electrode) provided on both sides of the diaphragm having a permeability of an electrolytic solution, and further on the outside thereof. It comprises a bipolar plate (collection plate) made of a sintered carbon plate provided, and the positive electrode liquid (for example, pentavalent / tetravalent vanadium solution) and the negative electrode liquid (for example, divalent / trivalent vanadium solution) are respectively used as a positive electrode tank and a positive electrode tank. The structure is such that it is sent from the negative electrode tank to the positive electrode and the negative electrode. The redox battery electrode of the present invention comprises a layer of a high surface area porous electrode made of carbon fibers on the diaphragm side, and a layer of a multi-layer porous carbon electrode having a low surface area porous electrode made of carbon fibers on the bipolar plate side. I have it.

【0015】本発明の液透過性電極の一部を構成する隔
膜側に設置される(即ち、該電極の隔膜側の層に相当す
る)高表面積多孔質電極としては、繊維径が2〜20μ
m、好ましくは5〜15μmの範囲である炭素繊維から
なり、この繊維から形成された多孔質電極の表面積は3
2/g以上、好ましくは6〜100m2/g、更に好ま
しくは8〜60m2/gの範囲のものである。なお、こ
の場合の表面積は、通常のBET法の測定法による。表
面積が3m2/g未満であると、酸化還元反応の活性化
点の総数が低下し、結果として反応速度を低下させるの
で好ましくない。反応性の点では表面積が大きい程好ま
しいが、実用上は100m2/g程度の表面積で十分で
ある。
As the high surface area porous electrode provided on the diaphragm side which constitutes a part of the liquid-permeable electrode of the present invention (that is, corresponding to the layer on the diaphragm side of the electrode), the fiber diameter is 2 to 20 μm.
m, preferably 5 to 15 μm, of carbon fibers, and the surface area of the porous electrode formed from these fibers is 3
m 2 / g or more, preferably 6~100m 2 / g, more preferably in a range of 8~60m 2 / g. The surface area in this case is measured by the usual BET method. If the surface area is less than 3 m 2 / g, the total number of activation points of the redox reaction will decrease, and as a result, the reaction rate will decrease, which is not preferable. From the viewpoint of reactivity, a larger surface area is more preferable, but a surface area of about 100 m 2 / g is practically sufficient.

【0016】本発明で使用する高表面積多孔質電極を製
造する原料繊維としては、炭化可能な繊維で、編地製作
上必要な繊維強度、伸度等を持つもので、かつ炭化した
後の繊維径が2〜20μmであり、その繊維より形成さ
れた多孔質電極の表面積が3m2/g以上を有するもの
であればよい。このような炭素繊維の製造法としては、
特に限定されるものではないが、例えば、原料繊維を、
不活性ガス中、800〜2000℃の範囲で熱処理する
ことにより、原料繊維を炭化し、その後、少量の酸素雰
囲気下で500〜1500℃の範囲で再熱処理すること
により得られる。また、別の製造法の例として、原料繊
維を水蒸気雰囲気下で800〜2000℃の範囲で熱処
理することによっても得られる。原料繊維としては、セ
ルロース系、アクリル系、フェノール系、芳香族ポリア
ミド系、ピッチ系繊維、PAN系繊維等の原料繊維が使
用できる。
The raw material fibers for producing the high surface area porous electrode used in the present invention are carbonizable fibers having fiber strength, elongation, etc. necessary for knitting, and the fibers after carbonization. It is sufficient that the diameter is 2 to 20 μm and the surface area of the porous electrode formed of the fibers is 3 m 2 / g or more. As a method for producing such a carbon fiber,
Although not particularly limited, for example, the raw material fiber,
The raw material fibers are carbonized by heat treatment in the range of 800 to 2000 ° C. in an inert gas, and then heat treated again in the range of 500 to 1500 ° C. in a small amount of oxygen atmosphere. Further, as another example of the manufacturing method, it can be obtained by heat treating the raw material fibers in a steam atmosphere at 800 to 2000 ° C. As the raw material fiber, a raw material fiber such as a cellulose-based, acrylic-based, phenol-based, aromatic polyamide-based, pitch-based fiber or PAN-based fiber can be used.

【0017】このようなして製造した炭素繊維の結晶構
造は、疑黒鉛化構造を有するものであり、広角X線解析
より求めた(002)面の面間隔が3.50〜3.80
Å、好ましくは3.50〜3.65Åであり、及び/又
は、炭素材表面の結合酸素原子数と炭素原子数の比(O
/C)が0.05以上、好ましくは0.07〜0.12
であることが好ましい。面間隔(d002)が3.85Å
を越えると、疑黒鉛化構造から非晶質炭素構造が主体と
なるため酸化還元の反応性が乏しくなり、一方、面間隔
が3.50Å未満である場合は黒鉛化構造が主体となる
ため、同様に反応性が乏しくなるので好ましくない。炭
素繊維の表面における酸素の存在は、酸素還元反応を促
進する効果をもつものと思われるが、O/C比が0.0
5未満ではその効果が低くなり、O/C比が高くなり過
ぎると反応に直接関与する表面の炭素構造が疑黒鉛化構
造から外れるので好ましくない。
The crystal structure of the carbon fiber thus produced has a pseudo-graphitized structure, and the spacing of (002) planes obtained by wide-angle X-ray analysis is 3.50 to 3.80.
Å, preferably 3.50 to 3.65Å, and / or the ratio of the number of bound oxygen atoms to the number of carbon atoms (O
/ C) is 0.05 or more, preferably 0.07 to 0.12
It is preferred that Surface spacing (d 002 ) is 3.85Å
When it exceeds, the pseudo-graphitized structure is mainly composed of the amorphous carbon structure, so that the redox reactivity becomes poor. On the other hand, when the interplanar spacing is less than 3.50 Å, the graphitized structure is mainly composed. Similarly, the reactivity becomes poor, which is not preferable. The presence of oxygen on the surface of the carbon fiber is considered to have an effect of promoting the oxygen reduction reaction, but the O / C ratio is 0.0
If it is less than 5, the effect is low, and if the O / C ratio is too high, the carbon structure of the surface directly involved in the reaction deviates from the pseudographitized structure, which is not preferable.

【0018】なお、広角X線解析の測定方法は、炭素繊
維織布をメノウ乳鉢で粉末化し、試料に対して約5〜1
0重量%のX線標準用高純度シリコン粉末を内部標準物
質として加え混合し、試料セルに詰め、CuKα線を線
源とし、透過型ディフラクトメーター法によって広角X
線回析曲線を測定した。曲線の補正には、いわゆるロー
レンツ、偏光因子、吸引因子、原子散乱因子などに関す
る補正は行わず次の簡便法を用いる。即ち<002>回
析線に相当するピークのベースラインを引き、ベースラ
インからの実質強度をプロットし直して<002>補正
曲線を得る。この曲線のピーク高さの3分の2の高さに
引いた角度軸に平行な線が強度曲線と交わる線分の中点
を求め、中点の角度を内部標準で補正し、これを回析角
の2倍とし、CuKα線の波長λから次式のブラック式
によってd002 を求めた。 d002=λ/2SINθ [Å] 但し、d002:(002)面間隔 λ:1.5418 Å θ:d002に相当する回析角
The measuring method of wide-angle X-ray analysis is as follows: The carbon fiber woven cloth is pulverized in an agate mortar, and about 5 to 1 is applied to the sample.
A high-purity silicon powder for X-ray standard of 0 wt% was added as an internal standard substance, mixed, packed in a sample cell, and CuKα ray was used as a radiation source, and a wide-angle X-ray was measured by a transmission type diffractometer method.
The line diffraction curve was measured. For the correction of the curve, the following simple method is used without making corrections for so-called Lorentz, polarization factor, attraction factor, atomic scattering factor, etc. That is, the baseline of the peak corresponding to the <002> diffraction line is drawn, and the substantial intensity from the baseline is re-plotted to obtain the <002> correction curve. Find the midpoint of the line segment where the line parallel to the angle axis drawn to the height of two-thirds of the peak height of this curve intersects the intensity curve, correct the angle of the midpoint with the internal standard, and turn this. The diffraction angle was doubled, and d 002 was calculated from the wavelength λ of the CuKα ray by the following Black equation. d 002 = λ / 2SINθ [Å] where d 002 : (002) surface spacing λ: 1.5418 Å θ: d 002

【0019】また、表面の0/C比の測定は、次の方法
によった。ESCAあるいは、XPSと略称されている
X線光電子分光法によりO/C比の測定を行い、用いた
装置は島津ESCA750で、解析にはESCA− P
AC760を用い、各試料を6mm径に打ち抜き、導電性
ペーストにより加熱式試料台に貼り付け分析に供した。
測定前に試料を120℃に加熱し、3時間以上真空脱気
した。線源にはMgKα線を用い、装置内真空度は10
-7トルとして測定を行って測定を行った。
The 0 / C ratio of the surface was measured by the following method. The O / C ratio was measured by X-ray photoelectron spectroscopy, which is abbreviated as ESCA or XPS, and the apparatus used was Shimadzu ESCA750, and ESCA-P was used for analysis.
Using AC760, each sample was punched out to a diameter of 6 mm and attached to a heating type sample stand with a conductive paste for analysis.
Prior to measurement, the sample was heated to 120 ° C. and vacuum degassed for 3 hours or longer. A MgKα ray is used as a radiation source, and the degree of vacuum inside the apparatus is 10
Measurements were made at -7 Torr.

【0020】一方、本発明で用いられる液透過性電極の
一部を構成するバイポーラ板側に設置される(即ち、バ
イポーラ板側の層に相当する)低表面積多孔質電極は、
繊維径2〜20μm、好ましくは5〜15μmの炭素繊
維からなり、この繊維から形成された多孔質電極の表面
積は0.01〜2m2/g、好ましくは0.1〜1m2
gである。該電極は酸化還元反応には直接関与しないの
で、むしろ圧力差△Pを低減するために、その表面積は
小さくすることが好ましく、2m2/g超過では圧力差
の低減効果があまり達成されない。
On the other hand, the low surface area porous electrode provided on the side of the bipolar plate (that corresponds to the layer on the side of the bipolar plate) forming a part of the liquid-permeable electrode used in the present invention is
Fiber diameter 2 to 20 [mu] m, preferably of carbon fiber of 5 to 15 [mu] m, the surface area of the porous electrode formed from the fibers 0.01~2m 2 / g, preferably 0.1 to 1 m 2 /
g. Since the electrode does not directly participate in the redox reaction, it is preferable to reduce the surface area of the electrode in order to reduce the pressure difference ΔP. If it exceeds 2 m 2 / g, the effect of reducing the pressure difference is not achieved so much.

【0021】この炭素電極の製造に使用する原料繊維
は、上記の高表面積多孔質電極の製造に用いる原料繊維
と同じ繊維を使用でき、炭化した後繊維径が2〜20μ
mであり、その繊維より形成された多孔質電極の表面積
が0.01〜2m2/gを有するものであればよい。こ
のような炭素繊維の製造法としては、特に限定されるも
のではないが、例えば、原料繊維を、不活性ガス中、8
00〜2000℃の範囲で熱処理して得られる。
The raw material fibers used for producing the carbon electrode can be the same as the raw material fibers used for producing the high surface area porous electrode described above, and the fiber diameter after carbonization is 2 to 20 μm.
m, and the surface area of the porous electrode formed from the fibers is 0.01 to 2 m 2 / g. The method for producing such a carbon fiber is not particularly limited, but, for example, the raw material fiber is
It is obtained by heat treatment in the range of 00 to 2000 ° C.

【0022】このようにして製造された炭素繊維の結晶
構造は、比較的低表面積の炭素構造を有する黒鉛化構
造、又は黒鉛化構造を主体とするものであり、広角X線
解析より求めた(002)面の面間隔が3.35〜3.
45Åであり(なお、完全な黒鉛化構造は3.35Åで
ある)、及び/又は、炭素材表面の結合酸素原子数と炭
素原子数の比(O/C比)が0.04以下、好ましくは
0.01〜0.02のものである。面間隔(d002)が
3.45Å超過の場合、またはO/C比が0.04超過
の場合は、結晶構造の乱れにより表面積が大きくなって
好ましくない。これら炭素繊維より形成される多孔質電
極の形状は、特に限定されないが、フェルト状、スダレ
編み状、メリアス編み状等がある。
The crystal structure of the carbon fiber produced in this manner is mainly composed of a graphitized structure having a carbon structure with a relatively low surface area or a graphitized structure, and was obtained by wide-angle X-ray analysis ( 002) surface spacing is 3.35-3.
45 Å (the complete graphitized structure is 3.35 Å) and / or the ratio of the number of bonded oxygen atoms to the number of carbon atoms (O / C ratio) on the carbon material surface is 0.04 or less, preferably Is 0.01 to 0.02. If the interplanar spacing (d 002 ) exceeds 3.45Å or the O / C ratio exceeds 0.04, the surface area becomes large due to the disorder of the crystal structure, which is not preferable. The shape of the porous electrode formed from these carbon fibers is not particularly limited, but may be a felt shape, a woven knitted shape, a melias knitted shape, or the like.

【0023】本発明によるレドックス電池用複層電極
は、上記した2種の多孔質電極を単に重ね合わせて、ま
たは予め両者を炭素繊維等によりパンチングし、一体化
して形成することもできる。また、上記低表面積多孔質
電極の一方の表面層を、少量の酸素雰囲気下500〜1
500℃の範囲で再熱処理することにより、その表面側
を選択的に高表面積多孔質電極に転化することにより、
同様な一体化電極を形成こともでできる。本発明の複層
多孔質電極における高表面積多孔質電極(隔膜側の層)
と低表面積多孔質電極(バイポーラ板の層)との厚みの
比率は、0.1〜5:1の範囲、好ましくは0.2〜
3:1の範囲、より好ましくは0.3〜1:1の範囲で
ある。
The multi-layer electrode for a redox battery according to the present invention can be formed by simply superposing the above-mentioned two kinds of porous electrodes or by punching both of them in advance with carbon fiber or the like and integrally forming them. Further, one surface layer of the low surface area porous electrode is placed under a small amount of oxygen atmosphere in an amount of 500 to 1
By re-heat treatment in the range of 500 ° C., the surface side is selectively converted into a high surface area porous electrode,
It is also possible to form a similar integrated electrode. High surface area porous electrode in the multilayer porous electrode of the present invention (layer on the diaphragm side)
And the low surface area porous electrode (bipolar plate layer) has a thickness ratio of 0.1 to 5: 1, preferably 0.2 to
It is in the range of 3: 1 and more preferably in the range of 0.3 to 1: 1.

【0024】本発明の複層多孔質電極は、電極内の液通
過圧損をより小さくする方法として、該電極の流れ方向
に、切削または機械的圧縮などの手段により、その表面
に溝を設けることができる。この溝は複層多孔質電極の
いずれか一方、又は両方に設けることができる。溝の複
層多孔質電極に占める割合は、レドックス電池反応速度
に差し支えない範囲に押さえる必要があり、その割合は
1〜10%、好ましくは3〜7%の範囲である。該割合
が10%を越えるとレドックス電池反応に影響を与えセ
ル抵抗が大きくなり、1%未満では液通過圧損の低下は
殆ど見られない。
The multi-layered porous electrode of the present invention is provided with a groove on the surface thereof in the flow direction of the electrode by means such as cutting or mechanical compression as a method for further reducing the pressure loss of liquid passing through the electrode. You can This groove can be provided in either one or both of the multilayer porous electrodes. The ratio of the grooves to the multilayer porous electrode needs to be suppressed within a range that does not interfere with the redox battery reaction rate, and the ratio is in the range of 1 to 10%, preferably 3 to 7%. When the ratio exceeds 10%, the redox battery reaction is affected and the cell resistance increases, and when it is less than 1%, the drop in liquid passage pressure loss is hardly seen.

【0025】本発明のレドックス電池において使用され
るイオン交換膜は、アニオン膜及びカチオン膜のいずれ
のイオン交換膜も使用可能である。また、本発明のレド
ックス電池において使用される電解液は、鉄−クロム系
では鉄、クロム各々の塩化物の溶液が用いられ、全バナ
ジウム系電池ではバナジウムの硫酸溶液が用いられるの
が普通である。
The ion exchange membrane used in the redox battery of the present invention may be either an anion membrane or a cation membrane. Further, as the electrolytic solution used in the redox battery of the present invention, a solution of chlorides of iron and chromium is used in the iron-chromium system, and a sulfuric acid solution of vanadium is usually used in the all-vanadium battery. .

【0026】[0026]

【実施例】次に本発明を実施例をもって具体的に説明す
る。 実施例1 図1に示すようなレドックスフロー電池セルにおいて、
イオン交換膜に旭硝子社製「ニューセレミオン TYPE-
2」(アニオン系イオン交換膜)を、電解液としてバナ
ジウム硫酸溶液(2M V2+〜V5+/2M H2SO4
を、複層多孔質電極(厚さ3mm)として、隔膜側高表面
積多孔質電極としてSGL CARBON社製「Graphite felt KF
D-2」(フェルト状炭素繊維、厚さ2mm、繊維径10μ
m、BET表面積16m2/g、広角X線解析より求め
た(002)面の面間隔d002=3.54Å、ESCA
より求めた表面のO/C原子比=0.091)を、集電
板側低表面積多孔質電極としてSGL CARBON社製「Graphi
te felt GFD-2」(フェルト状炭素繊維、厚さ2.5m
m、繊維径10μm、BET表面積0.47m2/g、広
角X線より求めたd002=3.45Å、ESCAより求
めた表面のO/C原子比=0.038)を設置した電池
セルの構成で、電流密度130mA/cm2で充放電実
験を実施した。液透過性多孔質電極の圧力損失の測定
は、次の方法を採用して電池セルにおける圧力損失の代
用値とした。即ち、図2の測定装置を用いて、純水の流
量60cc/minにおける圧力損失により測定し、マノメータ
ーの水銀柱長さで、その圧力損失の大きさを示した。結
果を表−1に示す。
EXAMPLES Next, the present invention will be specifically described with reference to examples. Example 1 In a redox flow battery cell as shown in FIG.
Asahi Glass Co., Ltd. “New Seremion TYPE-
2 "(anionic ion exchange membrane), and vanadium sulfate solution as an electrolytic solution (2M V 2+ ~V 5+ / 2M H 2 SO 4)
Is used as a multi-layer porous electrode (thickness 3 mm) and as a high surface area porous electrode on the diaphragm side, "Graphite felt KF" manufactured by SGL CARBON.
D-2 "(felt-like carbon fiber, thickness 2mm, fiber diameter 10μ
m, BET surface area 16 m 2 / g, surface spacing d 002 = 3.54Å of (002) plane obtained by wide-angle X-ray analysis, ESCA
The obtained O / C atomic ratio of 0.091) was used as a low surface area porous electrode on the side of the current collector plate in "Graphi" manufactured by SGL CARBON.
te felt GFD-2 "(felt-like carbon fiber, thickness 2.5m
m, fiber diameter 10 μm, BET surface area 0.47 m 2 / g, d 002 = 3.45Å obtained from wide-angle X-ray, surface O / C atomic ratio obtained from ESCA = 0.038) With the configuration, a charge / discharge experiment was performed at a current density of 130 mA / cm 2 . The pressure loss of the liquid-permeable porous electrode was measured by using the following method as a substitute value of the pressure loss in the battery cell. That is, the pressure loss was measured at a flow rate of pure water of 60 cc / min using the measuring device of FIG. 2, and the magnitude of the pressure loss was shown by the length of the mercury column of the manometer. The results are shown in Table 1.

【0027】実施例2 実施例1に用いた複層多孔質電極の代わりに、隔膜側高
表面積多孔質電極として東洋紡社製「XF-158」(フェル
ト状炭素繊維、厚さ2.0mm、繊維径12μm、表面積
21m2/g、広角X線解析より求めた(002)面の
面間隔d002=3.55Å、ESCAより求めた表面の
O/C原子比=0.088)を、集電板側低表面積多孔
質電極として東レ社製「T-300」(フェルト状炭素繊
維、厚さ2.0mm、繊維径10μm、表面積0.1m2
/g、d002=3.43Å、ESCAより求めた表面の
O/C原子比=0.028)を用いて複層多孔質電極と
した以外は、実施例1と全く同様に充放電実験を実施し
た。結果を表−1に示す。
Example 2 Instead of the multi-layered porous electrode used in Example 1, as the membrane side high surface area porous electrode, "XF-158" (felt-like carbon fiber, thickness 2.0 mm, fiber made by Toyobo Co., Ltd.) was used. The diameter was 12 μm, the surface area was 21 m 2 / g, the interplanar spacing d 002 = 3.55Å of the (002) plane obtained by wide-angle X-ray analysis, and the O / C atomic ratio of the surface obtained by ESCA = 0.088) were collected. “T-300” manufactured by Toray Industries, Inc. as a plate-side low surface area porous electrode (felt-like carbon fiber, thickness 2.0 mm, fiber diameter 10 μm, surface area 0.1 m 2
/ G, d 002 = 3.43Å, O / C atomic ratio of the surface determined by ESCA = 0.028), except that a multi-layer porous electrode was used. Carried out. The results are shown in Table 1.

【0028】実施例3 実施例1に用いた複層多孔質電極の代わりに、隔膜側高
表面積多孔質電極として実施例2で用いた東洋紡社製
「XF-158」を、集電板側多孔質電極として実施例1で用
いたSGL CARBON社製「Graphite felt GFD-2」を用いて
複層多孔質電極とした以外は、実施例1と全く同様に充
放電実験を実施した。結果を表−1に示す。
Example 3 Instead of the multi-layer porous electrode used in Example 1, "XF-158" manufactured by Toyobo Co., Ltd. used in Example 2 as a diaphragm-side high surface area porous electrode was used as a porous plate on the collector plate side. A charge / discharge experiment was carried out in exactly the same manner as in Example 1 except that a multi-layer porous electrode was formed by using "Graphite felt GFD-2" manufactured by SGL CARBON used in Example 1 as the porous electrode. The results are shown in Table 1.

【0029】実施例4 実施例2の充放電実験の電流密度を160mA/cm2
で実施した。結果を表−1に示す。
Example 4 The current density in the charge / discharge experiment of Example 2 was 160 mA / cm 2.
It was carried out in. The results are shown in Table 1.

【0030】比較例1 実施例1に用いた複層多孔質電極の代わりに、実施例1
に用いた隔膜側高表面積多孔質電極としてSGL CARBON社
製「Graphite felt KFD-2」を2枚重ねて電極として用
いた以外は、実施例1と全く同様に充放電実験を実施し
た。結果を表−1に示す。
Comparative Example 1 Instead of the multilayer porous electrode used in Example 1, Example 1 was used.
A charge / discharge experiment was performed in exactly the same manner as in Example 1 except that two sheets of "Graphite felt KFD-2" manufactured by SGL CARBON Co., Ltd. were used as the electrodes as the high surface area porous membrane electrode on the diaphragm side. The results are shown in Table 1.

【0031】比較例2 実施例1に用いた複層多孔質電極の代わりに、実施例1
に用いた隔膜側高表面積多孔質電極としてSGL CARBON社
製「Graphite felt GFD-2」を2枚重ねて電極として用
いた以外は、実施例1と全く同様に充放電実験を実施し
た。結果を表−1に示す。
Comparative Example 2 Instead of the multilayer porous electrode used in Example 1, Example 1 was used.
A charge / discharge experiment was carried out in exactly the same manner as in Example 1 except that two sheets of "Graphite felt GFD-2" manufactured by SGL CARBON Co., Ltd. were used as the electrode on the membrane side high surface area porous electrode used in the above. The results are shown in Table 1.

【0032】比較例3 実施例1に用いた複層多孔質電極の代わりに、複層多孔
質電極として、隔膜側高表面積多孔質電極として実施例
1に用いたSGL CARBON社製「Graphite felt GFD-2」
を、集電板側低表面積多孔質電極として実施例1に用い
たSGL CARBON社製「Graphite felt KFD-2」を用いて複
層多孔質電極として用いた以外は、実施例1と全く同様
に充放電実験を実施した。結果を表−1に示す。
Comparative Example 3 Instead of the multilayer porous electrode used in Example 1, a SGL CARBON "Graphite felt GFD" used in Example 1 was used as a multilayer porous electrode and as a diaphragm side high surface area porous electrode. -2 "
Was used in the same manner as in Example 1 except that "Graphite felt KFD-2" manufactured by SGL CARBON, which was used in Example 1 as the current collector side low surface area porous electrode, was used as the multilayer porous electrode. A charge / discharge experiment was conducted. The results are shown in Table 1.

【0033】[0033]

【表1】 [Table 1]

【0034】実施例5 複層電極の集電板側低表面多孔質電極として、図3及び
図4に示した構造の溝(幅及び深さ1.5mm)を有す
るSGL CARBON社製「Graphite felt GFD2」電極(縦10
mm、横100mm、厚さ2.5mm)を用いた以外は、実施
例1を繰り返した。得られた結果は、電流密度130mA
/cm2、電流効率94.3%、電力効率82.8%、電圧
効率87.8%、セル抵抗1.06Ω・cm2、圧力損失
41Hgであった。
Example 5 As a low surface porous electrode on the collector plate side of a multi-layer electrode, a "Graphite felt" manufactured by SGL CARBON having grooves (width and depth of 1.5 mm) having the structures shown in FIGS. 3 and 4 was used. GFD2 ”electrode (vertical 10
mm, width 100 mm, thickness 2.5 mm), Example 1 was repeated. The obtained result is a current density of 130mA.
/ cm 2 , current efficiency was 94.3%, power efficiency was 82.8%, voltage efficiency was 87.8%, cell resistance was 1.06 Ω · cm 2 , and pressure loss was 41 Hg.

【0035】実施例6 電力貯蔵用として実用規模の電池のセル形状(縦45c
m,横80cm)を有するレドックスフロー電池に、12m
mの間隔で横方向に幅1.5mm、深さ1.5mmの溝を有
する集電板側低表面多孔質電極(SGL CARBON社製「Grap
hite felt GFD2」)および隔膜側高表面多孔質電極(SG
L CARBON社製「Graphite felt KFD2」)からなる複層電
極を使用して電解液流量124リットル/時間、電流密
度130mA/cm2で充放電実験を行った。
Example 6 A cell shape of a battery of a practical scale for power storage (length 45c)
12m for redox flow battery with m, width 80cm)
A low surface porous electrode on the side of the current collector plate having a groove with a width of 1.5 mm and a depth of 1.5 mm at an interval of m (SGL CARBON "Grap"
hite felt GFD2 ”) and diaphragm side high surface porous electrode (SG
A charge / discharge experiment was performed using a multilayer electrode made of "Graphite felt KFD2" manufactured by L CARBON) at an electrolyte flow rate of 124 liters / hour and a current density of 130 mA / cm 2 .

【0036】電解液が複層多孔質電極を通過する圧力損
失は、セルの上流側と下流側に圧力計を設置しその差よ
り求めた。その結果は、電流効率94.1%、電力効率
82.5%、電圧効率87.6%、セル抵抗1.07Ω
・cm2であり、複層多孔質電極を通過する圧力損失は
0.51kg/cm2であった。
The pressure loss of the electrolytic solution passing through the multilayer porous electrode was determined from the difference between the pressure gauges installed on the upstream side and the downstream side of the cell. As a result, current efficiency is 94.1%, power efficiency is 82.5%, voltage efficiency is 87.6%, and cell resistance is 1.07Ω.
-Cm 2 , and the pressure loss through the multilayer porous electrode was 0.51 kg / cm 2 .

【0037】実施例7 実施例6において、溝のない複層多孔質電極を使用した
他は、実施例6と同様にして充放電実験を行い、電解液
が複層多孔質電極を通過する圧力損失を測定した。その
結果、電流効率94.3%、電力効率82.9%、電圧
効率87.9%、セル抵抗1.10Ω・cm2であり、
複層多孔質電極を通過する圧力損失は1.1kg/cm
2であった。
Example 7 A charging / discharging experiment was conducted in the same manner as in Example 6 except that a groove-less multilayer porous electrode was used, and the pressure at which the electrolytic solution passed through the multilayer porous electrode was obtained. The loss was measured. As a result, the current efficiency was 94.3%, the power efficiency was 82.9%, the voltage efficiency was 87.9%, and the cell resistance was 1.10 Ω · cm 2 ,
The pressure loss through the multi-layer porous electrode is 1.1 kg / cm
Was 2 .

【0038】比較例4 実施例6において、実施例6の複層多孔質電極に代えて
比較例1で用いた多孔質電極を使用した他は、実施例6
と同様にして充放電実験を行い、電解液が多孔質電極を
通過する圧力損失を測定した。その結果、電流効率9
5.7%、電力効率82.9%、電圧効率87.9%、
セル抵抗1.52Ω・cm2であり、多孔質電極を通過
する圧力損失は1.7kg/cm2であった。
Comparative Example 4 Example 6 is the same as Example 6 except that the porous electrode used in Comparative Example 1 is used instead of the multilayer porous electrode of Example 6.
A charge / discharge experiment was performed in the same manner as in, and the pressure loss of the electrolytic solution passing through the porous electrode was measured. As a result, the current efficiency is 9
5.7%, power efficiency 82.9%, voltage efficiency 87.9%,
The cell resistance was 1.52 Ω · cm 2 , and the pressure loss through the porous electrode was 1.7 kg / cm 2 .

【0039】[0039]

【発明の効果】本発明によれば、電池セルの厚さを厚く
することなく、液透過性多孔質電極を通過する際の圧力
差ΔPを低減でき、かつ電池セルの厚さを薄くすること
なく、電池セルの内部抵抗を低減できる。そのため、高
電流密度で、かつポンプ動力圧損も小さい、高出力、高
エネルギー効率の新規なレドックス電池を提供すること
ができる。また、多孔質炭素電極に溝を設けることによ
り、液通過圧損をより小さくすることができ、電極への
溝の付設は特に大型のセルにおいて、極めて効果的であ
る。
According to the present invention, the pressure difference ΔP when passing through the liquid-permeable porous electrode can be reduced and the thickness of the battery cell can be reduced without increasing the thickness of the battery cell. Therefore, the internal resistance of the battery cell can be reduced. Therefore, it is possible to provide a new redox battery having high current density, small pump power pressure loss, high output, and high energy efficiency. Further, by providing a groove in the porous carbon electrode, the liquid passage pressure loss can be further reduced, and the provision of the groove in the electrode is extremely effective especially in a large cell.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電池を構成する単一セルの概略説明図
である。
FIG. 1 is a schematic explanatory view of a single cell constituting a battery of the present invention.

【図2】実施例で使用した差圧測定装置の概略説明図で
ある。
FIG. 2 is a schematic explanatory diagram of a differential pressure measuring device used in Examples.

【図3】溝が付設された多孔炭素電極の一例を示す平面
概略図である。
FIG. 3 is a schematic plan view showing an example of a porous carbon electrode provided with grooves.

【図4】図3の断面概略図である。FIG. 4 is a schematic sectional view of FIG.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 隔膜を介して正および負の液透過性電極
が配設され、該電極をその外側から挟持するバイポーラ
板により構成される正極室及び負極室からなるセルを、
該バイポーラ板を介して交互に複数個積層して、電気的
に直列に接続し、該セル内に設けられたマニホールドを
通して複数個の正極室及び負極室に正極電解液および負
極電解液を通液し、酸化還元反応により充放電する電解
液循環型のレドックス電池において、該液透過性電極が
少なくとも下記(1)および(2)の特性を有する2層
の多孔質炭素電極からなることを特徴とするレドックス
電池。 (1)該液透過性電極の隔膜側の層が繊維径2〜20μ
mの炭素繊維からなる多孔質電極であり、その表面積が
3m2/g以上であること (2)該液透過性電極のバイポーラ板側の層が、繊維径
2〜20μmの炭素繊維からなる多孔質電極であり、そ
の表面積が2m2/g以下であること
1. A cell composed of a positive electrode chamber and a negative electrode chamber, which is composed of a bipolar plate in which positive and negative liquid-permeable electrodes are arranged via a diaphragm and which sandwiches the electrodes from the outside,
Plural layers are alternately laminated via the bipolar plates, electrically connected in series, and positive electrode electrolyte solution and negative electrode electrolyte solution are passed through a plurality of positive electrode chambers and negative electrode chambers through a manifold provided in the cell. In the electrolytic solution circulation type redox battery that is charged and discharged by an oxidation-reduction reaction, the liquid permeable electrode is composed of two layers of porous carbon electrodes having at least the following characteristics (1) and (2). Redox battery to do. (1) The layer on the diaphragm side of the liquid-permeable electrode has a fiber diameter of 2 to 20 μm.
m is a porous electrode made of carbon fiber and has a surface area of 3 m 2 / g or more. (2) The layer on the bipolar plate side of the liquid permeable electrode is made of carbon fiber having a fiber diameter of 2 to 20 μm. Quality electrode and its surface area is less than 2 m 2 / g
【請求項2】 前記隔膜側の層が6〜100m2/gの
表面積を有する請求項1記載のレドックス電池。
2. The redox battery according to claim 1, wherein the diaphragm-side layer has a surface area of 6 to 100 m 2 / g.
【請求項3】 前記バイポーラ板側の層が0.1〜1m
2/gの表面積を有する請求項1記載のレドックス電
池。
3. The bipolar plate side layer is 0.1 to 1 m
The redox battery according to claim 1, having a surface area of 2 / g.
【請求項4】 前記隔膜側の層を形成する炭素繊維が、
3.50〜3.80オングストロームの範囲のX線広角
解析より求めた<002>面間隔を有し、及び/又はそ
の表面に結合した酸素原子数と炭素原子数の比が0.0
5以上である請求項1記載のレドックス電池。
4. The carbon fiber forming the layer on the diaphragm side,
It has a <002> plane spacing determined by X-ray wide-angle analysis in the range of 3.50 to 3.80 angstroms, and / or the ratio of the number of oxygen atoms and the number of carbon atoms bonded to its surface is 0.0.
The redox battery according to claim 1, which is 5 or more.
【請求項5】 前記バイポーラ板側の層を形成する炭素
繊維が、3.35〜3.45オングストロームの範囲の
X線広角解析より求めた<002>面間隔を有し、及び
/又は、炭材表面の結合酸素原子数と炭素原子数の比が
0.04以下である請求項1記載のレドックス電池。
5. The carbon fibers forming the layer on the side of the bipolar plate have a <002> plane spacing determined by X-ray wide-angle analysis in the range of 3.35 to 3.45 angstroms, and / or charcoal. The redox battery according to claim 1, wherein the ratio of the number of bonded oxygen atoms to the number of carbon atoms on the material surface is 0.04 or less.
【請求項6】 前記正極電解液が5価/4価バナジウム
溶液であり、前記負極電解液が2価/3価バナジウム溶
液である請求項1記載のレドックス電池。
6. The redox battery according to claim 1, wherein the positive electrode electrolytic solution is a pentavalent / tetravalent vanadium solution, and the negative electrode electrolytic solution is a divalent / trivalent vanadium solution.
【請求項7】 前記多孔質炭素電極の少なくとも1層の
表面に溝が形成されている請求項1記載のレドックス電
池。
7. The redox battery according to claim 1, wherein grooves are formed on the surface of at least one layer of the porous carbon electrode.
【請求項8】 2層の多孔質炭素電極からなり、少なく
とも下記(1)および(2)の特性を有するレドックス
電池用液透過性電極。 (1)該液透過性電極の隔膜側の層が繊維径2〜20μ
mの炭素繊維からなる多孔質電極であり、その表面積が
3m2/g以上であること (2)該液透過性電極のバイポーラ板側の層が、繊維径
2〜20μmの炭素繊維からなる多孔質電極であり、そ
の表面積が2m2/g以下であること
8. A liquid-permeable electrode for a redox battery, comprising a two-layer porous carbon electrode and having at least the following characteristics (1) and (2). (1) The layer on the diaphragm side of the liquid-permeable electrode has a fiber diameter of 2 to 20 μm.
m is a porous electrode made of carbon fiber and has a surface area of 3 m 2 / g or more. (2) The layer on the bipolar plate side of the liquid permeable electrode is made of carbon fiber having a fiber diameter of 2 to 20 μm. Quality electrode and its surface area is less than 2 m 2 / g
【請求項9】 前記多孔質炭素電極の少なくとも1層の
表面に溝が形成されている請求項8記載の電極。
9. The electrode according to claim 8, wherein a groove is formed on the surface of at least one layer of the porous carbon electrode.
JP02700196A 1995-02-16 1996-02-14 Redox battery Expired - Fee Related JP3496385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02700196A JP3496385B2 (en) 1995-02-16 1996-02-14 Redox battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-28339 1995-02-16
JP2833995 1995-02-16
JP02700196A JP3496385B2 (en) 1995-02-16 1996-02-14 Redox battery

Publications (2)

Publication Number Publication Date
JPH08287938A true JPH08287938A (en) 1996-11-01
JP3496385B2 JP3496385B2 (en) 2004-02-09

Family

ID=26364859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02700196A Expired - Fee Related JP3496385B2 (en) 1995-02-16 1996-02-14 Redox battery

Country Status (1)

Country Link
JP (1) JP3496385B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030715A (en) * 1998-07-10 2000-01-28 Sumitomo Electric Ind Ltd Battery electrode material, its manufacture, and electrochemical battery
JP2000357520A (en) * 1999-06-11 2000-12-26 Toyobo Co Ltd Carbon electrode material for vanadium-based redox flow battery
JP2000357521A (en) * 1999-06-11 2000-12-26 Toyobo Co Ltd Carbon electrode material for redox flow battery
JP2001028268A (en) * 1998-07-10 2001-01-30 Sumitomo Electric Ind Ltd Battery electrode material manufacture thereof and electrochemical battery
JP2014508384A (en) * 2011-02-08 2014-04-03 ユナイテッド テクノロジーズ コーポレイション Flow battery with low resistance film
JP2015523697A (en) * 2012-07-27 2015-08-13 ロッキード・マーティン・アドバンスト・エナジー・ストレージ・エルエルシーLockheed Martin Advanced EnergyStorage, LLC Redox flow battery with compatible ionomer membrane
JP2015198059A (en) * 2014-04-03 2015-11-09 株式会社日立製作所 Flow type storage battery
JP5890561B1 (en) * 2015-05-01 2016-03-22 株式会社ギャラキシー Electrolyzer and battery
WO2016104613A1 (en) * 2014-12-26 2016-06-30 昭和電工株式会社 Electrode for redox flow batteries, and redox flow battery
KR20160082621A (en) * 2014-12-26 2016-07-08 전자부품연구원 Carbon felt with the differened in the active site and redox flow secondary battery comprises a the same
JP2016213177A (en) * 2016-01-05 2016-12-15 株式会社ギャラキシー Electrolytic cell and battery
WO2017006729A1 (en) * 2015-07-09 2017-01-12 住友電気工業株式会社 Electrode for redox flow battery, and redox flow battery system
US9768463B2 (en) 2012-07-27 2017-09-19 Lockheed Martin Advanced Energy Storage, Llc Aqueous redox flow batteries comprising metal ligand coordination compounds
US9865893B2 (en) 2012-07-27 2018-01-09 Lockheed Martin Advanced Energy Storage, Llc Electrochemical energy storage systems and methods featuring optimal membrane systems
US9899694B2 (en) 2012-07-27 2018-02-20 Lockheed Martin Advanced Energy Storage, Llc Electrochemical energy storage systems and methods featuring high open circuit potential
US10483581B2 (en) 2012-07-27 2019-11-19 Lockheed Martin Energy, Llc Electrochemical energy storage systems and methods featuring large negative half-cell potentials
CN112928321A (en) * 2019-12-06 2021-06-08 中国科学院大连化学物理研究所 Flow battery structure
CN117525447A (en) * 2024-01-05 2024-02-06 天津泰然储能科技有限公司 Three-stage gradient porous electrode for all-vanadium redox flow battery and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102469497B1 (en) * 2016-12-13 2022-11-22 도레이 카부시키가이샤 Electrode, redox flow battery and method for producing electrode

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030715A (en) * 1998-07-10 2000-01-28 Sumitomo Electric Ind Ltd Battery electrode material, its manufacture, and electrochemical battery
JP2001028268A (en) * 1998-07-10 2001-01-30 Sumitomo Electric Ind Ltd Battery electrode material manufacture thereof and electrochemical battery
JP2000357520A (en) * 1999-06-11 2000-12-26 Toyobo Co Ltd Carbon electrode material for vanadium-based redox flow battery
JP2000357521A (en) * 1999-06-11 2000-12-26 Toyobo Co Ltd Carbon electrode material for redox flow battery
JP2014508384A (en) * 2011-02-08 2014-04-03 ユナイテッド テクノロジーズ コーポレイション Flow battery with low resistance film
US10483581B2 (en) 2012-07-27 2019-11-19 Lockheed Martin Energy, Llc Electrochemical energy storage systems and methods featuring large negative half-cell potentials
US9899694B2 (en) 2012-07-27 2018-02-20 Lockheed Martin Advanced Energy Storage, Llc Electrochemical energy storage systems and methods featuring high open circuit potential
JP2015523697A (en) * 2012-07-27 2015-08-13 ロッキード・マーティン・アドバンスト・エナジー・ストレージ・エルエルシーLockheed Martin Advanced EnergyStorage, LLC Redox flow battery with compatible ionomer membrane
JP2018142548A (en) * 2012-07-27 2018-09-13 ロッキード マーティン エナジー, エルエルシーLockheed Martin Energy, Llc Redox flow battery including suitable ionomeric membrane
US10707513B2 (en) 2012-07-27 2020-07-07 Lockheed Martin Energy, Llc Aqueous redox flow batteries comprising metal ligand coordination compounds
US10651489B2 (en) 2012-07-27 2020-05-12 Lockheed Martin Energy, Llc Electrochemical energy storage systems and methods featuring optimal membrane systems
US9865893B2 (en) 2012-07-27 2018-01-09 Lockheed Martin Advanced Energy Storage, Llc Electrochemical energy storage systems and methods featuring optimal membrane systems
US9768463B2 (en) 2012-07-27 2017-09-19 Lockheed Martin Advanced Energy Storage, Llc Aqueous redox flow batteries comprising metal ligand coordination compounds
JP2015198059A (en) * 2014-04-03 2015-11-09 株式会社日立製作所 Flow type storage battery
JPWO2016104613A1 (en) * 2014-12-26 2017-10-05 昭和電工株式会社 Redox flow battery electrode and redox flow battery
US10727498B2 (en) 2014-12-26 2020-07-28 Showa Denko K.K. Redox flow battery electrode, and redox flow battery
KR20160082621A (en) * 2014-12-26 2016-07-08 전자부품연구원 Carbon felt with the differened in the active site and redox flow secondary battery comprises a the same
WO2016104613A1 (en) * 2014-12-26 2016-06-30 昭和電工株式会社 Electrode for redox flow batteries, and redox flow battery
JP5890561B1 (en) * 2015-05-01 2016-03-22 株式会社ギャラキシー Electrolyzer and battery
WO2017006729A1 (en) * 2015-07-09 2017-01-12 住友電気工業株式会社 Electrode for redox flow battery, and redox flow battery system
JPWO2017006729A1 (en) * 2015-07-09 2018-04-19 住友電気工業株式会社 Redox flow battery electrode and redox flow battery system
JP2016213177A (en) * 2016-01-05 2016-12-15 株式会社ギャラキシー Electrolytic cell and battery
CN112928321A (en) * 2019-12-06 2021-06-08 中国科学院大连化学物理研究所 Flow battery structure
CN112928321B (en) * 2019-12-06 2022-06-28 中国科学院大连化学物理研究所 Flow battery structure
CN117525447A (en) * 2024-01-05 2024-02-06 天津泰然储能科技有限公司 Three-stage gradient porous electrode for all-vanadium redox flow battery and preparation method thereof
CN117525447B (en) * 2024-01-05 2024-03-15 天津泰然储能科技有限公司 Three-stage gradient porous electrode for all-vanadium redox flow battery and preparation method thereof

Also Published As

Publication number Publication date
JP3496385B2 (en) 2004-02-09

Similar Documents

Publication Publication Date Title
JP3496385B2 (en) Redox battery
US5656390A (en) Redox battery
JP3560181B2 (en) Electrode material for liquid flow type electrolytic cell
JP3601581B2 (en) Carbon electrode material for vanadium redox flow battery
JP2920230B2 (en) Redox flow battery
JPH0113192B2 (en)
JP2017033758A (en) Carbon electrode material for redox battery
JP6973075B2 (en) Carbon electrode material for redox batteries
JP5890561B1 (en) Electrolyzer and battery
JPH02281564A (en) Carbon electrode material for electrolytic bath
JPH0992321A (en) Redox cell
JP3555303B2 (en) Redox battery
JP2015138692A (en) integrated carbon electrode
US20220153591A1 (en) Carbon electrode material for manganese/titanium-based redox flow battery
JPH05234612A (en) Carbon electrode material for electrolytic cell
US20220149370A1 (en) Carbon electrode material and redox battery
JPS60253163A (en) Laminated electrolytic cell
JP2906241B2 (en) Liquid flow type electrolytic cell
JPH08138685A (en) Whole vanadium redox battery
JP2001085028A (en) Carbon electrode material assembly
US20220140355A1 (en) Carbon electrode material for redox flow battery and redox flow battery provided with the same
JPS60232669A (en) Electrode material for electrolytic bath
JP3589285B2 (en) Carbon electrode material for redox flow batteries
JPH11317231A (en) Carbon-based electrode material for electrolytic cell
JPH11260377A (en) Carbon electrode material and its manufacture

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees