JP2000357521A - Carbon electrode material for redox flow battery - Google Patents

Carbon electrode material for redox flow battery

Info

Publication number
JP2000357521A
JP2000357521A JP11165639A JP16563999A JP2000357521A JP 2000357521 A JP2000357521 A JP 2000357521A JP 11165639 A JP11165639 A JP 11165639A JP 16563999 A JP16563999 A JP 16563999A JP 2000357521 A JP2000357521 A JP 2000357521A
Authority
JP
Japan
Prior art keywords
electrode material
redox flow
carbon electrode
flow battery
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11165639A
Other languages
Japanese (ja)
Other versions
JP3589285B2 (en
Inventor
Makoto Inoue
誠 井上
Masanobu Kobayashi
真申 小林
Satoshi Takase
敏 高瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP16563999A priority Critical patent/JP3589285B2/en
Publication of JP2000357521A publication Critical patent/JP2000357521A/en
Application granted granted Critical
Publication of JP3589285B2 publication Critical patent/JP3589285B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a carbon electrode material for a redox flow battery capable of reducing internal resistance (cell resistance) of an electrolytic container and enhancing the overall efficiency of the battery. SOLUTION: The carbon electrode material for a redox flow battery using an aqueous electrolyte has a crystallite size in the direction of (a) axis as determined by X-ray wide angle diffraction of 30-80 Å. The carbon electrode material preferably has an amount of surface acidic functional groups as determined by XPS surface analysis of 0.2% or more and 1.2% or less of the number of carbon atoms on the whole surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水溶液系電解液を
使用するレドックスフロー電池用の炭素電極材に関する
ものであり、特に、バナジウム系レドックスフロー電池
に有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon electrode material for a redox flow battery using an aqueous electrolyte solution, and is particularly useful for a vanadium redox flow battery.

【0002】[0002]

【従来の技術】従来より、電極は電池の性能を左右する
ものとして重点的に開発されている。電極には、それ自
体が活物質とならず、活物質の電気化学的反応を促進さ
せる反応場として働くタイプのものがあり、このタイプ
には導電性や耐薬品性などから炭素材料がよく用いられ
る。特に電力貯蔵用に開発が盛んなレドックスフロー電
池の電極には、耐薬品性があり、導電性を有し、かつ通
液性のある炭素繊維集合体が用いられている。
2. Description of the Related Art Conventionally, electrodes have been developed with emphasis on the performance of batteries. Some electrodes do not become active materials themselves, but work as a reaction field to promote the electrochemical reaction of the active material.For this type, carbon materials are often used due to their conductivity and chemical resistance. Can be In particular, a carbon fiber aggregate having chemical resistance, conductivity, and liquid permeability is used for an electrode of a redox flow battery which is actively developed for power storage.

【0003】レドックスフロー電池は、正極に鉄の塩酸
水溶液、負極にクロムの塩酸水溶液を用いたタイプか
ら、起電力の高いバナジウムの硫酸水溶液を両極に用い
るタイプに替わり、高エネルギー密度化されたが、最近
さらに活物質濃度を高める開発が進み、一段と高エネル
ギー密度化が進んでいる。
[0003] Redox flow batteries have a higher energy density from a type using an aqueous hydrochloric acid solution of iron for the positive electrode and an aqueous solution of chromium hydrochloric acid for the negative electrode, to a type using a high-electromotive force aqueous solution of vanadium sulfuric acid for both electrodes. Recently, developments for further increasing the concentration of the active material have been advanced, and the energy density has been further increased.

【0004】レドックスフロー型電池の主な構成は、図
1に示すように電解液を貯える外部タンク6,7と電解
槽ECからなり、ポンプ8,9にて活物質を含む電解液
を外部タンク6,7から電解槽ECに送りながら、電解
槽ECに組み込まれた電極上で電気化学的なエネルギー
変換、すなわち充放電が行われる。
The main structure of a redox flow type battery is, as shown in FIG. 1, composed of external tanks 6 and 7 for storing an electrolytic solution and an electrolytic cell EC, and pumps 8 and 9 for supplying an electrolytic solution containing an active material to the external tank. While being sent from 6, 7 to the electrolytic cell EC, electrochemical energy conversion, that is, charge / discharge is performed on the electrodes incorporated in the electrolytic cell EC.

【0005】一般に、充放電の際には、電解液を外部タ
ンクと電解槽との間で循環させるため、電解槽は図1に
示すような液流通型構造をとる。該液流通型電解槽を単
セルと称し、これを最小単位として単独もしくは多段積
層して用いられる。液流通型電解槽における電気化学反
応は、電極表面で起こる不均一相反応であるため、一般
的には二次元的な電解反応場を伴うことになる。電解反
応場が二次元的であると、電解槽の単位体積当たりの反
応量が小さいという難点がある。
In general, during charging and discharging, an electrolytic solution is circulated between an external tank and an electrolytic bath, so that the electrolytic bath has a liquid flow type structure as shown in FIG. The liquid flow type electrolytic cell is referred to as a single cell, which is used as a minimum unit and is used alone or in a multi-layered structure. Since the electrochemical reaction in the liquid flowing type electrolytic cell is a heterogeneous phase reaction occurring on the electrode surface, it generally involves a two-dimensional electrolytic reaction field. When the electrolytic reaction field is two-dimensional, there is a disadvantage that the reaction amount per unit volume of the electrolytic cell is small.

【0006】そこで、単位面積当りの反応量、すなわち
電流密度を増すために電気化学反応場の三次元化が行わ
れるようになった。図2は、三次元電極を有する液流通
型電解槽の分解斜視図である。該電解槽では、相対する
二枚の集電板1,1間にイオン交換膜3が配設され、イ
オン交換膜3の両側にスペーサ2によって集電板1,1
の内面に沿った電解液の流路4a,4bが形成されてい
る。該流通路4a,4bの少なくとも一方には炭素繊維
集合体等の電極材5が配設されており、このようにして
三次元電極が構成されている。なお、集電板1には、電
解液の液流入口10と液流出口11とが設けられてい
る。
In order to increase the amount of reaction per unit area, that is, the current density, three-dimensional electrochemical reaction fields have been used. FIG. 2 is an exploded perspective view of a liquid flow type electrolytic cell having three-dimensional electrodes. In the electrolytic cell, an ion exchange membrane 3 is arranged between two opposing current collector plates 1 and 1, and the current collector plates 1 and 1 are disposed on both sides of the ion exchange membrane 3 by spacers 2.
Are formed along the inner surface of the cell. An electrode material 5 such as a carbon fiber aggregate is provided in at least one of the flow passages 4a and 4b, and thus a three-dimensional electrode is formed. The current collector 1 is provided with a liquid inlet 10 and a liquid outlet 11 for the electrolytic solution.

【0007】正極電解液にオキシ硫酸バナジウム、負極
電解液に硫酸バナジウムの各々硫酸酸性水溶液を用いた
レドックスフロー型電池の場合、放電時には、V2+を含
む電解液が負極側の液流路4aに供給され、正極側の流
路4bにはV5+(実際には酸素を含むイオン)を含む電
解液が供給される。負極側の流路4aでは、三次元電極
5内でV2+が電子を放出しV3+に酸化される。放出され
た電子は外部回路を通って正極側の三次元電極内でV5+
をV4+(実際には酸素を含むイオン)に還元する。この
酸化還元反応に伴って負極電解液中のSO4 2-が不足
し、正極電解液ではSO4 2-が過剰になるため、イオン
交換膜3を通ってSO4 2-が正極側から負極側に移動し
電荷バランスが保たれる。あるいは、H+ がイオン交換
膜を通って負極側から正極側へ移動することによっても
電荷バランスを保つことができる。充電時には放電と逆
の反応が進行する。
[0007] In the case of a redox flow battery using a sulfuric acid aqueous solution of vanadium oxysulfate as the positive electrode electrolyte and vanadium sulfate as the negative electrode electrolyte, during discharge, the electrolyte containing V 2+ is supplied to the liquid flow path 4a on the negative electrode side. And an electrolyte containing V 5+ (actually, ions containing oxygen) is supplied to the flow path 4b on the positive electrode side. In the flow path 4a on the negative electrode side, V 2+ emits electrons in the three-dimensional electrode 5 and is oxidized to V 3+ . The emitted electrons pass through an external circuit and enter V 5+ in the three-dimensional electrode on the positive electrode side.
To V 4+ (actually an ion containing oxygen). The redox reaction SO 4 2-of the negative electrode electrolytic solution is insufficient with the, for SO 4 2-becomes excessive in the positive electrolyte, negative electrode SO 4 2-is from the positive electrode side through the ion-exchange membrane 3 Side and the charge balance is maintained. Alternatively, the charge balance can be maintained by moving H + from the negative electrode side to the positive electrode side through the ion exchange membrane. At the time of charging, a reaction reverse to that of discharging proceeds.

【0008】バナジウム系レドックスフロー電池用電極
材の特性としては、特に以下に示す性能が要求される。
As the characteristics of the electrode material for a vanadium-based redox flow battery, the following performance is particularly required.

【0009】1)目的とする反応以外の副反応を起こさな
いこと(反応選択性が高いこと)、具体的には電流効率
(ηI )が高いこと。 2)電極反応活性が高いこと、具体的にはセル抵抗(R)
が小さいこと。すなわち電圧効率(ηV )が高いこと。 3)上記1)、2)に関連する電池エネルギー効率(ηE )が
高いこと。 ηE =ηI ×ηV 4)くりかえし使用に対する劣化が小さいこと(高寿
命)、具体的には電池エネルギー効率(ηE )の低下量
が小さいこと。
1) No side reaction other than the intended reaction should occur (high reaction selectivity), specifically, high current efficiency (η I ). 2) High electrode reaction activity, specifically cell resistance (R)
Is small. That is, the voltage efficiency (η V ) is high. 3) High battery energy efficiency (η E ) related to 1) and 2) above. η E = η I × η V 4) Deterioration due to repeated use is small (long life), and specifically, the amount of decrease in battery energy efficiency (η E ) is small.

【0010】例えば、特開昭60−232669号公報
には、X線広角解析より求めた<002>面間隔が、平
均3.70Å以下であり、またc軸方向の結晶子の大き
さが平均9.0Å以上の擬黒鉛微結晶を有し、かつ全酸
性官能基量が少なくとも0.01meq/gである炭素
質材料をレドックスフロー電池の電解槽用電極材として
用いることが提案されている。
For example, Japanese Patent Application Laid-Open No. 60-232669 discloses that the <002> plane spacing determined by X-ray wide angle analysis is 3.70 ° or less on average, and the crystallite size in the c-axis direction is It has been proposed to use a carbonaceous material having pseudographite crystallites of 9.0 ° or more and having a total acidic functional group content of at least 0.01 meq / g as an electrode material for an electrolytic cell of a redox flow battery.

【0011】また、特開平5−234612号公報に
は、ポリアクリロニトリル系繊維を原料とする炭素質繊
維で、X線広角解析より求めた<002>面間隔が3.
50〜3.60Åの擬黒鉛結晶構造を有し、炭素質材料
表面の結合酸素原子数が炭素原子数の10〜25%とな
るような炭素質材をレドックスフロー電池の電解槽用電
極材として用いることが提案されている。
Japanese Unexamined Patent Publication (Kokai) No. 5-234612 discloses a carbonaceous fiber made of polyacrylonitrile-based fiber having a <002> plane spacing of 3.0 obtained by X-ray wide-angle analysis.
A carbonaceous material having a pseudographite crystal structure of 50 to 3.60 ° and having the number of bonded oxygen atoms on the surface of the carbonaceous material of 10 to 25% of the number of carbon atoms is used as an electrode material for an electrolytic cell of a redox flow battery. It has been proposed to use.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、特開昭
60−232669号公報、特開平5−234612号
公報では、炭素質材料表面と電解液との間に有効な濡れ
性を発現させるために、全酸性官能基量が0.01me
q/g以上か、あるいはX線広角解析より求めた<00
2>面間隔が3.50Å以上、かつ炭素質材料表面の結
合酸素原子数が炭素原子数の10%以上必要であったの
で、この条件を満たすために低い温度での炭素化を行わ
ざるを得ず、そのため炭素の導電性を高められないとい
う問題点があった。さらに炭素質材料表面と集電板との
接触抵抗も官能基が多すぎるため高くなり、その結果セ
ル抵抗が高くなり、高いエネルギー効率を得られないこ
とも問題となった。また上述の理由から、炭素の結晶性
を上げられないため、特に電解液が1.5mol/l以
上のバナジウムイオンを含むレドックスフロー電池にお
いて、耐酸化性が充分ではなく、充放電サイクルの繰り
返しに伴ってセル抵抗が増加し、エネルギー効率の変化
(低下率)が大きいこと判明した。
However, JP-A-60-232669 and JP-A-5-234612 disclose that in order to exhibit effective wettability between the carbonaceous material surface and the electrolyte, Total acidic functional group content is 0.01me
q / g or more, or determined by X-ray wide-angle analysis <00
2> Since the plane spacing was 3.50 ° or more and the number of bonded oxygen atoms on the surface of the carbonaceous material was required to be 10% or more of the number of carbon atoms, carbonization at a low temperature had to be performed to satisfy this condition. Thus, there was a problem that the conductivity of carbon could not be increased. Further, the contact resistance between the surface of the carbonaceous material and the current collector plate is increased due to too many functional groups. As a result, the cell resistance is increased, and a problem that high energy efficiency cannot be obtained is also a problem. Further, for the above-mentioned reasons, since the crystallinity of carbon cannot be increased, oxidation resistance is not sufficient, particularly in a redox flow battery in which the electrolyte contains 1.5 mol / l or more of vanadium ions, and the charge / discharge cycle is repeated. It was found that the cell resistance increased and the change (decrease rate) in energy efficiency was large.

【0013】そこで、本発明の目的は、かかる事情に鑑
み、電解槽の内部抵抗(セル抵抗)を低減して電池の総
合効率を高めることができるレドックスフロー電池用炭
素電極材を提供することにある。
In view of the above, an object of the present invention is to provide a carbon electrode material for a redox flow battery capable of reducing the internal resistance (cell resistance) of an electrolytic cell and increasing the overall efficiency of the battery. is there.

【0014】[0014]

【課題を解決するための手段】本発明者らは、上記目的
を達成すべく鋭意研究したところ、a軸方向の結晶子の
大きさを特定の範囲に制御することにより、上記目的が
達成できることを見出し、更に炭素電極材の表面酸性官
能基量を従来より低く抑えることが有効なことを見出
し、本発明を完成するに至った。
Means for Solving the Problems The present inventors have made intensive studies to achieve the above object, and found that the above object can be achieved by controlling the crystallite size in the a-axis direction to a specific range. The present inventors have further found that it is effective to suppress the surface acidic functional group content of the carbon electrode material to be lower than before, and have completed the present invention.

【0015】即ち、本発明の炭素電極材は、水溶液系電
解液を使用するレドックスフロー電池用の炭素電極材で
あって、X線広角解析より求めたa軸方向の結晶子の大
きさが30〜80Åであることを特徴とする。本発明の
炭素電極材によると、炭素の結晶子が適度な大きさとな
り、炭素電極材自体の導電性が向上し、これによりセル
抵抗を小さくしてエネルギー効率を向上できると共に、
結晶子の周囲のエッジ面への表面酸性官能基の良好な賦
与が可能となり、活物質の良好な反応性が得られる。そ
の結果、電極材自体の導電性を高めつつ、かつ程良い濡
れ性を得ることで電解槽の内部抵抗の低減を図ることが
可能となり、電圧効率を高めて電池エネルギー効率を高
めることができる。
That is, the carbon electrode material of the present invention is a carbon electrode material for a redox flow battery using an aqueous electrolyte, and has a crystallite size of 30 in the a-axis direction obtained by X-ray wide-angle analysis. Å80 °. According to the carbon electrode material of the present invention, the crystallites of carbon have an appropriate size, the conductivity of the carbon electrode material itself is improved, and thereby the cell resistance can be reduced and the energy efficiency can be improved,
Good application of surface acidic functional groups to the edge surface around the crystallites is possible, and good reactivity of the active material is obtained. As a result, it is possible to reduce the internal resistance of the electrolytic cell by increasing the conductivity of the electrode material itself and obtaining moderate wettability, thereby increasing the voltage efficiency and the battery energy efficiency.

【0016】上記において、XPS表面分析より求めた
表面酸性官能基量が全表面炭素原子数の0.2%以上
1.2%以下であることが好ましい。これにより、電極
材表面の接触抵抗を低く抑えながら、水溶液系電解液と
の濡れ性を適度に付与することができ、上記の如き作用
効果をより確実に得ることができる。
In the above, it is preferred that the amount of surface acidic functional groups determined by XPS surface analysis be 0.2% or more and 1.2% or less of the total number of surface carbon atoms. Thereby, the wettability with the aqueous electrolyte solution can be appropriately given while the contact resistance on the electrode material surface is kept low, and the above-described effects can be obtained more reliably.

【0017】また、本発明の炭素電極材は、バナジウム
系レドックスフロー電池に用いられることが好ましい。
バナジウム系のレドックスフロー電池では、上記の電解
液との濡れ性が比較的良好になるため、上記の如き作用
効果がより顕著になる。また、当該電池では電極材を構
成する繊維間や集電板に対する電極材表面の接触抵抗が
特に問題になり易いため、上記作用効果を有する本発明
の炭素電極材が特に有用なものとなる。
The carbon electrode material of the present invention is preferably used for a vanadium redox flow battery.
In a vanadium-based redox flow battery, the wettability with the above-mentioned electrolyte is relatively good, so that the above-described effects are more remarkable. Further, in the battery, since the contact resistance between the fibers constituting the electrode material and the surface of the electrode material with respect to the current collector plate tends to be particularly problematic, the carbon electrode material of the present invention having the above-mentioned effects is particularly useful.

【0018】[0018]

【発明の実施の形態】本発明のレドックスフロー電池用
炭素電極材は、炭素質材料からなり、その組織、微細構
造等は特に限定されないが、電極表面積を大きくできる
ものが好ましい。具体的には、紡績糸、フィラメント集
束糸、不織布、編地、織地、特殊編織物(特開昭63−
200467号公報に開示されているようなもの)、あ
るいはこれらの混成組織からなる炭素質繊維集合体、又
は多孔質炭素体、炭素−炭素複合体、粒子状炭素材料等
を挙げることができる。これらのうち、炭素質繊維より
なるシート状のものが、取り扱いや加工性、製造性等の
点から好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The carbon electrode material for a redox flow battery of the present invention is made of a carbonaceous material, and its structure and microstructure are not particularly limited, but those capable of increasing the electrode surface area are preferable. Specifically, spun yarn, filament bundled yarn, non-woven fabric, knitted fabric, woven fabric, special knitted fabric (Japanese Unexamined Patent Publication No.
No. 200447), or a carbonaceous fiber aggregate having a hybrid structure thereof, a porous carbon body, a carbon-carbon composite, a particulate carbon material, and the like. Among these, a sheet-like material made of carbonaceous fiber is preferable from the viewpoint of handling, workability, manufacturability and the like.

【0019】シート状物等の目付量は、その組織にもよ
るが、隔膜と集電板に挟まれた充填状態の厚みを2〜3
mmで使用する場合、100〜1000g/m2 、不織
布組織の場合は200〜600g/m2 が望ましい。ま
た片面に凹溝加工が施された不織布等が通液性から好ん
で用いられる。その場合の溝幅、溝深さは少なくとも
0.3mm、好ましくは0.5mm以上が望ましい。炭
素質繊維シートの厚みは上記充填状態の厚みより少なく
とも大きいこと、不織布等の密度の低いものでは充填状
態の厚みの1.5倍程度が望ましい。しかしながら、厚
みが厚すぎると圧縮応力で膜を突き破ってしまうので、
圧縮応力を1kgf/cm2 以下に設計するのが好まし
い。
The basis weight of the sheet-like material or the like depends on the structure thereof, but the thickness of the filled state sandwiched between the diaphragm and the current collector is 2 to 3 times.
When used in mm, 100~1000g / m 2, in the case of non-woven tissue 200 to 600 g / m 2 is desirable. A nonwoven fabric or the like having a groove on one side is preferably used because of its liquid permeability. In this case, the groove width and the groove depth are at least 0.3 mm, preferably 0.5 mm or more. It is desirable that the thickness of the carbonaceous fiber sheet is at least larger than the thickness in the above-described filled state, and that the thickness of the carbonized fiber sheet in the case of a low-density nonwoven fabric is about 1.5 times the thickness in the filled state. However, if the thickness is too thick, it will break through the film with compressive stress,
Preferably, the compressive stress is designed to be 1 kgf / cm 2 or less.

【0020】なお、上記の炭素質繊維の平均繊維径は5
〜20μm程度が好ましく、平均長さは30〜100m
m程度が好ましい。
The average fiber diameter of the carbonaceous fibers is 5
About 20 μm is preferable, and the average length is 30 to 100 m.
m is preferable.

【0021】炭素質繊維シートは、電池の中に圧接され
て組み込まれ、その薄い隙間を電解液が流れるが、電解
液の粘度が高い場合があるため、脱落しないように引張
強度を0.1kg/cm2 以上にすることが形態保持の
ために望ましい。また集電板との接触抵抗を良くするた
めに、不織布組織では隔膜、集電板に挟まれた充填層の
密度を0.05g/cm3 以上に、電極面に対する反発
力を0.1kgf/cm2 以上にすることが好ましい。
The carbonaceous fiber sheet is assembled by being pressed into the battery, and the electrolyte flows through the thin gap. However, since the viscosity of the electrolyte may be high, the tensile strength is set to 0.1 kg so as not to fall off. / Cm 2 or more is desirable for shape retention. In order to improve the contact resistance with the current collector plate, the density of the packed layer sandwiched between the diaphragm and the current collector plate is set to 0.05 g / cm 3 or more and the repulsive force against the electrode surface is set to 0.1 kgf / cm. cm 2 or more.

【0022】さらに本発明の炭素電極材は、電極材とし
ての本来必要な導電性と圧接型電解層用電極としてのセ
ル接合性を両立するために、X線広角解析より求めたa
軸方向の結晶子の大きさ(La)が30〜80Åで、か
つXPS表面分析より求めた表面酸性官能基量が全表面
炭素原子数の0.2%以上1.2%以下に調整される。
好ましくはLaが35〜80Åで、かつ表面酸性官能基
量が0.2〜1.1%であり、より好ましくはLaが4
0〜79Åで、かつ表面酸性官能基量が0.3〜1.0
%である。
Furthermore, the carbon electrode material of the present invention was obtained by X-ray wide angle analysis in order to achieve both the originally required conductivity as an electrode material and the cell bonding property as an electrode for a pressure-contact type electrolytic layer.
The crystallite size (La) in the axial direction is 30 to 80 °, and the amount of surface acidic functional groups determined by XPS surface analysis is adjusted to 0.2% to 1.2% of the total number of surface carbon atoms. .
Preferably, La is 35 to 80 °, and the amount of surface acidic functional groups is 0.2 to 1.1%, and more preferably, La is 4 to 80%.
0 to 79 ° and the amount of surface acidic functional groups is 0.3 to 1.0
%.

【0023】a軸方向の結晶子の大きさとは、炭素の結
晶子における網面の広がりを意味し、a軸方向の結晶子
の大きさが30Å未満である場合、電池内部抵抗(セル
抵抗)の内の電極材導電抵抗成分が無視できないように
なり、その結果セル抵抗が増加し(電圧効率が低下
し)、エネルギー効率が低下する。反面80Åより大き
いと電解液の濡れ性を左右する親水基の賦与ができなく
なり、活物質の反応性が著しく低下するため、電池の内
部抵抗が高くなる。なおa軸方向の結晶子の大きさはX
線広角解析にて得られる<10>面回折ピークの半値幅
より算出される。
The crystallite size in the a-axis direction means the spread of the net plane in the carbon crystallites. When the crystallite size in the a-axis direction is less than 30 °, the internal resistance of the battery (cell resistance) Of the electrode material cannot be ignored, as a result, the cell resistance increases (voltage efficiency decreases) and energy efficiency decreases. On the other hand, if it is larger than 80 °, it becomes impossible to provide a hydrophilic group which affects the wettability of the electrolytic solution, and the reactivity of the active material is significantly reduced, so that the internal resistance of the battery is increased. The size of the crystallite in the a-axis direction is X
It is calculated from the half width of the <10> plane diffraction peak obtained by line wide angle analysis.

【0024】また表面酸性官能基量は0.2%未満の場
合には、電解液の濡れ性が悪く、セル抵抗が著しく増加
する。これは、炭素原子そのものは疎水性であるため、
親水基の酸性官能基が少ない場合には水をはじきやすい
ためと考えられる。反面1.2%以上の場合、官能基の
存在が大きく影響し、電極材の繊維間接触および繊維−
集電板間の導電性が阻害され好ましくない。なお、上記
の表面酸性官能基量とは、含酸素官能基のうち硝酸銀処
理によって銀イオン置換されうる水酸基やカルボキシル
基の量を意味し、XPS表面分析によって検出される表
面銀イオン量の表面炭素原子数に対する割合(百分率)
として表す。
When the amount of the surface acidic functional group is less than 0.2%, the wettability of the electrolytic solution is poor and the cell resistance is significantly increased. This is because the carbon atoms themselves are hydrophobic,
It is considered that when the number of the acidic functional groups of the hydrophilic group is small, water is easily repelled. On the other hand, when the content is 1.2% or more, the presence of the functional group greatly affects the contact between the fibers of the electrode material and the fibers.
The conductivity between the current collectors is undesirably hindered. The above-mentioned surface acidic functional group amount refers to the amount of hydroxyl groups or carboxyl groups that can be replaced with silver ions by silver nitrate treatment among the oxygen-containing functional groups, and indicates the surface carbon ion amount of the surface carbon ions detected by XPS surface analysis. Ratio to the number of atoms (percentage)
Expressed as

【0025】こうした結晶性と表面特性を有する炭素質
材料は、緊張下200〜300℃の初期空気酸化(耐炎
化)を経たポリアクリロニトリル、等方性ピッチ、メソ
フェーズピッチ、セルロースやフェノール、ポリパラフ
ェニレンベンゾビスオキサゾール(PBO)などを原料
として用いて製造される。中でも、特にポリアクリロニ
トリルの重量平均分子量(Mw)を20000〜500
000に調整されたものが耐炎化の原料として好まし
い。分子量が大きくなった場合、より低い焼成(炭化)
温度でも所定のLaを得ることができるが、同時に結晶
子の配向性が相対的に高くなる傾向にあり、単繊維の曲
げ弾性率が高くなってセル接合時の圧縮弾性率が低下
し、反面分子量が小さくなると焼成時に単繊維の結晶化
が進まず、乱層構造が発達し導電性が向上しない傾向が
ある。こうした所定の分子量を有するポリアクリロニト
リル繊維は公知の方法で耐炎化される。
Carbonaceous materials having such crystallinity and surface characteristics include polyacrylonitrile, isotropic pitch, mesophase pitch, cellulose, phenol, and polyparaphenylene that have been subjected to initial air oxidation (flame resistance) at 200 to 300 ° C. under tension. It is manufactured using benzobisoxazole (PBO) or the like as a raw material. Among them, particularly, the weight average molecular weight (Mw) of polyacrylonitrile is set to 20000 to 500.
Those adjusted to 000 are preferred as raw materials for flame resistance. Lower firing (carbonization) for higher molecular weights
Although a predetermined La can be obtained even at a temperature, the orientation of crystallites tends to be relatively high at the same time, the bending elastic modulus of the single fiber increases, the compressive elastic modulus at the time of cell joining decreases, and When the molecular weight is small, crystallization of the single fiber does not proceed during firing, and a turbostratic structure tends to develop and the conductivity does not tend to improve. Such polyacrylonitrile fibers having a predetermined molecular weight are flame-resistant by a known method.

【0026】耐炎化された原料は不活性雰囲気下100
0〜1800℃で焼成され、擬黒鉛結晶構造を有する炭
素材料となる。炭化温度は原料やその分子量によって結
晶性が異なるので、温度には特に限定されず、原料に応
じた炭化温度の最適化が必要である。つまり、Laは、
原料の分子量と炭化温度の兼ね合い等により制御するこ
とができる。
The flame-resistant raw material is 100
It is fired at 0 to 1800 ° C. to become a carbon material having a pseudo-graphite crystal structure. Since the crystallinity differs depending on the raw material and its molecular weight, the carbonization temperature is not particularly limited to the temperature, and it is necessary to optimize the carbonization temperature according to the raw material. That is, La is
It can be controlled by a balance between the molecular weight of the raw material and the carbonization temperature.

【0027】さらに所定の酸素濃度で乾式酸化処理し、
必要があれば水素ガス存在下によって官能基を一部還元
してもよい。乾式酸化については公知の方法が採用でき
るが、電極材に適度の表面酸性官能基量を得るために
は、酸化処理後の重量収率にて90〜96%に調整する
ことが望ましい。
Further, dry oxidation treatment is performed at a predetermined oxygen concentration,
If necessary, the functional groups may be partially reduced in the presence of hydrogen gas. For the dry oxidation, a known method can be adopted, but in order to obtain an appropriate amount of surface acidic functional groups in the electrode material, it is desirable to adjust the weight yield after the oxidation treatment to 90 to 96%.

【0028】次に、本発明において採用されるa軸方向
の結晶子の大きさ(La)、XPS表面分析、全酸性官
能基量、単繊維の導電抵抗、電極性能の各測定法につい
て説明する。
Next, the respective methods of measuring the crystallite size (La) in the a-axis direction, the XPS surface analysis, the total amount of acidic functional groups, the conductive resistance of a single fiber, and the electrode performance employed in the present invention will be described. .

【0029】1.a軸方向の結晶子の大きさ(La) 電極材料をメノウ乳鉢で、粒径10μm程度になるまで
粉砕し、試料に対して約5重量%のX線標準用高純度シ
リコン粉末を内部標準物質として混合し、試料セルに詰
め、CuKα線を線源として、ディフラクトメーター法
によって広角X線を測定する。
1. Crystallite size in the a-axis direction (La) The electrode material is pulverized in an agate mortar to a particle size of about 10 μm, and about 5% by weight of the sample, high purity silicon powder for X-ray standard is used as an internal standard material. , And packed in a sample cell, and a wide angle X-ray is measured by a diffractometer method using CuKα radiation as a radiation source.

【0030】曲線の補正には、いわゆるローレンツ因
子、偏光因子、吸収因子、原子散乱因子等に関する補正
を行わず、次の簡便法を用いる。即ち、<10>回折に
相当するピークのべースラインからの実質強度をプロッ
トし直して<10>補正強度曲線を得る。この曲線のピ
ーク高さの1/2の高さに引いた角度軸に平行な線が補
正強度曲線と交わる線分の長さ(半値幅β)から数式1
によって結晶子の大きさを求める。
For the correction of the curve, the following simple method is used without performing correction for the so-called Lorentz factor, polarization factor, absorption factor, atomic scattering factor and the like. That is, the actual intensity from the base line of the peak corresponding to the <10> diffraction is plotted again to obtain the <10> corrected intensity curve. A line parallel to the angle axis drawn to half the peak height of this curve is expressed by the following equation (1) from the length of the line segment (half width β) that intersects the corrected intensity curve.
To determine the size of the crystallite.

【0031】[0031]

【数1】 ここで、波長λ=1.5418Å、構造係数k2=1.
84、θは<10>回折角を、βは<10>回折ピーク
の半値幅を示す。
(Equation 1) Here, the wavelength λ = 1.5418 °, the structure coefficient k2 = 1.
84 and θ indicate the <10> diffraction angle, and β indicates the half value width of the <10> diffraction peak.

【0032】2.XPS表面分析 ESCAあるいはXPSと略称されているX線光電子分
光法の測定に用いる装置は島津ESCA750で、解析
にはESCAPAC760を用いる。
2. XPS Surface Analysis A device used for measurement of X-ray photoelectron spectroscopy, which is abbreviated as ESCA or XPS, is Shimadzu ESCA750, and ESCAPAC760 is used for analysis.

【0033】各試料を硝酸銀のアセトン溶液に浸漬し、
酸性官能基のプロトンを完全に銀置換し、アセトン及び
水でそれぞれ洗浄後、6mm径に打ち抜き、導電性ペー
ストにより加熱式試料台に貼り付け、分析に供する。予
め、測定前に試料を12O℃に加熱し、3時間以上真空
脱気する。線源にはMgKα線(1253.6eV)を
用い、装置内真空度は10-7torrとする。
Each sample was immersed in a solution of silver nitrate in acetone,
The proton of the acidic functional group is completely replaced with silver, washed with acetone and water, punched out to a diameter of 6 mm, attached to a heated sample stand with a conductive paste, and subjected to analysis. Before the measurement, the sample is heated to 120 ° C. and vacuum degassed for 3 hours or more. MgKα radiation (1253.6 eV) is used as the radiation source, and the degree of vacuum in the apparatus is set to 10 −7 torr.

【0034】測定はCls,Ag3dピークに対して行
い、各ピークをESCAPAC760(J.H.Sco
fieldによる補正法に基づく)を用いて補正解析
し、各ピーク面積を求める。得られた面積にClsにつ
いては1.00、Ag3dについては10.68の相対
強度を乗じたものの比が原子数比であり、全表面炭素原
子数に対する表面酸性官能基量は(表面銀原子数/表面
炭素原子数)比を百分率(%)で算出する。
The measurement was performed on the Cls and Ag3d peaks, and each peak was measured using ESCAPAC760 (JH Sco
(based on the field correction method) to determine the respective peak areas. The ratio of the obtained area multiplied by the relative intensity of 1.00 for Cls and 10.68 for Ag3d is the atomic number ratio, and the amount of surface acidic functional groups to the total number of surface carbon atoms is (the number of surface silver atoms) / Number of surface carbon atoms) is calculated as a percentage (%).

【0035】3.単繊維の比抵抗 JIS R7601(1986)に記載の「6.7体積
抵抗率」に従って測定する。
3. Specific Resistance of Single Fiber Measured according to “6.7 Volume Resistivity” described in JIS R7601 (1986).

【0036】4.電極性能 上下方向(通液方向)に1cm、幅方向に10cmの電
極面積10cm2 を有する小型のセルを作り、定電流密
度で充放電を繰り返し、電極性能のテストを行う。正極
電解液には2mol/lのオキシ硫酸バナジウムの3m
ol/l硫酸水溶液を用い、負極電解液には2mol/
lの硫酸バナジウムの3mol/l硫酸溶液を用いる。
電解液量はセル、配管に対して大過剰とした.液流量は
毎分6.2mlとし、30℃で測定を行う。
4. Electrode performance A small cell having an electrode area of 10 cm 2 of 1 cm in the vertical direction (liquid flow direction) and 10 cm in the width direction is made, and charge and discharge are repeated at a constant current density to test the electrode performance. 3 m of 2 mol / l vanadium oxysulfate was used for the positive electrode electrolyte.
ol / l sulfuric acid aqueous solution, and 2 mol / l
A 3 mol / l sulfuric acid solution of 1 vanadium sulfate is used.
The amount of electrolyte was set to a large excess with respect to the cells and piping. The liquid flow rate is 6.2 ml per minute, and the measurement is performed at 30 ° C.

【0037】(a)電流効率:ηI 充電に始まり、放電で終わる1サイクルのテストにおい
て、電流密度を電極幾何面積当たり40mA/cm2
(400mA)として、1.7Vまでの充電に要した電
気量をQ1 クーロン、1.0Vまでの定電流放電、およ
びこれに続く1.2Vでの定電圧放電で取りだした電気
量をそれぞれQ2 、Q3 クーロンとし、数式2で電流効
率ηI を求める。
(A) Current efficiency: η I In a one-cycle test starting from charging and ending with discharging, the current density was set to 40 mA / cm 2 per electrode geometric area.
(400 mA), the quantity of electricity required for charging up to 1.7 V is Q 1 coulomb, the quantity of electricity taken out by constant current discharge up to 1.0 V, and the subsequent quantity of electricity taken out by constant voltage discharge at 1.2 V are Q 2 , Q 3 coulombs, and the current efficiency η I is obtained by equation (2).

【0038】[0038]

【数2】 (b)セル抵抗:R 負極液中のV3+をV2+に完全に還元するのに必要な理論
電気量Qthに対して、放電により取りだした電気量の比
を充電率とし、数式3で充電率を求める。
(Equation 2) (B) Cell resistance: R The ratio of the amount of electricity taken out by discharging to the theoretical amount of electricity Q th required to completely reduce V 3+ in the negative electrode solution to V 2+ is defined as a charging rate. The charging rate is determined in step 3.

【0039】[0039]

【数3】 充電率が50%のときの電気量に対応する充電電圧V
C50 、放電電圧VD50 を電気量−電圧曲線からそれぞれ
求め、数式4より電極幾何面積に対するセル抵抗R(Ω
・cm2 )を求める。
(Equation 3) Charging voltage V corresponding to the amount of electricity when the charging rate is 50%
C50 and discharge voltage V D50 are obtained from the electric quantity-voltage curve, respectively.
・ Calculate cm 2 ).

【0040】[0040]

【数4】 ここで、Iは定電流充放電における電流値0.4Aであ
る。
(Equation 4) Here, I is a current value of 0.4 A in constant current charging and discharging.

【0041】(c)電圧効率:ηV 上記の方法で求めたセル抵抗Rを用いて数式5の簡便法
により電圧効率ηV を求める。
(C) Voltage efficiency: η V Using the cell resistance R obtained by the above method, the voltage efficiency η V is obtained by a simple method of Expression 5.

【0042】[0042]

【数5】 ここで、Eは充電率50%のときのセル開回路電圧1.
432V(実測値)、Iは定電流充放電における電流値
0.4Aである。
(Equation 5) Here, E is the cell open circuit voltage when the charging rate is 50%.
432 V (actual measurement value), and I is a current value of 0.4 A in constant current charging and discharging.

【0043】(d)エネルギー効率:ηE 前述の電流効率ηI と電圧効率ηV を用いて、数式6に
よりエネルギー効率η E を求める。
(D) Energy efficiency: ηE Current efficiency η described aboveI And voltage efficiency ηV And using Equation 6
More energy efficiency η E Ask for.

【0044】[0044]

【数6】 電流効率、電圧効率が高くなる程、エネルギー効率は高
くなり、従つて充放電におけるエネルギーロスが小さ
く、優れた電極であると判断される。
(Equation 6) The higher the current efficiency and the voltage efficiency, the higher the energy efficiency. Therefore, the energy loss in charging and discharging is small, and it is determined that the electrode is an excellent electrode.

【0045】本発明の炭素電極材は、水溶液系電解液を
使用するレドックスフロー電池に用いられるものであ
る。当該レドックスフロー電池は、前述のように、例え
ば間隙を介した状態で対向して配設された一対の集電板
間に隔膜が配設され、該集電板と隔膜との間に少なくと
も一方に電極材が配設され、電極材は活物質を含んだ水
溶液からなる電解液を含んだ構造を有する電解槽を備え
る。
The carbon electrode material of the present invention is used for a redox flow battery using an aqueous electrolyte. As described above, the redox flow battery has, for example, a diaphragm disposed between a pair of current collectors disposed to face each other with a gap therebetween, and at least one of the diaphragms disposed between the current collector and the diaphragm. The electrode material is provided with an electrolytic cell having a structure containing an electrolytic solution composed of an aqueous solution containing an active material.

【0046】水溶液系電解液としては、前述の如きバナ
ジウム系電解液の他、鉄−クロム系、チタン−マンガン
系、マンガン−クロム系、クロム−クロム系、鉄−チタ
ン系などが挙げられるが、バナジウム系電解液が好まし
い。本発明の炭素電極材は、特に、粘度が25℃にて
0.005Pa・s以上であるバナジウム系電解液、あ
るいは1.5mol/l以上のバナジウムイオンを含む
バナジウム系電解液を使用するレドックスフロー電池に
用いるのが有用である。
Examples of the aqueous electrolytic solution include iron-chromium-based, titanium-manganese-based, manganese-chromium-based, chromium-chromium-based, iron-titanium-based and the like, in addition to the vanadium-based electrolyte described above. Vanadium-based electrolytes are preferred. In particular, the carbon electrode material of the present invention is a redox flow using a vanadium-based electrolyte having a viscosity of at least 0.005 Pa · s at 25 ° C. or a vanadium-based electrolyte containing 1.5 mol / l or more of vanadium ions. Useful for batteries.

【0047】[0047]

【実施例】以下、本発明の構成及び効果を具体的に示
す、実施例等について説明する。
EXAMPLES Examples and the like that specifically show the structure and effects of the present invention will be described below.

【0048】(実施例1)アクリロニトリル98モル%
−メタクリル酸メチル2モル%から構成される重量平均
分子量75000の平均繊維径16μmのポリアクリロ
ニトリル繊維を空気中200〜300℃で耐炎化した
後、該耐炎化繊維の短繊維(長さ約80mm)を用いて
フェルト化して目付量400g/m2 、厚み4.0mm
の不織布を作成した。該不織布にアルゴンガスを絶えず
600cc/min/m2 吹き付けた状態で100゜C
/分の昇温速度で1 400℃まで昇温し、この温度で1
時間保持し炭化を行って冷却し、続いて空気中700℃
で重量収率93%になるまで処理し炭素質繊維不織布を
得た。XPS表面分析結果と単繊維の比抵抗および電極
性能を表1に示す。
Example 1 98 mol% of acrylonitrile
-Polyacrylonitrile fibers having a weight average molecular weight of 75,000 and an average fiber diameter of 16 [mu] m composed of 2 mol% of methyl methacrylate are oxidized in air at 200 to 300 [deg.] C., and then short fibers of the oxidized fibers (about 80 mm in length). It is made into felt by using and the basis weight is 400 g / m 2 and the thickness is 4.0 mm.
Was prepared. 100 ° C. while continuously blowing argon gas at 600 cc / min / m 2 onto the nonwoven fabric.
/ Min at a heating rate of 1 / min.
Hold for a time, perform carbonization and cool, then 700 ° C in air
To give a weight yield of 93% to obtain a carbonaceous fiber nonwoven fabric. Table 1 shows the results of the XPS surface analysis, the specific resistance of the single fiber, and the electrode performance.

【0049】(実施例2)アクリロニトリル98モル%
−メタクリル酸メチル2モル%から構成される重量平均
分子量75000の平均繊維径16μmのポリアクリロ
ニトリル繊維を空気中200〜300℃で耐炎化した
後、該耐炎繊維の短繊維(長さ約80mm)を用いてフ
ェルト化して目付量400g/m2 、厚み4.0mmの
不織布を作成した。該不織布にアルゴンガスを絶えず6
00cc/min/m2 吹き付けた状態で100℃/分
の昇温速度で1 400℃まで昇温し、この温度で1時間
保持し炭化を行って冷却し、続いて空気中700℃で重
量収率90%になるまで処理し炭素質繊維不織布を得
た。XPS表面分析結果と単繊維の比抵抗および電極性
能を表1に示す。
Example 2 98 mol% of acrylonitrile
-Polyacrylonitrile fibers having a weight average molecular weight of 75,000 and an average fiber diameter of 16 μm composed of 2 mol% of methyl methacrylate are flame-resistant in air at 200 to 300 ° C., and then the short fibers (length: about 80 mm) of the flame-resistant fibers are removed. This was used to make a felt to produce a nonwoven fabric having a basis weight of 400 g / m 2 and a thickness of 4.0 mm. Argon gas is continuously applied to the nonwoven fabric.
The temperature was raised to 1400 ° C. at a rate of 100 ° C./min while spraying at a rate of 100 cc / min / m 2 , held at this temperature for 1 hour, carbonized and cooled, and then weight-collected at 700 ° C. in air. The treatment was carried out until the ratio became 90% to obtain a carbonaceous fiber nonwoven fabric. Table 1 shows the results of the XPS surface analysis, the specific resistance of the single fiber, and the electrode performance.

【0050】(実施例3)アクリロニトリル98モル%
−メタクリル酸メチル2モル%から構成される重量平均
分子量75000の平均繊維径16μmのポリアクリロ
ニトリル繊維を空気中200〜300℃で耐炎化した
後、該耐炎化繊維の短繊維(長さ約80mm)を用いて
フェルト化して目付量400g/m2 、厚み4.0mm
の不織布を作成した。該不織布にアルゴンガスを絶えず
600cc/min/m2 吹き付けた状態で100℃/
分の昇温速度で1 600℃まで昇温し、この温度で1時
間保持し炭化を行って冷却し、続いて空気中700℃で
重量収率93%になるまで処理し炭素質繊維不織布を得
た。XPS表面分析結果と単繊維の比抵抗および電極性
能を表1に示す。
Example 3 98 mol% of acrylonitrile
-Polyacrylonitrile fibers having a weight average molecular weight of 75,000 and an average fiber diameter of 16 [mu] m composed of 2 mol% of methyl methacrylate are oxidized in air at 200 to 300 [deg.] C., and then short fibers of the oxidized fibers (about 80 mm in length). It is made into felt by using and the basis weight is 400 g / m 2 and the thickness is 4.0 mm.
Was prepared. Argon gas was continuously sprayed at 600 cc / min / m 2 onto the nonwoven fabric at 100 ° C. /
The temperature was raised to 1600 ° C. at a heating rate of 1 minute, kept at this temperature for 1 hour, carbonized and cooled, and subsequently treated in air at 700 ° C. until the weight yield became 93% to obtain a carbonaceous fiber nonwoven fabric. Obtained. Table 1 shows the results of the XPS surface analysis, the specific resistance of the single fiber, and the electrode performance.

【0051】(実施例4)アクリロニトリル97モル%
−酢酸ビニル3モル%から構成される重量平均分子量2
00000の平均繊維径16μmのポリアクリロニトリ
ル繊維を空気中200〜300℃で耐炎化した後、該耐
炎化繊維の短繊維(長さ約80mm)を用いてフェルト
化して目付量400g/m2 、厚み4.0mmの不織布
を作成した。該不織布にアルゴンガスを絶えず600c
c/min/m2 吹き付けた状態で100℃/分の昇温
速度で1 400℃まで昇温しこの温度で1時間保持し炭
化を行って冷却し、続いて空気中700℃で重量収率9
3%になるまで処理し炭素質繊維不織布を得た。XPS
表面分析結果と単繊維の比抵抗および電極性能を表1に
示す。
Example 4 97 mol% of acrylonitrile
Weight average molecular weight 2 composed of 3 mol% of vinyl acetate
After oxidizing polyacrylonitrile fibers having an average fiber diameter of 16 μm in air at 200 to 300 ° C. in air, felting is performed using short fibers (about 80 mm in length) of the oxidized fibers to obtain a basis weight of 400 g / m 2 and a thickness of 400 g / m 2 . A 4.0 mm nonwoven fabric was prepared. Argon gas is continuously applied to the nonwoven fabric for 600 c.
The temperature was raised to 1400 ° C. at a rate of 100 ° C./min while spraying c / min / m 2 , kept at this temperature for 1 hour, carbonized and cooled, and subsequently weight gained at 700 ° C. in air. 9
The treatment was continued until the content became 3% to obtain a carbonaceous fiber nonwoven fabric. XPS
Table 1 shows the results of the surface analysis, the specific resistance of the single fiber, and the electrode performance.

【0052】(実施例5)アクリロニトリル97モル%
−酢酸ビニル3モル%から構成される重量平均分子量2
00000の平繊維径16μmのポリアクリロニトリル
繊維を空気中200〜300℃で耐炎化した後、該耐炎
化繊維の短繊維(長さ約80mm)を用いてフェルト化
して目付量400g/m2 、厚み4.0mmの不織布を
作成した。該不織布にアルゴンガスを絶えず600cc
/min/m2 吹き付けた状態で100℃/分の昇温速
度で1 600℃まで昇温し、この温度で1時間保持し炭
化を行って冷却し、続いて空気中700℃で重量収率9
5%になるまで処理し炭素質繊維不織布を得た。XPS
表面分析結果と単繊維の比抵抗および電極性能を表1に
示す。
Example 5 97 mol% of acrylonitrile
Weight average molecular weight 2 composed of 3 mol% of vinyl acetate
After oxidizing a polyacrylonitrile fiber having a flat fiber diameter of 16 μm in air at 200 to 300 ° C. in air, it is felted using short fibers (about 80 mm in length) of the oxidized fiber, and a basis weight of 400 g / m 2 and a thickness of 400 g / m 2 . A 4.0 mm nonwoven fabric was prepared. 600cc of argon gas continuously into the non-woven fabric
/ Min / m 2 , the temperature is raised to 1600 ° C. at a rate of 100 ° C./min while spraying, maintained at this temperature for 1 hour, carbonized and cooled, and subsequently weight gained at 700 ° C. in air. 9
The treatment was carried out until the content became 5% to obtain a carbonaceous fiber nonwoven fabric. XPS
Table 1 shows the results of the surface analysis, the specific resistance of the single fiber, and the electrode performance.

【0053】(比較例1)アクリロニトリル98モル%
−メタクリル酸メチル2モル%から構成される重量平均
分子量10000の平均繊維径16μmのポリアクリロ
ニトリル繊維を空気中200〜300℃で耐炎化した
後、該耐炎化繊維の短繊維(長さ約80mm)を用いて
フェルト化して目付量400g/m2 、厚み4.0mm
の不織布を作成した。該不織布にアルゴンガスを絶えず
600cc/min/m2 吹き付けた状態で100℃/
分の昇温速度で1 600℃まで昇温し、この温度で1時
間保持し炭化を行って冷却し、続いて空気中700℃で
重量収率93%になるまで処理し炭素質繊維不織布を得
た。XPS表面分析結果と単繊維の比抵抗および電極性
能を表1に示す。
Comparative Example 1 98 mol% of acrylonitrile
After oxidizing polyacrylonitrile fiber having a weight average molecular weight of 10000 and having an average fiber diameter of 16 μm composed of 2 mol% of methyl methacrylate in air at 200 to 300 ° C. in air, short fibers of the oxidized fiber (about 80 mm in length) It is made into felt by using and the basis weight is 400 g / m 2 and the thickness is 4.0 mm.
Was prepared. Argon gas was continuously sprayed at 600 cc / min / m 2 onto the nonwoven fabric at 100 ° C. /
The temperature was raised to 1600 ° C. at a heating rate of 1 minute, kept at this temperature for 1 hour, carbonized and cooled, and subsequently treated in air at 700 ° C. until the weight yield became 93% to obtain a carbonaceous fiber nonwoven fabric. Obtained. Table 1 shows the results of the XPS surface analysis, the specific resistance of the single fiber, and the electrode performance.

【0054】(比較例2)アクリロニトリル98モル%
−メタクリル酸メチル2モル%から構成される重量平均
分子量10000の平均繊維径16μmのポリアクリロ
ニトリル繊維を空気中200〜300℃で耐炎化した
後、該耐炎化繊維の短繊維(長さ約80mm)を用いて
フェルト化して目付量400g/m2 、厚み4.0mm
の不織布を作成した。該不織布にアルゴンガスを絶えず
600cc/min/m2 吹き付けた状態で100℃/
分の昇温速度で1 400℃まで昇温し、この温度で1時
間保持し炭化を行って冷却し、続いて空気中700℃で
重量収率97%になるまで処理し炭素質繊維不織布を得
た。XPS表面分析結果と単繊維の比抵抗および電極性
能を表1に示す。
Comparative Example 2 98 mol% of acrylonitrile
After oxidizing polyacrylonitrile fiber having a weight average molecular weight of 10000 and having an average fiber diameter of 16 μm composed of 2 mol% of methyl methacrylate in air at 200 to 300 ° C. in air, short fibers of the oxidized fiber (about 80 mm in length) It is made into felt by using and the basis weight is 400 g / m 2 and the thickness is 4.0 mm.
Was prepared. Argon gas was continuously sprayed at 600 cc / min / m 2 onto the nonwoven fabric at 100 ° C. /
The temperature was raised to 1400 ° C. at a heating rate of 1 minute, kept at this temperature for 1 hour, carbonized and cooled, and then treated in air at 700 ° C. until the weight yield became 97% to obtain a carbonaceous fiber nonwoven fabric. Obtained. Table 1 shows the results of the XPS surface analysis, the specific resistance of the single fiber, and the electrode performance.

【0055】(比較例3)アクリロニトリル98モル%
−メタクリル酸メチル2モル%から構成される重量平均
分子量1000000の平均繊維径16μmのポリアク
リロニトリル繊維を空気中200〜300℃で耐炎化し
た後、該耐炎化繊維の短繊維(長さ約80mm)を用い
てフェルト化して目付量400g/m2 、厚み4.0m
mの不織布を作成した。該不織布にアルゴンガスを絶え
ず600cc/min/m2 吹き付けた状態で100℃
/分の昇温速度で1 400℃まで昇温し、この温度で1
時間保持し炭化を行って冷却し、続いて空気中700℃
で重量収率93%になるまで処理し炭素質繊維不織布を
得た。XPS表面分析結果と単繊維の比抵抗および電極
性能を表1に示す。
Comparative Example 3 98 mol% of acrylonitrile
After oxidizing polyacrylonitrile fibers having a weight average molecular weight of 1,000,000 and having an average fiber diameter of 16 μm, which is composed of 2 mol% of methyl methacrylate, at 200 to 300 ° C. in air, short fibers of the oxidized fibers (about 80 mm in length) To give a felt weight of 400 g / m 2 and a thickness of 4.0 m
m was prepared. 100 ° C. while continuously blowing argon gas at 600 cc / min / m 2 onto the nonwoven fabric.
/ Min at a heating rate of 1 / min.
Hold for a time, perform carbonization and cool, then 700 ° C in air
To give a weight yield of 93% to obtain a carbonaceous fiber nonwoven fabric. Table 1 shows the results of the XPS surface analysis, the specific resistance of the single fiber, and the electrode performance.

【0056】[0056]

【表1】 [Table 1]

【発明の効果】本発明の電極材を用いることにより水溶
液系電解槽を利用する分野において電極材の単繊維の導
電性を高めかつ程良い濡れ性を得ることによって電解槽
の内部抵抗の低減を図ることが可能となり電圧効率を高
める事ができ、電池エネルギー効率を高めることができ
る。このことは特にバナジウム系レドックスフロー型電
池にとって効果的である。
The use of the electrode material of the present invention makes it possible to increase the conductivity of the single fiber of the electrode material and obtain a moderate wettability in the field of using an aqueous electrolytic cell to reduce the internal resistance of the electrolytic cell. As a result, voltage efficiency can be increased, and battery energy efficiency can be increased. This is particularly effective for vanadium-based redox flow batteries.

【図面の簡単な説明】[Brief description of the drawings]

【図1】バナジウム系レドックスフロー電池の概略図FIG. 1 is a schematic diagram of a vanadium-based redox flow battery.

【図2】三次元電極を有するバナジウム系レドックスフ
ロー電池の電解槽の分解斜図
FIG. 2 is an exploded perspective view of an electrolytic cell of a vanadium-based redox flow battery having a three-dimensional electrode.

【符号の説明】[Explanation of symbols]

1 集電板 2 スペーサ 3 イオン交換膜 4a,4b 通液路 5 電極材 6 外部液タンク(正極側) 7 外部液タンク(負極側) 8,9 ポンプ 10 液流入口 11 液流出口 DESCRIPTION OF SYMBOLS 1 Current collection plate 2 Spacer 3 Ion exchange membrane 4a, 4b Liquid passage 5 Electrode material 6 External liquid tank (positive electrode side) 7 External liquid tank (negative electrode side) 8, 9 Pump 10 Liquid inlet 11 Liquid outlet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高瀬 敏 滋賀県大津市堅田二丁目1番1号 東洋紡 績株式会社総合研究所内 Fターム(参考) 5H018 AA08 AS07 CC06 DD01 DD06 EE05 HH03 HH05 5H026 AA10 CX03 CX05 EE05 HH03 HH05 RR01  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Satoshi Takase 2-1-1 Katata, Otsu-shi, Shiga F-Term in Toyobo Co., Ltd. Research Laboratory 5H018 AA08 AS07 CC06 DD01 DD06 EE05 HH03 HH05 5H026 AA10 CX03 CX05 EE05 HH03 HH05 RR01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 水溶液系電解液を使用するレドックスフ
ロー電池用の炭素電極材であって、X線広角解析より求
めたa軸方向の結晶子の大きさが30〜80Åであるこ
とを特徴とする炭素電極材。
1. A carbon electrode material for a redox flow battery using an aqueous electrolyte solution, wherein the size of crystallites in the a-axis direction obtained by X-ray wide-angle analysis is 30 to 80 °. Carbon electrode material.
【請求項2】 XPS表面分析より求めた表面酸性官能
基量が全表面炭素原子数の0.2%以上1.2%以下で
ある請求項1記載の炭素電極材。
2. The carbon electrode material according to claim 1, wherein the amount of surface acidic functional groups determined by XPS surface analysis is from 0.2% to 1.2% of the total number of surface carbon atoms.
【請求項3】 バナジウム系レドックスフロー電池に用
いられる請求項1又は2記載の炭素電極材。
3. The carbon electrode material according to claim 1, which is used for a vanadium redox flow battery.
JP16563999A 1999-06-11 1999-06-11 Carbon electrode material for redox flow batteries Expired - Fee Related JP3589285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16563999A JP3589285B2 (en) 1999-06-11 1999-06-11 Carbon electrode material for redox flow batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16563999A JP3589285B2 (en) 1999-06-11 1999-06-11 Carbon electrode material for redox flow batteries

Publications (2)

Publication Number Publication Date
JP2000357521A true JP2000357521A (en) 2000-12-26
JP3589285B2 JP3589285B2 (en) 2004-11-17

Family

ID=15816194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16563999A Expired - Fee Related JP3589285B2 (en) 1999-06-11 1999-06-11 Carbon electrode material for redox flow batteries

Country Status (1)

Country Link
JP (1) JP3589285B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017027919A (en) * 2015-07-28 2017-02-02 東洋紡株式会社 Electrode material for redox battery
JP2017027920A (en) * 2015-07-28 2017-02-02 東洋紡株式会社 Electrode material for redox battery
WO2017119110A1 (en) * 2016-01-07 2017-07-13 住友電気工業株式会社 Redox flow battery, redox flow battery electrode, and electrode characteristic evaluation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05234612A (en) * 1992-02-21 1993-09-10 Toyobo Co Ltd Carbon electrode material for electrolytic cell
JPH08287938A (en) * 1995-02-16 1996-11-01 Kashimakita Kyodo Hatsuden Kk Redox battery
JPH09223513A (en) * 1996-02-19 1997-08-26 Kashimakita Kyodo Hatsuden Kk Liquid circulating type battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05234612A (en) * 1992-02-21 1993-09-10 Toyobo Co Ltd Carbon electrode material for electrolytic cell
JPH08287938A (en) * 1995-02-16 1996-11-01 Kashimakita Kyodo Hatsuden Kk Redox battery
JPH09223513A (en) * 1996-02-19 1997-08-26 Kashimakita Kyodo Hatsuden Kk Liquid circulating type battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017027919A (en) * 2015-07-28 2017-02-02 東洋紡株式会社 Electrode material for redox battery
JP2017027920A (en) * 2015-07-28 2017-02-02 東洋紡株式会社 Electrode material for redox battery
WO2017119110A1 (en) * 2016-01-07 2017-07-13 住友電気工業株式会社 Redox flow battery, redox flow battery electrode, and electrode characteristic evaluation method
JPWO2017119110A1 (en) * 2016-01-07 2018-11-01 住友電気工業株式会社 Redox flow battery, electrode for redox flow battery, and method for evaluating characteristics of electrode

Also Published As

Publication number Publication date
JP3589285B2 (en) 2004-11-17

Similar Documents

Publication Publication Date Title
JP3601581B2 (en) Carbon electrode material for vanadium redox flow battery
Xiang et al. Cr2O3-modified graphite felt as a novel positive electrode for vanadium redox flow battery
JP6617464B2 (en) Carbon electrode material for redox batteries
JP6786776B2 (en) Manufacturing method of electrode material for redox batteries
JP3496385B2 (en) Redox battery
JP2017027918A (en) Electrode material for redox flow battery
JPH02281564A (en) Carbon electrode material for electrolytic bath
JP2017027920A (en) Electrode material for redox battery
JPH0992321A (en) Redox cell
JP3555303B2 (en) Redox battery
JP6809257B2 (en) Carbon material and batteries using it
US20220153591A1 (en) Carbon electrode material for manganese/titanium-based redox flow battery
EP3940830A1 (en) Carbon electrode material and redox battery
JP2018133141A (en) Redox battery using thin diaphragm
JP3589285B2 (en) Carbon electrode material for redox flow batteries
JP2001196071A (en) Carbon electrode material assembly and manufacturing method thereof
JP2001085028A (en) Carbon electrode material assembly
JP2001006690A (en) Carbon electrode material
JP2001085026A (en) Carbon electrode material assembly
JP4280883B2 (en) Electrolyzer and electrode material for redox flow battery
JP2000357523A (en) Carbon electrode material for redox flow battery
JP2001085022A (en) Carbon electrode material and carbon electrode material assembly
JP2000357522A (en) Carbon electrode material for redox flow battery
JP2001006691A (en) Carbon electrode material
JP2001085025A (en) Carbon electrode material assembly

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040810

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees