JP2000357522A - Carbon electrode material for redox flow battery - Google Patents

Carbon electrode material for redox flow battery

Info

Publication number
JP2000357522A
JP2000357522A JP11165643A JP16564399A JP2000357522A JP 2000357522 A JP2000357522 A JP 2000357522A JP 11165643 A JP11165643 A JP 11165643A JP 16564399 A JP16564399 A JP 16564399A JP 2000357522 A JP2000357522 A JP 2000357522A
Authority
JP
Japan
Prior art keywords
electrode material
carbon electrode
redox flow
peak
flow battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11165643A
Other languages
Japanese (ja)
Inventor
Masanobu Kobayashi
真申 小林
Makoto Inoue
誠 井上
Satoshi Takase
敏 高瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP11165643A priority Critical patent/JP2000357522A/en
Publication of JP2000357522A publication Critical patent/JP2000357522A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a carbon electrode material for a redox flow battery capable of increasing conductivity of the carbon electrode material itself, suppressing drop in conductivity due to use for a long tine, and keeping energy efficiency of the battery high. SOLUTION: This carbon electrode material for a redox flow battery using an aqueous electrolyte has pseudo graphite crystal structure in which a half width at half maximum at a peak of 1360 cm-1 as determined by a laser Raman spectroscopic analysis is 30-60 cm-1, that at a peak of 1580 cm-1 is 30-45 cm-1, and the ratio (R=Ia/Ig) of the peak intensity Ia of 1360 cm-1 to the peak intensity Ig of 1580 cm-1 is 0.7-1.0, and the amount of surface acidic functional groups as determined by XPS surface analysis is 0.2-1.2% of the number of carbon atoms on the whole surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水溶液系電解液を
使用するレドックスフロー電池用の炭素電極材に関する
ものであり、特に、バナジウム系レドックスフロー電池
に有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon electrode material for a redox flow battery using an aqueous electrolyte solution, and is particularly useful for a vanadium redox flow battery.

【0002】[0002]

【従来の技術】従来より、電極は電池の性能を左右する
ものとして重点的に開発されている。電極には、それ自
体が活物質とならず、活物質の電気化学的反応を促進さ
せる反応場として働くタイプのものがあり、このタイプ
には導電性や耐薬品性などから炭素材料がよく用いられ
る。特に電力貯蔵用に開発が盛んなレドックスフロー電
池の電極には、耐薬品性があり、導電性を有し、かつ通
液性のある炭素繊維集合体が用いられている。
2. Description of the Related Art Conventionally, electrodes have been developed with emphasis on the performance of batteries. Some electrodes do not become active materials themselves, but work as a reaction field to promote the electrochemical reaction of the active material.For this type, carbon materials are often used due to their conductivity and chemical resistance. Can be In particular, a carbon fiber aggregate having chemical resistance, conductivity, and liquid permeability is used for an electrode of a redox flow battery which is actively developed for power storage.

【0003】レドックスフロー電池は、正極に鉄の塩酸
水溶液、負極にクロムの塩酸水溶液を用いたタイプか
ら、起電力の高いバナジウムの硫酸水溶液を両極に用い
るタイプに替わり、高エネルギー密度化されたが、最近
さらに活物質濃度を高める開発が進み、一段と高エネル
ギー密度化が進んでいる。
[0003] Redox flow batteries have a higher energy density from a type using an aqueous hydrochloric acid solution of iron for the positive electrode and an aqueous solution of chromium hydrochloric acid for the negative electrode, to a type using a high-electromotive force aqueous solution of vanadium sulfuric acid for both electrodes. Recently, developments for further increasing the concentration of the active material have been advanced, and the energy density has been further increased.

【0004】レドックスフロー型電池の主な構成は、図
1に示すように電解液を貯える外部タンク6,7と電解
槽ECからなり、ポンプ8,9にて活物質を含む電解液
を外部タンク6,7から電解槽ECに送りながら、電解
槽ECに組み込まれた電極上で電気化学的なエネルギー
変換、すなわち充放電が行われる。
The main structure of a redox flow type battery is, as shown in FIG. 1, composed of external tanks 6 and 7 for storing an electrolytic solution and an electrolytic cell EC, and pumps 8 and 9 for supplying an electrolytic solution containing an active material to the external tank. While being sent from 6, 7 to the electrolytic cell EC, electrochemical energy conversion, that is, charge / discharge is performed on the electrodes incorporated in the electrolytic cell EC.

【0005】一般に、充放電の際には、電解液を外部タ
ンクと電解槽との間で循環させるため、電解槽は図1に
示すような液流通型構造をとる。該液流通型電解槽を単
セルと称し、これを最小単位として単独もしくは多段積
層して用いられる。液流通型電解槽における電気化学反
応は、電極表面で起こる不均一相反応であるため、一般
的には二次元的な電解反応場を伴うことになる。電解反
応場が二次元的であると、電解槽の単位体積当たりの反
応量が小さいという難点がある。
In general, during charging and discharging, an electrolytic solution is circulated between an external tank and an electrolytic bath, so that the electrolytic bath has a liquid flow type structure as shown in FIG. The liquid flow type electrolytic cell is referred to as a single cell, which is used as a minimum unit and is used alone or in a multi-layered structure. Since the electrochemical reaction in the liquid flowing type electrolytic cell is a heterogeneous phase reaction occurring on the electrode surface, it generally involves a two-dimensional electrolytic reaction field. When the electrolytic reaction field is two-dimensional, there is a disadvantage that the reaction amount per unit volume of the electrolytic cell is small.

【0006】そこで、単位面積当りの反応量、すなわち
電流密度を増すために電気化学反応場の三次元化が行わ
れるようになった。図2は、三次元電極を有する液流通
型電解槽の分解斜視図である。該電解槽では、相対する
二枚の集電板1,1間にイオン交換膜3が配設され、イ
オン交換膜3の両側にスペーサ2によって集電板1,1
の内面に沿った電解液の流路4a,4bが形成されてい
る。該流通路4a,4bの少なくとも一方には炭素繊維
集合体等の電極材5が配設されており、このようにして
三次元電極が構成されている。なお、集電板1には、電
解液の液流入口10と液流出口11とが設けられてい
る。
In order to increase the amount of reaction per unit area, that is, the current density, three-dimensional electrochemical reaction fields have been used. FIG. 2 is an exploded perspective view of a liquid flow type electrolytic cell having three-dimensional electrodes. In the electrolytic cell, an ion exchange membrane 3 is arranged between two opposing current collector plates 1 and 1, and the current collector plates 1 and 1 are disposed on both sides of the ion exchange membrane 3 by spacers 2.
Are formed along the inner surface of the cell. An electrode material 5 such as a carbon fiber aggregate is provided in at least one of the flow passages 4a and 4b, and thus a three-dimensional electrode is formed. The current collector 1 is provided with a liquid inlet 10 and a liquid outlet 11 for the electrolytic solution.

【0007】正極電解液にオキシ硫酸バナジウム、負極
電解液に硫酸バナジウムの各々硫酸酸性水溶液を用いた
レドックスフロー型電池の場合、放電時には、V2+を含
む電解液が負極側の液流路4aに供給され、正極側の流
路4bにはV5+(実際には酸素を含むイオン)を含む電
解液が供給される。負極側の流路4aでは、三次元電極
5内でV2+が電子を放出しV3+に酸化される。放出され
た電子は外部回路を通って正極側の三次元電極内でV5+
をV4+(実際には酸素を含むイオン)に還元する。この
酸化還元反応に伴って負極電解液中のSO4 2-が不足
し、正極電解液ではSO4 2-が過剰になるため、イオン
交換膜3を通ってSO4 2-が正極側から負極側に移動し
電荷バランスが保たれる。あるいは、H+ がイオン交換
膜を通って負極側から正極側へ移動することによっても
電荷バランスを保つことができる。充電時には放電と逆
の反応が進行する。
[0007] In the case of a redox flow battery using a sulfuric acid aqueous solution of vanadium oxysulfate as the positive electrode electrolyte and vanadium sulfate as the negative electrode electrolyte, during discharge, the electrolyte containing V 2+ is supplied to the liquid flow path 4a on the negative electrode side. And an electrolyte containing V 5+ (actually, ions containing oxygen) is supplied to the flow path 4b on the positive electrode side. In the flow path 4a on the negative electrode side, V 2+ emits electrons in the three-dimensional electrode 5 and is oxidized to V 3+ . The emitted electrons pass through an external circuit and enter V 5+ in the three-dimensional electrode on the positive electrode side.
To V 4+ (actually an ion containing oxygen). The redox reaction SO 4 2-of the negative electrode electrolytic solution is insufficient with the, for SO 4 2-becomes excessive in the positive electrolyte, negative electrode SO 4 2-is from the positive electrode side through the ion-exchange membrane 3 Side and the charge balance is maintained. Alternatively, the charge balance can be maintained by moving H + from the negative electrode side to the positive electrode side through the ion exchange membrane. At the time of charging, a reaction reverse to that of discharging proceeds.

【0008】バナジウム系レドックスフロー電池用電極
材の特性としては、特に以下に示す性能が要求される。
As the characteristics of the electrode material for a vanadium-based redox flow battery, the following performance is particularly required.

【0009】1)目的とする反応以外の副反応を起こさな
いこと(反応選択性が高いこと)、具体的には電流効率
(ηI )が高いこと。 2)電極反応活性が高いこと、具体的にはセル抵抗(R)
が小さいこと。すなわち電圧効率(ηV )が高いこと。 3)上記1)、2)に関連する電池エネルギー効率(ηE )が
高いこと。 ηE =ηI ×ηV 4)くりかえし使用に対する劣化が小さいこと(高寿
命)、具体的には電池エネルギー効率(ηE )の低下量
が小さいこと。
1) No side reaction other than the intended reaction should occur (high reaction selectivity), specifically, high current efficiency (η I ). 2) High electrode reaction activity, specifically cell resistance (R)
Is small. That is, the voltage efficiency (η V ) is high. 3) High battery energy efficiency (η E ) related to 1) and 2) above. η E = η I × η V 4) Deterioration due to repeated use is small (long life), and specifically, the amount of decrease in battery energy efficiency (η E ) is small.

【0010】例えば、特開昭60−232669号公報
には、X線広角解析より求めた<002>面間隔が、平
均3.70Å以下であり、またc軸方向の結晶子の大き
さが平均9.0Å以上の擬黒鉛微結晶を有し、かつ全酸
性官能基量が少なくとも0.01meq/gである炭素
質材料をレドックスフロー電池の電解槽用電極材として
用いることが提案されている。
For example, Japanese Patent Application Laid-Open No. 60-232669 discloses that the <002> plane spacing determined by X-ray wide angle analysis is 3.70 ° or less on average, and the crystallite size in the c-axis direction is It has been proposed to use a carbonaceous material having pseudographite crystallites of 9.0 ° or more and having a total acidic functional group content of at least 0.01 meq / g as an electrode material for an electrolytic cell of a redox flow battery.

【0011】また、特開平5−234612号公報に
は、ポリアクリロニトリル系繊維を原料とする炭素質繊
維で、X線広角解析より求めた<002>面間隔が3.
50〜3.60Åの擬黒鉛結晶構造を有し、炭素質材料
表面の結合酸素原子数が炭素原子数の10〜25%とな
るような炭素質材をレドックスフロー電池の電解槽用電
極材として用いることが提案されている。
Japanese Unexamined Patent Publication (Kokai) No. 5-234612 discloses a carbonaceous fiber made of polyacrylonitrile-based fiber having a <002> plane spacing of 3.0 obtained by X-ray wide-angle analysis.
A carbonaceous material having a pseudographite crystal structure of 50 to 3.60 ° and having the number of bonded oxygen atoms on the surface of the carbonaceous material of 10 to 25% of the number of carbon atoms is used as an electrode material for an electrolytic cell of a redox flow battery. It has been proposed to use.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、特開昭
60−232669号公報、特開平5−234612号
公報では、炭素質材料表面と電解液との間に有効な濡れ
性を発現させるために、全酸性官能基量が0.01me
q/g以上か、あるいは炭素質材料表面の結合酸素原子
数が炭素原子数の10%以上必要であったので、炭素質
繊維の比抵抗が高く、その結果セル抵抗が高くなり、高
いエネルギー効率を得られないことが問題であった。ま
た長期間電解槽の電極として使用すると炭素構造が変質
し、炭素質繊維の比抵抗が徐々に増加し、その結果セル
抵抗が増加し、エネルギー効率の変化(低下率)が大き
くなることが判明した。
However, JP-A-60-232669 and JP-A-5-234612 disclose that in order to exhibit effective wettability between the carbonaceous material surface and the electrolyte, Total acidic functional group content is 0.01me
q / g or more, or the number of bonded oxygen atoms on the surface of the carbonaceous material is required to be 10% or more of the number of carbon atoms, so that the specific resistance of the carbonaceous fiber is high, resulting in a high cell resistance and high energy efficiency. The problem was that I couldn't get it. When used as an electrode in an electrolytic cell for a long time, it was found that the carbon structure deteriorated, the specific resistance of the carbonaceous fiber gradually increased, and as a result, the cell resistance increased and the change (decrease rate) in energy efficiency increased. did.

【0013】そこで、本発明の目的は、かかる事情に鑑
み、炭素電極材自体の導電性を高め、かつ長期間使用に
よる導電性の低下を抑制して、電池のエネルギー効率を
高く維持することができるレドックスフロー電池用炭素
電極材を提供することにある。
In view of the above, an object of the present invention is to increase the conductivity of the carbon electrode material itself, suppress a decrease in conductivity due to long-term use, and maintain a high energy efficiency of the battery. An object of the present invention is to provide a carbon electrode material for a redox flow battery.

【0014】[0014]

【課題を解決するための手段】本発明者らは、上記目的
を達成すべく鋭意研究したところ、炭素電極材の表面酸
性官能基量を従来より低く抑えつつ、レーザーラマン分
光法による3次元結合と2次元結合(黒鉛相)とに由来
するピークの強度比や、各ピークの半値半幅の大きさを
特定の範囲に制御することにより、上記目的が達成でき
ることを見出し、本発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above-mentioned object, and found that the three-dimensional bonding by laser Raman spectroscopy was carried out while suppressing the surface acidic functional group content of the carbon electrode material lower than before. It has been found that the above-mentioned object can be achieved by controlling the intensity ratio of peaks derived from the two-dimensional bond (graphite phase) and the half-width at half maximum of each peak to a specific range. Reached.

【0015】即ち、本発明の炭素電極材は、水溶液系電
解液を使用するレドックスフロー電池用の炭素電極材で
あって、レーザーラマン分光法により求めた1360c
-1のピークの半値半幅が30〜60cm-1で、158
0cm-1のピークの半値半幅が30〜45cm-1で、1
360cm-1のピーク強度Iaと1580cm-1のピー
ク強度Igとの比R(=Ia/Ig)が0.7〜1.0
である擬黒鉛結晶構造を有し、XPS表面分析より求め
た表面酸性官能基量が全表面炭素原子数の0.2〜1.
2%であることを特徴とする。
That is, the carbon electrode material of the present invention is a carbon electrode material for a redox flow battery using an aqueous electrolyte solution, and is a carbon electrode material obtained by laser Raman spectroscopy.
The half-width at half maximum of the peak at m -1 is 30 to 60 cm -1 and 158
Half width at half maximum of the peak of the 0 cm -1 is in 30~45cm -1, 1
360cm ratio of the peak intensity Ig of the peak intensity Ia and 1580 cm -1 of -1 R (= Ia / Ig) is 0.7 to 1.0
And the amount of surface acidic functional groups determined by XPS surface analysis is 0.2-1.
2%.

【0016】本発明の炭素電極材によると、実施例の結
果が示すように、炭素電極材自体の導電性を高め、かつ
長期間使用による導電性の低下を抑制して、電池のエネ
ルギー効率を高く維持することができる。レーザーラマ
ン分光法による上記パラメータ値によって、炭素電極材
の導電性の経時安定性が変化する理由の詳細は明らかで
ないが、上記パラメータ値に黒鉛化の程度、及び結晶表
面に結晶面の端(エッジ)が出ている確率が反映されて
おり、それらが適当な場合に、導電性の低下を抑制でき
るためと推定される。なお、表面酸性官能基量が上記の
要件を満たすことにより、電極材表面の接触抵抗を低く
抑えながら、水溶液系電解液との濡れ性を適度に付与す
ることができる。
According to the carbon electrode material of the present invention, as shown in the results of the examples, the conductivity of the carbon electrode material itself is increased, and the decrease in conductivity due to long-term use is suppressed, thereby improving the energy efficiency of the battery. Can be kept high. The details of the reason why the above-mentioned parameter value obtained by laser Raman spectroscopy changes the temporal stability of the conductivity of the carbon electrode material are not clear, but the above parameter value shows the degree of graphitization and the crystal surface has ) Are reflected, and it is presumed that when these are appropriate, the decrease in conductivity can be suppressed. When the surface acidic functional group content satisfies the above requirements, the wettability with the aqueous electrolyte solution can be appropriately given while the contact resistance on the electrode material surface is kept low.

【0017】また、本発明の炭素電極材は、バナジウム
系レドックスフロー電池に用いられることが好ましい。
バナジウム系のレドックスフロー電池では、上記の電解
液との濡れ性が比較的良好になるため、上記の如き作用
効果がより顕著になる。また、当該電池では電極材を構
成する繊維間や集電板に対する電極材表面の接触抵抗が
特に問題になり易いため、上記作用効果を有する本発明
の炭素電極材が特に有用なものとなる。
The carbon electrode material of the present invention is preferably used for a vanadium redox flow battery.
In a vanadium-based redox flow battery, the wettability with the above-mentioned electrolyte is relatively good, so that the above-described effects are more remarkable. Further, in the battery, since the contact resistance between the fibers constituting the electrode material and the surface of the electrode material with respect to the current collector plate tends to be particularly problematic, the carbon electrode material of the present invention having the above-mentioned effects is particularly useful.

【0018】[0018]

【発明の実施の形態】本発明の炭素電極材は、炭素質材
料からなり、その組織、微細構造等は特に限定されない
が、電極表面積を大きくできるものが好ましい。具体的
には、紡績糸、フィラメント集束糸、不織布、編地、織
地、特殊編織物(特開昭63−200467号公報に開
示されているようなもの)、あるいはこれらの混成組織
からなる炭素質繊維集合体、又は多孔質炭素体、炭素−
炭素複合体、粒子状炭素材料等を挙げることができる。
これらのうち、炭素質繊維よりなるシート状のものが、
取り扱いや加工性、製造性等の点から好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The carbon electrode material of the present invention is made of a carbonaceous material, and its structure and microstructure are not particularly limited, but those capable of increasing the electrode surface area are preferred. Specifically, a spun yarn, a bundle of filaments, a nonwoven fabric, a knitted fabric, a woven fabric, a special knitted fabric (as disclosed in JP-A-63-200457), or a carbonaceous material composed of a hybrid structure thereof Fiber aggregate, or porous carbon, carbon-
Examples include a carbon composite and a particulate carbon material.
Of these, sheet-like ones made of carbonaceous fiber are
It is preferable in terms of handling, processability, manufacturability and the like.

【0019】シート状物等の目付量は、その組織にもよ
るが、隔膜と集電板に挟まれた充填状態の厚みを2〜3
mmで使用する場合、100〜1000g/m2 、不織
布組織の場合は200〜600g/m2 が望ましい。ま
た片面に凹溝加工が施された不織布等が通液性から好ん
で用いられる。その場合の溝幅、溝深さは少なくとも
0.3mm、好ましくは0.5mm以上が望ましい。炭
素質繊維シートの厚みは上記充填状態の厚みより少なく
とも大きいこと、不織布等の密度の低いものでは充填状
態の厚みの1.5倍程度が望ましい。しかしながら、厚
みが厚すぎると圧縮応力で膜を突き破ってしまうので、
圧縮応力を1kgf/cm2 以下に設計するのが好まし
い。
The basis weight of the sheet-like material or the like depends on the structure thereof, but the thickness of the filled state sandwiched between the diaphragm and the current collector is 2 to 3 times.
When used in mm, 100~1000g / m 2, in the case of non-woven tissue 200 to 600 g / m 2 is desirable. A nonwoven fabric or the like having a groove on one side is preferably used because of its liquid permeability. In this case, the groove width and the groove depth are at least 0.3 mm, preferably 0.5 mm or more. It is desirable that the thickness of the carbonaceous fiber sheet is at least larger than the thickness in the above-described filled state, and that the thickness of the carbonized fiber sheet in the case of a low-density nonwoven fabric is about 1.5 times the thickness in the filled state. However, if the thickness is too thick, it will break through the film with compressive stress,
Preferably, the compressive stress is designed to be 1 kgf / cm 2 or less.

【0020】なお、上記の炭素質繊維の平均繊維径は5
〜20μm程度が好ましく、平均長さは30〜100m
m程度が好ましい。
The average fiber diameter of the carbonaceous fibers is 5
About 20 μm is preferable, and the average length is 30 to 100 m.
m is preferable.

【0021】炭素質繊維シートは、電池の中に圧接され
て組み込まれ、その薄い隙間を粘度の高い電解液が流れ
るため、脱落しないためには引張強度を0.1kg/c
2以上にすることが形態保持のために望ましい。また
集電板との接触抵抗を良くするために、不織布組織では
隔膜、集電板に挟まれた充填層の密度を0.05g/c
3 以上に、電極面に対する反発力を0.1kgf/c
2 以上にすることが好ましい。
The carbonaceous fiber sheet is press-fitted into a battery, and a high-viscosity electrolytic solution flows through the thin gap.
m 2 or more is desirable for shape retention. In order to improve the contact resistance with the current collector, the density of the membrane and the filling layer sandwiched between the current collectors in the nonwoven fabric is set to 0.05 g / c.
m 3 or more, the repulsive force with respect to the electrode surface 0.1 kgf / c
It is preferably at least m 2 .

【0022】本発明の炭素電極材は、レーザーラマン分
光法により求めた1360cm-1のピークの半値半幅が
30〜60cm-1で、1580cm-1のピークの半値半
幅が30〜45cm-1で、1360cm-1のピーク強度
Iaと1580cm-1のピーク強度Igとの比R(=I
a/Ig)が0.7〜1.0であるが、好ましくは、1
360cm-1のピークの半値半幅が30〜50cm
-1で、1580cm-1のピークの半値半幅が33〜43
cm-1で、R(=Ia/Ig)が0.7〜0.8であ
る。
The carbon electrode material of the present invention, at the peak of the half width at half maximum is 30-60 cm -1 in 1360 cm -1 as determined by laser Raman spectroscopy, the half width at half maximum of the peak of 1580 cm -1 is in 30~45Cm -1, the ratio R (= I and the peak intensity Ig of the peak intensity Ia and 1580 cm -1 in 1360 cm -1
a / Ig) is 0.7 to 1.0, and preferably 1
The half width at half maximum of the peak at 360 cm -1 is 30 to 50 cm.
-1 and the half width at half maximum of the peak at 1580 cm -1 is 33 to 43.
At cm −1 , R (= Ia / Ig) is 0.7 to 0.8.

【0023】上記各パラメーター値がそれぞれの上限値
より大きい場合、その比抵抗は10 -2Ω・cmを越え、
電池内部抵抗(セル抵抗)の内の電極材導電抵抗成分が
無視できないようになり、その結果、セル抵抗が増加し
(電圧効率が低下し)、エネルギー効率が低下する。ま
た、長期間使用による比抵抗の劣化も生じ易い。
The above parameter values are the respective upper limit values.
If greater, the specific resistance is 10 -2Exceeds Ω · cm,
Electrode material conductive resistance component in battery internal resistance (cell resistance)
Can no longer be ignored, resulting in increased cell resistance
(Voltage efficiency decreases), and energy efficiency decreases. Ma
In addition, the specific resistance tends to deteriorate due to long-term use.

【0024】一方、上記各パラメーター値がそれぞれの
下限値より小さい場合、長期間の使用により、比抵抗は
増加していき、その結果セル抵抗は増加していき、エネ
ルギー効率は低下してしまう。これは、上述のような炭
素電極材では結晶構造内に歪みを持つか、黒鉛に近い構
造をとるため、例えばバナジウム系レドックスフロー電
池の電解液に用いられる硫酸により、分解を引き起こし
やすいためと考えられる。
On the other hand, when the above parameter values are smaller than the respective lower limit values, the specific resistance increases over a long period of use, and as a result, the cell resistance increases and the energy efficiency decreases. This is thought to be because the carbon electrode material as described above has a strain in the crystal structure or has a structure close to graphite, and is likely to be decomposed by, for example, sulfuric acid used in an electrolyte solution of a vanadium-based redox flow battery. Can be

【0025】本発明の炭素電極材の表面酸性官能基量
は、全表面炭素原子数の0.2%以上であることが必要
であり、好ましくは0.3%以上である。0.2%未満
の場合には、電解液の濡れ性が悪く、セル抵抗が著しく
増加する。これは、炭素原子そのものは疎水性であるた
め、親水基の酸性官能基が少ない場合には水をはじきや
すいためと考えられる。また表面酸性官能基量は、全表
面炭素原子数の1.2%以下であることが必要であり、
好ましくは0.8%以下である。1.2%より大きい場
合には、官能基により表面の導電性が阻害され、集電板
との接触抵抗または繊維間の接触抵抗が悪くなり、セル
抵抗が著しく増加する。
The surface acidic functional group content of the carbon electrode material of the present invention must be at least 0.2% of the total number of surface carbon atoms, and preferably at least 0.3%. If it is less than 0.2%, the wettability of the electrolytic solution is poor, and the cell resistance is significantly increased. This is presumably because the carbon atom itself is hydrophobic, so that when the acidic functional group of the hydrophilic group is small, water is easily repelled. Further, the amount of surface acidic functional groups needs to be 1.2% or less of the total number of surface carbon atoms,
Preferably it is 0.8% or less. If it is more than 1.2%, the conductivity of the surface is impaired by the functional group, the contact resistance with the current collector or the contact resistance between the fibers becomes poor, and the cell resistance is significantly increased.

【0026】なお、上記の表面酸性官能基量とは、含酸
素官能基のうち硝酸銀処理によって銀イオン置換されう
る水酸基やカルボキシル基の量を意味し、XPS表面分
析によって検出される表面銀イオン量の表面炭素原子数
に対する割合として表す。
The above-mentioned amount of surface acidic functional groups means the amount of hydroxyl groups and carboxyl groups which can be replaced with silver ions by silver nitrate treatment among oxygen-containing functional groups, and the amount of surface silver ions detected by XPS surface analysis. Of the surface carbon atoms.

【0027】上記のような優れた内部構造と濡れ性を持
った炭素電極材は、緊張下200〜300℃の初期空気
酸化を経たポリアクリロニトリル、等方性ピッチ、メソ
フェーズピッチ、セルロースなど、あるいはフェノー
ル、ポリパラフェニレンベンゾビスオキサゾール(PB
O)などを原料にして、Al、Si、Biなどの3価以
上のイオンとなる金属塩を金属イオン換算で10〜10
0ppm均一に添着した後、不活性雰囲気下1000〜
2200℃で焼成(炭化)し、得られた擬黒鉛結晶構造
を有する炭素材料を乾式酸化処理することによって得ら
れる。
The carbon electrode material having the excellent internal structure and wettability as described above is made of polyacrylonitrile, isotropic pitch, mesophase pitch, cellulose, etc., which have been subjected to initial air oxidation at 200 to 300 ° C. under tension, or phenol. , Polyparaphenylene benzobisoxazole (PB
O) or the like as a raw material, a metal salt which becomes trivalent or more ion such as Al, Si, Bi or the like is converted to a metal ion equivalent to 10 to 10
0 ppm after uniform impregnation, 1000 ~ under inert atmosphere
It is obtained by calcining (carbonizing) at 2200 ° C. and dry-oxidizing the obtained carbon material having a pseudo-graphite crystal structure.

【0028】金属塩の添着が有効なのは、Al、Si、
Biなどの3価以上のイオンとなる金属塩を微量添着す
ることによって、当該イオンが炭素の結晶子の間を架橋
し、構造欠陥等を生じにくくするためと考えられる。こ
の微量添着により、焼成条件の影響をさほど受けずに、
レーザーラマン分光法による前記パラメータを好適に制
御することができる。勿論、焼成条件によって前記パラ
メータを制御することも可能である。
It is effective to impregnate the metal salt with Al, Si,
It is considered that by adding a trace amount of a metal salt that becomes a trivalent or higher ion such as Bi, the ion cross-links between crystallites of carbon, thereby making it difficult to cause structural defects and the like. By this small amount of impregnation, without much influence of the firing conditions,
The above parameters by laser Raman spectroscopy can be suitably controlled. Of course, it is also possible to control the above parameters by the firing conditions.

【0029】乾式酸化処理は、上述の炭素材料を酸素濃
度1〜25%のガス雰囲気下で重量収率にして90〜9
9%、好ましくは93〜99%の範囲になるように実施
される。処理温度は500〜900℃、さらに好ましく
は650〜750℃がよい。しかし処理法はこれに限定
されるものではなく、例えばこの乾式酸化処理の代わり
に電解酸化をおこなっても同様な効果が得られる。な
お、表面酸性官能基量は、黒鉛化の程度にもよるが、乾
式酸化処理の酸素濃度等を調製することで制御できる。
In the dry oxidation treatment, the above-mentioned carbon material is obtained in a gas atmosphere having an oxygen concentration of 1 to 25% in a weight yield of 90 to 9%.
It is carried out so as to be in the range of 9%, preferably 93 to 99%. The processing temperature is preferably from 500 to 900C, more preferably from 650 to 750C. However, the treatment method is not limited to this. For example, similar effects can be obtained by performing electrolytic oxidation instead of the dry oxidation treatment. The amount of the surface acidic functional group depends on the degree of graphitization, but can be controlled by adjusting the oxygen concentration or the like in the dry oxidation treatment.

【0030】次に、本発明において採用されるレーザー
ラマン分光法、XPS表面分析、単繊維の比抵抗、電流
効率、電圧効率(セル抵抗R)、エネルギー効率および
充放電サイクルの経時変化の各測定法について説明す
る。
Next, measurement of laser Raman spectroscopy, XPS surface analysis, specific resistance of single fiber, current efficiency, voltage efficiency (cell resistance R), energy efficiency and change over time of charge / discharge cycle employed in the present invention. The method will be described.

【0031】(1)レーザーラマン分光法 顕微ラマン分光装置(ジョバンイボンヌ−愛宕物産
(株)製)を用いて、Arイオンレーザーの488nm
線で1800から1000cm-1まで走査し、1360
±20cm-1のピークIaと1580±20cm-1のピ
ークIgを解析する。各ピーク強度は、ベースライン補
正を行った後、測定された波形をローレンツ関数で近似
し、その最高点により求め、ピークの半値半幅は、ピー
ク強度の半分の強度におけるピーク幅の半分の値により
求める。
(1) Laser Raman Spectroscopy Using a micro Raman spectrometer (Jobin Yvonne-Atago Bussan Co., Ltd.), an Ar ion laser of 488 nm was used.
Scan from 1800 to 1000 cm -1 with a line, 1360
Analyzing the peak Ig peak Ia and 1580 ± 20 cm -1 of ± 20 cm -1. For each peak intensity, after performing the baseline correction, the measured waveform is approximated by the Lorentz function and determined by the highest point, and the half width at half maximum of the peak is determined by the half value of the peak width at half the intensity of the peak intensity. Ask.

【0032】(2)XPS表面分析 ESCAあるいはXPSと略称されているX線光電子分
光法の測定に用いる装置は島津ESCA750で、解析
にはESCAPAC760を用いる。
(2) XPS Surface Analysis A device used for measurement of X-ray photoelectron spectroscopy, which is abbreviated as ESCA or XPS, is Shimadzu ESCA750, and ESCAPAC760 is used for analysis.

【0033】各試料を硝酸銀のアセトン溶液に浸漬し、
酸性官能基のプロトンを完全に銀置換し、アセトン及び
水でそれぞれ洗浄後、6mm径に打ち抜き、導電性ペー
ストにより加熱式試料台に貼り付け、分析に供する。予
め、測定前に試料を12O℃に加熱し、3時間以上真空
脱気する。線源にはMgKα線(1253.6eV)を
用い、装置内真空度は10-7torrとする。
Each sample was immersed in a solution of silver nitrate in acetone,
The proton of the acidic functional group is completely replaced with silver, washed with acetone and water, punched out to a diameter of 6 mm, attached to a heated sample stand with a conductive paste, and subjected to analysis. Before the measurement, the sample is heated to 120 ° C. and vacuum degassed for 3 hours or more. MgKα radiation (1253.6 eV) is used as the radiation source, and the degree of vacuum in the apparatus is set to 10 −7 torr.

【0034】測定はCls,Ag3dピークに対して行
い、各ピークをESCAPAC760(J.H.Sco
fieldによる補正法に基づく)を用いて補正解析
し、各ピーク面積を求める。得られた面積にClsにつ
いては1.00、Ag3dについては10.68の相対
強度を乗じたものの比が原子数比であり、全表面炭素原
子数に対する表面酸性官能基量は(表面銀原子数/表面
炭素原子数)比を百分率(%)で算出する。
The measurement was performed on the Cls and Ag3d peaks, and each peak was measured using ESCAPAC760 (JH Sco
(based on the field correction method) to determine the respective peak areas. The ratio of the obtained area multiplied by the relative intensity of 1.00 for Cls and 10.68 for Ag3d is the atomic number ratio, and the amount of surface acidic functional groups to the total number of surface carbon atoms is (the number of surface silver atoms) / Number of surface carbon atoms) is calculated as a percentage (%).

【0035】(3)単繊維の比抵抗 JIS R7601(1986)に記載の「6.7体積
抵抗率」に従って測定する。
(3) Specific Resistance of Single Fiber Measured according to “6.7 Volume Resistivity” described in JIS R7601 (1986).

【0036】(4)電極性能 上下方向(通液方向)に1cm、幅方向に10cmの電
極面積10cm2 を有する小型のセルを作り、定電流密
度で充放電を繰り返し、電極性能のテストを行う。正極
電解液には2mol/lのオキシ硫酸バナジウムの3m
ol/l硫酸水溶液を用い、負極電解液には2mol/
lの硫酸バナジウムの3mol/l硫酸溶液を用いる。
電解液量はセル、配管に対して大過剰とした.液流量は
毎分6.2mlとし、30℃で測定を行う。
(4) Electrode Performance A small cell having an electrode area of 10 cm 2 of 1 cm in the vertical direction (liquid flow direction) and 10 cm in the width direction is prepared, and charge and discharge are repeated at a constant current density to test the electrode performance. . 3 m of 2 mol / l vanadium oxysulfate was used for the positive electrode electrolyte.
ol / l sulfuric acid aqueous solution, and 2 mol / l
A 3 mol / l sulfuric acid solution of 1 vanadium sulfate is used.
The amount of electrolyte was set to a large excess with respect to the cells and piping. The liquid flow rate is 6.2 ml per minute, and the measurement is performed at 30 ° C.

【0037】(a)電流効率:ηI 充電に始まり、放電で終わる1サイクルのテストにおい
て、電流密度を電極幾何面積当たり40mA/cm2
(400mA)として、1.7Vまでの充電に要した電
気量をQ1 クーロン、1.0Vまでの定電流放電、およ
びこれに続く1.2Vでの定電圧放電で取りだした電気
量をそれぞれQ2 、Q3 クーロンとし、数式1で電流効
率ηI を求める。
(A) Current efficiency: η I In a one-cycle test starting from charging and ending with discharging, the current density was set to 40 mA / cm 2 per electrode geometric area.
(400 mA), the quantity of electricity required for charging up to 1.7 V is Q 1 coulomb, the quantity of electricity taken out by constant current discharge up to 1.0 V, and the subsequent quantity of electricity taken out by constant voltage discharge at 1.2 V are Q 2 , Q 3 coulomb, and the current efficiency η I is obtained by equation (1).

【0038】[0038]

【数1】 (b)セル抵抗:R 負極液中のV3+をV2+に完全に還元するのに必要な理論
電気量Qthに対して、放電により取りだした電気量の比
を充電率とし、数式2で充電率を求める。
(Equation 1) (B) Cell resistance: R The ratio of the amount of electricity taken out by discharging to the theoretical amount of electricity Q th required to completely reduce V 3+ in the negative electrode solution to V 2+ is defined as a charging rate. The charging rate is determined in step 2.

【0039】[0039]

【数2】 充電率が50%のときの電気量に対応する充電電圧V
C50 、放電電圧VD50 を電気量−電圧曲線からそれぞれ
求め、数式3より電極幾何面積に対するセル抵抗R(Ω
・cm2 )を求める。
(Equation 2) Charging voltage V corresponding to the amount of electricity when the charging rate is 50%
C50 and discharge voltage VD50 were obtained from the electric quantity-voltage curve, respectively, and the cell resistance R (Ω
・ Calculate cm 2 ).

【0040】[0040]

【数3】 ここで、Iは定電流充放電における電流値0.4Aであ
る。
(Equation 3) Here, I is a current value of 0.4 A in constant current charging and discharging.

【0041】(c)電圧効率:ηV 上記の方法で求めたセル抵抗Rを用いて数式4の簡便法
により電圧効率ηV を求める。
(C) Voltage efficiency: η V Using the cell resistance R obtained by the above method, the voltage efficiency η V is obtained by a simple method of Expression 4.

【0042】[0042]

【数4】 ここで、Eは充電率50%のときのセル開回路電圧1.
432V(実測値)、Iは定電流充放電における電流値
0.4Aである。
(Equation 4) Here, E is the cell open circuit voltage when the charging rate is 50%.
432 V (actual measurement value), and I is a current value of 0.4 A in constant current charging and discharging.

【0043】(d)エネルギー効率:ηE 前述の電流効率ηI と電圧効率ηV を用いて、数式5に
よりエネルギー効率η E を求める。
(D) Energy efficiency: ηE Current efficiency η described aboveI And voltage efficiency ηV And using equation 5
More energy efficiency η E Ask for.

【0044】[0044]

【数5】 (e)充放電サイクルの経時変化 (a)、(b)、(c)、(d)の測定後、続いて同セ
ルを用い、40mA/cm2 の定電流密度でセル電圧
1.0〜1.7V間で充放電を繰り返し実施する。規定
サイクル経過後、再び(a)、(b)、(c)、(d)
の測定を行い、η E 及びその初期からの変化量△ηE
求める。
(Equation 5)(E) Temporal change of charge / discharge cycle After measurement of (a), (b), (c), and (d),
40 mA / cmTwo Cell voltage at constant current density of
Charge and discharge are repeatedly performed between 1.0 and 1.7V. Regulation
(A), (b), (c), (d)
Is measured, and η E And the change from its initial state △ ηE To
Ask.

【0045】レドックスフロー電池等の電解槽用電極の
特性は、主に上記のような電流効率ηI 、電圧効率ηV
(セル抵抗R)およびエネルギー効率ηE (ηI とηV
との積)とこれらの効率の充放電サイクル安定性(寿
命)で表される。
The characteristics of an electrode for an electrolytic cell such as a redox flow battery mainly include the current efficiency η I and the voltage efficiency η V as described above.
(Cell resistance R) and energy efficiency η EI and η V
) And the charge / discharge cycle stability (lifetime) of these efficiencies.

【0046】本発明の炭素電極材は、水溶液系電解液を
使用するレドックスフロー電池に用いられるものであ
る。当該レドックスフロー電池は、前述のように、例え
ば間隙を介した状態で対向して配設された一対の集電板
間に隔膜が配設され、該集電板と隔膜との間に少なくと
も一方に電極材が配設され、電極材は活物質を含んだ水
溶液からなる電解液を含んだ構造を有する電解槽を備え
る。
The carbon electrode material of the present invention is used for a redox flow battery using an aqueous electrolyte. As described above, the redox flow battery has, for example, a diaphragm disposed between a pair of current collectors disposed to face each other with a gap therebetween, and at least one of the diaphragms disposed between the current collector and the diaphragm. The electrode material is provided with an electrolytic cell having a structure containing an electrolytic solution composed of an aqueous solution containing an active material.

【0047】水溶液系電解液としては、前述の如きバナ
ジウム系電解液の他、鉄−クロム系、マンガン−クロム
系、クロム−クロム系、鉄−チタン系などが挙げられる
が、バナジウム系電解液が好ましい。本発明の炭素電極
材は、特に、粘度が25℃にて0.005Pa・s以上
であるバナジウム系電解液、あるいは1.5mol/l
以上のバナジウムイオンを含むバナジウム系電解液を使
用するレドックスフロー電池に用いるのが有用である。
Examples of the aqueous electrolytic solution include iron-chromium-based, manganese-chromium-based, chromium-chromium-based, iron-titanium-based and the like, in addition to the above-mentioned vanadium-based electrolyte. preferable. In particular, the carbon electrode material of the present invention has a viscosity of not less than 0.005 Pa · s at 25 ° C., or 1.5 mol / l.
It is useful for use in a redox flow battery using a vanadium-based electrolytic solution containing vanadium ions as described above.

【0048】[0048]

【実施例】以下、本発明の構成及び効果を具体的に示
す、実施例等について説明する。
EXAMPLES Examples and the like that specifically show the structure and effects of the present invention will be described below.

【0049】(実施例1)平均繊維径16μmのポリア
クリロニトリル繊維を空気中200〜300℃で耐炎化
した後、該耐炎化繊維の短繊維(長さ約80mm)を用
いてフェルト化して目付量400g/m2 、厚み4.0
mmの不織布を作成した。該不織布を0.01wt%の
水酸化アルミニウム水溶液に浸漬、脱水し(アルミニウ
ムイオン換算として0.006wt%添着)、窒素ガス
中で10℃/分の昇温速度で1300℃まで昇温し、こ
の温度で1時間保持し炭化を行って冷却し、続いて空気
中650℃で重量収率93%になるまで酸化処理し、炭
素質繊維不織布を得た。レーザーラマン、XPS表面分
析結果、比抵抗測定結果を表1に示す。
Example 1 Polyacrylonitrile fibers having an average fiber diameter of 16 μm were oxidized in air at 200 to 300 ° C. and then felted using short fibers (about 80 mm in length) of the oxidized fibers to obtain a basis weight. 400 g / m 2 , thickness 4.0
mm nonwoven fabric was prepared. The non-woven fabric is immersed in a 0.01 wt% aluminum hydroxide aqueous solution, dehydrated (impregnated with 0.006 wt% in terms of aluminum ions), and heated to 1300 ° C. in nitrogen gas at a rate of 10 ° C./min. The mixture was kept at a temperature for 1 hour, carbonized, cooled, and subsequently oxidized at 650 ° C. in air until the weight yield became 93%, to obtain a carbonaceous fiber nonwoven fabric. Table 1 shows the results of laser Raman, XPS surface analysis, and specific resistance measurement.

【0050】(実施例2)平均繊維径16μmのポリア
クリロニトリル繊維を空気中200〜300℃で耐炎化
した後、該耐炎化繊維の短繊維(長さ約80mm)を用
いてフェルト化して目付量400g/m2 、厚み4.0
mmの不織布を作成した。該不織布を0.01wt%の
水酸化ビスマス水溶液に浸漬、脱水し(ビスマスイオン
換算として0.008wt%添着)、窒素ガス中で10
℃/分の昇温速度で2000℃まで昇温し、この温度で
1時間保持し炭化を行って冷却し、続いて空気中650
℃で重量収率93%になるまで酸化処理し、炭素質繊維
不織布を得た。レーザーラマン、XPS表面分析結果、
比抵抗測定結果を表1に示す。
Example 2 Polyacrylonitrile fiber having an average fiber diameter of 16 μm was oxidized in air at 200 to 300 ° C., and then felted using short fibers (about 80 mm in length) of the oxidized fiber. 400 g / m 2 , thickness 4.0
mm nonwoven fabric was prepared. The nonwoven fabric is immersed in a 0.01% by weight aqueous solution of bismuth hydroxide, dehydrated (impregnated with 0.008% by weight in terms of bismuth ions), and dried in a nitrogen gas atmosphere.
The temperature was raised to 2000 ° C. at a rate of temperature rise of 2000 ° C./min, kept at this temperature for 1 hour, carbonized, cooled, and
Oxidation treatment was carried out at 93 ° C. until the weight yield became 93% to obtain a carbonaceous fiber nonwoven fabric. Laser Raman, XPS surface analysis results,
Table 1 shows the specific resistance measurement results.

【0051】(実施例3)平均繊維径16μmのポリア
クリロニトリル繊維を空気中200〜300℃で耐炎化
した後、該耐炎化繊維の短繊維(長さ約80mm)を用
いてフェルト化して目付量400g/m2 、厚み4.0
mmの不織布を作成した。該不織布を0.01wt%の
水酸化アルミニウム水溶液に浸漬、脱水し(アルミニウ
ムイオン換算として0.06wt%添着)、窒素ガス中
で10℃/分の昇温速度で1600℃まで昇温し、この
温度で1時間保持し炭化を行って冷却し、続いて空気中
650℃で重量収率93%になるまで酸化処理し、炭素
質繊維不織布を得た。レーザーラマン、XPS表面分析
結果、比抵抗測定結果を表1に示す。
Example 3 Polyacrylonitrile fibers having an average fiber diameter of 16 μm were oxidized in air at 200 to 300 ° C. and then felted using short fibers (about 80 mm in length) of the oxidized fibers to obtain a basis weight. 400 g / m 2 , thickness 4.0
mm nonwoven fabric was prepared. The nonwoven fabric is immersed in a 0.01 wt% aluminum hydroxide aqueous solution, dehydrated (impregnated with 0.06 wt% in terms of aluminum ions), and heated to 1600 ° C in nitrogen gas at a rate of 10 ° C / min. The mixture was kept at a temperature for 1 hour, carbonized, cooled, and subsequently oxidized at 650 ° C. in air until the weight yield became 93%, to obtain a carbonaceous fiber nonwoven fabric. Table 1 shows the results of laser Raman, XPS surface analysis, and specific resistance measurement.

【0052】(比較例1)平均繊維径16μmのポリア
クリロニトリル繊維を空気中200〜300℃で耐炎化
した後、該耐炎化繊維の短繊維(長さ約80mm)を用
いてフェルト化して目付量400g/m2 、厚み4.0
mmの不織布を作成した。該不織布を窒素ガス中で10
℃/分の昇温速度で1300℃まで昇温し、この温度で
1時間保持し炭化を行って冷却し、続いて空気中650
℃で重量収率93%になるまで酸化処理し、炭素質繊維
不織布を得た。レーザーラマン、XPS表面分析結果、
比抵抗測定結果を表1に示す。
(Comparative Example 1) Polyacrylonitrile fiber having an average fiber diameter of 16 μm was oxidized in air at 200 to 300 ° C., and then made into felt using short fibers (about 80 mm in length) of the oxidized fiber. 400 g / m 2 , thickness 4.0
mm nonwoven fabric was prepared. The nonwoven fabric is placed in nitrogen gas for 10 minutes.
The temperature was raised to 1300 ° C. at a rate of temperature rise of 1 ° C./min, kept at this temperature for 1 hour, carbonized and cooled, and then 650 in air.
Oxidation treatment was carried out at 93 ° C. until the weight yield became 93% to obtain a carbonaceous fiber nonwoven fabric. Laser Raman, XPS surface analysis results,
Table 1 shows the specific resistance measurement results.

【0053】(比較例2)平均繊維径16μmのポリア
クリロニトリル繊維を空気中200〜300℃で耐炎化
した後、該耐炎化繊維の短繊維(長さ約80mm)を用
いてフェルト化して目付量400g/m2 、厚み4.0
mmの不織布を作成した。該不織布を窒素ガス中で10
℃/分の昇温速度で2000℃まで昇温し、この温度で
1時間保持し炭化を行って冷却し、続いて空気中650
℃で重量収率93%になるまで酸化処理し、炭素質繊維
不織布を得た。レーザーラマン、XPS表面分析結果、
比抵抗測定結果を表1に示す。
(Comparative Example 2) Polyacrylonitrile fiber having an average fiber diameter of 16 μm was oxidized in air at 200 to 300 ° C., and then made into felt using short fibers (about 80 mm in length) of the oxidized fiber. 400 g / m 2 , thickness 4.0
mm nonwoven fabric was prepared. The nonwoven fabric is placed in nitrogen gas for 10 minutes.
The temperature was raised to 2000 ° C. at a rate of temperature rise of 2000 ° C./min, kept at this temperature for 1 hour, carbonized, cooled, and
Oxidation treatment was carried out at 93 ° C. until the weight yield became 93% to obtain a carbonaceous fiber nonwoven fabric. Laser Raman, XPS surface analysis results,
Table 1 shows the specific resistance measurement results.

【0054】上記の全ての処理物をスペーサ厚2.0m
mで電極性能(充放電サイクルの2サイクル目と100
サイクル目)の測定を行った結果、表1のようになっ
た。
All of the above-mentioned processed products were transferred to a spacer having a thickness of 2.0 m.
The electrode performance in m (the second cycle of the charge and discharge cycle and 100
Table 1 shows the results of the measurement at the (cycle)).

【0055】[0055]

【表1】 [Table 1]

【発明の効果】本発明によると、炭素電極材の比抵抗が
小さくなり、導電性が向上するとともに、充放電サイク
ルの長期間の繰り返しによる炭素の消耗に依存する比抵
抗の増加、即ち導電性の低下を抑制することができる。
しかも、電極活性は適度な官能基が付与されるため極め
て良好である。その結果、導電性と電極活性が反映され
るセル抵抗Rが減少し、即ち電圧効率が向上し、エネル
ギー効率は大幅に向上する。更に、長期間使用時の導電
性の低下、すなわち、セル抵抗の増加を抑制でき、長期
間の充放電サイクル時のエネルギ−効率の経時変化も減
少させることができる。
According to the present invention, the specific resistance of the carbon electrode material is reduced, the conductivity is improved, and the specific resistance which depends on the consumption of carbon due to long-term repetition of charge / discharge cycles, that is, the conductivity is increased. Can be suppressed.
In addition, the electrode activity is extremely good because an appropriate functional group is provided. As a result, the cell resistance R, which reflects the conductivity and the electrode activity, is reduced, that is, the voltage efficiency is improved, and the energy efficiency is greatly improved. Further, it is possible to suppress a decrease in conductivity during long-term use, that is, an increase in cell resistance, and also to reduce a temporal change in energy efficiency during a long-term charge / discharge cycle.

【図面の簡単な説明】[Brief description of the drawings]

【図1】バナジウム系レドックスフロー電池の概略図FIG. 1 is a schematic diagram of a vanadium-based redox flow battery.

【図2】三次元電極を有するバナジウム系レドックスフ
ロー電池の電解槽の分解斜図
FIG. 2 is an exploded perspective view of an electrolytic cell of a vanadium-based redox flow battery having a three-dimensional electrode.

【符号の説明】[Explanation of symbols]

1 集電板 2 スペーサ 3 イオン交換膜 4a,4b 通液路 5 電極材 6 外部液タンク(正極側) 7 外部液タンク(負極側) 8,9 ポンプ 10 液流入口 11 液流出口 DESCRIPTION OF SYMBOLS 1 Current collection plate 2 Spacer 3 Ion exchange membrane 4a, 4b Liquid passage 5 Electrode material 6 External liquid tank (positive electrode side) 7 External liquid tank (negative electrode side) 8, 9 Pump 10 Liquid inlet 11 Liquid outlet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高瀬 敏 滋賀県大津市堅田二丁目1番1号 東洋紡 績株式会社総合研究所内 Fターム(参考) 5H018 AA08 AS07 CC06 DD01 DD06 EE05 HH03 HH05 5H026 AA10 CX03 CX05 EE05 HH03 HH05 RR01  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Satoshi Takase 2-1-1 Katata, Otsu-shi, Shiga F-Term in Toyobo Co., Ltd. Research Laboratory 5H018 AA08 AS07 CC06 DD01 DD06 EE05 HH03 HH05 5H026 AA10 CX03 CX05 EE05 HH03 HH05 RR01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水溶液系電解液を使用するレドックスフ
ロー電池用の炭素電極材であって、レーザーラマン分光
法により求めた1360cm-1のピークの半値半幅が3
0〜60cm-1で、1580cm-1のピークの半値半幅
が30〜45cm-1で、1360cm-1のピーク強度I
aと1580cm-1のピーク強度Igとの比R(=Ia
/Ig)が0.7〜1.0である擬黒鉛結晶構造を有
し、XPS表面分析より求めた表面酸性官能基量が全表
面炭素原子数の0.2〜1.2%であることを特徴とす
る炭素電極材。
1. A carbon electrode material for a redox flow battery using an aqueous electrolytic solution, wherein a half width at half maximum of a peak at 1360 cm −1 determined by laser Raman spectroscopy is 3
In 0~60cm -1, a peak of half width at half maximum 30~45Cm -1 of 1580 cm -1, a peak intensity of 1360 cm -1 I
a to the peak intensity Ig of 1580 cm -1 R (= Ia
/ Ig) has a pseudo-graphite crystal structure of 0.7 to 1.0, and the amount of surface acidic functional groups determined by XPS surface analysis is 0.2 to 1.2% of the total number of surface carbon atoms. A carbon electrode material characterized by the following.
【請求項2】 バナジウム系レドックスフロー電池に用
いられる請求項1記載の炭素電極材。
2. The carbon electrode material according to claim 1, which is used for a vanadium redox flow battery.
JP11165643A 1999-06-11 1999-06-11 Carbon electrode material for redox flow battery Withdrawn JP2000357522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11165643A JP2000357522A (en) 1999-06-11 1999-06-11 Carbon electrode material for redox flow battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11165643A JP2000357522A (en) 1999-06-11 1999-06-11 Carbon electrode material for redox flow battery

Publications (1)

Publication Number Publication Date
JP2000357522A true JP2000357522A (en) 2000-12-26

Family

ID=15816271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11165643A Withdrawn JP2000357522A (en) 1999-06-11 1999-06-11 Carbon electrode material for redox flow battery

Country Status (1)

Country Link
JP (1) JP2000357522A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160132256A (en) 2015-05-08 2016-11-17 주식회사씨앤에프 Vanadium redox flow battery electrode, and single cell including the vanadium redox flow battery electrode, and battery including the single cell
JP2018123447A (en) * 2017-01-31 2018-08-09 東洋紡株式会社 Carbonaceous material and cell using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160132256A (en) 2015-05-08 2016-11-17 주식회사씨앤에프 Vanadium redox flow battery electrode, and single cell including the vanadium redox flow battery electrode, and battery including the single cell
JP2018123447A (en) * 2017-01-31 2018-08-09 東洋紡株式会社 Carbonaceous material and cell using the same
WO2018143123A1 (en) * 2017-01-31 2018-08-09 東洋紡株式会社 Carbonaceous material, electrode material using same, and battery

Similar Documents

Publication Publication Date Title
JP3601581B2 (en) Carbon electrode material for vanadium redox flow battery
Xiang et al. Cr2O3-modified graphite felt as a novel positive electrode for vanadium redox flow battery
JP6617464B2 (en) Carbon electrode material for redox batteries
JP3203665U (en) Improved electrode for flow battery
JP6669784B2 (en) Process for the preparation of carbon felt electrodes for redox flow batteries
JP3496385B2 (en) Redox battery
JPWO2017022564A1 (en) Carbon electrode material for redox batteries
JPH02281564A (en) Carbon electrode material for electrolytic bath
Zhang et al. Aligned electrospun carbon nanofibers as electrodes for vanadium redox flow batteries
JP2017027920A (en) Electrode material for redox battery
JP6809257B2 (en) Carbon material and batteries using it
US20220153591A1 (en) Carbon electrode material for manganese/titanium-based redox flow battery
JP3555303B2 (en) Redox battery
EP3940830A1 (en) Carbon electrode material and redox battery
JP2018133141A (en) Redox battery using thin diaphragm
JP2001196071A (en) Carbon electrode material assembly and manufacturing method thereof
JP2001085028A (en) Carbon electrode material assembly
JP3589285B2 (en) Carbon electrode material for redox flow batteries
JP6557824B2 (en) Carbon electrode and carbon electrode manufacturing method
JP2019175833A (en) Redox flow battery electrode and redox flow battery
JP2000357522A (en) Carbon electrode material for redox flow battery
JP2001006690A (en) Carbon electrode material
JP2001085022A (en) Carbon electrode material and carbon electrode material assembly
JP4280883B2 (en) Electrolyzer and electrode material for redox flow battery
JP2001085027A (en) Carbon electrode material assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070109

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080704