JP2001085027A - Carbon electrode material assembly - Google Patents

Carbon electrode material assembly

Info

Publication number
JP2001085027A
JP2001085027A JP25688999A JP25688999A JP2001085027A JP 2001085027 A JP2001085027 A JP 2001085027A JP 25688999 A JP25688999 A JP 25688999A JP 25688999 A JP25688999 A JP 25688999A JP 2001085027 A JP2001085027 A JP 2001085027A
Authority
JP
Japan
Prior art keywords
electrode material
nonwoven fabric
peak
redox flow
carbon electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP25688999A
Other languages
Japanese (ja)
Inventor
Masanobu Kobayashi
真申 小林
Makoto Inoue
誠 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP25688999A priority Critical patent/JP2001085027A/en
Publication of JP2001085027A publication Critical patent/JP2001085027A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a carbon electrode material assembly capable of suppressing electroconductivity drop through a long time service by improving both the characteristics of carbonaceous fibers and the physical properties of non-woven fablic, reducing the cell resistance of a redox flow battery, and enhancing the energy efficiency. SOLUTION: The carbon electrode material assembly used in a redox flow battery using aqueous solution electrolytic solution consists of a non-woven fablic of carbonaceous fibers, wherein the fiber has a pseudo-graphite crystal structure in which the half-value, half width of the peak at 1360 cm-1 determined by the laser Raman spectrography ranges 30-60 cm-1 while the half-value half width of the peak at 1580 cm-1 ranges 30-45 cm-1 and also the ratio R of the peak intensity between the two (=Ia/Ig) ranges 0.7-1.0. Therein the amount of surface acid functional radicals determined through XPS surface analysis is 0.2-1.2% of the total number of surface carbon atoms, and the non-woven fablic has a compression ratio of 10-25% and a modulus of compression elasticity of 80% or more.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水溶液系電解液に
よるレドックスフロー電池に使用され、炭素質繊維の不
織布よりなる炭素電極材集合体に関するものであり、特
に、バナジウム系レドックスフロー電池に有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a redox flow battery using an aqueous electrolytic solution, and more particularly to a carbon electrode material assembly made of a nonwoven fabric of carbonaceous fibers, and is particularly useful for a vanadium redox flow battery. is there.

【0002】[0002]

【従来の技術】従来より、電極は電池の性能を左右する
ものとして重点的に開発されている。電極には、それ自
体が活物質とならず、活物質の電気化学的反応を促進さ
せる反応場として働くタイプのものがあり、このタイプ
には導電性や耐薬品性などから炭素材料がよく用いられ
る。特に電力貯蔵用に開発が盛んなレドックスフロー電
池の電極には、耐薬品性があり、導電性を有し、かつ通
液性のある炭素質繊維の不織布等が用いられている。
2. Description of the Related Art Conventionally, electrodes have been developed with emphasis on the performance of batteries. Some electrodes do not become active materials themselves, but work as a reaction field to promote the electrochemical reaction of the active material.For this type, carbon materials are often used due to their conductivity and chemical resistance. Can be In particular, a nonwoven fabric of carbon fiber having chemical resistance, conductivity, and liquid permeability is used for an electrode of a redox flow battery which is actively developed for power storage.

【0003】レドックスフロー電池は、正極に鉄の塩酸
水溶液、負極にクロムの塩酸水溶液を用いたタイプか
ら、起電力の高いバナジウムの硫酸水溶液を両極に用い
るタイプに替わり、高エネルギー密度化されたが、最近
さらに活物質濃度を高める開発が進み、一段と高エネル
ギー密度化が進んでいる。
[0003] Redox flow batteries have a higher energy density from a type using an aqueous hydrochloric acid solution of iron for the positive electrode and an aqueous solution of chromium hydrochloric acid for the negative electrode, to a type using a high-electromotive force aqueous solution of vanadium sulfuric acid for both electrodes. Recently, developments for further increasing the concentration of the active material have been advanced, and the energy density has been further increased.

【0004】レドックスフロー型電池の主な構成は、図
1に示すように電解液を貯える外部タンク6,7と電解
槽ECからなり、ポンプ8,9にて活物質を含む電解液
を外部タンク6,7から電解槽ECに送りながら、電解
槽ECに組み込まれた電極上で電気化学的なエネルギー
変換、すなわち充放電が行われる。
The main structure of a redox flow type battery is, as shown in FIG. 1, composed of external tanks 6 and 7 for storing an electrolytic solution and an electrolytic cell EC, and pumps 8 and 9 for supplying an electrolytic solution containing an active material to the external tank. While being sent from 6, 7 to the electrolytic cell EC, electrochemical energy conversion, that is, charge / discharge is performed on the electrodes incorporated in the electrolytic cell EC.

【0005】一般に、充放電の際には、電解液を外部タ
ンクと電解槽との間で循環させるため、電解槽は図1に
示すような液流通型構造をとる。該液流通型電解槽を単
セルと称し、これを最小単位として単独もしくは多段積
層して用いられる。液流通型電解槽における電気化学反
応は、電極表面で起こる不均一相反応であるため、一般
的には二次元的な電解反応場を伴うことになる。電解反
応場が二次元的であると、電解槽の単位体積当たりの反
応量が小さいという難点がある。
In general, during charging and discharging, an electrolytic solution is circulated between an external tank and an electrolytic bath, so that the electrolytic bath has a liquid flow type structure as shown in FIG. The liquid flow type electrolytic cell is referred to as a single cell, which is used as a minimum unit and is used alone or in a multi-layered structure. Since the electrochemical reaction in the liquid flowing type electrolytic cell is a heterogeneous phase reaction occurring on the electrode surface, it generally involves a two-dimensional electrolytic reaction field. When the electrolytic reaction field is two-dimensional, there is a disadvantage that the reaction amount per unit volume of the electrolytic cell is small.

【0006】そこで、単位面積当りの反応量、すなわち
電流密度を増すために電気化学反応場の三次元化が行わ
れるようになった。図2は、三次元電極を有する液流通
型電解槽の分解斜視図である。該電解槽では、相対する
二枚の集電板1,1間にイオン交換膜3が配設され、イ
オン交換膜3の両側にスペーサ2によって集電板1,1
の内面に沿った電解液の流路4a,4bが形成されてい
る。該流通路4a,4bの少なくとも一方には炭素質繊
維の不織布等よりなる電極材5が配設されており、この
ようにして三次元電極が構成されている。なお、集電板
1には、電解液の液流入口10と液流出口11とが設け
られている。
In order to increase the amount of reaction per unit area, that is, the current density, three-dimensional electrochemical reaction fields have been used. FIG. 2 is an exploded perspective view of a liquid flow type electrolytic cell having three-dimensional electrodes. In the electrolytic cell, an ion exchange membrane 3 is arranged between two opposing current collector plates 1 and 1, and the current collector plates 1 and 1 are disposed on both sides of the ion exchange membrane 3 by spacers 2.
Are formed along the inner surface of the cell. At least one of the flow passages 4a, 4b is provided with an electrode material 5 made of a nonwoven fabric of carbonaceous fiber or the like, thus forming a three-dimensional electrode. The current collector 1 is provided with a liquid inlet 10 and a liquid outlet 11 for the electrolytic solution.

【0007】正極電解液にオキシ硫酸バナジウム、負極
電解液に硫酸バナジウムの各々硫酸酸性水溶液を用いた
レドックスフロー型電池の場合、放電時には、V2+を含
む電解液が負極側の液流路4aに供給され、正極側の流
路4bにはV5+(実際には酸素を含むイオン)を含む電
解液が供給される。負極側の流路4aでは、三次元電極
5内でV2+が電子を放出しV3+に酸化される。放出され
た電子は外部回路を通って正極側の三次元電極内でV5+
をV4+(実際には酸素を含むイオン)に還元する。この
酸化還元反応に伴って負極電解液中のSO4 2-が不足
し、正極電解液ではSO4 2-が過剰になるため、イオン
交換膜3を通ってSO4 2-が正極側から負極側に移動し
電荷バランスが保たれる。あるいは、H+ がイオン交換
膜を通って負極側から正極側へ移動することによっても
電荷バランスを保つことができる。充電時には放電と逆
の反応が進行する。
[0007] In the case of a redox flow battery using a sulfuric acid aqueous solution of vanadium oxysulfate as the positive electrode electrolyte and vanadium sulfate as the negative electrode electrolyte, during discharge, the electrolyte containing V 2+ is supplied to the liquid flow path 4a on the negative electrode side. And an electrolyte containing V 5+ (actually, ions containing oxygen) is supplied to the flow path 4b on the positive electrode side. In the flow path 4a on the negative electrode side, V 2+ emits electrons in the three-dimensional electrode 5 and is oxidized to V 3+ . The emitted electrons pass through an external circuit and enter V 5+ in the three-dimensional electrode on the positive electrode side.
To V 4+ (actually an ion containing oxygen). The redox reaction SO 4 2-of the negative electrode electrolytic solution is insufficient with the, for SO 4 2-becomes excessive in the positive electrolyte, negative electrode SO 4 2-is from the positive electrode side through the ion-exchange membrane 3 Side and the charge balance is maintained. Alternatively, the charge balance can be maintained by moving H + from the negative electrode side to the positive electrode side through the ion exchange membrane. At the time of charging, a reaction reverse to that of discharging proceeds.

【0008】バナジウム系レドックスフロー電池用電極
材の特性としては、特に以下に示す性能が要求される。
As the characteristics of the electrode material for a vanadium-based redox flow battery, the following performance is particularly required.

【0009】1)目的とする反応以外の副反応を起こさな
いこと(反応選択性が高いこと)、具体的には電流効率
(ηI )が高いこと。 2)電極反応活性が高いこと、具体的にはセル抵抗(R)
が小さいこと。すなわち電圧効率(ηV )が高いこと。 3)上記1)、2)に関連する電池エネルギー効率(ηE )が
高いこと。 ηE =ηI ×ηV 4)くりかえし使用に対する劣化が小さいこと(高寿
命)、具体的には電池エネルギー効率(ηE )の低下量
が小さいこと。
1) No side reaction other than the intended reaction should occur (high reaction selectivity), specifically, high current efficiency (η I ). 2) High electrode reaction activity, specifically cell resistance (R)
Is small. That is, the voltage efficiency (η V ) is high. 3) High battery energy efficiency (η E ) related to 1) and 2) above. η E = η I × η V 4) Deterioration due to repeated use is small (long life), and specifically, the amount of decrease in battery energy efficiency (η E ) is small.

【0010】例えば、特開昭60−232669号公報
には、X線広角解析より求めた<002>面間隔が、平
均3.70Å以下であり、またc軸方向の結晶子の大き
さが平均9.0Å以上の擬黒鉛微結晶を有し、かつ全酸
性官能基量が少なくとも0.01meq/gである炭素
質材料をレドックスフロー電池の電解槽用電極材として
用いることが提案されている。
For example, Japanese Patent Application Laid-Open No. 60-232669 discloses that the <002> plane spacing determined by X-ray wide angle analysis is 3.70 ° or less on average, and the crystallite size in the c-axis direction is It has been proposed to use a carbonaceous material having pseudographite crystallites of 9.0 ° or more and having a total acidic functional group content of at least 0.01 meq / g as an electrode material for an electrolytic cell of a redox flow battery.

【0011】また、特開平5−234612号公報に
は、ポリアクリロニトリル系繊維を原料とする炭素質繊
維で、X線広角解析より求めた<002>面間隔が3.
50〜3.60Åの擬黒鉛結晶構造を有し、炭素質材料
表面の結合酸素原子数が炭素原子数の10〜25%とな
るような炭素質材料をレドックスフロー電池の電解槽用
電極材として用いることが提案されている。
Japanese Unexamined Patent Publication (Kokai) No. 5-234612 discloses a carbonaceous fiber made of polyacrylonitrile-based fiber having a <002> plane spacing of 3.0 obtained by X-ray wide-angle analysis.
A carbonaceous material having a pseudo-graphite crystal structure of 50 to 3.60 ° and having a number of bonded oxygen atoms of 10 to 25% of the number of carbon atoms on the surface of the carbonaceous material is used as an electrode material for an electrolytic cell of a redox flow battery. It has been proposed to use.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、特開昭
60−232669号公報、特開平5−234612号
公報では、炭素質材料表面と電解液との間に有効な濡れ
性を発現させるために、全酸性官能基量が0.01me
q/g以上か、あるいは炭素質材料表面の結合酸素原子
数が炭素原子数の10%以上必要であったので、炭素質
繊維の比抵抗が高く、その結果セル抵抗が高くなり、高
いエネルギー効率を得られないことが問題であった。ま
た長期間電解槽の電極として使用すると炭素構造が変化
し、炭素質繊維の比抵抗が徐々に増加し、その結果セル
抵抗が増加し、エネルギー効率の変化(低下率)が大き
くなることが判明した。
However, JP-A-60-232669 and JP-A-5-234612 disclose that in order to exhibit effective wettability between the carbonaceous material surface and the electrolyte, Total acidic functional group content is 0.01me
q / g or more, or the number of bonded oxygen atoms on the surface of the carbonaceous material is required to be 10% or more of the number of carbon atoms, so that the specific resistance of the carbonaceous fiber is high, resulting in a high cell resistance and high energy efficiency. The problem was that I couldn't get it. Also, when used as an electrode in an electrolytic cell for a long time, the carbon structure changes, the specific resistance of the carbonaceous fiber gradually increases, and as a result, the cell resistance increases and the change (decrease rate) in energy efficiency increases. did.

【0013】一方、炭素質材料表面と集電板との接触抵
抗は、炭素質材料で構成される不織布(集合体)の物性
によっても変化するため、炭素質材料の特性の改善だけ
では、接触抵抗を十分小さくするのが容易ではなかっ
た。また、当該不織布の物性は炭素質材料の製法や物
性、及び不織布の製法等により変化するため、炭素質材
料の物性等に応じて不織布の製法を最適化する必要があ
った。
On the other hand, the contact resistance between the surface of the carbonaceous material and the current collector plate varies depending on the physical properties of the nonwoven fabric (aggregate) made of the carbonaceous material. It was not easy to reduce the resistance sufficiently. In addition, since the physical properties of the nonwoven fabric change depending on the manufacturing method and physical properties of the carbonaceous material, the manufacturing method of the nonwoven fabric, and the like, it is necessary to optimize the manufacturing method of the nonwoven fabric according to the physical properties of the carbonaceous material.

【0014】そこで、本発明の目的は、かかる事情に鑑
み、炭素質繊維の特性と不織布の物性を共に改善するこ
とで、長期間使用による導電性の低下を抑制し、かつレ
ドックスフロー電池のセル抵抗を低減してエネルギー効
率を高く維持することができる炭素電極材集合体を提供
することにある。
In view of the foregoing, an object of the present invention is to improve both the properties of carbonaceous fibers and the physical properties of a nonwoven fabric, thereby suppressing a decrease in conductivity due to long-term use, and providing a cell for a redox flow battery. An object of the present invention is to provide a carbon electrode material aggregate that can reduce resistance and maintain high energy efficiency.

【0015】[0015]

【課題を解決するための手段】本発明者らは、上記目的
を達成すべく鋭意研究したところ、炭素電極材の表面酸
性官能基量を従来より低く抑えつつ、レーザーラマン分
光法による3次元結合と2次元結合(黒鉛相)とに由来
するピークの強度比や、各ピークの半値半幅の大きさを
特定の範囲に制御した炭素質繊維にて不織布を構成し、
その圧縮率と圧縮弾性率とを特定の範囲とすることで、
上記目的を達成できることを見出し、本発明を完成する
に至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above-mentioned object, and found that the three-dimensional bonding by laser Raman spectroscopy was carried out while suppressing the surface acidic functional group content of the carbon electrode material lower than before. And a two-dimensional bond (graphite phase), the intensity ratio of peaks and the half-width at half maximum of each peak are controlled to a specific range to form a nonwoven fabric of carbonaceous fibers,
By setting the compression ratio and compression elastic modulus in a specific range,
The inventors have found that the above object can be achieved, and have completed the present invention.

【0016】即ち、本発明の炭素電極材集合体は、水溶
液系電解液によるレドックスフロー電池に使用され、炭
素質繊維の不織布よりなる炭素電極材集合体において、
前記炭素質繊維は、レーザーラマン分光法により求めた
1360cm-1のピークの半値半幅が30〜60cm-1
で、1580cm-1のピークの半値半幅が30〜45c
-1で、1360cm-1のピーク強度Iaと1580c
-1のピーク強度Igとの比R(=Ia/Ig)が0.
7〜1.0である擬黒鉛結晶構造を有し、XPS表面分
析より求めた表面酸性官能基量が全表面炭素原子数の
0.2〜1.2%であると共に、前記不織布は、JIS
L1096(1990)に準ずる圧縮率が10〜25
%、圧縮弾性率が80%以上であることを特徴とする。
That is, the carbon electrode material assembly of the present invention is used in a redox flow battery using an aqueous electrolyte solution, and in a carbon electrode material assembly made of a nonwoven fabric of carbonaceous fibers,
The carbonaceous fiber has a half width at half maximum of a peak at 1360 cm -1 determined by laser Raman spectroscopy of 30 to 60 cm -1.
And the half width at half maximum of the peak at 1580 cm -1 is 30 to 45 c.
At m −1 , 1360 cm −1 peak intensity Ia and 1580 c
The ratio R (= Ia / Ig) with respect to the peak intensity Ig at m −1 is 0.1.
It has a pseudo-graphite crystal structure of 7 to 1.0, the amount of surface acidic functional groups determined by XPS surface analysis is 0.2 to 1.2% of the total number of carbon atoms on the surface, and the nonwoven fabric is JIS
The compression ratio according to L1096 (1990) is 10 to 25
%, And the compression modulus is 80% or more.

【0017】本発明における炭素質繊維によると、実施
例の結果が示すように、炭素電極材自体の導電性を高
め、かつ長期間使用による導電性の低下を抑制して、電
池のエネルギー効率を高く維持することができる。レー
ザーラマン分光法による上記パラメータ値によって、炭
素電極材の導電性の経時安定性が変化する理由の詳細は
明らかでないが、上記パラメータ値に黒鉛化の程度、及
び結晶表面に結晶面の端(エッジ)が出ている確率が反
映されており、それらが適当な場合に、導電性の低下を
抑制できるためと推定される。なお、表面酸性官能基量
が上記の要件を満たすことにより、電極材表面の接触抵
抗を低く抑えながら、水溶液系電解液との濡れ性を適度
に付与することができる。更に、不織布の圧縮率と圧縮
弾性率を上記範囲にすることで、集電板との接触性を良
好にして、接触抵抗を小さくすることができる。その結
果、レドックスフロー電池のセル抵抗を低減してエネル
ギー効率を高めることができる。
According to the carbonaceous fiber of the present invention, as shown in the results of the examples, the conductivity of the carbon electrode material itself is increased and the decrease in conductivity due to long-term use is suppressed, thereby improving the energy efficiency of the battery. Can be kept high. The details of the reason why the above-mentioned parameter value obtained by laser Raman spectroscopy changes the temporal stability of the conductivity of the carbon electrode material are not clear, but the above parameter value shows the degree of graphitization and the crystal surface has ) Are reflected, and it is presumed that when these are appropriate, the decrease in conductivity can be suppressed. When the surface acidic functional group content satisfies the above requirements, the wettability with the aqueous electrolyte solution can be appropriately given while the contact resistance on the electrode material surface is kept low. Further, by setting the compression ratio and the compression elastic modulus of the nonwoven fabric in the above ranges, the contact property with the current collector plate can be improved, and the contact resistance can be reduced. As a result, the cell resistance of the redox flow battery can be reduced and the energy efficiency can be increased.

【0018】また、本発明の炭素電極材集合体は、バナ
ジウム系レドックスフロー電池に用いられることが好ま
しい。バナジウム系のレドックスフロー電池では、上記
の電解液との濡れ性が比較的良好になるため、上記の如
き作用効果がより顕著になる。また、当該電池では電極
材を構成する繊維間や集電板に対する電極材表面の接触
抵抗が特に問題になり易いため、上記作用効果を有する
本発明の炭素電極材集合体が特に有用なものとなる。
Further, the carbon electrode material assembly of the present invention is preferably used for a vanadium redox flow battery. In a vanadium-based redox flow battery, the wettability with the above-mentioned electrolyte is relatively good, so that the above-described effects are more remarkable. Further, in the battery, since the contact resistance of the electrode material surface between the fibers constituting the electrode material or the current collector plate tends to be particularly problematic, the carbon electrode material aggregate of the present invention having the above-described effects is particularly useful. Become.

【0019】[0019]

【発明の実施の形態】本発明の炭素電極材集合体は炭素
質繊維からなり、取扱いや加工性、製造性等の点から炭
素質繊維の不織布が使用される。当該不織布は、焼成
(炭化)前の不融化あるいは耐炎化された短繊維を開繊
し、カードにかけ、幾層かに重ねられたレイヤーからな
るウェブをまず作成し、さらにニードルパンチ加工機に
かけることで、好適に作製される。
BEST MODE FOR CARRYING OUT THE INVENTION The carbon electrode material aggregate of the present invention is made of carbonaceous fiber, and a nonwoven fabric of carbonaceous fiber is used from the viewpoint of handling, workability, manufacturability and the like. The non-woven fabric is obtained by opening infusible or flame-resistant short fibers before firing (carbonization), applying them to a card, first creating a web composed of several layers, and then applying the web to a needle punching machine. Thereby, it is suitably manufactured.

【0020】不織布の目付量は、隔膜と集電板に挟まれ
た充填状態の厚みを2〜3mmで使用する場合、100
〜1000g/m2 が好ましく、特に200〜600g
/m 2 が望ましい。また片面に凹溝加工が施された不織
布が通液性の点から好んで用いられる。その場合の溝
幅、溝深さは少なくとも0.3mm、特に0.5mm以
上が望ましい。該炭素質繊維不織布の厚みは、上記充填
状態の厚みより少なくとも大きいこと、好ましくは充填
状態の厚みの1.5倍程度である。しかしながら、厚み
が厚すぎると圧縮応力で膜を突き破ってしまうので、圧
縮応力を1kgf/cm2 以下に設計するのが好まし
い。
[0020] The basis weight of the non-woven fabric is sandwiched between the diaphragm and the current collector.
When the thickness of the filled state is 2-3 mm, 100
~ 1000g / mTwo Is preferred, especially 200 to 600 g
/ M Two Is desirable. Non-woven fabric with a groove on one side
A cloth is preferably used from the viewpoint of liquid permeability. Groove in that case
Width and groove depth should be at least 0.3mm, especially 0.5mm or less
Above is desirable. The thickness of the carbonaceous fiber nonwoven fabric is
At least greater than the thickness of the state, preferably filling
It is about 1.5 times the thickness of the state. However, the thickness
If it is too thick, it will break through the membrane with compressive stress.
Shrinkage stress of 1kgf / cmTwo It is preferable to design
No.

【0021】なお、上記の炭素質繊維の平均繊維径は5
〜20μm程度が好ましく、平均長さは30〜100m
m程度が好ましい。
The average fiber diameter of the carbonaceous fibers is 5
About 20 μm is preferable, and the average length is 30 to 100 m.
m is preferable.

【0022】炭素質繊維不織布は、電池の中に圧接され
て組み込まれ、その薄い隙間を粘度の高い電解液が流れ
るため、脱落を防止して形態保持するためには引張強度
を0.1kg/cm以上にすることが望ましい。また集
電板との接触抵抗を良くするために、隔膜、集電板に挟
まれた充填層の密度を0.05g/cm3 以上に、電極
面に対する反発力を0.1kgf/cm2 以上にするこ
とが好ましい。
The carbonaceous fiber non-woven fabric is assembled by being pressed into a battery, and a high-viscosity electrolytic solution flows through the thin gap. cm or more. Also, in order to improve the contact resistance with the current collector, the density of the diaphragm and the packed layer sandwiched between the current collectors is set to 0.05 g / cm 3 or more, and the repulsive force to the electrode surface is set to 0.1 kgf / cm 2 or more. Is preferable.

【0023】さらに本発明の炭素質繊維は、レーザーラ
マン分光法により求めた1360cm-1のピークの半値
半幅が30〜60cm-1で、1580cm-1のピークの
半値半幅が30〜45cm-1で、1360cm-1のピー
ク強度Iaと1580cm-1のピーク強度Igとの比R
(=Ia/Ig)が0.7〜1.0であるが、好ましく
は、1360cm-1のピークの半値半幅が30〜50c
-1で、1580cm -1のピークの半値半幅が33〜4
3cm-1で、R(=Ia/Ig)が0.7〜0.8であ
る。
Further, the carbonaceous fiber of the present invention is
1360 cm determined by Mann spectroscopy-1Half peak of
Half width is 30-60cm-1In, 1580cm-1Of the peak
Half width at half maximum is 30-45cm-1And 1360cm-1The pea
Strength Ia and 1580cm-1Ratio R to the peak intensity Ig
(= Ia / Ig) is 0.7 to 1.0, preferably
Is 1360cm-1The half width at half maximum of the peak is 30 to 50c.
m-1In, 1580cm -1The half-width at half maximum of 33 to 4
3cm-1And R (= Ia / Ig) is 0.7 to 0.8.
You.

【0024】上記各パラメーター値がそれぞれの上限値
より大きい場合、その比抵抗は10 -2Ω・cmを越え、
電池内部抵抗(セル抵抗)の内の電極材導電抵抗成分が
無視できないようになり、その結果、セル抵抗が増加し
(電圧効率が低下し)、エネルギー効率が低下する。ま
た、長期間使用による比抵抗の劣化も生じ易い。
Each of the above parameter values is a respective upper limit value.
If greater, the specific resistance is 10 -2Exceeds Ω · cm,
Electrode material conductive resistance component in battery internal resistance (cell resistance)
Can no longer be ignored, resulting in increased cell resistance
(Voltage efficiency decreases), and energy efficiency decreases. Ma
In addition, the specific resistance tends to deteriorate due to long-term use.

【0025】一方、上記各パラメーター値がそれぞれの
下限値より小さい場合、長期間の使用により、比抵抗は
増加していき、その結果セル抵抗は増加していき、エネ
ルギー効率は低下してしまう。これは、上述のような炭
素質繊維では結晶構造内に歪みを持つか、黒鉛に近い構
造をとるため、例えばバナジウム系レドックスフロー電
池の電解液に用いられる硫酸により、分解を引き起こし
やすいためと考えられる。
On the other hand, when the above parameter values are smaller than the respective lower limit values, the specific resistance increases over a long period of use, and as a result, the cell resistance increases and the energy efficiency decreases. This is thought to be because the carbonaceous fiber as described above has a strain in the crystal structure or has a structure close to graphite, and is likely to be decomposed by, for example, sulfuric acid used in the electrolyte solution of a vanadium-based redox flow battery. Can be

【0026】また本発明の炭素質繊維の表面酸性官能基
量は、全表面炭素原子数の0.2%以上であることが必
要であり、好ましくは0.3%以上である。0.2%未
満の場合には、電解液の濡れ性が悪く、セル抵抗が著し
く増加する。これは、炭素原子そのものは疎水性である
ため、親水基の酸性官能基が少ない場合には水をはじき
やすいためと考えられる。また表面酸性官能基量は、全
表面炭素原子数の1.2%以下であることが必要であ
り、好ましくは0.8%以下である。1.2%より大き
い場合には、官能基により表面の導電性が阻害され、集
電板との接触抵抗または繊維間の接触抵抗が悪くなり、
セル抵抗が著しく増加する。
The surface acidic functional group content of the carbonaceous fiber of the present invention needs to be at least 0.2% of the total number of surface carbon atoms, and preferably at least 0.3%. If it is less than 0.2%, the wettability of the electrolytic solution is poor, and the cell resistance is significantly increased. This is presumably because the carbon atom itself is hydrophobic, so that when the acidic functional group of the hydrophilic group is small, water is easily repelled. The surface acidic functional group content must be 1.2% or less, preferably 0.8% or less, of the total number of surface carbon atoms. When it is larger than 1.2%, the conductivity of the surface is inhibited by the functional group, and the contact resistance with the current collector plate or the contact resistance between the fibers becomes poor,
The cell resistance increases significantly.

【0027】なお、上記の表面酸性官能基量とは、含酸
素官能基のうち硝酸銀処理によって銀イオン置換されう
る水酸基やカルボキシル基の量を意味し、XPS表面分
析によって検出される表面銀イオン量の表面炭素原子数
に対する割合として表す。
The above-mentioned amount of surface acidic functional groups means the amount of hydroxyl groups or carboxyl groups which can be replaced with silver ions by silver nitrate treatment among oxygen-containing functional groups, and the amount of surface silver ions detected by XPS surface analysis. Of the surface carbon atoms.

【0028】上記のような優れた内部構造と濡れ性を持
った炭素質繊維は、緊張下200〜300℃の初期空気
酸化を経たポリアクリロニトリル、等方性ピッチ、メソ
フェーズピッチ、セルロースなど、あるいはフェノー
ル、ポリパラフェニレンベンゾビスオキサゾール(PB
O)などを原料にして、Al、Si、Biなどの3価以
上のイオンとなる金属塩を金属イオン換算で10〜10
0ppm均一に添着した後、不活性雰囲気下1000〜
2200℃で焼成(炭化)し、得られた擬黒鉛結晶構造
を有する炭素材料を乾式酸化処理することによって得ら
れる。
The carbonaceous fiber having an excellent internal structure and wettability as described above can be obtained from polyacrylonitrile, isotropic pitch, mesophase pitch, cellulose, etc. which have been subjected to initial air oxidation at 200 to 300 ° C. under tension, or phenol. , Polyparaphenylene benzobisoxazole (PB
O) or the like as a raw material, a metal salt which becomes trivalent or more ion such as Al, Si, Bi or the like is converted to a metal ion equivalent to 10 to 10
0 ppm after uniform impregnation, 1000 ~ under inert atmosphere
It is obtained by calcining (carbonizing) at 2200 ° C. and dry-oxidizing the obtained carbon material having a pseudo-graphite crystal structure.

【0029】金属塩の添着が有効なのは、Al、Si、
Biなどの3価以上のイオンとなる金属塩を微量添着す
ることによって、当該イオンが炭素の結晶子の間を架橋
し、構造欠陥等を生じにくくするためと考えられる。こ
の微量添着により、焼成条件の影響をさほど受けずに、
レーザーラマン分光法による前記パラメータを好適に制
御することができる。勿論、焼成条件によって前記パラ
メータを制御することも可能である。
[0029] The metal salt impregnation is effective for Al, Si,
It is considered that by adding a trace amount of a metal salt that becomes trivalent or more ion such as Bi, the ion cross-links between crystallites of carbon, thereby making it difficult to cause structural defects and the like. By this small amount of impregnation, without much influence of the firing conditions,
The above parameters by laser Raman spectroscopy can be suitably controlled. Of course, it is also possible to control the above parameters by the firing conditions.

【0030】乾式酸化処理は、上述の炭素材料を酸素濃
度1〜25%のガス雰囲気下で重量収率にして90〜9
9%、好ましくは93〜99%の範囲になるように実施
される。処理温度は500〜900℃、さらに好ましく
は650〜750℃がよい。しかし処理法はこれに限定
されるものではなく、例えばこの乾式酸化処理の代わり
に電解酸化をおこなっても同様な効果が得られる。な
お、表面酸性官能基量は、黒鉛化の程度にもよるが、乾
式酸化処理の酸素濃度等を調製することで制御できる。
In the dry oxidation treatment, the above-mentioned carbon material is obtained in a gas atmosphere having an oxygen concentration of 1 to 25% in a weight yield of 90 to 9%.
It is carried out so as to be in the range of 9%, preferably 93 to 99%. The processing temperature is preferably from 500 to 900C, more preferably from 650 to 750C. However, the treatment method is not limited to this. For example, similar effects can be obtained by performing electrolytic oxidation instead of the dry oxidation treatment. The amount of the surface acidic functional group depends on the degree of graphitization, but can be controlled by adjusting the oxygen concentration or the like in the dry oxidation treatment.

【0031】本発明における炭素質繊維不織布は、圧縮
率が10〜25%で、圧縮弾性率が80%以上である
が、好ましくは、圧縮率10〜20%で、圧縮弾性率8
2%以上である。圧縮率が10%未満の場合、繊維間の
絡みが得られず、炭素質繊維不織布としての形態を保持
することができない。一方、圧縮率が25%を越える
か、圧縮弾性率か80%未満の場合は、電池の中に圧接
させて組み込まれた際の集電板との接触抵抗が高くな
り、その結果、セル抵抗が増加し(電圧効率が低下
し)、エネルギー効率が低下する。
The carbonaceous fiber nonwoven fabric of the present invention has a compression ratio of 10 to 25% and a compression elastic modulus of 80% or more, but preferably has a compression ratio of 10 to 20% and a compression elasticity of 8%.
2% or more. When the compression ratio is less than 10%, entanglement between fibers cannot be obtained, and the form as a carbonaceous fiber nonwoven fabric cannot be maintained. On the other hand, when the compression ratio exceeds 25% or the compression elasticity is less than 80%, the contact resistance with the current collector when the battery is pressed into the battery and assembled is increased, and as a result, the cell resistance is increased. Increase (voltage efficiency decreases) and energy efficiency decreases.

【0032】このような炭素質繊維不織布の圧縮特性
は、上述した炭素の結晶構造と表面酸性官能基を持つこ
とが前提となるが、前段階のニードルパンチの条件を制
御することによって得られる。すなわち、柔軟性があ
り、繊維の脱落のない不織布形態を保ちつつ、なおかつ
圧接した際の集電板との接触性(接触面と接触力)が向
上するように、ニードルパンチの密度を150〜300
本/cm2 、好ましくは、200〜300本/cm2
し、ニードルパンチの針を不融化繊維あるいは耐炎化繊
維が交互に絡みやすいもの、例えばSB#36やSB#
40(FosterNeedle社)にすることが好ま
しい。
The compression characteristics of such a carbonaceous fiber nonwoven fabric are premised on having the above-mentioned carbon crystal structure and surface acidic functional groups, but can be obtained by controlling the conditions of the needle punch in the preceding stage. That is, the density of the needle punch is set to 150 to 100% so as to maintain the nonwoven fabric form that is flexible and does not cause the fibers to fall off, and that the contact property (contact surface and contact force) with the current collector plate when pressed is improved. 300
Needles / cm 2 , preferably 200 to 300 needles / cm 2 , and the needle of the needle punch is made of an infusible fiber or an oxidized fiber which is easily entangled alternately, for example, SB # 36 or SB #
40 (Foster Needle).

【0033】また、不織布の圧縮率と圧縮弾性率とを上
記範囲に制御する上で、乾式酸化処理を、短時間、具体
的には10分以内に行うのが好ましい。
In order to control the compression ratio and the compression elastic modulus of the nonwoven fabric within the above ranges, it is preferable to perform the dry oxidation treatment in a short time, specifically, within 10 minutes.

【0034】次に、本発明において採用されるレーザー
ラマン分光法、XPS表面分析、不織布の圧縮率及び圧
縮弾性率、集電板との接触抵抗とその経時変化、電流効
率、電圧効率(セル抵抗R)、エネルギー効率および充
放電サイクルの経時変化の各測定法について説明する。
Next, laser Raman spectroscopy, XPS surface analysis, compression ratio and compression elastic modulus of the nonwoven fabric, contact resistance with the current collector and its change with time, current efficiency, voltage efficiency (cell resistance, etc.) used in the present invention. R), each measurement method of energy efficiency and change over time of the charge / discharge cycle will be described.

【0035】(1)レーザーラマン分光法 顕微ラマン分光装置(ジョバンイボンヌ−愛宕物産
(株)製)を用いて、Arイオンレーザーの488nm
線で1800から1000cm-1まで走査し、1360
±20cm-1のピークIaと1580±20cm-1のピ
ークIgを解析する。各ピーク強度は、ベースライン補
正を行った後、測定された波形をローレンツ関数で近似
し、その最高点により求め、ピークの半値半幅は、ピー
ク強度の半分の強度におけるピーク幅の半分の値により
求める。
(1) Laser Raman Spectroscopy Using a micro Raman spectrometer (Jobin Yvonne-Atago Bussan Co., Ltd.), an Ar ion laser of 488 nm was used.
Scan from 1800 to 1000 cm -1 with a line, 1360
Analyzing the peak Ig peak Ia and 1580 ± 20 cm -1 of ± 20 cm -1. For each peak intensity, after performing the baseline correction, the measured waveform is approximated by the Lorentz function and determined by the highest point, and the half width at half maximum of the peak is determined by the half value of the peak width at half the intensity of the peak intensity. Ask.

【0036】(2)XPS表面分析 ESCAあるいはXPSと略称されているX線光電子分
光法の測定に用いる装置は島津ESCA750で、解析
にはESCAPAC760を用いる。
(2) XPS Surface Analysis A device used for measurement of X-ray photoelectron spectroscopy, which is abbreviated as ESCA or XPS, is Shimadzu ESCA750, and ESCAPAC760 is used for analysis.

【0037】各試料を硝酸銀のアセトン溶液に浸漬し、
酸性官能基のプロトンを完全に銀置換し、アセトン及び
水でそれぞれ洗浄後、6mm径に打ち抜き、導電性ペー
ストにより加熱式試料台に貼り付け、分析に供する。予
め、測定前に試料を12O℃に加熱し、3時間以上真空
脱気する。線源にはMgKα線(1253.6eV)を
用い、装置内真空度は10-7torrとする。
Each sample was immersed in an acetone solution of silver nitrate,
The proton of the acidic functional group is completely replaced with silver, washed with acetone and water, punched out to a diameter of 6 mm, attached to a heated sample stand with a conductive paste, and subjected to analysis. Before the measurement, the sample is heated to 120 ° C. and vacuum degassed for 3 hours or more. MgKα radiation (1253.6 eV) is used as the radiation source, and the degree of vacuum in the apparatus is set to 10 −7 torr.

【0038】測定はCls,Ag3dピークに対して行
い、各ピークをESCAPAC760(J.H.Sco
fieldによる補正法に基づく)を用いて補正解析
し、各ピーク面積を求める。得られた面積にClsにつ
いては1.00、Ag3dについては10.68の相対
強度を乗じたものの比が原子数比であり、全表面炭素原
子数に対する表面酸性官能基量は(表面銀原子数/表面
炭素原子数)比を百分率(%)で算出する。
The measurement was carried out on the Cls and Ag3d peaks, and each peak was taken as ESCAPAC760 (JH Sco
(based on the field correction method) to determine the respective peak areas. The ratio of the obtained area multiplied by the relative intensity of 1.00 for Cls and 10.68 for Ag3d is the atomic number ratio, and the amount of surface acidic functional groups to the total number of surface carbon atoms is (the number of surface silver atoms) / Number of surface carbon atoms) is calculated as a percentage (%).

【0039】(3)不織布の圧縮率及び圧縮弾性率 JIS L1096(1990)に記載の「6.18圧
縮率及び圧縮弾性率」に準じ、約5×約5cmの試験片
を5枚採取し、1枚の試験片を初荷重0.49kPaの
下で、厚さ(mm)を測り、次に荷重を24.5kPa
の下で1分間放置して厚さ(mm)を計る。次に荷重を
除き1分間放置した後、再び初荷重の下で厚さ(mm)
を測り、それぞれの厚さより圧縮率及び圧縮弾性率を求
め、5回の平均値で表す(整数位まで)。
(3) Compressibility and Compressive Modulus of Nonwoven Fabric According to “6.18 Compressibility and Compressive Modulus” described in JIS L1096 (1990), five test pieces of about 5 × about 5 cm were sampled. One test piece was measured for thickness (mm) under an initial load of 0.49 kPa, and then the load was increased to 24.5 kPa.
And leave it for 1 minute under a jar to measure the thickness (mm). Next, remove the load and leave it for 1 minute, then again under initial load thickness (mm)
Is measured, and the compressibility and the compressive elastic modulus are obtained from the respective thicknesses, and are represented by an average value of five times (up to an integer).

【0040】(4)集電板との接触抵抗 2枚の集電板を用い、その間に幅10cm、長さ1cm
の炭素質繊維不織布の試料を挟んで2mm厚みに圧接し
た時の抵抗をデジタルマルチメータで簡易的に測定し、
単位面積あたりの抵抗を求める。集電板には固有抵抗
0.05Ω・cmの樹脂結合質黒鉛板(厚み3mm)を
用い、集電板同士をそのまま圧接した時の抵抗は不織布
との接触抵抗に対して無視できるものである。
(4) Contact resistance with current collector plate Two current collector plates were used, and the width was 10 cm and the length was 1 cm.
The resistance when pressed to a thickness of 2 mm across the carbonaceous fiber nonwoven fabric sample is simply measured with a digital multimeter,
Find the resistance per unit area. A resin-bonded graphite plate (thickness: 3 mm) having a specific resistance of 0.05 Ω · cm is used as the current collector, and the resistance when the current collectors are pressed against each other as is is negligible with respect to the contact resistance with the nonwoven fabric. .

【0041】(5)電極性能 上下方向(通液方向)に10cm、幅方向に1cmの電
極面積10cm2 を有する小型のセルを作り、定電流密
度で充放電を繰り返し、電極性能のテストを行う。正極
電解液には2mol/lのオキシ硫酸バナジウムの3m
ol/l硫酸水溶液を用い、負極電解液には2mol/
lの硫酸バナジウムの3mol/l硫酸溶液を用いる。
電解液量はセル、配管に対して大過剰とした.液流量は
毎分6.2mlとし、30℃で測定を行う。
(5) Electrode Performance A small cell having an electrode area of 10 cm 2 of 10 cm in the vertical direction (liquid flow direction) and 1 cm in the width direction is prepared, and charge and discharge are repeated at a constant current density to test the electrode performance. . 3 m of 2 mol / l vanadium oxysulfate was used for the positive electrode electrolyte.
ol / l sulfuric acid aqueous solution, and 2 mol / l
A 3 mol / l sulfuric acid solution of 1 vanadium sulfate is used.
The amount of electrolyte was set to a large excess with respect to the cells and piping. The liquid flow rate is 6.2 ml per minute, and the measurement is performed at 30 ° C.

【0042】(a)電流効率:ηI 充電に始まり、放電で終わる1サイクルのテストにおい
て、電流密度を電極幾何面積当たり40mA/cm2
(400mA)として、1.7Vまでの充電に要した電
気量をQ1 クーロン、1.0Vまでの定電流放電、およ
びこれに続く1.2Vでの定電圧放電で取りだした電気
量をそれぞれQ2 、Q3 クーロンとし、数式1で電流効
率ηI を求める。
(A) Current efficiency: η I In a one-cycle test starting from charging and ending with discharging, the current density was set to 40 mA / cm 2 per electrode geometrical area.
(400 mA), the quantity of electricity required for charging up to 1.7 V is Q 1 coulomb, the quantity of electricity taken out by constant current discharge up to 1.0 V, and the subsequent quantity of electricity taken out by constant voltage discharge at 1.2 V are Q 2 , Q 3 coulomb, and the current efficiency η I is obtained by equation (1).

【0043】[0043]

【数1】 (b)セル抵抗:R 負極液中のV3+をV2+に完全に還元するのに必要な理論
電気量Qthに対して、放電により取りだした電気量の比
を充電率とし、数式2で充電率を求める。
(Equation 1) (B) Cell resistance: R The ratio of the amount of electricity taken out by discharging to the theoretical amount of electricity Q th required to completely reduce V 3+ in the negative electrode solution to V 2+ is defined as a charging rate. The charging rate is determined in step 2.

【0044】[0044]

【数2】 充電率が50%のときの電気量に対応する充電電圧V
C50 、放電電圧VD50 を電気量−電圧曲線からそれぞれ
求め、数式3より電極幾何面積に対するセル抵抗R(Ω
・cm2 )を求める。
(Equation 2) Charging voltage V corresponding to the amount of electricity when the charging rate is 50%
C50 and discharge voltage VD50 were obtained from the electric quantity-voltage curve, respectively, and the cell resistance R (Ω
・ Calculate cm 2 ).

【0045】[0045]

【数3】 ここで、Iは定電流充放電における電流値0.4Aであ
る。
(Equation 3) Here, I is a current value of 0.4 A in constant current charging and discharging.

【0046】(c)電圧効率:ηV 上記の方法で求めたセル抵抗Rを用いて数式4の簡便法
により電圧効率ηV を求める。
(C) Voltage efficiency: η V Using the cell resistance R obtained by the above method, the voltage efficiency η V is obtained by the simple method of Expression 4.

【0047】[0047]

【数4】 ここで、Eは充電率50%のときのセル開回路電圧1.
432V(実測値)、Iは定電流充放電における電流値
0.4Aである。
(Equation 4) Here, E is the cell open circuit voltage when the charging rate is 50%.
432 V (actual measurement value), and I is a current value of 0.4 A in constant current charging and discharging.

【0048】(d)エネルギー効率:ηE 前述の電流効率ηI と電圧効率ηV を用いて、数式5に
よりエネルギー効率η E を求める。
(D) Energy efficiency: ηE Current efficiency η described aboveI And voltage efficiency ηV And using equation 5
More energy efficiency η E Ask for.

【0049】[0049]

【数5】 (e)充放電サイクルの経時変化 (a)、(b)、(c)、(d)の測定後、続いて同セ
ルを用い、40mA/cm2 の定電流密度でセル電圧
1.0〜1.7V間で充放電を繰り返し実施する。規定
サイクル経過後、再び(a)、(b)、(c)、(d)
の測定を行い、η E 及びその初期からの変化量△ηE
求める。
(Equation 5)(E) Temporal change of charge / discharge cycle After measurement of (a), (b), (c), and (d),
40 mA / cmTwo Cell voltage at constant current density of
Charge and discharge are repeatedly performed between 1.0 and 1.7V. Regulation
(A), (b), (c), (d)
Is measured, and η E And the change △ η from the beginningE To
Ask.

【0050】レドックスフロー電池等の電解槽用電極の
特性は、主に上記のような電流効率ηI 、電圧効率ηV
(セル抵抗R)およびエネルギー効率ηE (ηI とηV
との積)とこれらの効率の充放電サイクル安定性(寿
命)で表される。
The characteristics of an electrode for an electrolytic cell such as a redox flow battery mainly include the current efficiency η I and the voltage efficiency η V as described above.
(Cell resistance R) and energy efficiency η EI and η V
) And the charge / discharge cycle stability (lifetime) of these efficiencies.

【0051】本発明の炭素電極材集合体は、水溶液系電
解液を使用するレドックスフロー電池に用いられるもの
である。当該レドックスフロー電池は、前述のように、
例えば間隙を介した状態で対向して配設された一対の集
電板間に隔膜が配設され、該集電板と隔膜との間に少な
くとも一方に電極材が配設され、電極材は活物質を含ん
だ水溶液からなる電解液を含んだ構造を有する電解槽を
備える。
The carbon electrode material assembly of the present invention is used for a redox flow battery using an aqueous electrolyte. The redox flow battery, as described above,
For example, a diaphragm is provided between a pair of current collectors disposed facing each other with a gap therebetween, and an electrode material is provided on at least one of the current collectors and the diaphragm, and the electrode material is An electrolytic cell having a structure containing an electrolytic solution composed of an aqueous solution containing an active material is provided.

【0052】水溶液系電解液としては、前述の如きバナ
ジウム系電解液の他、鉄−クロム系、チタン−マンガン
系、マンガン−クロム系、クロム−クロム系、鉄−チタ
ン系などが挙げられるが、バナジウム系電解液が好まし
い。本発明の炭素電極材集合体は、特に、粘度が25℃
にて0.005Pa・s以上であるバナジウム系電解
液、あるいは1.5mol/l以上のバナジウムイオン
を含むバナジウム系電解液を使用するレドックスフロー
電池に用いるのが有用である。
Examples of the aqueous electrolytic solution include iron-chromium-based, titanium-manganese-based, manganese-chromium-based, chromium-chromium-based, iron-titanium-based, and the like, in addition to the vanadium-based electrolyte described above. Vanadium-based electrolytes are preferred. In particular, the carbon electrode material aggregate of the present invention has a viscosity of 25 ° C.
It is useful to use in a redox flow battery using a vanadium-based electrolyte solution of 0.005 Pa · s or more or a vanadium-based electrolyte solution containing 1.5 mol / l or more of vanadium ions.

【0053】[0053]

【実施例】以下、本発明の構成及び効果を具体的に示
す、実施例等について説明する。
EXAMPLES Examples and the like that specifically show the structure and effects of the present invention will be described below.

【0054】(実施例1)平均繊維径16μmのポリア
クリロニトリル繊維を空気中200〜300℃で耐炎化
した後、該耐炎化繊維の短繊維(長さ約80mm)を用
いてフェルト針SB#36(Foster Needl
e社)、パンチング密度250本/cm2でフェルト化
して目付量600g/m2 、厚み5.0mmの不織布を
作成した。該不織布を0.01wt%の水酸化アルミニ
ウム水溶液に浸漬、脱水し(アルミニウムイオン換算と
して0.006wt%添着)、窒素ガス中で10℃/分
の昇温速度で1300℃まで昇温し、この温度で1時間
保持し炭化を行って冷却し、続いて空気中680℃で5
分間処理し、炭素質繊維不織布を得た。
(Example 1) A polyacrylonitrile fiber having an average fiber diameter of 16 µm was oxidized in air at 200 to 300 ° C, and a felt needle SB # 36 was used using short fibers (about 80 mm in length) of the oxidized fiber. (Foster Needl
e) was made into a felt at a punching density of 250 pieces / cm 2 to prepare a nonwoven fabric having a basis weight of 600 g / m 2 and a thickness of 5.0 mm. The non-woven fabric is immersed in a 0.01 wt% aluminum hydroxide aqueous solution, dehydrated (impregnated with 0.006 wt% in terms of aluminum ions), and heated to 1300 ° C. in nitrogen gas at a rate of 10 ° C./min. The temperature is maintained for 1 hour, carbonized and cooled, followed by 5 hours at 680 ° C in air.
Minutes, to obtain a carbonaceous fiber nonwoven fabric.

【0055】(実施例2)平均繊維径16μmのポリア
クリロニトリル繊維を空気中200〜300℃で耐炎化
した後、該耐炎化繊維の短繊維(長さ約80mm)を用
いてフェルト針SB#36(Foster Needl
e社)、パンチング密度250本/cm2でフェルト化
して目付量600g/m2 、厚み5.0mmの不織布を
作成した。該不織布を0.01wt%の水酸化ビスマス
水溶液に浸漬、脱水し(ビスマスイオン換算として0.
008wt%添着)、窒素ガス中で10℃/分の昇温速
度で2000℃まで昇温し、この温度で1時間保持し炭
化を行って冷却し、続いて空気中750℃で10分間処
理し、炭素質繊維不織布を得た。
(Example 2) Polyacrylonitrile fiber having an average fiber diameter of 16 µm was oxidized in air at 200 to 300 ° C, and felt needle SB # 36 was used using short fibers (about 80 mm in length) of the oxidized fiber. (Foster Needl
e) was made into a felt at a punching density of 250 pieces / cm 2 to prepare a nonwoven fabric having a basis weight of 600 g / m 2 and a thickness of 5.0 mm. The nonwoven fabric is immersed in a 0.01% by weight aqueous solution of bismuth hydroxide and dehydrated (0.1% in terms of bismuth ion).
008 wt%), heated to 2000 ° C. in nitrogen gas at a rate of 10 ° C./min, kept at this temperature for 1 hour, carbonized and cooled, and subsequently treated in air at 750 ° C. for 10 minutes. Thus, a carbonaceous fiber nonwoven fabric was obtained.

【0056】(実施例3)平均繊維径16μmのポリア
クリロニトリル繊維を空気中200〜300℃で耐炎化
した後、該耐炎化繊維の短繊維(長さ約80mm)を用
いてフェルト針SB#36(Foster Needl
e社)、パンチング密度250本/cm2でフェルト化
して目付量600g/m2 、厚み5.0mmの不織布を
作成した。該不織布を0.01wt%の水酸化アルミニ
ウム水溶液に浸漬、脱水し(アルミニウムイオン換算と
して0.06wt%添着)、窒素ガス中で10℃/分の
昇温速度で1600℃まで昇温し、この温度で1時間保
持し炭化を行って冷却し、続いて空気中700℃で8分
間処理し、炭素質繊維不織布を得た。
Example 3 Polyacrylonitrile fibers having an average fiber diameter of 16 μm were oxidized in air at 200 to 300 ° C., and then a felt needle SB # 36 was used using short fibers (about 80 mm in length) of the oxidized fibers. (Foster Needl
e) was made into a felt at a punching density of 250 pieces / cm 2 to prepare a nonwoven fabric having a basis weight of 600 g / m 2 and a thickness of 5.0 mm. The nonwoven fabric is immersed in a 0.01 wt% aluminum hydroxide aqueous solution, dehydrated (impregnated with 0.06 wt% in terms of aluminum ions), and heated to 1600 ° C in nitrogen gas at a rate of 10 ° C / min. The mixture was kept at the temperature for 1 hour, carbonized, cooled, and subsequently treated in air at 700 ° C. for 8 minutes to obtain a carbonaceous fiber nonwoven fabric.

【0057】(比較例1)平均繊維径16μmのポリア
クリロニトリル繊維を空気中200〜300℃で耐炎化
した後、該耐炎化繊維の短繊維(長さ約80mm)を用
いてフェルト針SB#36(Foster Needl
e社)、パンチング密度250本/cm2でフェルト化
して目付量600g/m2 、厚み5.0mmの不織布を
作成した。該不織布を窒素ガス中で10℃/分の昇温速
度で1300℃まで昇温し、この温度で1時間保持し炭
化を行って冷却し、続いて空気中680℃で5分間処理
し、炭素質繊維不織布を得た。
(Comparative Example 1) Polyacrylonitrile fiber having an average fiber diameter of 16 µm was oxidized in air at 200 to 300 ° C, and then a felt needle SB # 36 was used using short fibers (about 80 mm in length) of the oxidized fiber. (Foster Needl
e) was made into a felt at a punching density of 250 pieces / cm 2 to prepare a nonwoven fabric having a basis weight of 600 g / m 2 and a thickness of 5.0 mm. The nonwoven fabric was heated to 1300 ° C. at a rate of 10 ° C./min in nitrogen gas, kept at this temperature for 1 hour, carbonized and cooled, and subsequently treated at 680 ° C. in air for 5 minutes to obtain carbon. A fibrous nonwoven fabric was obtained.

【0058】(比較例2)平均繊維径16μmのポリア
クリロニトリル繊維を空気中200〜300℃で耐炎化
した後、該耐炎化繊維の短繊維(長さ約80mm)を用
いてフェルト針SB#36(Foster Needl
e社)、パンチング密度250本/cm2でフェルト化
して目付量600g/m2 、厚み5.0mmの不織布を
作成した。該不織布を窒素ガス中で10℃/分の昇温速
度で2000℃まで昇温し、この温度で1時間保持し炭
化を行って冷却し、続いて空気中750℃で10分間処
理し、炭素質繊維不織布を得た。
(Comparative Example 2) Polyacrylonitrile fiber having an average fiber diameter of 16 µm was oxidized in air at 200 to 300 ° C, and felt needle SB # 36 was used using short fibers (about 80 mm in length) of the oxidized fiber. (Foster Needl
e) was made into a felt at a punching density of 250 pieces / cm 2 to prepare a nonwoven fabric having a basis weight of 600 g / m 2 and a thickness of 5.0 mm. The nonwoven fabric was heated to 2000 ° C. at a rate of 10 ° C./min in nitrogen gas, held at this temperature for 1 hour, carbonized and cooled, and then treated in air at 750 ° C. for 10 minutes to obtain carbon. A fibrous nonwoven fabric was obtained.

【0059】(比較例3)平均繊維径16μmのポリア
クリロニトリル繊維を空気中200〜300℃で耐炎化
した後、該耐炎化繊維の短繊維(長さ約80mm)を用
いてフェルト針SB#36(Foster Needl
e社)、パンチング密度150本/cm2でフェルト化
して目付量600g/m2 、厚み5.2mmの不織布を
作成した。該不織布を0.01wt%の水酸化アルミニ
ウム水溶液に浸漬、脱水し(アルミニウムイオン換算と
して0.006wt%添着)、窒素ガス中で10℃/分
の昇温速度で1300℃まで昇温し、この温度で1時間
保持し炭化を行って冷却し、続いて空気中680℃で5
分間処理し、炭素質繊維不織布を得た。
(Comparative Example 3) A polyacrylonitrile fiber having an average fiber diameter of 16 µm was oxidized in air at 200 to 300 ° C, and then a felt needle SB # 36 was used using short fibers (about 80 mm in length) of the oxidized fiber. (Foster Needl
e) to give a felt at a punching density of 150 pieces / cm 2 to prepare a nonwoven fabric having a basis weight of 600 g / m 2 and a thickness of 5.2 mm. The non-woven fabric is immersed in a 0.01 wt% aluminum hydroxide aqueous solution, dehydrated (impregnated with 0.006 wt% in terms of aluminum ions), and heated to 1300 ° C. in nitrogen gas at a rate of 10 ° C./min. The temperature is maintained for 1 hour, carbonized and cooled, followed by 5 hours at 680 ° C in air.
Minutes, to obtain a carbonaceous fiber nonwoven fabric.

【0060】(比較例4)平均繊維径16μmのポリア
クリロニトリル繊維を空気中200〜300℃で耐炎化
した後、該耐炎化繊維の短繊維(長さ約80mm)を用
いてフェルト針SB#36(Foster Needl
e社)、パンチング密度400本/cm2でフェルト化
して目付量600g/m2 、厚み4.5mmの不織布を
作成した。該不織布を0.01wt%の水酸化アルミニ
ウム水溶液に浸漬、脱水し(アルミニウムイオン換算と
して0.006wt%添着)、窒素ガス中で10℃/分
の昇温速度で1300℃まで昇温し、この温度で1時間
保持し炭化を行って冷却し、続いて空気中680℃で5
分間処理し、炭素質繊維不織布を得た。
(Comparative Example 4) Polyacrylonitrile fiber having an average fiber diameter of 16 µm was oxidized in air at 200 to 300 ° C, and felt needle SB # 36 was used using short fibers (about 80 mm in length) of the oxidized fiber. (Foster Needl
e) to give a felt at a punching density of 400 / cm 2 to prepare a nonwoven fabric having a basis weight of 600 g / m 2 and a thickness of 4.5 mm. The non-woven fabric is immersed in a 0.01 wt% aluminum hydroxide aqueous solution, dehydrated (impregnated with 0.006 wt% in terms of aluminum ions), and heated to 1300 ° C. in nitrogen gas at a rate of 10 ° C./min. The temperature is maintained for 1 hour, carbonized and cooled, followed by 5 hours at 680 ° C in air.
Minutes, to obtain a carbonaceous fiber nonwoven fabric.

【0061】(比較例5)平均繊維径16μmのポリア
クリロニトリル繊維を空気中200〜300℃で耐炎化
した後、該耐炎化繊維の短繊維(長さ約80mm)を用
いてフェルト針SB#36(Foster Needl
e社)、パンチング密度250本/cm2でフェルト化
して目付量600g/m2 、厚み5. 0mmの不織布を
作成した。該不織布を0.01wt%の水酸化アルミニ
ウム水溶液に浸漬、脱水し(アルミニウムイオン換算と
して0.006wt%添着)、窒素ガス中で10℃/分
の昇温速度で1300℃まで昇温し、この温度で1時間
保持し炭化を行って冷却し、続いて空気中680℃で1
5分間処理し、炭素質繊維不織布を得た。
Comparative Example 5 Polyacrylonitrile fibers having an average fiber diameter of 16 μm were oxidized in air at 200 to 300 ° C., and felt needle SB # 36 was used using short fibers (about 80 mm in length) of the oxidized fibers. (Foster Needl
e) to give a felt at a punching density of 250 pieces / cm 2 to prepare a nonwoven fabric having a basis weight of 600 g / m 2 and a thickness of 5.0 mm. The non-woven fabric is immersed in a 0.01 wt% aluminum hydroxide aqueous solution, dehydrated (impregnated with 0.006 wt% in terms of aluminum ions), and heated to 1300 ° C. in nitrogen gas at a rate of 10 ° C./min. The temperature is maintained for 1 hour, carbonized and cooled, and then in air at 680 ° C for 1 hour.
The treatment was performed for 5 minutes to obtain a carbonaceous fiber nonwoven fabric.

【0062】以上で実施例、比較例で得られた炭素質繊
維不織布のレーザーラマン分光法、XPS表面分析、不
織布の圧縮率及び圧縮弾性率、集電板との接触抵抗を、
製造条件と共に表1に示す。
Laser Raman spectroscopy, XPS surface analysis, compressibility and compressive modulus of the nonwoven fabric, and contact resistance with the current collector of the carbonaceous fiber nonwoven fabrics obtained in Examples and Comparative Examples were
The results are shown in Table 1 together with the manufacturing conditions.

【0063】上記の全ての処理物をスペーサ厚2.0m
mで電極性能(充放電サイクルの2サイクル目と100
サイクル目)の測定を行った結果、表1のようになっ
た。
All of the above-mentioned processed products were transferred to a spacer having a thickness of 2.0 m.
electrode performance (the second cycle of charge / discharge cycle and 100
Table 1 shows the results of the measurement at the (cycle)).

【0064】[0064]

【表1】 表1の結果から明らかなように、実施例1〜3の炭素質
繊維不織布は、集電板との接触抵抗が小さく、電圧効率
が高く、エネルギー効率に優れていた。しかも充放電サ
イクルの長期間の繰り返しによる炭素の消耗に依存する
接触抵抗の増加、即ち導電性の低下を抑制することがで
きる。また、長期間使用時の導電性の低下、すなわち、
セル抵抗の増加を抑制でき、長期間の充放電サイクル時
のエネルギ−効率の経時変化も殆どない。
[Table 1] As is clear from the results in Table 1, the carbonaceous fiber nonwoven fabrics of Examples 1 to 3 had low contact resistance with the current collector, high voltage efficiency, and excellent energy efficiency. In addition, it is possible to suppress an increase in contact resistance, that is, a decrease in conductivity due to the consumption of carbon due to long-term repetition of charge / discharge cycles. In addition, the decrease in conductivity during long-term use, that is,
An increase in cell resistance can be suppressed, and there is almost no change over time in energy efficiency during a long-term charge / discharge cycle.

【0065】これに対し、炭素質繊維の特性が適当でな
い比較例1〜2では、電圧効率とエネルギー効率が共に
不十分となり、また、不織布の物性が適当でない比較例
3〜5では、集電板との接触抵抗が大きくなり、電圧効
率とエネルギー効率が共に更に劣化していた。また充放
電サイクルの長期間の繰り返しによる接触抵抗の増加、
エネルギ−効率の経時変化が見られる。
On the other hand, in Comparative Examples 1 and 2 in which the properties of the carbonaceous fiber were not suitable, both the voltage efficiency and the energy efficiency were insufficient, and in Comparative Examples 3 to 5 in which the physical properties of the nonwoven fabric were not appropriate, The contact resistance with the plate was increased, and both the voltage efficiency and the energy efficiency were further deteriorated. In addition, contact resistance increases due to long-term repetition of charge / discharge cycles,
There is a change over time in energy efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】バナジウム系レドックスフロー電池の概略図FIG. 1 is a schematic diagram of a vanadium-based redox flow battery.

【図2】三次元電極を有するバナジウム系レドックスフ
ロー電池の電解槽の分解斜図
FIG. 2 is an exploded perspective view of an electrolytic cell of a vanadium-based redox flow battery having a three-dimensional electrode.

【符号の説明】[Explanation of symbols]

1 集電板 2 スペーサ 3 イオン交換膜 4a,4b 通液路 5 電極材 6 外部液タンク(正極側) 7 外部液タンク(負極側) 8,9 ポンプ 10 液流入口 11 液流出口 DESCRIPTION OF SYMBOLS 1 Current collection plate 2 Spacer 3 Ion exchange membrane 4a, 4b Liquid passage 5 Electrode material 6 External liquid tank (positive electrode side) 7 External liquid tank (negative electrode side) 8, 9 Pump 10 Liquid inlet 11 Liquid outlet

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H018 AA08 AS07 CC06 DD06 EE05 HH02 HH03 HH05 HH09 5H026 AA10 CC01 CX03 EE05 HH02 HH03 HH05 HH09 RR01  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H018 AA08 AS07 CC06 DD06 EE05 HH02 HH03 HH05 HH09 5H026 AA10 CC01 CX03 EE05 HH02 HH03 HH05 HH09 RR01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水溶液系電解液によるレドックスフロ
ー電池に使用され、炭素質繊維の不織布よりなる炭素電
極材集合体において、 前記炭素質繊維は、レーザーラマン分光法により求めた
1360cm-1のピークの半値半幅が30〜60cm-1
で、1580cm-1のピークの半値半幅が30〜45c
-1で、1360cm-1のピーク強度Iaと1580c
-1のピーク強度Igとの比R(=Ia/Ig)が0.
7〜1.0である擬黒鉛結晶構造を有し、XPS表面分
析より求めた表面酸性官能基量が全表面炭素原子数の
0.2〜1.2%であると共に、 前記不織布は、JIS L1096(1990)に準ず
る圧縮率が10〜25%、圧縮弾性率が80%以上であ
ることを特徴とする炭素電極材集合体。
1. A carbon electrode material aggregate used for a redox flow battery using an aqueous electrolyte and comprising a nonwoven fabric of carbonaceous fibers, wherein the carbonaceous fibers have a peak at 1360 cm −1 determined by laser Raman spectroscopy. Half width at half maximum is 30 to 60 cm -1
And the half width at half maximum of the peak at 1580 cm -1 is 30 to 45 c.
At m −1 , 1360 cm −1 peak intensity Ia and 1580 c
The ratio R (= Ia / Ig) with respect to the peak intensity Ig at m −1 is 0.1.
It has a pseudo-graphite crystal structure of 7 to 1.0, the surface acidic functional group content determined by XPS surface analysis is 0.2 to 1.2% of the total surface carbon atoms, and the nonwoven fabric is JIS A carbon electrode material assembly having a compression ratio according to L1096 (1990) of 10 to 25% and a compression elastic modulus of 80% or more.
【請求項2】 バナジウム系レドックスフロー電池に用
いられる請求項1記載の炭素電極材集合体。
2. The carbon electrode material assembly according to claim 1, which is used for a vanadium redox flow battery.
JP25688999A 1999-09-10 1999-09-10 Carbon electrode material assembly Withdrawn JP2001085027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25688999A JP2001085027A (en) 1999-09-10 1999-09-10 Carbon electrode material assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25688999A JP2001085027A (en) 1999-09-10 1999-09-10 Carbon electrode material assembly

Publications (1)

Publication Number Publication Date
JP2001085027A true JP2001085027A (en) 2001-03-30

Family

ID=17298829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25688999A Withdrawn JP2001085027A (en) 1999-09-10 1999-09-10 Carbon electrode material assembly

Country Status (1)

Country Link
JP (1) JP2001085027A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015505148A (en) * 2011-12-20 2015-02-16 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Flow battery with carbon paper
US9673473B2 (en) 2012-12-14 2017-06-06 Samsung Electronics Co., Ltd. Redox flow battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015505148A (en) * 2011-12-20 2015-02-16 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Flow battery with carbon paper
US9673473B2 (en) 2012-12-14 2017-06-06 Samsung Electronics Co., Ltd. Redox flow battery

Similar Documents

Publication Publication Date Title
JP3601581B2 (en) Carbon electrode material for vanadium redox flow battery
JP6669784B2 (en) Process for the preparation of carbon felt electrodes for redox flow batteries
JPH02281564A (en) Carbon electrode material for electrolytic bath
JP2017027920A (en) Electrode material for redox battery
US20140038067A1 (en) Cathodes For Lithium-Air Battery Cells With Acid Electrolytes
JP2015138692A (en) integrated carbon electrode
JP4366802B2 (en) Carbon electrode material assembly and manufacturing method thereof
WO2018143123A1 (en) Carbonaceous material, electrode material using same, and battery
US20220153591A1 (en) Carbon electrode material for manganese/titanium-based redox flow battery
JP3555303B2 (en) Redox battery
JP2018133141A (en) Redox battery using thin diaphragm
JP2019175833A (en) Redox flow battery electrode and redox flow battery
JP2001085028A (en) Carbon electrode material assembly
JP4280883B2 (en) Electrolyzer and electrode material for redox flow battery
JP2001085027A (en) Carbon electrode material assembly
JP2001085022A (en) Carbon electrode material and carbon electrode material assembly
JP6557824B2 (en) Carbon electrode and carbon electrode manufacturing method
JP3589285B2 (en) Carbon electrode material for redox flow batteries
JP2000357522A (en) Carbon electrode material for redox flow battery
JP2001085026A (en) Carbon electrode material assembly
JP2001006690A (en) Carbon electrode material
JP2001085025A (en) Carbon electrode material assembly
JP4244476B2 (en) Redox flow battery electrode material and electrolytic cell
JP2001085021A (en) Carbon electrode material assembly
JP2001167785A (en) Electrolytic bath for redox flow cell and electrode material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070109

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080704