JP2001196071A - Carbon electrode material assembly and manufacturing method thereof - Google Patents

Carbon electrode material assembly and manufacturing method thereof

Info

Publication number
JP2001196071A
JP2001196071A JP2000003116A JP2000003116A JP2001196071A JP 2001196071 A JP2001196071 A JP 2001196071A JP 2000003116 A JP2000003116 A JP 2000003116A JP 2000003116 A JP2000003116 A JP 2000003116A JP 2001196071 A JP2001196071 A JP 2001196071A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
electrode material
fibers
fiber
carbon electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000003116A
Other languages
Japanese (ja)
Other versions
JP4366802B2 (en
Inventor
Masanobu Kobayashi
真申 小林
Makoto Inoue
誠 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2000003116A priority Critical patent/JP4366802B2/en
Publication of JP2001196071A publication Critical patent/JP2001196071A/en
Application granted granted Critical
Publication of JP4366802B2 publication Critical patent/JP4366802B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Nonwoven Fabrics (AREA)
  • Inert Electrodes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a carbon electrode material assembly capable of improving energy efficiency by reducing cell resistance of a battery and of maintaining high-energy efficiency for a long time, and a manufacturing method thereof. SOLUTION: A carbon electrode material assembly is used in a redox flow battery using aqueous solution electrolyte and consists of a non-woven cloth of carbonaceous fibers. Fibers of the non-woven cloth are bonded each other with carbides of diameters less than or equal to 20 μm and an existence ratio of bonded portion of the fibers is 0.2-10%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水溶液系電解液に
よるレドックスフロー電池に使用され、炭素質繊維の不
織布よりなる炭素電極材集合体、及びその製造方法に関
するものであり、特に、バナジウム系レドックスフロー
電池に有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon electrode material assembly made of a nonwoven fabric of carbonaceous fibers and a method for producing the same, particularly to a redox flow battery using an aqueous electrolyte solution. Useful for flow batteries.

【0002】[0002]

【従来の技術】従来より、電極は電池の性能を左右する
ものとして重点的に開発されている。電極には、それ自
体が活物質とならず、活物質の電気化学的反応を促進さ
せる反応場として働くタイプのものがあり、このタイプ
には導電性や耐薬品性などから炭素材料がよく用いられ
る。特に電力貯蔵用に開発が盛んなレドックスフロー電
池の電極には、耐薬品性があり、導電性を有し、かつ通
液性のある炭素質繊維の不織布等が用いられている。
2. Description of the Related Art Conventionally, electrodes have been developed with emphasis on the performance of batteries. Some electrodes do not become active materials themselves, but work as a reaction field to promote the electrochemical reaction of the active material.For this type, carbon materials are often used due to their conductivity and chemical resistance. Can be In particular, a nonwoven fabric of carbon fiber having chemical resistance, conductivity, and liquid permeability is used for an electrode of a redox flow battery which is actively developed for power storage.

【0003】レドックスフロー電池は、正極に鉄の塩酸
水溶液、負極にクロムの塩酸水溶液を用いたタイプか
ら、起電力の高いバナジウムの硫酸水溶液を両極に用い
るタイプに替わり、高エネルギー密度化されたが、最近
さらに活物質濃度を高める開発が進み、一段と高エネル
ギー密度化が進んでいる。
[0003] Redox flow batteries have a higher energy density from a type using an aqueous hydrochloric acid solution of iron for the positive electrode and an aqueous solution of chromium hydrochloric acid for the negative electrode, to a type using a high-electromotive force aqueous solution of vanadium sulfuric acid for both electrodes. Recently, developments for further increasing the concentration of the active material have been advanced, and the energy density has been further increased.

【0004】レドックスフロー型電池の構成は、図1に
示すように電解液を貯える外部タンク6,7と電解槽E
Cからなり、ポンプ8,9にて活物質を含む電解液を外
部タンク6,7から電解槽ECに送りながら、電解槽E
Cに組み込まれた電極上で電気化学的なエネルギー変
換、すなわち充放電が行われる。
As shown in FIG. 1, a redox flow type battery comprises external tanks 6 and 7 for storing an electrolytic solution and an electrolytic cell E.
C, the electrolytic solution containing the active material is sent from the external tanks 6 and 7 to the electrolytic bath EC by the pumps 8 and 9,
Electrochemical energy conversion, that is, charging and discharging, is performed on the electrode incorporated in C.

【0005】一般に、充放電の際には、電解液を外部タ
ンクと電解槽との間で循環させるため、電解槽は図1に
示すような液流通型構造をとる。該液流通型電解槽を単
セルと称し、これを最小単位として単独もしくは多段積
層して用いられる。液流通型電解槽における電気化学反
応は、電極表面で起こる不均一相反応であるため、一般
的には二次元的な電解反応場を伴うことになる。電解反
応場が二次元的であると、電解槽の単位体積当たりの反
応量が小さいという難点がある。
In general, during charging and discharging, an electrolytic solution is circulated between an external tank and an electrolytic bath, so that the electrolytic bath has a liquid flow type structure as shown in FIG. The liquid flow type electrolytic cell is referred to as a single cell, which is used as a minimum unit and is used alone or in a multi-layered structure. Since the electrochemical reaction in the liquid flowing type electrolytic cell is a heterogeneous phase reaction occurring on the electrode surface, it generally involves a two-dimensional electrolytic reaction field. When the electrolytic reaction field is two-dimensional, there is a disadvantage that the reaction amount per unit volume of the electrolytic cell is small.

【0006】そこで、単位面積当りの反応量、すなわち
電流密度を増すために電気化学反応場の三次元化が行わ
れるようになった。図2は、三次元電極を有する液流通
型電解槽の分解斜視図である。該電解槽では、相対する
二枚の集電板1,1間にイオン交換膜3が配設され、イ
オン交換膜3の両側にスペーサ2によって集電板1,1
の内面に沿った電解液の流路4a,4bが形成されてい
る。該流通路4a,4bの少なくとも一方には炭素質繊
維の不織布等よりなる電極材5が配設されており、この
ようにして三次元電極が構成されている。なお、集電板
1には電解液の液流入口10と液流出口11とが設けら
れている。
In order to increase the amount of reaction per unit area, that is, the current density, three-dimensional electrochemical reaction fields have been used. FIG. 2 is an exploded perspective view of a liquid flow type electrolytic cell having three-dimensional electrodes. In the electrolytic cell, an ion exchange membrane 3 is arranged between two opposing current collector plates 1 and 1, and the current collector plates 1 and 1 are disposed on both sides of the ion exchange membrane 3 by spacers 2.
Are formed along the inner surface of the cell. At least one of the flow passages 4a, 4b is provided with an electrode material 5 made of a nonwoven fabric of carbonaceous fiber or the like, thus forming a three-dimensional electrode. The current collecting plate 1 is provided with a liquid inlet 10 and a liquid outlet 11 for the electrolytic solution.

【0007】正極電解液にオキシ硫酸バナジウム、負極
電解液に硫酸バナジウムの各々硫酸酸性水溶液を用いた
レドックスフロー型電池の場合、放電時には、V2+を含
む電解液が負極側の液流路4aに供給され、正極側の流
路4bにはV5+(実際には酸素を含むイオン)を含む電
解液が供給される。負極側の流路4aでは、三次元電極
5内でV2+が電子を放出しV3+に酸化される。放出され
た電子は外部回路を通って正極側の三次元電極内でV5+
をV4+(実際には酸素を含むイオン)に還元する。この
酸化還元反応に伴って負極電解液中のSO4 2- が不足
し、正極電解液ではSO4 2- が過剰になるため、イオン
交換膜3を通ってSO4 2- が正極側から負極側に移動し
電荷バランスが保たれる。あるいは、H+ がイオン交換
膜を通って負極側から正極側へ移動することによっても
電荷バランスを保つことができる。充電時には放電と逆
の反応が進行する。
[0007] In the case of a redox flow battery using a sulfuric acid aqueous solution of vanadium oxysulfate as the positive electrode electrolyte and vanadium sulfate as the negative electrode electrolyte, during discharge, the electrolyte containing V 2+ is supplied to the liquid flow path 4a on the negative electrode side. And an electrolyte containing V 5+ (actually, ions containing oxygen) is supplied to the flow path 4b on the positive electrode side. In the flow path 4a on the negative electrode side, V 2+ emits electrons in the three-dimensional electrode 5 and is oxidized to V 3+ . The emitted electrons pass through an external circuit and enter V 5+ in the three-dimensional electrode on the positive electrode side.
To V 4+ (actually an ion containing oxygen). The redox reaction SO 4 2-of the negative electrode electrolytic solution is insufficient with the, for SO 4 2-becomes excessive in the positive electrolyte, negative electrode SO 4 2-is from the positive electrode side through the ion-exchange membrane 3 Side and the charge balance is maintained. Alternatively, the charge balance can be maintained by moving H + from the negative electrode side to the positive electrode side through the ion exchange membrane. At the time of charging, a reaction reverse to that of discharging proceeds.

【0008】バナジウム系レドックスフロー電池用電極
材の特性としては、特に以下に示す性能が要求される。 1)目的とする反応以外の副反応を起こさないこと(反応
選択性が高いこと)、具体的には電流効率(ηI )が高
いこと。 2)電極反応活性が高いこと、具体的にはセル抵抗(R)
が小さいこと。すなわち電圧効率(ηV )が高いこと。 3)上記1)、2)に関連する電池エネルギー効率(ηE )が
高いこと。 ηE =ηI ×ηV 4)くり返し使用に対する劣化が小さいこと(高寿命)、
具体的には電池エネルギー効率(ηE )の低下量が小さ
いこと。
As the characteristics of the electrode material for a vanadium-based redox flow battery, the following performance is particularly required. 1) No side reaction other than the intended reaction should occur (high reaction selectivity), specifically, high current efficiency (η I ). 2) High electrode reaction activity, specifically cell resistance (R)
Is small. That is, the voltage efficiency (η V ) is high. 3) High battery energy efficiency (η E ) related to 1) and 2) above. η E = η I × η V 4) Deterioration due to repeated use is small (long life)
Specifically, the amount of decrease in battery energy efficiency (η E ) is small.

【0009】そして、セル抵抗(R)に関しては、炭素
質繊維集合体等の電極材と集電板との接触抵抗、及び電
極材を構成する炭素質繊維間の接触抵抗が寄与する割合
が大きく、これらの接触抵抗やその経時変化が、電池エ
ネルギー効率やその経時変化に及ぼす影響は大きい。
As for the cell resistance (R), the ratio of the contact resistance between the electrode material such as the carbonaceous fiber aggregate and the current collector and the contact resistance between the carbonaceous fibers constituting the electrode material greatly increases. The effect of these contact resistances and changes over time on battery energy efficiency and changes over time is large.

【0010】一方、特開昭60−232669号公報に
は、X線広角解析より求めた<002>面間隔が、平均
3.70Å以下であり、またc軸方向の結晶子の大きさ
が平均9.0Å以上の擬黒鉛微結晶を有し、かつ全酸性
官能基量が少なくとも0.01meq/gである炭素質
材料をレドックスフロー電池の電極材として用いること
が提案されている。
On the other hand, Japanese Patent Application Laid-Open No. 60-232669 discloses that the <002> plane spacing determined by X-ray wide angle analysis is 3.70 ° or less on average, and the crystallite size in the c-axis direction is average. It has been proposed to use a carbonaceous material having pseudographite crystallites of 9.0 ° or more and having a total acidic functional group content of at least 0.01 meq / g as an electrode material of a redox flow battery.

【0011】また、特開平5−234612号公報に
は、ポリアクリロニトリル系繊維を原料とする炭素質繊
維で、X線広角解析より求めた<002>面間隔が3.
50〜3.60Åの擬黒鉛結晶構造を有し、炭素質材料
表面の結合酸素原子数が炭素原子数の10〜25%とな
るような炭素質材をレドックスフロー電池の電極材とし
て用いることが提案されている。
Japanese Unexamined Patent Publication (Kokai) No. 5-234612 discloses a carbonaceous fiber made of polyacrylonitrile-based fiber having a <002> plane spacing of 3.0 obtained by X-ray wide-angle analysis.
A carbonaceous material having a pseudo-graphite crystal structure of 50 to 3.60 ° and having a number of bonded oxygen atoms of 10 to 25% of the number of carbon atoms on the surface of the carbonaceous material may be used as an electrode material of a redox flow battery. Proposed.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、特開昭
60−232669号公報、特開平5−234612号
公報に開示されている炭素電極材集合体では、いずれも
互いに接触する単繊維同士がバインダー等で結着されて
おらず、単に接触しているだけであるため、単繊維間の
接触抵抗が十分小さくならず、また、その接触状態や集
電板に対する圧接状態を長期間維持するのが困難になる
ことが判明した。このため、初期のセル抵抗が高くなっ
てエネルギー効率が不十分となり、しかも長期使用時に
エネルギー効率が低下し易いという問題があった。
However, in the carbon electrode material aggregates disclosed in JP-A-60-232669 and JP-A-5-234612, the single fibers that are in contact with each other are bonded with a binder or the like. The contact resistance between the single fibers is not sufficiently reduced because the fibers are not bound together and are merely in contact with each other, and it is difficult to maintain the contact state and the pressure contact state with the current collector plate for a long time. It turned out to be. For this reason, there has been a problem that the initial cell resistance becomes high and the energy efficiency becomes insufficient, and the energy efficiency is apt to be reduced during long-term use.

【0013】一方、特開平9−245805号公報に
は、炭素繊維と樹脂バインダーからなる多孔質シートを
炭化したものを電極材として使用する技術が開示されて
おり、また、特開平11−273691号公報には、粉
末の樹脂バインダーを炭素繊維不織布に散布した後、熱
プレスしてから炭化した電極材が開示されている。
On the other hand, Japanese Patent Application Laid-Open No. 9-245805 discloses a technique of using a carbonized porous sheet made of carbon fibers and a resin binder as an electrode material. The gazette discloses an electrode material obtained by spraying a resin binder of a powder on a carbon fiber nonwoven fabric and then hot-pressing the carbonized nonwoven fabric.

【0014】しかし、何れの技術も不織布に溝を形成す
る等の形状保持のために樹脂バインダーを使用している
ため、樹脂バインダーの添着量が多過ぎたり、粒径が大
き過ぎるので、単繊維間の結着部の電気抵抗を十分小さ
くできず、また繊維表面での有効反応場が減少するなど
の問題が生じ易いことが判明した。このため、初期のセ
ル抵抗が高くなってエネルギー効率が不十分となり易か
った。
However, all of the techniques use a resin binder to maintain the shape such as forming a groove in the nonwoven fabric, so that the amount of the resin binder attached is too large or the particle size is too large. It has been found that the electrical resistance of the binding portion between them cannot be sufficiently reduced, and that problems such as a decrease in the effective reaction field on the fiber surface are likely to occur. For this reason, the initial cell resistance was increased and energy efficiency was likely to be insufficient.

【0015】そこで、本発明の目的は、かかる事情に鑑
み、電池のセル抵抗を低減してエネルギー効率を高める
ことができ、かつ長期間にわたってエネルギー効率を高
く維持することができる炭素電極材集合体、及びその製
造方法を提供することにある。
In view of the foregoing, an object of the present invention is to provide a carbon electrode material assembly capable of reducing the cell resistance of a battery to increase energy efficiency and maintaining high energy efficiency for a long period of time. , And a method of manufacturing the same.

【0016】[0016]

【課題を解決するための手段】本発明者らは、上記目的
を達成すべく、樹脂バインダーを使用した炭素電極材集
合体の製法について鋭意研究したところ、通常より粒径
の小さい樹脂バインダーを造粒体にして原料不織布内に
好適に添着した後、加熱加圧することにより、単繊維間
を適当な大きさ及び量の炭化物で結着することができ、
これにより結着部の電気抵抗を低減して上記目的を達成
できることを見出し、本発明を完成するに至った。
Means for Solving the Problems In order to achieve the above object, the present inventors have conducted intensive research on a method for producing a carbon electrode material assembly using a resin binder, and have found that a resin binder having a smaller particle size than usual is produced. After being suitably attached to the raw material nonwoven fabric in the form of granules, by heating and pressurizing, it is possible to bind the single fibers with carbide of an appropriate size and amount,
As a result, the inventors have found that the above object can be achieved by reducing the electric resistance of the binding portion, and have completed the present invention.

【0017】即ち、本発明の炭素電極材集合体は、水溶
液系電解液によるレドックスフロー電池に使用され、炭
素質繊維の不織布よりなる炭素電極材集合体において、
前記不織布の単繊維間が長径20μm以下の炭化物で結
着されていると共に、その単繊維間の結着部の存在割合
が0.2〜10%であることを特徴とする。なお、炭化
物とそれ以外のものとの区別はX線マイクロアナライザ
ーで元素分析することで調べることができる。
That is, the carbon electrode material assembly of the present invention is used in a redox flow battery using an aqueous electrolyte solution, and is used in a carbon electrode material assembly comprising a nonwoven fabric of carbonaceous fibers.
The non-woven fabric is characterized in that the single fibers are bound by a carbide having a major axis of 20 μm or less, and the binding ratio between the single fibers is 0.2 to 10%. The distinction between carbides and other substances can be determined by elemental analysis using an X-ray microanalyzer.

【0018】本発明の炭素電極材集合体によると、不織
布の単繊維間が長径20μm以下の小さな炭化物で結着
されているため、その導電性により単繊維間の結着部の
電気抵抗が低くなり、電池のセル抵抗を低減してエネル
ギー効率を高めることができる。また、炭化物で結着さ
れているため、繊維間の結着部の抵抗値が長期間維持さ
れ、更に不織布の圧縮弾性率も低下しにくいため、集電
板との接触抵抗も長期間維持される。更に、単繊維間の
結着部の存在割合が0.2〜10%であるため、適度な
結着力が得られると共に、炭化物の過剰による有効反応
場の減少などが生じ難くくなる。その結果、レドックス
フロー電池のセル抵抗を低減してエネルギー効率を高め
ることができ、かつ長期間にわたってエネルギー効率を
維持することができる。
According to the carbon electrode material aggregate of the present invention, since the single fibers of the nonwoven fabric are bonded by a small carbide having a major axis of 20 μm or less, the electrical resistance of the bonded portion between the single fibers is low due to the conductivity. Thus, the cell resistance of the battery can be reduced and the energy efficiency can be increased. In addition, since the binder is bonded by the carbide, the resistance value of the binding portion between the fibers is maintained for a long time, and since the compression elastic modulus of the nonwoven fabric is hardly reduced, the contact resistance with the current collector is also maintained for a long time. You. Furthermore, since the existing ratio of the binding portion between the single fibers is 0.2 to 10%, an appropriate binding force can be obtained, and the reduction of the effective reaction field due to the excessive amount of the carbide is less likely to occur. As a result, the cell resistance of the redox flow battery can be reduced to increase the energy efficiency, and the energy efficiency can be maintained for a long time.

【0019】上記において、前記不織布が90%以上の
空隙を有することが好ましい。当該空隙率を有する場
合、結着部の存在割合や炭化物の量も適当になり易く、
上記の作用効果をより確実に得ることができる。
In the above, it is preferable that the nonwoven fabric has a void of 90% or more. When having the porosity, the abundance ratio of the binding portion and the amount of carbide tend to be appropriate,
The above operation and effect can be obtained more reliably.

【0020】一方、本発明の製造方法は、一次平均粒径
が20μm以下の有機バインダーを凝集させた造粒体
を、炭素質繊維の原料不織布に分散添着させてから加熱
加圧して単繊維同士を結着させた後、前記単繊維及び前
記有機バインダーの炭化を行う工程を有する炭素電極材
集合体の製造方法である。
On the other hand, according to the production method of the present invention, the granules obtained by aggregating an organic binder having a primary average particle diameter of 20 μm or less are dispersed and attached to a raw nonwoven fabric of carbonaceous fibers, and then heated and pressed to form single fibers. And a step of carbonizing the single fiber and the organic binder after binding.

【0021】本発明の製造方法によると、小粒径の有機
バインダーを凝集させた造粒体を用いるため、造粒体を
原料不織布の内部に好適に分散保持させることができ、
また凝集させた造粒体であるため、加熱加圧時に細粒状
化し易く、小粒径の状態で単繊維同士を結着させること
ができる。このため、炭化後の炭素電極材集合体は、小
さな炭化物で結着されたものとなるので、上記のような
作用により、レドックスフロー電池のセル抵抗を低減し
てエネルギー効率を高めることができ、かつ長期間にわ
たってエネルギー効率を維持することができる。
According to the production method of the present invention, since the granules obtained by aggregating the organic binder having a small particle diameter are used, the granules can be suitably dispersed and held inside the raw nonwoven fabric.
In addition, since the granules are agglomerated, they can be easily granulated at the time of heating and pressing, and the single fibers can be bound together in a small particle size state. For this reason, since the carbon electrode material aggregate after carbonization is bound by small carbides, the above-described action can reduce the cell resistance of the redox flow battery and increase energy efficiency, And energy efficiency can be maintained over a long period of time.

【0022】なお、単繊維の固定方法としては、C−C
コンポジットのような繊維表面全面への炭化物融着があ
るが、全面への炭化物融着であると反応場である繊維表
面が著しく減少してしまうため、本発明のように不織布
構造として元々接触していた部分のみを固定化すること
が有効である。また炭化物の比抵抗が高かったり、金属
化合物であると、接触抵抗は低くならないか、異種金属
による副反応が生じてしまう。
The method for fixing a single fiber is CC
There is carbide fusion on the entire fiber surface such as a composite, but if carbide fusion is on the entire surface, the fiber surface which is a reaction field will be significantly reduced, and as a result, the fiber will not be in contact as a nonwoven fabric as in the present invention. It is effective to immobilize only the part that has been used. When the specific resistance of the carbide is high or the compound is a metal compound, the contact resistance does not decrease or a side reaction due to a different metal occurs.

【0023】また、本発明の炭素電極材集合体は、バナ
ジウム系レドックスフロー電池に用いられることが好ま
しい。バナジウム系のレドックスフロー電池では、鉄−
クロム系電解液に比べ活物質と電極材表面の反応速度が
速く、電極材の接触抵抗は電極材との反応にともなう抵
抗(反応抵抗)に比べて相対的に高くなる傾向にある。
したがって電極材を構成する繊維間の接触抵抗が特に問
題となりやすいので、上記作用効果を有する本発明の炭
素電極材が特に有用なものとなる。
Further, the carbon electrode material assembly of the present invention is preferably used for a vanadium redox flow battery. In vanadium redox flow batteries, iron-
The reaction rate between the active material and the electrode material surface is higher than that of the chromium-based electrolyte, and the contact resistance of the electrode material tends to be relatively higher than the resistance (reaction resistance) associated with the reaction with the electrode material.
Therefore, the contact resistance between the fibers constituting the electrode material tends to be particularly problematic, and the carbon electrode material of the present invention having the above-mentioned effects is particularly useful.

【0024】[0024]

【発明の実施の形態】本発明の炭素電極材集合体は炭素
質繊維からなり、取扱いや加工性、製造性等の点から炭
素質繊維の不織布が使用される。当該不織布は、焼成
(炭化)前の不融化あるいは耐炎化された短繊維を開繊
し、カードにかけ、幾層かに重ねられたレイヤーからな
るウェブをまず作製し、さらにニードルパンチ加工機に
かけることで、好適に作製される。
BEST MODE FOR CARRYING OUT THE INVENTION The carbon electrode material aggregate of the present invention is made of carbonaceous fiber, and a nonwoven fabric of carbonaceous fiber is used from the viewpoint of handling, workability, manufacturability and the like. The non-woven fabric is obtained by opening infusible or flame-resistant short fibers before firing (carbonization), applying them to a card, first producing a web composed of several layers, and then applying the web to a needle punching machine. Thereby, it is suitably manufactured.

【0025】不織布の目付量は、隔膜と集電板に挟まれ
た充填状態の厚みを2〜3mmで使用する場合、100
〜1000g/m2 が好ましく、特に200〜600g
/m 2 が望ましい。また片面に凹溝加工が施された不織
布等が通液性から好んで用いられる。その場合の溝幅、
溝深さは少なくとも0.3mm、特に0.5mm以上が
望ましい。該炭素質繊維不織布の厚みは、上記充填状態
の厚みより少なくとも大きいこと、好ましくは充填状態
の厚みの1.5倍程度である。しかしながら、厚みが厚
すぎると圧縮応力で膜を突き破ってしまうので、圧縮応
力を9.8N/cm2 以下に設計するのが好ましい。
The basis weight of the non-woven fabric is determined by the distance between the diaphragm and the current collector.
When the thickness of the filled state is 2-3 mm, 100
~ 1000g / mTwo Is preferred, especially 200 to 600 g
/ M Two Is desirable. Non-woven fabric with a groove on one side
Cloth or the like is preferably used because of liquid permeability. Groove width in that case,
The groove depth should be at least 0.3mm, especially 0.5mm or more
desirable. The thickness of the carbonaceous fiber non-woven fabric is in the above-mentioned filled state.
At least larger than the thickness of
Is about 1.5 times the thickness of However, the thickness is thick
If too much, the membrane will break through with compressive stress.
Force 9.8 N / cmTwo It is preferable to design as follows.

【0026】なお、上記の炭素質繊維の平均繊維径は5
〜20μm程度が好ましく、平均長さは30〜100m
m程度が好ましい。
The average fiber diameter of the carbonaceous fibers is 5
About 20 μm is preferable, and the average length is 30 to 100 m.
m is preferable.

【0027】炭素質繊維不織布は、電池の中に圧接され
て組み込まれ、その薄い隙間を粘度の高い電解液が流れ
るため、脱落を防止して形態保持するためには引張強度
を0.98N/cm2 以上にすることが望ましい。また
集電板との接触抵抗を良くするために、隔膜、集電板に
挟まれた充填層の密度を0.05g/cm3 以上に、電
極面に対する反発力を0.98N/cm2 以上にするこ
とが好ましい。
[0027] The carbonaceous fiber non-woven fabric is assembled by being pressed into the battery, and a high-viscosity electrolytic solution flows through the thin gap. Therefore, in order to prevent falling off and to maintain the form, the tensile strength is 0.98 N / N. cm 2 or more. In order to improve the contact resistance with the current collector, the density of the diaphragm and the filling layer sandwiched between the current collectors is set to 0.05 g / cm 3 or more, and the repulsive force to the electrode surface is set to 0.98 N / cm 2 or more. Is preferable.

【0028】さらに本発明の炭素質繊維は、不織布の単
繊維間が炭化物で結着されており、単繊維間を結着する
炭化物の長径が20μm以下で、結着部の存在割合が
0.2〜10%である。単繊維間を結着する炭化物の長
径が20μmより大きく、結着部の存在割合が10%よ
り大きいと、結着している炭化物が単繊維の直径(5〜
20μm程度)より大きくなり、単繊維表面を炭化物が
覆うことで有効反応場が著しく減少しセル抵抗が増加す
る。また炭化物が覆わない場合でも、炭化物が障害とな
り、電解液の反応すべきイオンの単繊維表面への拡散が
律速になり、拡散抵抗が増加し、いずれにしてもセル抵
抗が増加する。一方、結着部の存在割合が0.2%未満
であると、繊維間の接着力が弱く、電池の中に圧接され
て組み込まれる際に炭化物がはずれ、繊維間接着の効果
を失う。また長期間使用によっても繊維間の接触抵抗は
増加していく。かかる観点より、好ましくは単繊維間を
結着する炭化物の長径が15μm以下で、結着部の存在
割合が0.5〜5%のもの、より好ましくは単繊維間を
結着する炭化物の長径が10μm以下で、炭化物で結着
されている単繊維の存在割合が0.5〜3%のものであ
る。
Further, in the carbonaceous fiber of the present invention, the single fibers of the non-woven fabric are bound with carbide, and the long diameter of the carbide binding between the single fibers is 20 μm or less, and the ratio of the bound portion is 0.1%. 2 to 10%. If the long diameter of the carbide binding between the single fibers is larger than 20 μm and the proportion of the binding portion is more than 10%, the bound carbide will have a diameter of the single fiber (5 to 5%).
(Approximately 20 μm), and the carbide covers the surface of the single fiber, thereby significantly reducing the effective reaction field and increasing the cell resistance. Even when the carbide is not covered, the carbide acts as an obstacle, and the diffusion of ions to be reacted in the electrolytic solution to the surface of the single fiber is rate-limiting, and the diffusion resistance increases. In any case, the cell resistance increases. On the other hand, if the binding portion is less than 0.2%, the adhesive force between the fibers is weak, and the carbides come off when the battery is pressed into the battery and incorporated, thereby losing the effect of bonding between the fibers. In addition, the contact resistance between fibers increases even after long-term use. From this viewpoint, preferably, the major axis of the carbide that binds between the single fibers is 15 μm or less, and the proportion of the binding part is 0.5 to 5%, more preferably the major axis of the carbide that binds between the single fibers. Is 10 μm or less, and the abundance of single fibers bound by carbide is 0.5 to 3%.

【0029】また、炭素質繊維の不織布は90%以上の
空隙を有することが好ましい。空隙率が90%未満であ
ると、炭化物の長径が大きくなったり、結着部の存在割
合が大きくなったりし易く、両者の効果によりセル抵抗
の増加が生じ易い傾向がある。
Further, the carbonaceous fiber nonwoven fabric preferably has a void of 90% or more. When the porosity is less than 90%, the major axis of the carbide tends to increase, and the proportion of the binding portion tends to increase, and the effect of both tends to increase the cell resistance.

【0030】上記のような単繊維間が炭化物で結着され
た炭素質繊維不織布は、不織布構造として元々接触して
いた部分のみを固定化するために、後述の如き製法を採
用するため、不織布構造が特定の空隙と圧縮特性を持つ
ことが好ましい。特定の空隙と圧縮特性は、例えば前段
階のニードルパンチの条件を制御することによって得ら
れる。すなわち、ニードルパンチの密度を150〜30
0本/cm2 、好ましくは、200〜300本/cm2
にし、ニードルパンチの針を不融化繊維あるいは耐炎化
繊維が交互に絡みやすく、繊維間の接触、特に交差する
繊維間の接触が多くなるもの、例えばSB#40(Fo
ster Needle社)にすることが好ましい。
The carbonaceous fiber non-woven fabric in which the single fibers are bonded with a carbide as described above employs a manufacturing method as described later in order to fix only a portion which originally came into contact as a non-woven fabric structure. Preferably, the structure has specific voids and compression properties. Specific voids and compression characteristics can be obtained, for example, by controlling the conditions of the previous stage needle punch. That is, the density of the needle punch is set to 150 to 30.
0 / cm 2 , preferably 200 to 300 / cm 2
An infusible fiber or an oxidized fiber is likely to be entangled alternately with the needle of the needle punch, and the contact between the fibers, particularly the contact between the intersecting fibers increases, for example, SB # 40 (Fo)
(ster Needle).

【0031】さらに、上記不融化繊維あるいは耐炎化繊
維の不織布に特定のバインダーを添着し、熱プレスした
後に焼成し、乾式酸化処理することによって、単繊維間
が炭化物で結着された炭素質繊維不織布が得られる。好
ましくは、本発明の製造方法、即ち、一次平均粒径が2
0μm以下の有機バインダーを凝集させた造粒体を、炭
素質繊維の原料不織布に分散添着させてから加熱加圧し
て単繊維同士を結着させた後、前記単繊維及び前記有機
バインダーの炭化を行う工程を有する炭素電極材集合体
の製造方法により、得ることが出来る。
Further, a specific binder is attached to the non-fusible fiber or non-flammable fiber non-woven fabric, hot-pressed, baked, and dry-oxidized to thereby provide carbonaceous fibers having single fibers bound by carbide. A non-woven fabric is obtained. Preferably, the production method of the present invention, that is, when the primary average particle size is 2
After agglomeration of the organic binder of 0 μm or less is dispersed and attached to the raw nonwoven fabric of carbonaceous fibers, heating and pressing are performed to bind the single fibers together, and then the single fibers and the organic binder are carbonized. It can be obtained by a method for producing a carbon electrode material aggregate having a step of performing.

【0032】有機バインダーの造粒体としては、凝集し
にくい粒状あるいは球状のものを、ポリアクリルアミ
ド、ポリオキシエチレン、カセイ化デンプン等の非イオ
ン性有機系凝集剤によって凝集させたものが好ましい。
有機バインダーとしては、非イオン性で加熱時に接着性
を示し、高温での焼成(炭化)時に結着力を維持しつつ
炭化するものであれば何れでもよく、例えばフェノール
樹脂系バインダー、メラミン樹脂系バインダーのような
熱硬化性樹脂系バインダー等が好適に使用できる。中で
も、炭化した後の接着性と導電性が良いフェノール樹脂
系バインダーがより好ましく、特に吸湿性が低く、凝集
しにくいもの、例えばベルパールS890(鐘紡(株)
製)が好ましい。
As the granules of the organic binder, those obtained by coagulating granular or spherical particles which are hard to coagulate with a nonionic organic coagulant such as polyacrylamide, polyoxyethylene, and caustic starch are preferable.
As the organic binder, any organic binder may be used as long as it is nonionic, exhibits adhesiveness when heated, and carbonizes while maintaining the binding force during firing (carbonization) at a high temperature. For example, a phenolic resin binder, a melamine resin binder A thermosetting resin-based binder or the like can be suitably used. Among them, phenolic resin binders having good adhesion and conductivity after carbonization are more preferable, and those having low hygroscopicity and hardly coagulating, for example, Bellpearl S890 (Kanebo Co., Ltd.)
Is preferred.

【0033】造粒体は、このような有機バインダーの好
ましくは粒径が5〜20μmになるようにふるい分けし
たものを、不織布内部から脱落してしまわない大きさに
しておくために、凝集剤等を用いて凝集させ、乾燥した
後、好ましくは粒径50〜100μmに造粒することで
製造できる。
The agglomerated material is prepared by sieving such an organic binder so as to have a particle size of preferably 5 to 20 μm, so as to have a size such that the organic binder does not fall off from the inside of the nonwoven fabric. And then dried, and then preferably granulated to a particle size of 50 to 100 μm.

【0034】この造粒体を用いて、不織布内部に均一に
分散するように吹きつけと吸引を繰り返す。凝集させた
バインダーを添着した不織布を、好ましくは150〜3
00℃で単繊維が切れない程度に熱プレスした後、凝集
剤及び不要なバインダーを吸引除去するのが好ましい。
加圧条件としては、不織布の厚みが加圧状態で1/10
〜2/3となる圧力が好ましい。このような加圧時の不
織布の変形により、造粒体が細粒子化して、小粒径の有
機バインダーにて単繊維間を結着させることができる。
Using the granules, spraying and suction are repeated so as to be uniformly dispersed in the nonwoven fabric. The nonwoven fabric to which the agglomerated binder is attached is preferably 150 to 3
After hot pressing at 00 ° C. to such an extent that the single fibers are not broken, it is preferable to remove the flocculant and unnecessary binder by suction.
As the pressing conditions, the thickness of the nonwoven fabric is 1/10
A pressure of up to 2 is preferred. Due to such deformation of the nonwoven fabric at the time of pressurization, the granulated material becomes fine particles, and the single fibers can be bound with the organic binder having a small particle size.

【0035】レドックスフロー電池に好適な内部構造及
び表面特性を有する炭素質繊維は、緊張下200〜30
0℃の初期空気酸化を経たポリアクリロニトリル、等方
性ピッチ、メソフェーズピッチ、セルロースなど、ある
いはフェノール、ポリパラフェニレンベンゾビスオキサ
ゾール(PBO)などを原料にして、不活性雰囲気下1
000〜1800℃で焼成(炭化)した擬黒鉛結晶構造
を有する炭素材料を、乾式酸化処理することによって得
られる。
The carbonaceous fiber having an internal structure and surface characteristics suitable for a redox flow battery is 200 to 30 under tension.
Using polyacrylonitrile, isotropic pitch, mesophase pitch, cellulose, etc., which have undergone initial air oxidation at 0 ° C., or phenol, polyparaphenylenebenzobisoxazole (PBO), etc., under an inert atmosphere
It is obtained by subjecting a carbon material having a pseudo-graphite crystal structure calcined (carbonized) at 000 to 1800 ° C. to a dry oxidation treatment.

【0036】上記において、炭化温度は原料により結晶
性が異なるので温度には限定されず、原料に応じて最適
化するのが好ましい。乾式酸化については公知の方法で
よいが、材料の機械的強度を考慮すると酸化後の重量収
率にして90〜96%に調整することが望ましい。しか
し処理法はこれに限定されるものではなく、例えばこの
乾式酸化処理の代わりに電解酸化をおこなっても同様な
効果が得られる。
In the above description, the carbonization temperature is not limited to the temperature because the crystallinity differs depending on the raw material, and it is preferable to optimize the temperature according to the raw material. The dry oxidation may be performed by a known method, but it is preferable to adjust the weight yield after oxidation to 90 to 96% in consideration of the mechanical strength of the material. However, the treatment method is not limited to this. For example, similar effects can be obtained by performing electrolytic oxidation instead of the dry oxidation treatment.

【0037】次に、本発明において採用される単繊維間
を結着している炭化物の長径、炭化物による結着部の存
在割合、不織布の空隙率、電流効率、電圧効率(セル抵
抗R)、エネルギー効率および充放電サイクル経時変化
の各測定法について説明する。
Next, the major diameter of the carbide binding between the single fibers employed in the present invention, the proportion of the binding portion of the carbide, the porosity of the nonwoven fabric, the current efficiency, the voltage efficiency (cell resistance R), Each method of measuring the energy efficiency and the change over time in the charge / discharge cycle will be described.

【0038】1.単繊維間を結着している炭化物の長径 不織布の走査型電子顕微鏡写真を倍率150倍で写し、
その写真より任意に抽出した10個以上の単繊維間を結
着している炭化物の長径を測定し、算術平均により決定
した。なお、繊維表面に付着して繊維と判別できない炭
化物は除外して測定した。
1. The scanning electron microscope photograph of the long diameter non-woven fabric of the carbide binding between the single fibers was taken at a magnification of 150 times,
The major axis of the carbide binding between 10 or more single fibers arbitrarily extracted from the photograph was measured and determined by arithmetic mean. It should be noted that the measurement was performed by excluding carbides that adhered to the fiber surface and could not be distinguished from fibers.

【0039】2.結着部の存在割合 上記1と同様に、不織布の走査型電子顕微鏡写真を倍率
150倍で写し、その写真を均等に100分割し、その
1区分に炭化物による結着部が存在するか否かを測定
し、その割合により決定した。なお、繊維表面に付着し
て繊維と判別できない炭化物は存在しないものとして測
定した。
2. Existence ratio of binding part Similar to 1 above, a scanning electron micrograph of the nonwoven fabric was taken at a magnification of 150 times, and the photograph was divided into 100 parts evenly. Was measured and determined by the ratio. In addition, it measured as what does not exist the carbide which adheres to the fiber surface and cannot be distinguished from a fiber.

【0040】3.不織布の空隙率 不織布の空隙率(%)=100−(炭素質繊維不織布の
目付(g/m2 )×厚み(mm)/1000/比重(g
/cm3 )×100) ここで、厚みは荷重0.086N/cm2 における値で
あり、比重はJISR7601−1986の6.3.2
液置換法による測定方法で決定した。
3. Porosity of nonwoven fabric Porosity of nonwoven fabric (%) = 100− (weight per unit area of carbonaceous fiber nonwoven fabric (g / m 2 ) × thickness (mm) / 1000 / specific gravity (g)
/ Cm 3 ) × 100) Here, the thickness is a value at a load of 0.086 N / cm 2 , and the specific gravity is 6.3.2 of JISR7601-1986.
It was determined by a measurement method using a liquid displacement method.

【0041】4.電極特性 上下方向(通液方向)に10cm、幅方向に1cmの電
極面積10cm2 を有する小型のセルを作り、定電流密
度で充放電を繰り返し、電極性能のテストを行う。正極
電解液には2mol/lのオキシ硫酸バナジウムの3m
ol/l硫酸水溶液を用い、負極電解液には2mol/
lの硫酸バナジウムの3mol/l硫酸水溶液を用い
た。電解液量はセル、配管に対して大過剰とした。液流
量は毎分6.2mlとし、30℃で測定を行った。
4. Electrode Characteristics A small cell having an electrode area of 10 cm 2 of 10 cm in the vertical direction (liquid flowing direction) and 1 cm in the width direction is made, and charge and discharge are repeated at a constant current density to test the electrode performance. 3 m of 2 mol / l vanadium oxysulfate was used for the positive electrode electrolyte.
ol / l sulfuric acid aqueous solution, and 2 mol / l
1 vanadium sulfate aqueous solution of 3 mol / l sulfuric acid was used. The amount of the electrolytic solution was set to a large excess with respect to the cells and piping. The liquid flow rate was 6.2 ml per minute, and the measurement was performed at 30 ° C.

【0042】(a)電流効率:ηI 充電に始まり、放電で終わる1サイクルのテストにおい
て、電流密度を電極幾何面積当たり40mA/cm2
(400mA)として、1.7Vまでの充電に要した電
気量をQ1 クーロン、1.0Vまでの定電流放電、およ
びこれに続く1.2Vでの定電圧放電で取りだした電気
量をそれぞれQ2 、Q3 クーロンとし、数式1で電流効
率ηI を求める。
(A) Current efficiency: η I In a one-cycle test starting from charging and ending with discharging, the current density was set to 40 mA / cm 2 per electrode geometrical area.
(400 mA), the quantity of electricity required for charging up to 1.7 V is Q 1 coulomb, the quantity of electricity taken out by constant current discharge up to 1.0 V, and the subsequent quantity of electricity taken out by constant voltage discharge at 1.2 V are Q 2 , Q 3 coulomb, and the current efficiency η I is obtained by equation (1).

【0043】[0043]

【数1】 (b)セル抵抗:R 負極液中のV3+をV2+に完全に還元するのに必要な理論
電気量Qthに対して、放電により取りだした電気量の比
を充電率とし、数式2で充電率を求める。
(Equation 1) (B) Cell resistance: R The ratio of the amount of electricity taken out by discharging to the theoretical amount of electricity Q th required to completely reduce V 3+ in the negative electrode solution to V 2+ is defined as a charging rate. The charging rate is determined in step 2.

【0044】[0044]

【数2】 充電率が50%のときの電気量に対応する充電電圧V
C50 、放電電圧VD50 を電気量−電圧曲線からそれぞれ
求め、数式3より電極幾何面積に対するセル抵抗R(Ω
・cm2 )を求める。
(Equation 2) Charging voltage V corresponding to the amount of electricity when the charging rate is 50%
C50 and discharge voltage VD50 were obtained from the electric quantity-voltage curve, respectively, and the cell resistance R (Ω
· Find cm 2 ).

【0045】[0045]

【数3】 (c)電圧効率:ηV 上記の方法で求めたセル抵抗Rを用いて数式4の簡便法
により電圧効率ηV を求める。
(Equation 3) (C) Voltage efficiency: η V Using the cell resistance R obtained by the above method, the voltage efficiency η V is obtained by a simple method of Expression 4.

【0046】[0046]

【数4】 ここで、Eは充電率50%のときのセル開回路電圧1.
432V(実測値)、Iは定電流充放電における電流値
0.4Aである。
(Equation 4) Here, E is the cell open circuit voltage when the charging rate is 50%.
432 V (actual measurement value), and I is a current value of 0.4 A in constant current charging and discharging.

【0047】(d)エネルギー効率:ηE 前述の電流効率ηI と電圧効率ηV を用いて、数式5に
よりエネルギー効率η E を求める。
(D) Energy efficiency: ηE Current efficiency η described aboveI And voltage efficiency ηV And using equation 5
More energy efficiency η E Ask for.

【0048】[0048]

【数5】 (e)充放電サイクルの経時変化 (a)、(b)、(c)、(d)の測定後、続いて同セ
ルを用い、40mA/cm2 の定電流密度でセル電圧
1.0〜1.7V間で充放電を繰り返し実施する。規定
サイクル経過後、再び(a)、(b)、(c)、(d)
の測定を行い、η E 及びその初期からの変化量ΔηE
求める。
(Equation 5)(E) Temporal change of charge / discharge cycle After measurement of (a), (b), (c), and (d),
40 mA / cmTwo Cell voltage at constant current density of
Charge and discharge are repeatedly performed between 1.0 and 1.7V. Regulation
(A), (b), (c), (d)
Is measured, and η E And the change Δη from the beginningE To
Ask.

【0049】レドックスフロー電池等の電解槽用電極の
特性は、主に上記のような電流効率ηI 、電圧効率ηV
(セル抵抗R)およびエネルギー効率ηE (ηI とηV
との積)とこれらの効率の充放電サイクル安定性(寿
命)で表される。
The characteristics of an electrode for an electrolytic cell such as a redox flow battery mainly include the current efficiency η I and the voltage efficiency η V as described above.
(Cell resistance R) and energy efficiency η EI and η V
) And the charge / discharge cycle stability (lifetime) of these efficiencies.

【0050】本発明の炭素電極材集合体は、水溶液系電
解液を使用するレドックスフロー電池に用いられるもの
である。当該レドックスフロー電池は、前述のように、
例えば間隙を介した状態で対向して配設された一対の集
電板間に隔膜が配設され、該集電板と隔膜との間に少な
くとも一方に電極材が圧接挟持され、電極材は活物質を
含んだ水溶液からなる電解液を含んだ構造を有する電解
槽を備える。
The carbon electrode material assembly of the present invention is used for a redox flow battery using an aqueous electrolyte. The redox flow battery, as described above,
For example, a diaphragm is disposed between a pair of current collectors disposed to face each other with a gap therebetween, and an electrode material is pressed and sandwiched between at least one of the current collector and the diaphragm. An electrolytic cell having a structure containing an electrolytic solution composed of an aqueous solution containing an active material is provided.

【0051】水溶液系電解液としては、前述の如きバナ
ジウム系電解液の他、鉄−クロム系、チタン−マンガン
−クロム系、クロム−クロム系、鉄−チタン系などが挙
げられるが、バナジウム系電解液が好ましい。本発明の
炭素電極材集合体は、特に、粘度が25℃にて0.00
5Pa・s以上であるバナジウム系電解液、あるいは
1.5mol/l以上のバナジウムイオンを含むバナジ
ウム系電解液を使用するレドックスフロー電池に用いる
のが有用である。
Examples of the aqueous electrolyte include iron-chromium, titanium-manganese-chromium, chromium-chromium, iron-titanium and the like, in addition to the vanadium-based electrolyte described above. Liquids are preferred. In particular, the carbon electrode material aggregate of the present invention has a viscosity of 0.005% at 25 ° C.
It is useful to use a redox flow battery using a vanadium-based electrolyte solution of 5 Pa · s or more or a vanadium-based electrolyte solution containing 1.5 mol / l or more of vanadium ions.

【0052】[0052]

【実施例】以下、本発明の構成と効果を具体的に示す実
施例等について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments and the like specifically showing the configuration and effects of the present invention will be described below.

【0053】(実施例1)平均繊維径16μmのポリア
クリロニトリル繊維を空気中200〜300℃で耐炎化
した後、該耐炎化繊維の短繊維(長さ約80mm)を用
いてフェルト針SB#40(Foster Needl
e社)、パンチング密度250本/cm2でフェルト化
して目付量600g/m2 、厚み5.0mmの不織布を
作製した。該不織布に、粒径5〜20μmになるように
メッシュ皿で篩い分けしたフェノール樹脂S890(鐘
紡株)を1%ポリアクリルアミド水溶液で凝集させ、1
00℃で乾燥し、粒径50〜100μmに造粒したバイ
ンダーを10g/m2 均一に分散添着するように吹きつ
けと吸引を繰り返した。該不織布を平板プレス機で温度
220℃、ギャップ1mm、時間1分、圧力588N/
cm2 の条件で熱プレスし、次に窒素ガス中で10℃/
分の昇温速度で1300℃まで昇温し、この温度で1時
間保持し炭化を行って冷却し、さらに空気中700℃で
重量収率95%になるまで処理し、炭素質繊維不織布を
得た。
(Example 1) A polyacrylonitrile fiber having an average fiber diameter of 16 µm was oxidized in air at 200 to 300 ° C, and a felt needle SB # 40 was used using short fibers (about 80 mm in length) of the oxidized fiber. (Foster Needl
e) to give a felt at a punching density of 250 pieces / cm 2 to produce a nonwoven fabric having a basis weight of 600 g / m 2 and a thickness of 5.0 mm. A phenol resin S890 (Kanebo Co., Ltd.) sieved with a mesh dish so as to have a particle size of 5 to 20 μm is agglomerated with a 1% polyacrylamide aqueous solution on the nonwoven fabric.
Spraying and suctioning were repeated so that the binder dried at 00 ° C. and granulated to a particle size of 50 to 100 μm was uniformly dispersed and attached at 10 g / m 2 . The nonwoven fabric was pressed with a flat plate press at a temperature of 220 ° C., a gap of 1 mm, a time of 1 minute, and a pressure of 588 N /
hot press under the condition of cm 2 and then 10 ° C. /
The temperature is raised to 1300 ° C. at a heating rate of 1 minute, the temperature is maintained for 1 hour, carbonized, cooled, and treated in air at 700 ° C. until the weight yield becomes 95% to obtain a carbonaceous fiber nonwoven fabric. Was.

【0054】(実施例2)平均繊維径16μmのポリア
クリロニトリル繊維を空気中200〜300℃で耐炎化
した後、該耐炎化繊維の短繊維(長さ約80mm)を用
いてフェルト針SB#40(Foster Needl
e社)、パンチング密度250本/cm2でフェルト化
して目付量600g/m2 、厚み5.0mmの不織布を
作製した。該不織布に、粒径5〜20μmになるように
メッシュ皿で篩い分けしたフェノール樹脂S890(鐘
紡株)を1%ポリアクリルアミド水溶液で凝集させ、1
00℃で乾燥し、粒径50〜100μmに造粒したバイ
ンダーを3g/m2 均一に分散添着するように吹きつけ
と吸引を繰り返した。該不織布を平板プレス機で温度2
20℃、ギャップ1mm、時間1分、圧力588N/c
2 の条件で熱プレスし、次に窒素ガス中で10℃/分
の昇温速度で1300℃まで昇温し、この温度で1時間
保持し炭化を行って冷却し、さらに空気中700℃で重
量収率95%になるまで処理し、炭素質繊維不織布を得
た。
(Example 2) Polyacrylonitrile fiber having an average fiber diameter of 16 µm was oxidized in air at 200 to 300 ° C, and then a felt needle SB # 40 was used using short fibers (about 80 mm in length) of the oxidized fiber. (Foster Needl
e) to give a felt at a punching density of 250 pieces / cm 2 to produce a nonwoven fabric having a basis weight of 600 g / m 2 and a thickness of 5.0 mm. A phenol resin S890 (Kanebo Co., Ltd.) sieved with a mesh dish so as to have a particle size of 5 to 20 μm is agglomerated with a 1% polyacrylamide aqueous solution on the nonwoven fabric.
Spraying and suctioning were repeated so that the binder dried at 00 ° C. and granulated to a particle size of 50 to 100 μm was dispersed and attached uniformly at 3 g / m 2 . The nonwoven fabric is heated at a temperature of 2
20 ° C., gap 1 mm, time 1 minute, pressure 588 N / c
hot press under the condition of m 2 , and then heated to 1300 ° C. at a rate of 10 ° C./min in nitrogen gas, kept at this temperature for 1 hour, carbonized and cooled, and further cooled in air at 700 ° C. To give a weight yield of 95% to obtain a carbonaceous fiber nonwoven fabric.

【0055】(実施例3)平均繊維径16μmのポリア
クリロニトリル繊維を空気中200〜300℃で耐炎化
した後、該耐炎化繊維の短繊維(長さ約80mm)を用
いてフェルト針SB#40(Foster Needl
e社)、パンチング密度250本/cm2でフェルト化
して目付量600g/m2 、厚み5.0mmの不織布を
作製した。該不織布に、粒径5〜10μmになるように
メッシュ皿で篩い分けしたフェノール樹脂S890(鐘
紡株)を1%ポリアクリルアミド水溶液で凝集させ、1
00℃で乾燥し、粒径50〜100μmに造粒したバイ
ンダーを15g/m2 均一に分散添着するように吹きつ
けと吸引を繰り返した。該不織布を平板プレス機で温度
250℃、ギャップ0.5mm、時間1分、圧力588
N/cm2 の条件で熱プレスし、次に窒素ガス中で10
℃/分の昇温速度で1300℃まで昇温し、この温度で
1時間保持し炭化を行って冷却し、さらに空気中700
℃で重量収率95%になるまで処理し、炭素質繊維不織
布を得た。
(Example 3) A polyacrylonitrile fiber having an average fiber diameter of 16 µm was oxidized in air at 200 to 300 ° C, and then a felt needle SB # 40 was used using short fibers (about 80 mm in length) of the oxidized fiber. (Foster Needl
e) to give a felt at a punching density of 250 pieces / cm 2 to produce a nonwoven fabric having a basis weight of 600 g / m 2 and a thickness of 5.0 mm. A phenol resin S890 (Kanebo Co., Ltd.) sieved with a mesh dish so as to have a particle size of 5 to 10 μm is agglomerated with a 1% polyacrylamide aqueous solution on the nonwoven fabric.
Spraying and suctioning were repeated so that the binder dried at 00 ° C. and granulated to a particle size of 50 to 100 μm was dispersed and applied uniformly at 15 g / m 2 . The nonwoven fabric was heated at a temperature of 250 ° C., a gap of 0.5 mm, a time of 1 minute and a pressure of 588 with a flat plate press.
Hot pressing under the condition of N / cm 2 ,
The temperature was raised to 1300 ° C. at a temperature rising rate of 1 ° C./min, kept at this temperature for 1 hour, carbonized and cooled, and
The mixture was treated at 95 ° C. until the weight yield became 95% to obtain a carbonaceous fiber nonwoven fabric.

【0056】(比較例1)平均繊維径16μmのポリア
クリロニトリル繊維を空気中200〜300℃で耐炎化
した後、該耐炎化繊維の短繊維(長さ約80mm)を用
いてフェルト針SB#40(Foster Needl
e社)、パンチング密度250本/cm2でフェルト化
して目付量600g/m2 、厚み5.0mmの不織布を
作製した。該不織布を平板プレス機で温度250℃、ギ
ャップ0.5mm、時間1分、圧力588N/cm2
条件で熱プレスし、次に窒素ガス中で10℃/分の昇温
速度で1300℃まで昇温し、この温度で1時間保持し
炭化を行って冷却し、さらに空気中700℃で重量収率
95%になるまで処理し、炭素質繊維不織布を得た。
(Comparative Example 1) A polyacrylonitrile fiber having an average fiber diameter of 16 µm was oxidized in air at 200 to 300 ° C, and then a felt needle SB # 40 was used using short fibers (about 80 mm in length) of the oxidized fiber. (Foster Needl
e) to give a felt at a punching density of 250 pieces / cm 2 to produce a nonwoven fabric having a basis weight of 600 g / m 2 and a thickness of 5.0 mm. The nonwoven fabric is hot-pressed with a flat plate press at a temperature of 250 ° C., a gap of 0.5 mm, a time of 1 minute and a pressure of 588 N / cm 2 , and then heated to 1300 ° C. in nitrogen gas at a rate of 10 ° C./min. The temperature was raised, maintained at this temperature for 1 hour, carbonized, cooled, and further treated in air at 700 ° C. until the weight yield became 95% to obtain a carbonaceous fiber nonwoven fabric.

【0057】(比較例2)平均繊維径16μmのポリア
クリロニトリル繊維を空気中200〜300℃で耐炎化
した後、該耐炎化繊維の短繊維(長さ約80mm)を用
いてフェルト針SB#40(Foster Needl
e社)、パンチング密度250本/cm2でフェルト化
して目付量600g/m2 、厚み5.0mmの不織布を
作製した。該不織布に、粒径5〜20μmになるように
メッシュ皿で篩い分けしたフェノール樹脂S890(鐘
紡株)を1%ポリアクリルアミド水溶液で凝集させ、1
00℃で乾燥し、粒径50〜100μmに造粒したバイ
ンダーを60g/m2 均一に分散添着するように吹きつ
けと吸引を繰り返した。該不織布を平板プレス機で温度
220℃、ギャップ1mm、時間1分、圧力588N/
cm2 の条件で熱プレスし、次に窒素ガス中で10℃/
分の昇温速度で1300℃まで昇温し、この温度で1時
間保持し炭化を行って冷却し、さらに空気中700℃で
重量収率95%になるまで処理し、炭素質繊維不織布を
得た。
(Comparative Example 2) A polyacrylonitrile fiber having an average fiber diameter of 16 μm was oxidized in air at 200 to 300 ° C., and then a felt needle SB # 40 was used using short fibers (about 80 mm in length) of the oxidized fiber. (Foster Needl
e) to give a felt at a punching density of 250 pieces / cm 2 to produce a nonwoven fabric having a basis weight of 600 g / m 2 and a thickness of 5.0 mm. A phenol resin S890 (Kanebo Co., Ltd.) sieved with a mesh dish so as to have a particle size of 5 to 20 μm is agglomerated with a 1% polyacrylamide aqueous solution on the nonwoven fabric.
Spraying and suction were repeated so that the binder dried at 00 ° C. and granulated to a particle size of 50 to 100 μm was dispersed and adhered uniformly at 60 g / m 2 . The nonwoven fabric was pressed with a flat plate press at a temperature of 220 ° C., a gap of 1 mm, a time of 1 minute, and a pressure of 588 N /
hot press under the condition of cm 2 and then 10 ° C. /
The temperature is raised to 1300 ° C. at a heating rate of 1 minute, kept at this temperature for 1 hour, carbonized and cooled, and further treated in air at 700 ° C. to a weight yield of 95% to obtain a carbonaceous fiber nonwoven fabric. Was.

【0058】(比較例3)平均繊維径16μmのポリア
クリロニトリル繊維を空気中200〜300℃で耐炎化
した後、該耐炎化繊維の短繊維(長さ約80mm)を用
いてフェルト針SB#40(Foster Needl
e社)、パンチング密度250本/cm2でフェルト化
して目付量600g/m2 、厚み5.0mmの不織布を
作製した。該不織布に、粒径5〜20μmになるように
メッシュ皿で篩い分けしたフェノール樹脂S890(鐘
紡株)を1%ポリアクリルアミド水溶液で凝集させ、1
00℃で乾燥し、粒径50〜100μmに造粒したバイ
ンダーを1g/m2 均一に分散添着するように吹きつけ
と吸引を繰り返した。該不織布を平板プレス機で温度2
50℃、ギャップ0.5mm、時間1分、圧力588N
/cm2 の条件で熱プレスし、次に窒素ガス中で10℃
/分の昇温速度で1300℃まで昇温し、この温度で1
時間保持し炭化を行って冷却し、さらに空気中700℃
で重量収率95%になるまで処理し、炭素質繊維不織布
を得た。
(Comparative Example 3) A polyacrylonitrile fiber having an average fiber diameter of 16 µm was oxidized in air at 200 to 300 ° C, and then a felt needle SB # 40 was used using short fibers (about 80 mm in length) of the oxidized fiber. (Foster Needl
e) to give a felt at a punching density of 250 pieces / cm 2 to produce a nonwoven fabric having a basis weight of 600 g / m 2 and a thickness of 5.0 mm. A phenol resin S890 (Kanebo Co., Ltd.) sieved with a mesh dish so as to have a particle size of 5 to 20 μm is agglomerated with a 1% polyacrylamide aqueous solution on the nonwoven fabric.
Spraying and suctioning were repeated so that the binder dried at 00 ° C. and granulated to a particle size of 50 to 100 μm was uniformly dispersed and attached at 1 g / m 2 . The nonwoven fabric is heated at a temperature of 2
50 ° C., gap 0.5 mm, time 1 minute, pressure 588 N
/ Cm 2 at 10 ° C in nitrogen gas
/ Min at a heating rate of 1 / min.
Hold for a while, cool by carbonization, and then 700 ° C in air
To give a weight yield of 95% to obtain a carbonaceous fiber nonwoven fabric.

【0059】(比較例4)実施例1において、フェノー
ル樹脂の造粒体を用いる代わりに、一次粒径が50〜1
00μmのフェノール樹脂バインダー(昭和高分子製,
BRP−534A)を用いる以外は、実施例1と同様に
して表1に示す条件により炭素質繊維不織布を得た。
(Comparative Example 4) In Example 1, instead of using the phenol resin granules, the primary particle size was 50 to 1
00 μm phenolic resin binder (manufactured by Showa High Polymer,
A carbonaceous fiber nonwoven fabric was obtained under the conditions shown in Table 1 in the same manner as in Example 1 except that BRP-534A) was used.

【0060】以上の実施例、比較例で得られた炭素質繊
維不織布の単繊維間結着炭化物の長径、結着部の存在割
合、目付、厚み、比重、空隙率を、製造条件とともに表
1に示す。また、上記の全ての処理物をスペーサ厚2.
0mmで電極性能(充放電サイクルの2サイクル目と1
00サイクル目)の測定を行った結果、表1のようにな
った。
The major diameter, the proportion of binders, the basis weight, the thickness, the specific gravity and the porosity of the carbonized fiber nonwoven fabric obtained in the above Examples and Comparative Examples are shown in Table 1 together with the production conditions. Shown in In addition, all of the above-mentioned processed materials are used for the spacer thickness 2.
At 0 mm, the electrode performance (2nd cycle of charge and discharge cycle and 1
As a result of the measurement at the (00th cycle), the results are as shown in Table 1.

【0061】[0061]

【表1】 表1の結果から明らかなように、実施例1〜3の炭素質
繊維不織布は、電圧効率が高く、エネルギー効率に優れ
ていた。しかも長期間使用時における繊維間の接触抵抗
の増加、すなわち導電性の低下を抑制でき、長期間の充
放電サイクル時のエネルギー効率の経時変化も抑制され
る。
[Table 1] As is clear from the results in Table 1, the carbonaceous fiber nonwoven fabrics of Examples 1 to 3 had high voltage efficiency and excellent energy efficiency. In addition, an increase in contact resistance between fibers during long-term use, that is, a decrease in conductivity can be suppressed, and a change over time in energy efficiency during a long-term charge / discharge cycle can be suppressed.

【0062】これに対し、単繊維間が炭化物で結着され
ていない、または不十分な比較例1と3では、電圧効率
が低くてかつ長期間のエネルギー効率の変化も大きく、
また単繊維間が炭化物で結着されすぎた比較例2や、造
粒体の代わりに一次粒径が大きいバインダーを使用した
比較例4では、セル抵抗の上昇等により初期の電圧効率
が不十分となった。
On the other hand, in Comparative Examples 1 and 3 in which the single fibers were not bonded with carbides or were insufficient, the voltage efficiency was low and the change in energy efficiency over a long period was large.
In Comparative Example 2 in which the single fibers were excessively bonded with carbide, and in Comparative Example 4 in which a binder having a large primary particle size was used instead of the granulated product, the initial voltage efficiency was insufficient due to an increase in cell resistance and the like. It became.

【図面の簡単な説明】[Brief description of the drawings]

【図1】バナジウム系レドックスフロー電池の一例を示
す概略構成図
FIG. 1 is a schematic configuration diagram illustrating an example of a vanadium-based redox flow battery.

【図2】三次元電極を有するバナジウム系レドックスフ
ロー電池の電解槽の一例を示す分解斜視図
FIG. 2 is an exploded perspective view showing an example of an electrolytic cell of a vanadium-based redox flow battery having a three-dimensional electrode.

【符号の説明】[Explanation of symbols]

1 集電板 2 スペーサ 3 イオン交換膜 4a,4b 通液路 5 電極材 6 外部タンク(正極側) 7 外部タンク(負極側) 8,9 ポンプ 10 液流入口 11 液流出口 DESCRIPTION OF SYMBOLS 1 Current collector 2 Spacer 3 Ion exchange membrane 4a, 4b Liquid passage 5 Electrode material 6 External tank (positive electrode side) 7 External tank (negative electrode side) 8, 9 Pump 10 Liquid inlet 11 Liquid outlet

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4L047 AA03 AB02 BA13 BC14 CA19 CC14 5H018 AA08 AS01 BB01 BB03 BB05 BB06 BB08 DD06 EE05 EE17 HH01 HH04 HH05  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4L047 AA03 AB02 BA13 BC14 CA19 CC14 5H018 AA08 AS01 BB01 BB03 BB05 BB06 BB08 DD06 EE05 EE17 HH01 HH04 HH05

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 水溶液系電解液によるレドックスフロー
電池に使用され、炭素質繊維の不織布よりなる炭素電極
材集合体において、 前記不織布の単繊維間が長径20μm以下の炭化物で結
着されていると共に、その単繊維間の結着部の存在割合
が0.2〜10%であることを特徴とする炭素電極材集
合体。
1. A carbon electrode material aggregate used for a redox flow battery using an aqueous electrolyte and comprising a nonwoven fabric of carbonaceous fibers, wherein the single fibers of the nonwoven fabric are bound with a carbide having a long diameter of 20 μm or less. A carbon electrode material assembly, wherein the proportion of the binding portion between the single fibers is 0.2 to 10%.
【請求項2】 前記不織布が90%以上の空隙を有する
ものである請求項1記載の炭素電極材集合体。
2. The carbon electrode material assembly according to claim 1, wherein the nonwoven fabric has a void of 90% or more.
【請求項3】 一次平均粒径が20μm以下の有機バイ
ンダーを凝集させた造粒体を、炭素質繊維の原料不織布
に分散添着させてから加熱加圧して単繊維同士を結着さ
せた後、前記単繊維及び前記有機バインダーの炭化を行
う工程を有する炭素電極材集合体の製造方法。
3. A granulated product obtained by agglomerating an organic binder having a primary average particle size of 20 μm or less is dispersed and attached to a raw nonwoven fabric of carbonaceous fibers, and then heated and pressed to bind the single fibers together. A method for producing a carbon electrode material aggregate, comprising a step of carbonizing the single fiber and the organic binder.
JP2000003116A 2000-01-12 2000-01-12 Carbon electrode material assembly and manufacturing method thereof Expired - Fee Related JP4366802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000003116A JP4366802B2 (en) 2000-01-12 2000-01-12 Carbon electrode material assembly and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000003116A JP4366802B2 (en) 2000-01-12 2000-01-12 Carbon electrode material assembly and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001196071A true JP2001196071A (en) 2001-07-19
JP4366802B2 JP4366802B2 (en) 2009-11-18

Family

ID=18532109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000003116A Expired - Fee Related JP4366802B2 (en) 2000-01-12 2000-01-12 Carbon electrode material assembly and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4366802B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064566A (en) * 2001-08-22 2003-03-05 Fujikoo:Kk Felt material having uneven surface
JP2003308851A (en) * 2002-04-18 2003-10-31 Toyobo Co Ltd Electrode material and its manufacturing method
JP2003308850A (en) * 2002-04-18 2003-10-31 Toyobo Co Ltd Electrode material and its manufacturing method
JP2015138692A (en) * 2014-01-23 2015-07-30 東洋紡株式会社 integrated carbon electrode
EP3005458A4 (en) * 2013-05-10 2016-12-07 Uchicago Argonne Llc Rechargeable nanoelectrofuel electrodes and devices for high energy density flow batteries
JP2017033758A (en) * 2015-07-31 2017-02-09 東洋紡株式会社 Carbon electrode material for redox battery
KR20170115848A (en) 2016-04-08 2017-10-18 한국에너지기술연구원 Electrode structure, method for manufacturing thereof and use thereof, and stack structure of redox flow battery
WO2019049756A1 (en) * 2017-09-07 2019-03-14 東洋紡株式会社 Carbon electrode material for redox flow battery, and manufacturing method thereof
WO2019049755A1 (en) * 2017-09-07 2019-03-14 東洋紡株式会社 Carbon electrode material for redox flow battery, and method for manufacturing carbon electrode material
WO2023145885A1 (en) * 2022-01-31 2023-08-03 イビデン株式会社 Flameproof sheet for batteries, terminal cover and battery module

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064566A (en) * 2001-08-22 2003-03-05 Fujikoo:Kk Felt material having uneven surface
JP2003308851A (en) * 2002-04-18 2003-10-31 Toyobo Co Ltd Electrode material and its manufacturing method
JP2003308850A (en) * 2002-04-18 2003-10-31 Toyobo Co Ltd Electrode material and its manufacturing method
EP3005458A4 (en) * 2013-05-10 2016-12-07 Uchicago Argonne Llc Rechargeable nanoelectrofuel electrodes and devices for high energy density flow batteries
JP2015138692A (en) * 2014-01-23 2015-07-30 東洋紡株式会社 integrated carbon electrode
JP2017033758A (en) * 2015-07-31 2017-02-09 東洋紡株式会社 Carbon electrode material for redox battery
KR20170115848A (en) 2016-04-08 2017-10-18 한국에너지기술연구원 Electrode structure, method for manufacturing thereof and use thereof, and stack structure of redox flow battery
US10439246B2 (en) 2016-04-08 2019-10-08 Korea Institute Of Energy Research Electrode structure, method for manufacturing thereof and use thereof, and stack structure of redox flow battery
WO2019049756A1 (en) * 2017-09-07 2019-03-14 東洋紡株式会社 Carbon electrode material for redox flow battery, and manufacturing method thereof
WO2019049755A1 (en) * 2017-09-07 2019-03-14 東洋紡株式会社 Carbon electrode material for redox flow battery, and method for manufacturing carbon electrode material
JPWO2019049755A1 (en) * 2017-09-07 2020-08-20 東洋紡株式会社 Carbon electrode material for redox flow battery and method for producing the same
US11101466B2 (en) 2017-09-07 2021-08-24 Toyobo Co., Ltd. Carbon electrode material for redox flow battery, and manufacturing method thereof
JP7088197B2 (en) 2017-09-07 2022-06-21 東洋紡株式会社 Carbon electrode material for redox flow batteries and its manufacturing method
WO2023145885A1 (en) * 2022-01-31 2023-08-03 イビデン株式会社 Flameproof sheet for batteries, terminal cover and battery module

Also Published As

Publication number Publication date
JP4366802B2 (en) 2009-11-18

Similar Documents

Publication Publication Date Title
JP7088197B2 (en) Carbon electrode material for redox flow batteries and its manufacturing method
US11101466B2 (en) Carbon electrode material for redox flow battery, and manufacturing method thereof
JP2000357520A (en) Carbon electrode material for vanadium-based redox flow battery
JP4366802B2 (en) Carbon electrode material assembly and manufacturing method thereof
CN113544888B (en) Carbon electrode material and redox cell
JP2015138692A (en) integrated carbon electrode
US20220153591A1 (en) Carbon electrode material for manganese/titanium-based redox flow battery
WO2020184665A1 (en) Carbon electrode material and redox battery
JP4280883B2 (en) Electrolyzer and electrode material for redox flow battery
JP2019175833A (en) Redox flow battery electrode and redox flow battery
JP2001085028A (en) Carbon electrode material assembly
JP3844101B2 (en) Grooved electrode material and manufacturing method thereof
JP2001167785A (en) Electrolytic bath for redox flow cell and electrode material
JP2001085022A (en) Carbon electrode material and carbon electrode material assembly
JP2001085025A (en) Carbon electrode material assembly
US20220140355A1 (en) Carbon electrode material for redox flow battery and redox flow battery provided with the same
JP4244476B2 (en) Redox flow battery electrode material and electrolytic cell
JP3844103B2 (en) Grooved electrode material for liquid flow type electrolytic cell and method for producing the same
JP2001085026A (en) Carbon electrode material assembly
JP3589285B2 (en) Carbon electrode material for redox flow batteries
JP2001006690A (en) Carbon electrode material
WO2023080236A1 (en) Electrode material for redox flow batteries, and redox flow battery provided with same
JP2020149858A (en) Positive electrode material for redox battery and redox battery including the same
JP2001167771A (en) Electrode material for redox flow cell and electrolytic bath
JP2001085024A (en) Carbon electrode material assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090206

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090817

R151 Written notification of patent or utility model registration

Ref document number: 4366802

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees