JP2003308850A - Electrode material and its manufacturing method - Google Patents

Electrode material and its manufacturing method

Info

Publication number
JP2003308850A
JP2003308850A JP2002116612A JP2002116612A JP2003308850A JP 2003308850 A JP2003308850 A JP 2003308850A JP 2002116612 A JP2002116612 A JP 2002116612A JP 2002116612 A JP2002116612 A JP 2002116612A JP 2003308850 A JP2003308850 A JP 2003308850A
Authority
JP
Japan
Prior art keywords
electrode material
liquid
nonwoven fabric
fiber
woven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002116612A
Other languages
Japanese (ja)
Inventor
Sueyoshi Shiomi
季良 潮見
Masanobu Kobayashi
真申 小林
Makoto Inoue
誠 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2002116612A priority Critical patent/JP2003308850A/en
Publication of JP2003308850A publication Critical patent/JP2003308850A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode material having a groove obtained by treating precursor nonwoven fablic of carbonaceous fiber nonwoven fablic at high temperatures under inactive atmosphere, which is filled in a liquid flow type electrolytic cell by compressing it to have a weight reduction rate of not more than 1% and excellent shape stability after passing it through the liquid. <P>SOLUTION: This manufacturing method is to manufacture the electrode material by applying activating treatment to the raw material of the constituent precursor nonwoven fablic having tensile strength of 18-30 kgf/mm<SP>2</SP>, breaking elongation of 20-40%, and true density of 1.30-1.45 g/cm<SP>3</SP>, when measured in accordance with JIS R7601 (1986) as a single fiber, at high temperatures and under inactive atmosphere. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電極材、特にレド
ックスフロー型電池に用いられる液流通型の電解槽に使
用される溝を有する電極材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode material, and more particularly to an electrode material having a groove used in a liquid flow type electrolytic cell used in a redox flow type battery.

【0002】[0002]

【従来の技術】近年、クリーンな電気エネルギーの需要
が急速に伸び、それに伴って電解槽を利用する分野が増
えつつある。その代表的なものとして、一次・二次・燃
料電池といった各種電池分野や電気メッキ、食塩分解、
有機化合物の電解合成等の電解工業分野がある。
2. Description of the Related Art In recent years, the demand for clean electric energy has been rapidly increasing, and along with this, the fields using electrolytic cells are increasing. Typical examples are various battery fields such as primary / secondary / fuel cells, electroplating, salt decomposition,
There is an electrolytic industry field such as electrolytic synthesis of organic compounds.

【0003】従来から電極は電池の性能を左右するもの
として重点的に開発されている。電極には、それ自体が
活物質とならず、活物質の電気化学的反応を促進させる
反応場として働くタイプのものがあり、このタイプに
は、導電性があり、化学的に安定、安価であることから
炭素質繊維がよく用いられる。特に電力の貯蔵用に用い
られるレドックスフロー型電池の電極材には、耐薬品性
が優れ、導電性を有し、かつ通液性が優れた炭素質繊維
の不織布等が用いられている。
Conventionally, electrodes have been mainly developed as those that influence the performance of batteries. There are some types of electrodes that do not act as active materials themselves but act as a reaction field that promotes the electrochemical reaction of the active materials.This type has conductivity, is chemically stable, and is inexpensive. Because of this, carbonaceous fibers are often used. In particular, a non-woven fabric of carbonaceous fiber, which has excellent chemical resistance, conductivity, and liquid permeability, is used as an electrode material of a redox flow battery used for storing electric power.

【0004】レドックスフロー型電池は、従来の鉛電池
等と比較して、充放電効率が高い、エネルギー密度が高
い、サイクル寿命が長いといった特徴があり、電気エネ
ルギーの有効な確保という面から、夜間の余剰電気を貯
蔵し、これを昼間の需要増大時に放出して需要の変動を
平準化するための電力貯蔵用電池として開発が行われて
きた。また、太陽光・風力発電などの不安定な自然エネ
ルギーの出力を平滑化する電力供給の安定化装置として
も適用が可能である。信頼性、経済性の面で他の電池よ
り優れており、最も実用化の可能性の高い電池の一つで
ある。
The redox flow type battery is characterized by high charge / discharge efficiency, high energy density and long cycle life compared with conventional lead batteries and the like, and from the viewpoint of effectively securing electric energy, it is nighttime. Has been developed as a battery for electric power storage for storing excess electricity of the above and discharging it at the time of daytime demand increase to level the fluctuation of demand. It can also be applied as a power supply stabilizing device that smoothes the output of unstable natural energy such as solar power and wind power generation. It is superior to other batteries in terms of reliability and economy, and is one of the most practical batteries.

【0005】レドックスフロー型電池では電解液を貯え
る外部タンクと電解槽からなり、活物質を含む電解液外
部タンクから電解槽に供給して電解槽に組み込まれた電
極上で電気化学的なエネルギー変換、即ち充放電が行わ
れる。一般に充放電の際は、電解液を外部タンクと電解
槽との間で循環させるため、電解槽は、図1に示すよう
な液流通型構造をとる。該液流通型電解槽を単セルと称
し、これを最小単位として単独若しくは、多段積層して
用いられる。液流通型電解槽における電気化学反応は、
電極表面で起こる不均一相反応であるため、一般的には
二次元的な電解反応場を伴うことになる。
The redox flow type battery is composed of an external tank for storing an electrolytic solution and an electrolytic cell. Electrochemical energy conversion is performed on an electrode incorporated in the electrolytic cell by supplying the electrolytic solution containing an active material from the external tank to the electrolytic cell. That is, charging and discharging are performed. Generally, at the time of charging / discharging, since the electrolytic solution is circulated between the external tank and the electrolytic cell, the electrolytic cell has a liquid flow type structure as shown in FIG. The liquid flow type electrolytic cell is referred to as a single cell, and the single cell is used as a minimum unit or is used by stacking in multiple stages. The electrochemical reaction in the liquid flow type electrolytic cell is
Since it is a heterogeneous phase reaction that occurs on the electrode surface, it generally involves a two-dimensional electrolytic reaction field.

【0006】しかし、電解反応場が二次元的であると、
電解槽の単位面積あたりの反応量が小さいという難点が
ある。そこで、単位面積当たりの反応量、すなわち電流
密度を増すために電気化学反応場の三次元化が行われる
ようになった。
However, if the electrolytic reaction field is two-dimensional,
There is a drawback that the reaction amount per unit area of the electrolytic cell is small. Therefore, in order to increase the reaction amount per unit area, that is, the current density, three-dimensionalization of the electrochemical reaction field has been performed.

【0007】かかる三次元電極を有する液流通型電解槽
では、相対する2枚の集電板1があり、1間にイオン交
換膜3が配置され、イオン交換膜3の両側のスペーサ2
によって集電板1に沿った電解液の流路4a、4bが形
成されている。該流路4a、4bの少なくとも一方には
炭素繊維集合体等の電極5が配置されており、このよう
にして三次元電極が構成される。電解液としては、Fe
−Cr、V−V、などが使用される。
In the liquid flow type electrolytic cell having such a three-dimensional electrode, there are two current collector plates 1 facing each other, an ion exchange membrane 3 is arranged between the two, and spacers 2 on both sides of the ion exchange membrane 3 are provided.
Thus, flow paths 4a and 4b for the electrolytic solution are formed along the current collector plate 1. An electrode 5 such as a carbon fiber aggregate is arranged in at least one of the flow paths 4a and 4b, and a three-dimensional electrode is constructed in this manner. As the electrolytic solution, Fe
-Cr, VV, etc. are used.

【0008】例えば、電解液にバナジウムの硫酸酸性水
溶液を用いたレドックスフロー型電池の場合、放電時に
は、負極側の液流路4aにバナジウム二価イオンV2+
含む電解液が供給され、正極側の液流路4bにバナジウ
ム五価イオンV5+を含む電解液が供給される。負極側の
流路4aでは、三次元電極5内でV2+が電子を放出し、
バナジウム三価イオンV3+に酸化される。放出された電
子は外部回路を通って正極側の三次元電極内でV5+をバ
ナジウム四価イオンV4+に還元する。充電時にはこの逆
の反応が進行する。
For example, in the case of a redox flow type battery using an acidic sulfuric acid aqueous solution of vanadium as the electrolytic solution, at the time of discharging, the electrolytic solution containing vanadium divalent ions V 2+ is supplied to the liquid flow path 4a on the negative electrode side, and the positive electrode An electrolyte containing vanadium pentavalent ions V 5+ is supplied to the side liquid flow path 4b. In the flow path 4a on the negative electrode side, V 2+ emits electrons in the three-dimensional electrode 5,
It is oxidized to vanadium trivalent ion V 3+ . The emitted electrons pass through an external circuit and reduce V 5+ to vanadium tetravalent ion V 4+ in the three-dimensional electrode on the positive electrode side. The opposite reaction proceeds during charging.

【0009】このような電極材を有する三次元電極から
なる液流通型電解槽では、充放電を行う際に液体状の反
応活物質を電解槽に供給するために送液ポンプが用いら
れるがポンプに動作に必要なエネルギーは少ない程よ
く、ポンプ動作効率の良いポンプが用いられる。しかし
液体状の反応活物質を電解槽に供給する場合は通液圧力
損失が不可避に生じる。ここで通液圧力損失が生じると
所定の流量を確保するためにポンプの送液量を上げる必
要があり、ポンプ稼働のためのエネルギー消費量が増加
する。この場合、特にレドックスフロー型電池のような
充放電可能な二次電池においては電池自体の総合エネル
ギー効率は充放電の電力効率から送液に必要なエネルギ
ーをロス分として差し引いたものとなり、電力効率が良
くてもポンプ動力が大きくてはエネルギーの損失が大き
く電池としての総合エネルギー効率は低下する。従って
電解槽による通液圧力損失は低い程良い。
In a liquid flow type electrolytic cell comprising a three-dimensional electrode having such an electrode material, a liquid sending pump is used to supply a liquid reaction active material to the electrolytic cell during charge / discharge, but a pump. The less energy required for operation, the better, and a pump with good pump operation efficiency is used. However, when a liquid reaction active material is supplied to the electrolytic cell, liquid pressure loss is unavoidable. Here, if a fluid pressure loss occurs, it is necessary to increase the liquid feed amount of the pump in order to secure a predetermined flow rate, and the energy consumption amount for operating the pump increases. In this case, especially in a rechargeable secondary battery such as a redox flow type battery, the total energy efficiency of the battery itself is the power efficiency of charging / discharging minus the energy required for liquid transfer as a loss, and the power efficiency However, if the pump power is large, the energy loss will be large and the overall energy efficiency of the battery will decrease. Therefore, the lower the fluid pressure loss through the electrolytic cell, the better.

【0010】電解槽の通液圧力損失は、三次元電極の多
孔質電極材によるものとそれ以外(電解槽の配管部、マ
ニホールド等)による。ここで三次元電極有する多孔質
電極材が同一密度の場合、該三次元電極を形成する多孔
質電極材の厚みを増加させスペーサー厚みを増加すれば
電解液の流速を低減することによって通液圧力損失低下
することが出来、ポンプの負荷を低減することが出来
る。しかしながら、電極材の厚みを増加させることは、
電極材の使用量を増加させることになり、電池のトータ
ルコストを高めるという新たな問題を生ずる。
The fluid pressure loss in the electrolytic cell depends on whether the porous electrode material of the three-dimensional electrode is used or not (the piping of the electrolytic cell, the manifold, etc.). Here, when the porous electrode material having the three-dimensional electrode has the same density, increasing the thickness of the porous electrode material forming the three-dimensional electrode and increasing the spacer thickness reduces the flow velocity of the electrolytic solution, thereby reducing the fluid flow pressure. The loss can be reduced and the load on the pump can be reduced. However, increasing the thickness of the electrode material
This increases the amount of electrode material used, which causes a new problem of increasing the total cost of the battery.

【0011】この問題を解決するために本発明者らは特
開平8−287923号公報で溝を有する電極材を発明
した。しかしながら、溝の形態安定性において問題があ
り、電極として構成する際に付加される圧力によって、
材料の損傷や破壊が生じしていまい、炭素繊維の微粉末
が発生し、さらに進行すると溝が消滅してしまい、経時
的に通液性が悪化してしまう現象がみられた。
In order to solve this problem, the present inventors invented an electrode material having a groove in Japanese Patent Laid-Open No. 8-287923. However, there is a problem in the morphological stability of the groove, and due to the pressure applied when forming the electrode,
There was a phenomenon in which the material was not damaged or destroyed, fine carbon fiber powder was generated, and when it further progressed, the grooves disappeared and the liquid permeability deteriorated over time.

【0012】[0012]

【発明が解決しようとする課題】本発明は、かかる事情
に鑑みなされたものであり、形態安定性が優れており、
電解層構成時における圧接の圧力で生じる繊維の損傷に
よる繊維の微粉末の発生を極力無くし、溝の減少を抑制
し、電池内部壁面への圧着性、電池内の他の材料に加わ
る応力の度合い等に優れ、電極材の基本的な性能を損な
うこと無く、液流通時の通液圧力損失を抑制し、電解液
の流れの円滑性に優れかつエネルギー効率が高い炭素電
極材を提供することを目的したものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances and has excellent morphological stability.
Minimize generation of fine powder of fibers due to fiber damage caused by pressure contact when forming the electrolytic layer, suppress reduction of grooves, pressure bonding to the inner wall surface of the battery, degree of stress applied to other materials in the battery The carbon electrode material that is excellent in energy consumption, suppresses the flow pressure loss during liquid flow without sacrificing the basic performance of the electrode material, and has excellent smoothness of the flow of the electrolyte solution and high energy efficiency. It was intended.

【0013】[0013]

【課題を解決するための手段】即ち、炭素質の前駆体不
織布を不活性雰囲気で高温処理して得られる炭素質繊維
不織布からなる溝を有する電極材であり、液流通型電解
槽に該電極材を圧縮して装填し、通液後の重量減少率が
1%以下である形態安定性が優れていることを特徴とす
る電極材を提供するものである。
[Means for Solving the Problems] That is, an electrode material having a groove made of a carbonaceous fiber nonwoven fabric obtained by treating a carbonaceous precursor nonwoven fabric at a high temperature in an inert atmosphere. The present invention provides an electrode material, which is characterized in that the material is compressed and loaded, and the weight loss rate after passing the liquid is 1% or less and the shape stability is excellent.

【0014】本発明は、電極材を構成する不織布の単繊
維でのJIS R7601(1986)に準じて測定し
た引張強さが60〜100kgf/mm2かつ、破断伸
度が5.5〜6.0%であることを特徴とする電極材を
提供するものである。
The present invention has a tensile strength of 60 to 100 kgf / mm 2 and a breaking elongation of 5.5 to 6 in a non-woven single fiber constituting an electrode material, measured according to JIS R7601 (1986). The electrode material is characterized by being 0%.

【0015】本発明は、該電極材が炭素質の前駆体不織
布を炭化処理して得られることを特徴とする溝を有する
電極材の製造方法である。また炭素質繊維不織布の前駆
体不織布に有機質バインダーを2〜15g/m2含有さ
せることを特徴とする請求項1乃至2のいずれかに記載
の溝電極材の製造方法である。
The present invention is a method for producing an electrode material having grooves, wherein the electrode material is obtained by carbonizing a carbonaceous precursor nonwoven fabric. The method for producing a grooved electrode material according to claim 1, wherein the precursor nonwoven fabric of carbonaceous fiber nonwoven fabric contains an organic binder in an amount of 2 to 15 g / m 2 .

【0016】本発明は、前記炭素質の前駆体不織布を構
成する原料の単繊維でのJIS R7601(198
6)に準じて測定した引張強さが18〜30kgf/m
2かつ、破断伸度が20〜40%かつ、原料の真密度
が1.30〜1.45g/cm3であることであること
を特徴とする請求項1に記載の溝を有する電極材を提供
するものである。
According to the present invention, the single fiber as a raw material constituting the above-mentioned carbonaceous precursor nonwoven fabric is JIS R7601 (198).
The tensile strength measured according to 6) is 18 to 30 kgf / m.
The electrode material having a groove according to claim 1, wherein m 2 is a breaking elongation of 20 to 40%, and the true density of the raw material is 1.30 to 1.45 g / cm 3. Is provided.

【0017】[0017]

【発明の実施の形態】本発明の溝を有する電極材は、炭
素質繊維不織布からなる溝を有する電極材であることが
必要である。主として、液流通型電解槽、つまり電極材
が隔膜を介して両極の少なくとも一方に存在し、集電板
で圧接して構成される三次元電極、中でもレドックスフ
ロー型電池に好適に適用するためである。尚、本発明に
おいて、溝とは、不織布断面に凹状態が連続して形成さ
れて流路を形成しているものを言う(図3)。
BEST MODE FOR CARRYING OUT THE INVENTION The grooved electrode material of the present invention is required to be a grooved electrode material made of a carbonaceous fiber nonwoven fabric. Mainly for liquid flow type electrolytic cell, that is, the electrode material is present in at least one of both electrodes through a diaphragm, and is a three-dimensional electrode configured by pressure contact with a current collector plate, especially for suitable application to redox flow type batteries. is there. In addition, in the present invention, a groove refers to a groove in which a concave state is continuously formed in a cross section of a nonwoven fabric to form a flow path (FIG. 3).

【0018】本発明の溝を有する電極材は、炭素質の前
駆体不織布を不活性雰囲気で高温処理して得られる炭素
質繊維不織布からなる溝を有する電極材であり、液流通
型電解槽に該電極材を圧縮して装填し、通液後の重量減
少率が1%以下であり形態安定性が優れていることが必
要である。通液後の重量減少率が1%を越える場合、特
に電極として構成する際に付加される圧力によって、材
料の損傷や破壊が生じてしまい、炭素繊維の微粉末が発
生しやすくなるので好ましくなく、さらに溝が消滅して
しまい、通液性が悪化し、さらにエネルギー効率が低下
してしまう。これを実現する条件としては通水後の重量
減少率が1%以下であることが重要である。
The grooved electrode material of the present invention is an electrode material having a groove made of a carbonaceous fiber nonwoven fabric obtained by treating a carbonaceous precursor nonwoven fabric at a high temperature in an inert atmosphere. It is necessary that the electrode material is compressed and loaded, and the weight loss rate after passing the liquid is 1% or less, and the shape stability is excellent. If the weight loss rate after passing through the liquid exceeds 1%, damage or destruction of the material occurs due to the pressure applied particularly when the electrode is formed, which is not preferable because fine powder of carbon fiber is easily generated. Further, the grooves disappear, liquid permeability deteriorates, and energy efficiency further decreases. As a condition for realizing this, it is important that the weight loss rate after water flow is 1% or less.

【0019】本発明の溝を有する電極材の製造方法は、
有機質バインダーを2〜15g/m2、好ましくは5〜
10g/m2含有する炭化可能な耐炎化繊維不織布を加
熱加圧成型することにより溝を形成した後に、不活性雰
囲気で高温処理することが必要である。
The manufacturing method of the electrode material having the groove of the present invention is as follows.
2 to 15 g / m 2 of organic binder, preferably 5 to
It is necessary to heat-press and mold the carbonized flameproof fiber nonwoven fabric containing 10 g / m 2 to form the grooves, and then to perform high temperature treatment in an inert atmosphere.

【0020】上記の不活性雰囲気で高温処理が可能な不
織布は、特に限定されるものではなく、例えば、等方性
ピッチやメゾフェースピッチのプリカーサ繊維、セルロ
ース繊維、硬化ノボラック繊維、ポリビニルアルコール
繊維、芳香族ポリアミド繊維、ポリp−フェニレンベン
ズオキサゾール繊維などあるが特にポリアクリロニトリ
ル繊維を公知の方法で耐炎化した耐炎化繊維を原料とし
て用いることが好ましい。この場合特に、原料の単繊維
のJIS R7601(1986)に準ずる方法で測定
した引張強さが18〜30kgf/mm2、破断伸度が
20〜40%であることが望ましい。
The above-mentioned non-woven fabric which can be treated at a high temperature in an inert atmosphere is not particularly limited, and examples thereof include precursor fibers of isotropic pitch or meso-face pitch, cellulose fibers, cured novolac fibers, polyvinyl alcohol fibers, There are aromatic polyamide fibers, poly-p-phenylenebenzoxazole fibers, and the like, but it is particularly preferable to use flame-resistant fibers obtained by flame-proofing polyacrylonitrile fibers by a known method as a raw material. In this case, it is particularly preferable that the tensile strength of the single fiber as the raw material measured by the method according to JIS R7601 (1986) is 18 to 30 kgf / mm 2 and the elongation at break is 20 to 40%.

【0021】上記の炭素化可能な材料を不織布化する方
法は、特に限定されるものではなく、例えば、カードに
よって開繊した後、多層化されたウェブをニードルパン
チによって不織布化する方法が好適に用いられる。ま
た、溝の形成を容易にするために、異なる繊維素材の不
織布を多層積層してもよく、異なる繊維素材を混繊して
不織布を作成しても良い。
The method for making the carbonizable material into a non-woven fabric is not particularly limited, and for example, a method in which a multi-layered web is made into a non-woven fabric by needle punching after opening with a card is suitable. Used. Further, in order to facilitate the formation of the grooves, nonwoven fabrics of different fiber materials may be laminated in multiple layers, or different fiber materials may be mixed to form a nonwoven fabric.

【0022】さらに溝を付加する方法は前記の不織布に
有機質バインダーを2〜15 g/m 2含有させた後、
所定の山幅、山と山の間隔、高さを既定した金型を上記
不織布に載せ、100〜250℃の温度で時間0.1〜
5分間、圧力1〜500kgf/cm2で加熱加圧成型
して得ることが出来る。特にバインダー量は、好ましく
は5〜10g/m2 である。15g/m2以上の場合は
圧縮時に溝が割れやすくなり粉化し通液後の重量減少率
がたかくなり好ましくない。2g/m2以下の場合には
圧縮時に有効な溝が形成されず、通液性が悪化する。
The method of adding a groove to the above-mentioned non-woven fabric
2 to 15 g / m of organic binder 2After containing
The mold with the specified mountain width, mountain interval, and height is specified above
Place it on a non-woven fabric and heat it at a temperature of 100-250 ℃ for 0.1-hours.
5 minutes, pressure 1 to 500 kgf / cm2With heat and pressure molding
You can get it. Especially the amount of binder is preferable
Is 5 to 10 g / m2Is. 15 g / m2If the above
Grooves tend to crack during compression and become powdered, and the weight loss rate after liquid passage
This is unfavorable because it makes it hard. 2 g / m2If:
No effective groove is formed during compression, and liquid permeability deteriorates.

【0023】上記の有機質バインダーは、アクリル系、
セルロース系、ポリビニルアルコール系、エポキシ系、
酢酸ビニル系、フェノール樹脂系があるが特に加熱硬化
し炭化することで焼成後も安定した溝を形成するフェノ
ール樹脂系が望ましい。バインダーの不織布への含有方
法は粉末状物を原綿の開繊時に混合する方法、液体状物
を不織布に含侵する方法、粉末状物を直接不織布上に散
布する方法があるが特に限定されるものではない。
The above organic binder is an acrylic type,
Cellulose type, polyvinyl alcohol type, epoxy type,
There are vinyl acetate type and phenol resin type, but it is particularly preferable to use a phenol resin type which forms a stable groove after firing by heating and curing and carbonization. The method of including the binder in the nonwoven fabric includes a method of mixing the powdery material at the time of opening the raw cotton, a method of impregnating the nonwoven material with the liquid material, and a method of directly dispersing the powdery material on the nonwoven fabric, but the method is not particularly limited. Not a thing.

【0024】不織布を構成する原料の単繊維のJIS
R7601(1986)に準ずる方法で測定した引張強
さが18〜30kgf/mm2、破断伸度が20〜40
%であることが望ましい。JIS R7601(198
6)に準ずる方法で測定した引張強さが18kgf/m
2未満場合は原料不織布を製造する際の加工性が低下
すると共に、原料不織布の引張強度が低下し好ましくな
い。更に、不活性雰囲気で高温処理して得られる炭素質
繊維不織布からなる溝を有する電極材の引張強度が低下
する。破断伸度が20%未満である場合、原料不織布を
製造する際の加工性が低下する。
JIS of the raw material monofilament constituting the non-woven fabric
The tensile strength measured by the method according to R7601 (1986) is 18 to 30 kgf / mm 2 , and the breaking elongation is 20 to 40.
% Is desirable. JIS R7601 (198
The tensile strength measured by the method according to 6) is 18 kgf / m.
If it is less than m 2, the processability in producing the raw material nonwoven fabric is lowered and the tensile strength of the raw material nonwoven fabric is lowered, which is not preferable. Further, the tensile strength of the electrode material having the grooves made of the carbonaceous fiber nonwoven fabric obtained by the high temperature treatment in the inert atmosphere is lowered. When the elongation at break is less than 20%, the workability in producing the raw material nonwoven fabric decreases.

【0025】原料の真密度は1.30〜1.45g/c
3が好ましい。原料の真密度が1.45g/cm3を超
える場合は、原料自身の引張強さ、破断伸度が低下し、
これを用いて原料不織布を炭化する際の加工性が低下す
る。
The true density of the raw material is 1.30 to 1.45 g / c
m 3 is preferred. When the true density of the raw material exceeds 1.45 g / cm 3 , the tensile strength and the breaking elongation of the raw material itself decrease,
When this is used, the processability when carbonizing the raw material nonwoven fabric decreases.

【0026】尚、本発明において採用される真密度の測
定方法は、JIS R7603(1999)D法:比重
瓶法(ピクノメーター法)に準じて測定した。比重瓶
は、容量が50ml程度のものを使用した。また浸せき
液にはエタノールを使用した。
The true density method used in the present invention is measured according to JIS R7603 (1999) D method: specific gravity bottle method (pycnometer method). The specific gravity bottle used had a capacity of about 50 ml. Further, ethanol was used as the immersion liquid.

【0027】本発明において採用される電極材の目付、
厚み、溝厚み、通液圧力損失、及び通液試験後の重量減
少率は、以下の要領で測定される。
The basis weight of the electrode material used in the present invention,
The thickness, groove thickness, liquid passing pressure loss, and weight reduction rate after the liquid passing test are measured in the following manner.

【0028】(1)目付 通液圧力損失測定に用いるサンプル10cm角(寸法:
a[m])を100℃、1時間で乾燥し、デシケーター
で放冷後、電子天秤にて秤量する(重量:w[g])更
に以下に示す式によって目付を算出する。 目付[g/m2]= W / a2
(1) Sample 10 cm square (dimensions:
a [m]) is dried at 100 ° C. for 1 hour, allowed to cool in a desiccator, and then weighed with an electronic balance (weight: w [g]). Further, the basis weight is calculated by the following formula. Basis weight [g / m 2 ] = W / a 2

【0029】(2)厚み(t) 通液圧力損失測定に用いるサンプル10cm角の四隅と
中央部の合計5点をサンプルの土手の部分を測定子の中
心に合わせて尾崎製作所(株)製デジタルリニアゲージ
D10(最大荷重100g−f)に32mmφの測定子
を用いて測定し、小数点以下2桁まで読み取り平均して
最小位を四捨五入する。使用単位はミリメートルとする
(図3)。
(2) Thickness (t) A total of 5 points of the four corners of the sample 10 cm square and the central part used for the measurement of the liquid pressure loss are aligned with the bank portion of the sample at the center of the probe, and are digital by Ozaki Manufacturing Co., Ltd. Measure with a linear gauge D10 (maximum load 100 g-f) using a 32 mmφ probe, read and average up to two digits after the decimal point, and round off the minimum. The unit used is millimeters (Fig. 3).

【0030】(3)溝厚み(tm) 通液圧力損失測定に用いるサンプル10cm角の溝部分
の厚み6点を尾崎製作所(株)製ダイヤルシックネスゲ
ージ(型式G:最大荷重180g−f)に接触面寸法1
mm×10mmで測定し、小数点以下2桁まで読み取り
平均して最小位を四捨五入する。使用単位はミリメート
ルとする(図3)。
(3) Groove Thickness (tm) Six pieces of 10 cm square groove thickness of the sample used for measuring the fluid pressure loss were contacted with a dial thickness gauge (model G: maximum load 180 g-f) manufactured by Ozaki Seisakusho KK Surface dimension 1
Measure in mm x 10 mm, read to the second decimal place and average, round off the lowest position. The unit used is millimeters (Fig. 3).

【0031】 (4)通液圧力損失 図2に示す液流通型電解槽と同じ形状で通液方向に20
cm、幅方向(流路幅)10cm、電極材の厚みの2/
3の厚みのスペーサー(2)で形成された液流通型電解
槽を用意し、作成された電極材を10cm角に切って装
填する。液量10リットル/時のイオン交換水を流通さ
せ、電解槽の出入口の通液圧力損失を測定する。ブラン
クとして電極材を設置しない系で同様に測定し、測定値
とブランク測定値との差を電極材の通液圧力損失とす
る。
(4) Liquid flow pressure loss 20 in the liquid flow direction with the same shape as the liquid flow type electrolytic cell shown in FIG.
cm, width direction (flow channel width) 10 cm, 2 / thickness of electrode material
A liquid flow type electrolytic cell formed by the spacer (2) having a thickness of 3 is prepared, and the prepared electrode material is cut into 10 cm squares and loaded. Ion-exchanged water having a liquid volume of 10 liters / hour is circulated, and the liquid pressure loss at the inlet and outlet of the electrolytic cell is measured. The same measurement is performed in a system in which no electrode material is installed as a blank, and the difference between the measured value and the blank measured value is defined as the fluid pressure loss of the electrode material.

【0032】(5)通液試験後の重量減少率 予め、電極材を10cm角に切って重量(m1)を測定
しておき、電極材の厚みの2/3の厚みのスペーサーで
形成された液流通型電解槽に該電極材を圧縮して装填し
イオン交換水を10L/時の流量で一時間循環させた
後、該電極材に水洗、超音波洗浄を実施しこの間に生じ
てしまう繊維の損傷による繊維の微粉末を完全に除去し
た後乾燥し重量(m2)を測定して、下記の式のから重
量減少率[%]を算出する。 重量減少率[%]=(m1 − m2) / m2 ×
100
(5) Weight reduction rate after liquid permeation test The electrode material was cut into 10 cm squares and the weight (m1) was measured in advance, and the electrode material was formed with a spacer having a thickness of ⅔ of the thickness of the electrode material. The electrode material is compressed and loaded in a liquid flow type electrolytic cell, ion-exchanged water is circulated for 1 hour at a flow rate of 10 L / hour, and then the electrode material is washed with water and ultrasonically washed to generate fibers during this period. After completely removing the fine powder of the fiber due to the damage of No. 1, it is dried and the weight (m2) is measured, and the weight reduction rate [%] is calculated from the following formula. Weight reduction rate [%] = (m1−m2) / m2 ×
100

【0033】[0033]

【実施例】以下に実施例、比較例を挙げて本発明を説明
する。 (実施例1)平均繊維直径14μmのポリアクリルニト
リル繊維を空気中200〜300℃で耐炎化処理した後
クリンプ処理で得られた真密度、1.40g/cm3
引張り強度25kgf/mm2、伸度32%のステープ
ルファイバーを用いてフェルト化して目付600g/m
2の耐炎化繊維不織布を作製した。該不織布上に粉末ノ
ボラック樹脂(昭和高分子(株)製BRP534A)を
5g/m2の割合で均一に散布し、下方より線速2.6
m/秒のサクションで吸引してバインダーを不織布中に
固定したバインダー含有耐炎化不織布を得た。さらに該
不織布を30cm角にカットしその上に山幅2mm、山
高さ10mm、山長さ300mm、山と山の間隔が13
mmの凸状の山を有するアルミニウム製の金型30cm
角を山が不織布に向き合うように重ねて温度180℃、
シリンダー直径160mmのヒートプレス装置にセット
し、圧力20kg/cm2で1分間プレスして、溝付き
耐炎化繊維不織布を得た。該溝付き耐炎化繊維不織布を
不活性ガス中で10℃/分の昇温速度で1500℃まで
昇温し、この温度で1時間保持し炭化を行った後冷却し
炭化物を得た。該炭化物は空気中700℃で重量収率9
3%になるまで酸化処理し、溝を有する電極材を得た。
該電極材の目付、厚み、溝厚み、単繊維の引張り強度、
単繊維伸度、通液試験後の重量減少率、初期の通液圧力
損失、及び通液試験後の通液圧力損失を表1に示す。
EXAMPLES The present invention will be described below with reference to examples and comparative examples. (Example 1) A true density obtained by crimping a polyacrylonitrile fiber having an average fiber diameter of 14 μm in air at 200 to 300 ° C. and then performing a crimping treatment, 1.40 g / cm 3 ,
600 g / m basis weight by making it felt using a staple fiber with a tensile strength of 25 kgf / mm 2 and an elongation of 32%.
A flameproof fiber nonwoven fabric of No. 2 was produced. Powdered novolac resin (BRP534A manufactured by Showa Highpolymer Co., Ltd.) was evenly dispersed on the non-woven fabric at a rate of 5 g / m 2 , and a linear velocity of 2.6 was applied from below.
A binder-containing flame-retardant non-woven fabric was obtained by suctioning with a suction of m / sec to fix the binder in the non-woven fabric. Further, the non-woven fabric is cut into 30 cm squares, and the mountain width is 2 mm, the mountain height is 10 mm, the mountain length is 300 mm, and the distance between the mountains is 13 mm.
Aluminum mold with convex peaks of mm 30 cm
The corners are piled up so that the pile faces the nonwoven fabric, and the temperature is 180 ℃
It was set in a heat press machine having a cylinder diameter of 160 mm and pressed at a pressure of 20 kg / cm 2 for 1 minute to obtain a grooved flame-resistant fiber nonwoven fabric. The flame-resistant fiber nonwoven fabric with grooves was heated to 1500 ° C. in an inert gas at a temperature rising rate of 10 ° C./min, held at this temperature for 1 hour to perform carbonization, and then cooled to obtain a carbide. The carbide has a weight yield of 9 at 700 ° C. in air.
Oxidation treatment was performed until it reached 3% to obtain an electrode material having grooves.
Unit weight of the electrode material, thickness, groove thickness, tensile strength of single fiber,
Table 1 shows the single fiber elongation, the weight reduction rate after the liquid passing test, the initial liquid passing pressure loss, and the liquid passing pressure loss after the liquid passing test.

【0034】(比較例1)平均繊維直径14μmのポリ
アクリルニトリル繊維を空気中200〜300℃で耐炎
化処理した後クリンプ処理で得られた真密度、1.53
g/cm3、引張り強度18kgf/mm2、伸度15%
のステープルファイバーを用いてフェルト化して目付6
50g/m2の耐炎化繊維不織布を作製した。該不織布
上に粉末ノボラック樹脂(昭和高分子(株)製BRP5
34A)を5g/m2の割合で均一に散布し、下方より
線速2.6m/秒のサクションで吸引してバインダーを
不織布中に固定したバインダー含有耐炎化不織布を得
た。さらに該不織布を30cm角にカットしその上に山
幅2mm、山高さ10mm、山長さ300mm、山と山
の間隔が13mmの凸状の山を有するアルミニウム製の
金型30cm角を山が不織布に向き合うように重ねて温
度180℃、シリンダー直径160mmのヒートプレス
装置にセットし、圧力20kg/cm2で1分間プレス
して溝付き耐炎化繊維不織布を得た。該溝付き耐炎化繊
維不織布を不活性ガス中で10℃/分の昇温速度で15
00℃まで昇温し、この温度で1時間保持し炭化を行っ
た後冷却し炭化物を得た。該炭化物は空気中700℃で
重量収率93%になるまで酸化処理し、溝を有する電極
材を得た。該電極材の目付、厚み、溝厚み、単繊維の引
張り強度、単繊維伸度、通液試験後の重量減少率、初期
の通液圧力損失、及び通液試験後の通液圧力損失を表1
に示す。
COMPARATIVE EXAMPLE 1 Polyacrylonitrile fiber having an average fiber diameter of 14 μm was subjected to flameproofing treatment in air at 200 to 300 ° C. and then crimped to obtain a true density of 1.53.
g / cm 3 , tensile strength 18 kgf / mm 2 , elongation 15%
Using a staple fiber of No. 6
A flameproof fiber nonwoven fabric of 50 g / m 2 was prepared. Powdered novolac resin (BRP5 manufactured by Showa Highpolymer Co., Ltd.) on the non-woven fabric.
34A) was uniformly sprayed at a rate of 5 g / m 2 , and suctioned from below with a suction at a linear velocity of 2.6 m / sec to obtain a binder-containing flame-resistant nonwoven fabric in which the binder was fixed in the nonwoven fabric. Further, the non-woven fabric is cut into 30 cm squares, and a non-woven fabric is formed on the aluminum mold 30 cm square having convex ridges having a mountain width of 2 mm, a mountain height of 10 mm, a mountain length of 300 mm, and a mountain interval of 13 mm. Were set so as to face each other and set in a heat press device having a temperature of 180 ° C. and a cylinder diameter of 160 mm, and pressed at a pressure of 20 kg / cm 2 for 1 minute to obtain a grooved flame-resistant fiber nonwoven fabric. The grooved flame-resistant fiber non-woven fabric was heated in an inert gas at a temperature rising rate of 10 ° C./min for 15
The temperature was raised to 00 ° C., and the temperature was maintained for 1 hour to carry out carbonization and then cooling to obtain a carbide. The carbide was oxidized in air at 700 ° C. until the weight yield was 93% to obtain a grooved electrode material. Table showing the areal weight of the electrode material, the thickness, the groove thickness, the tensile strength of the single fiber, the single fiber elongation, the weight reduction rate after the liquid passing test, the initial liquid passing pressure loss, and the liquid passing pressure loss after the liquid passing test. 1
Shown in.

【0035】(比較例2)平均繊維直径14μmのポリ
アクリルニトリル繊維を空気中200〜300℃で耐炎
化処理した後クリンプ処理で得られた真密度、1.40
g/cm3、引張り強度25kgf/mm2、伸度32%
のステープルファイバーを用いてフェルト化して目付6
00g/m2の耐炎化繊維不織布を作製した。該不織布
上に粉末ノボラック樹脂(昭和高分子(株)製BRP5
34A)を25g/m2の割合で均一に散布し、下方よ
り線速2.6m/秒のサクションで吸引してバインダー
を不織布中に固定したバインダー含有耐炎化不織布を得
た。さらに該不織布を30cm角にカットしその上に山
幅2mm、山高さ10mm、山長さ300mm、山と山
の間隔が13mmの凸状の山を有するアルミニウム製の
金型30cm角を山が不織布に向き合うように重ねて温
度180℃、シリンダー直径160mmのヒートプレス
装置にセットし、圧力20kg/cm2で1分間プレス
して溝付き耐炎化繊維不織布を得た。該溝付き耐炎化繊
維不織布を不活性ガス中で10℃/分の昇温速度で15
00℃まで昇温し、この温度で1時間保持し炭化を行っ
た後冷却し炭化物を得た。該炭化物は空気中700℃で
重量収率93%になるまで酸化処理し、溝を有する電極
材を得た。該電極材の目付、厚み、溝厚み、単繊維の引
張り強度、単繊維伸度、通液試験後の重量減少率、初期
の通液圧力損失、及び通液試験後の通液圧力損失を表1
に示す。
COMPARATIVE EXAMPLE 2 Polyacrylonitrile fiber having an average fiber diameter of 14 μm was subjected to flameproofing treatment in air at 200 to 300 ° C. and then crimped to obtain a true density of 1.40.
g / cm 3 , tensile strength 25 kgf / mm 2 , elongation 32%
Using a staple fiber of No. 6
A flameproof fiber nonwoven fabric of 00 g / m 2 was prepared. Powdered novolac resin (BRP5 manufactured by Showa Highpolymer Co., Ltd.) on the non-woven fabric.
34A) was uniformly sprayed at a rate of 25 g / m 2 , and suctioned from below with a suction at a linear velocity of 2.6 m / sec to obtain a binder-containing flame-resistant nonwoven fabric in which the binder was fixed in the nonwoven fabric. Further, the non-woven fabric is cut into 30 cm squares, and a non-woven fabric is formed on the aluminum mold 30 cm square having convex ridges having a mountain width of 2 mm, a mountain height of 10 mm, a mountain length of 300 mm, and a mountain interval of 13 mm. Were set so as to face each other and set in a heat press device having a temperature of 180 ° C. and a cylinder diameter of 160 mm, and pressed at a pressure of 20 kg / cm 2 for 1 minute to obtain a grooved flame-resistant fiber nonwoven fabric. The grooved flame-resistant fiber non-woven fabric was heated in an inert gas at a temperature rising rate of 10 ° C./min for 15
The temperature was raised to 00 ° C., and the temperature was maintained for 1 hour to carry out carbonization and then cooling to obtain a carbide. The carbide was oxidized in air at 700 ° C. until the weight yield was 93% to obtain a grooved electrode material. Table showing the areal weight of the electrode material, the thickness, the groove thickness, the tensile strength of the single fiber, the single fiber elongation, the weight reduction rate after the liquid passing test, the initial liquid passing pressure loss, and the liquid passing pressure loss after the liquid passing test. 1
Shown in.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【発明の効果】本発明の電極材を用いることにより、各
種電解槽を利用する分野において通液圧力損失の低減す
ることが出来、送液ポンプの負荷を減少することによっ
てポンプ稼働のためのエネルギー消費量を減少せしめる
ことが出来る。それにより電池としての全エネルギー効
率を高めることが出来る。これらのことは特にレドック
スフロー型電池にとって効果的である。
EFFECTS OF THE INVENTION By using the electrode material of the present invention, it is possible to reduce the fluid pressure loss in the field where various electrolytic cells are used, and to reduce the load of the liquid feed pump, thereby saving energy for pump operation. It can reduce consumption. As a result, the total energy efficiency of the battery can be increased. These are particularly effective for redox flow type batteries.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1に三次元電極を有するレドックスフロ―型
電池等の流通型電解槽を用いた電池の概略図を示す。
FIG. 1 shows a schematic view of a battery using a flow-through type electrolytic cell such as a redox flow type battery having a three-dimensional electrode.

【図2】図2に本発明の実施例を示す電極材を有する液
流通型電解槽の分解斜視摸式図を示す。
FIG. 2 is an exploded perspective schematic view of a liquid flow type electrolytic cell having an electrode material showing an embodiment of the present invention.

【図3】図3は本発明の実施例を示す電極材の斜視模式
図を示す。
FIG. 3 is a perspective schematic view of an electrode material showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…集電板、 2…スペーサー、 3…イオン交換膜、 4a、b…通液路、 5…電極、 6…正極液タンク、 7…負極液タンク、 8、9…送液ポンプ、 10…液流入口、 11…液流出口 1 ... current collector, 2 ... spacer, 3 ... Ion exchange membrane, 4a, b ... liquid passage, 5 ... electrode, 6 ... Positive electrode liquid tank, 7 ... Anode liquid tank, 8, 9 ... Liquid feed pump, 10 ... Liquid inlet, 11 ... Liquid outlet

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H018 AA08 BB01 DD06 EE05 EE17 HH00 HH05 HH08 5H026 AA10 BB01 CX03 EE05 HH00 HH05 HH08    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 5H018 AA08 BB01 DD06 EE05 EE17                       HH00 HH05 HH08                 5H026 AA10 BB01 CX03 EE05 HH00                       HH05 HH08

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】炭素質繊維不織布からなる溝を有する電極
材であり、液流通型電解槽に該電極材を圧縮して装填
し、通液後の重量減少率が1%以下であることを特徴と
する電極材。
1. An electrode material having a groove made of carbonaceous fiber non-woven fabric, wherein the electrode material is compressed and loaded in a liquid flow type electrolytic cell, and the weight reduction rate after passing the liquid is 1% or less. Characteristic electrode material.
【請求項2】炭素質繊維不織布の単繊維でのJIS R
7601(1986)に準じて測定した引張強さが60
〜100kgf/mm2かつ、破断伸度が5.5〜6.
0%であることを特徴とする請求項1に記載の電極材。
2. JIS R for single fiber of carbonaceous fiber non-woven fabric
The tensile strength measured according to 7601 (1986) is 60.
~100kgf / mm 2 and elongation at break 5.5-6.
It is 0%, The electrode material of Claim 1 characterized by the above-mentioned.
【請求項3】炭素質繊維不織布の前駆体不織布を不活性
雰囲気で高温炭化処理して得られることを特徴とする請
求項1乃至2のいずれかに記載の電極材の製造方法。
3. The method for producing an electrode material according to claim 1, which is obtained by subjecting a precursor nonwoven fabric of carbonaceous fiber nonwoven fabric to high temperature carbonization treatment in an inert atmosphere.
【請求項4】炭素質繊維不織布の前駆体不織布を構成す
る原料の単繊維でのJIS R7601(1986)に
準じて測定した引張強さが18〜30kgf/mm2
つ、破断伸度が20%〜40%かつ、原料の真密度が
1.30〜1.45g/cm3 であることであること
を特徴とする請求項1乃至3のいずれかに記載の電極材
の製造方法。
4. A precursor of a carbonaceous fiber non-woven fabric. A single fiber as a raw material constituting a non-woven fabric has a tensile strength of 18 to 30 kgf / mm 2 measured according to JIS R7601 (1986) and a breaking elongation of 20%. 40% and a manufacturing method of an electrode material according to any one of claims 1 to 3 true density of the material is characterized in that it is 1.30~1.45g / cm 3.
【請求項5】炭素質繊維不織布の前駆体不織布に有機質
バインダーを2〜15g/m2含有させることを特徴と
する請求項1乃至4のいずれかに記載の電極材の製造方
法。
5. The method for producing an electrode material according to claim 1, wherein the precursor nonwoven fabric of carbonaceous fiber nonwoven fabric contains an organic binder in an amount of 2 to 15 g / m 2 .
JP2002116612A 2002-04-18 2002-04-18 Electrode material and its manufacturing method Pending JP2003308850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002116612A JP2003308850A (en) 2002-04-18 2002-04-18 Electrode material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002116612A JP2003308850A (en) 2002-04-18 2002-04-18 Electrode material and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2003308850A true JP2003308850A (en) 2003-10-31

Family

ID=29397204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002116612A Pending JP2003308850A (en) 2002-04-18 2002-04-18 Electrode material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2003308850A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014517494A (en) * 2011-06-22 2014-07-17 アカル エネルギー リミテッド Cathode electrode material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632261A (en) * 1986-06-21 1988-01-07 Toho Rayon Co Ltd Redox-flow type secondary battery electrode material
JPH10162838A (en) * 1996-11-29 1998-06-19 Toray Ind Inc Collector for solid high polymer fuel cell
JP2001196071A (en) * 2000-01-12 2001-07-19 Toyobo Co Ltd Carbon electrode material assembly and manufacturing method thereof
JP2001283878A (en) * 2000-03-30 2001-10-12 Toray Ind Inc Conductive sheet and fuel cell electrode equipped with the sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632261A (en) * 1986-06-21 1988-01-07 Toho Rayon Co Ltd Redox-flow type secondary battery electrode material
JPH10162838A (en) * 1996-11-29 1998-06-19 Toray Ind Inc Collector for solid high polymer fuel cell
JP2001196071A (en) * 2000-01-12 2001-07-19 Toyobo Co Ltd Carbon electrode material assembly and manufacturing method thereof
JP2001283878A (en) * 2000-03-30 2001-10-12 Toray Ind Inc Conductive sheet and fuel cell electrode equipped with the sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014517494A (en) * 2011-06-22 2014-07-17 アカル エネルギー リミテッド Cathode electrode material

Similar Documents

Publication Publication Date Title
JP3560181B2 (en) Electrode material for liquid flow type electrolytic cell
CN108292772B (en) Bipolar plate and redox flow battery comprising same
JP3203665U (en) Improved electrode for flow battery
JPH02148659A (en) Liquid flow type electrolytic cell
JP6577697B2 (en) Carbon fiber felt, method for producing the same, and liquid flow electrolytic cell
JP3496385B2 (en) Redox battery
JP2014029035A (en) Carbon fiber felt, method for producing the same and electrode
WO2014109957A1 (en) Improved bipolar plate for flow batteries
CN108417808A (en) A kind of carbon fiber-silicon-graphene oxide composite material and preparation method thereof
JP4599832B2 (en) Grooved electrode material and electrode for liquid flow type electrolytic cell
CN113777136A (en) Method for detecting electrolyte wettability by multiple electrodes
JP4366802B2 (en) Carbon electrode material assembly and manufacturing method thereof
JP2018133141A (en) Redox battery using thin diaphragm
JP3844101B2 (en) Grooved electrode material and manufacturing method thereof
JP2906241B2 (en) Liquid flow type electrolytic cell
JP2003308850A (en) Electrode material and its manufacturing method
JP4280883B2 (en) Electrolyzer and electrode material for redox flow battery
JP2003308851A (en) Electrode material and its manufacturing method
JP6557824B2 (en) Carbon electrode and carbon electrode manufacturing method
JP3844103B2 (en) Grooved electrode material for liquid flow type electrolytic cell and method for producing the same
JP2020500403A (en) Electrode structure and redox flow battery including the same
JP2001085028A (en) Carbon electrode material assembly
JP2021125385A (en) Electrode for redox flow battery and redox flow cell
JP2001167785A (en) Electrolytic bath for redox flow cell and electrode material
JP4244476B2 (en) Redox flow battery electrode material and electrolytic cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070705

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071206