JP2021125385A - Electrode for redox flow battery and redox flow cell - Google Patents

Electrode for redox flow battery and redox flow cell Download PDF

Info

Publication number
JP2021125385A
JP2021125385A JP2020018501A JP2020018501A JP2021125385A JP 2021125385 A JP2021125385 A JP 2021125385A JP 2020018501 A JP2020018501 A JP 2020018501A JP 2020018501 A JP2020018501 A JP 2020018501A JP 2021125385 A JP2021125385 A JP 2021125385A
Authority
JP
Japan
Prior art keywords
layer
electrode
carbon fiber
redox flow
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020018501A
Other languages
Japanese (ja)
Inventor
悟 下山
Satoru Shimoyama
悟 下山
史宜 渡邉
Fumiyoshi Watanabe
史宜 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2020018501A priority Critical patent/JP2021125385A/en
Publication of JP2021125385A publication Critical patent/JP2021125385A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

To provide an electrode for a redox flow battery with reduced conductive resistance and diffusion resistance.SOLUTION: In an electrode for a redox flow battery includes a layer 1 and a layer 2, the layer 1 and the layer 2 include a carbon fiber (A), carbonaceous (B), and graphite particles (C), and the flexural modulus when bent toward the layer 1 is 130 to 180 MPa, the flexural modulus when bent toward the layer 2 is 1.2 to 1.4 times the flexural modulus when bent toward the layer 1, the thickness of the layer 1 is 560 to 1900 μm, the thickness of the layer 2 is 110 to 420 μm, and the basis weight of the electrode is 300 to 680 g/m2.SELECTED DRAWING: None

Description

本発明は、レドックスフロー電池用電極およびレドックスフロー電池に関する。 The present invention relates to electrodes for redox flow batteries and redox flow batteries.

レドックスフロー電池は、電解液を貯える外部タンクと相対する2枚の双極板、隔膜(イオン交換膜)、および2枚の電極から主に構成される。レドックスフロー電池においては、電極の正極または負極のうち少なくとも一方の極において、活物質を含む電解液を供給し、酸化還元反応によって充電と放電が行われる。活物質としては、例えば、バナジウムやハロゲン、鉄、亜鉛、硫黄、チタン、銅、クロム、マンガン、セリウム、コバルト、リチウム等のイオンや、これらの化合物イオン、非金属のキノン系化合物イオンや芳香族化合物イオンが用いられている。また、電極には、活物質との反応面積を増やすために炭素繊維を用いたペーパーやフェルト、織物や編物などが使用されている。 A redox flow battery is mainly composed of two bipolar plates facing an external tank for storing an electrolytic solution, a diaphragm (ion exchange membrane), and two electrodes. In a redox flow battery, an electrolytic solution containing an active material is supplied to at least one of the positive electrode and the negative electrode of the electrode, and charging and discharging are performed by a redox reaction. Examples of the active material include ions such as vanadium, halogen, iron, zinc, sulfur, titanium, copper, chromium, manganese, cerium, cobalt and lithium, compound ions thereof, non-metallic quinone compound ions and aromatics. Compound ions are used. Further, as the electrode, paper, felt, woven fabric, knitted fabric, etc. using carbon fiber are used in order to increase the reaction area with the active material.

レドックスフロー電池は、溶液タンクを増設することで比較的簡単にエネルギー容量を増やすことができ、サイクル寿命も長く、常温運転が可能で発火性の材料を用いずに充放電が可能であるため安全性が高いなどの特徴を有し、風力発電や太陽光発電などでの天候による出力変動を調整し、出力を平準化するための蓄電池として普及が期待されており、レドックスフロー電池のエネルギー変換効率を高めるため、電池内部抵抗を低減することが求められている。電池内部抵抗は主に隔膜と電極での抵抗に由来する。隔膜での抵抗は、隔膜の薄膜化によって低減することができる。一方、電極での抵抗は、電極内部の導電性や電極と集電板の接触抵抗による導電抵抗、電極内での電解液の通液性による拡散抵抗、電解液との反応抵抗などから生じる。 Redox flow batteries are safe because their energy capacity can be increased relatively easily by adding a solution tank, their cycle life is long, they can be operated at room temperature, and they can be charged and discharged without using flammable materials. It has features such as high performance, and is expected to be widely used as a storage battery for adjusting output fluctuations due to weather in wind power generation and solar power generation and leveling the output, and the energy conversion efficiency of redox flow batteries. It is required to reduce the internal resistance of the battery in order to increase the energy. The internal resistance of the battery is mainly derived from the resistance at the diaphragm and electrodes. Resistance at the diaphragm can be reduced by thinning the diaphragm. On the other hand, the resistance at the electrode is generated from the conductivity inside the electrode, the conductive resistance due to the contact resistance between the electrode and the current collector plate, the diffusion resistance due to the liquid permeability of the electrolytic solution in the electrode, the reaction resistance with the electrolytic solution, and the like.

レドックスフロー電池における電極の抵抗低減の方法として、例えば、電極が電解液に対して触媒活性を有し、かつ、0.8MPaの圧縮応力で20%未満の圧縮ひずみと60〜85体積%の範囲の非圧縮孔隙率とを画定するカーボン紙を含むレドックスフロー電池(例えば、特許文献1参照)が提案されている。 As a method for reducing the resistance of an electrode in a redox flow battery, for example, the electrode has catalytic activity with respect to an electrolytic solution, and a compressive strain of less than 20% and a range of 60 to 85% by volume with a compressive stress of 0.8 MPa are used. A redox flow battery containing carbon paper (see, for example, Patent Document 1) that defines the uncompressed pore ratio of the above has been proposed.

特表2015−505148号公報Japanese Patent Application Laid-Open No. 2015-505148

特許文献1に記載の発明によれば、0.8MPaの圧縮応力で20%未満の圧縮ひずみとすることで双極板に形成された電解液供給の流路に電極がたわみ込みことを抑制でき、電極内部の導電抵抗を低減することができるものの、このような電極を得るには高密度化や、バインダーを多く付着させる必要があるため、電極内での電解液の通液性が低下し、拡散抵抗低減を両立させることができないという課題があった。 According to the invention described in Patent Document 1, it is possible to prevent the electrode from bending into the flow path of the electrolytic solution supply formed on the bipolar plate by setting the compressive strain to less than 20% with a compressive stress of 0.8 MPa. Although the conductive resistance inside the electrode can be reduced, in order to obtain such an electrode, it is necessary to increase the density and attach a large amount of binder, so that the permeability of the electrolytic solution in the electrode is lowered. There is a problem that it is not possible to achieve both reduction of diffusion resistance.

そこで、本発明は、導電抵抗と拡散抵抗を低減したレドックスフロー電池用電極を提供することを課題とする。 Therefore, an object of the present invention is to provide an electrode for a redox flow battery with reduced conductive resistance and diffusion resistance.

本発明者らは上記の課題を達成するため鋭意検討した結果、以下の発明に至った。 As a result of diligent studies to achieve the above problems, the present inventors have reached the following inventions.

層1及び層2からなる電極であって、
前記層1及び前記層2は、炭素繊維(A)、炭素質(B)、及び黒鉛粒子(C)を含み、
前記層1の側へ曲げた際の曲げ弾性率が、130〜180MPaであり、
前記層2の側へ曲げた際の曲げ弾性率が、前記層1の側に曲げた際の曲げ弾性率の1.2〜1.4倍であり、
前記層1の厚さが、560〜1900μmであり、
前記層2の厚さが110〜420μmであり、
前記電極の目付が300〜680g/mである、レドックスフロー電池用電極。
An electrode composed of layers 1 and 2
The layer 1 and the layer 2 contain carbon fibers (A), carbonaceous (B), and graphite particles (C).
The flexural modulus when bent toward the layer 1 is 130 to 180 MPa.
The flexural modulus when bent toward the layer 2 is 1.2 to 1.4 times the flexural modulus when bent toward the layer 1.
The thickness of the layer 1 is 560 to 1900 μm.
The thickness of the layer 2 is 110 to 420 μm.
An electrode for a redox flow battery having a basis weight of the electrode of 300 to 680 g / m 2.

本発明により、導電抵抗と拡散抵抗を低減したレドックスフロー電池用電極を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide an electrode for a redox flow battery with reduced conductive resistance and diffusion resistance.

本発明は、層1及び層2からなる電極であって、前記層1及び前記層2は、炭素繊維(A)、炭素質(B)、及び黒鉛粒子(C)を含み、前記層1の側へ曲げた際の曲げ弾性率が、130〜180MPaであり、前記層2の側へ曲げた際の曲げ弾性率が、前記層1の側に曲げた際の曲げ弾性率の1.2〜1.4倍であり、前記層1の厚さが、560〜1900μmであり、前記層2の厚さが110〜420μmであり、前記電極の目付が300〜680g/mである、レドックスフロー電池用電極、である。このような本発明のレドックスフロー電池用電極は、炭素繊維(A)、炭素質(B)、及び黒鉛粒子(C)を含む、層1を電極の一方の面、層1とは曲げ弾性率の異なる層2を反対の面に配置したものである。層1に拡散抵抗低減機能、層2に導電抵抗低減機能と機能を分けることにより、均一な層からなる電極で達成することが難しい、導電抵抗と拡散抵抗低減を両立させた電極を得ることができる。 The present invention is an electrode composed of a layer 1 and a layer 2, wherein the layer 1 and the layer 2 include carbon fibers (A), a carbonaceous material (B), and graphite particles (C), and the layer 1 has a carbon fiber (A), a carbonaceous material (B), and a graphite particle (C). The flexural modulus when bent to the side is 130 to 180 MPa, and the flexural modulus when bent to the side of the layer 2 is 1.2 to the flexural modulus when bent to the side of the layer 1. Redox flow, which is 1.4 times, the thickness of the layer 1 is 560 to 1900 μm, the thickness of the layer 2 is 110 to 420 μm, and the grain size of the electrode is 300 to 680 g / m 2. Electrodes for batteries. Such an electrode for a redox flow battery of the present invention contains carbon fibers (A), carbonaceous materials (B), and graphite particles (C), and has a layer 1 on one surface of the electrode and a flexural modulus different from that of the layer 1. Layers 2 with different layers are arranged on opposite surfaces. By separating the diffusion resistance reduction function into the layer 1 and the conduction resistance reduction function into the layer 2, it is possible to obtain an electrode having both conductivity resistance and diffusion resistance reduction, which is difficult to achieve with an electrode composed of a uniform layer. can.

層1や層2が含む炭素繊維(A)としては、例えば、ポリアクリロニトリル(以下、「PAN」と略すことがある)系炭素繊維、ピッチ系炭素繊維、レーヨン系炭素繊維、フェノール樹脂系炭素繊維などが挙げられる。これらを2種以上含有してもよい。これらの中でも、強度や炭素繊維化時の残炭率に優れることから、PAN系炭素繊維を用いることが好ましい。 Examples of the carbon fiber (A) contained in the layer 1 and the layer 2 include polyacrylonitrile (hereinafter, may be abbreviated as “PAN”) carbon fiber, pitch carbon fiber, rayon carbon fiber, and phenol resin carbon fiber. And so on. Two or more of these may be contained. Among these, it is preferable to use PAN-based carbon fiber because it is excellent in strength and residual carbon ratio at the time of carbon fiber formation.

層1や層2が含む炭素質(B)とは、樹脂バインダーを炭化処理することで得られる樹脂炭化物のことである。炭素繊維(A)を炭素質(B)で結着することで、炭素繊維同士の接触面積を大きくすることで、電極の導電性向上や、曲げ剛性などの機械物性を向上することできる。炭素質(B)を得るために用いられる樹脂バインダーとしては、例えばフェノール樹脂、エポキシ樹脂、メラミン樹脂、フラン樹脂などの熱硬化性樹脂が挙げられる。これらの中でも炭化収率が高い点でフェノール樹脂が特に好ましい。 The carbonaceous substance (B) contained in the layer 1 and the layer 2 is a resin carbide obtained by carbonizing the resin binder. By binding the carbon fibers (A) with the carbon material (B), the contact area between the carbon fibers can be increased, so that the conductivity of the electrodes can be improved and the mechanical properties such as flexural rigidity can be improved. Examples of the resin binder used to obtain the carbonaceous material (B) include thermosetting resins such as phenol resin, epoxy resin, melamine resin, and furan resin. Among these, phenol resin is particularly preferable because it has a high carbonization yield.

層1や層2が黒鉛粒子(C)を含むことで、電解液の酸化還元の反応性を向上させることができ、反応抵抗を低減させることができる。黒鉛粒子(C)としては、電気化学的に活性なエッジ面が多い鱗片状黒鉛、鱗状黒鉛、薄片化黒鉛などを用いることが好ましい。 When the layer 1 and the layer 2 contain the graphite particles (C), the reactivity of redox of the electrolytic solution can be improved and the reaction resistance can be reduced. As the graphite particles (C), it is preferable to use scaly graphite, scaly graphite, flaky graphite or the like having many electrochemically active edge surfaces.

本発明のレドックスフロー電池用電極は、層1の側へ曲げた際の曲げ弾性率が、130〜180MPaであり、層2の側へ曲げた際の曲げ弾性率が、層1の側に曲げた際の曲げ弾性率の1.2〜1.4倍である。ここでいう曲げ弾性率は、3点曲げ試験によって得られる弾性率を意味する。つまり本発明の電極は、3点曲げ試験において、層1の側を圧子で押して、層1の側へ曲げた際の曲げ弾性率が130〜180MPaであり、3点曲げ試験において、層2の側を圧子で押し、層2の側へ曲げた際の曲げ剛性が、層1の側に曲げた際の曲げ弾性率の1.2〜1.4倍である。なお、層2の側へ曲げた際の曲げ弾性率は、層1の側に曲げた際の曲げ弾性率の1.3〜1.4倍であることがより好ましい。 The electrode for a redox flow battery of the present invention has a flexural modulus of 130 to 180 MPa when bent toward the layer 1, and a flexural modulus when bent toward the layer 2 is bent toward the layer 1. It is 1.2 to 1.4 times the flexural modulus at the time of bending. The flexural modulus here means the elastic modulus obtained by the three-point bending test. That is, the electrode of the present invention has a flexural rigidity of 130 to 180 MPa when the side of layer 1 is pushed by an indenter and bent toward the side of layer 1 in the three-point bending test, and the electrode of the present invention has a flexural rigidity of 130 to 180 MPa in the three-point bending test. The flexural rigidity when the side is pushed with an indenter and bent toward the layer 2 side is 1.2 to 1.4 times the flexural modulus when bent toward the layer 1. The flexural modulus when bent toward the layer 2 is more preferably 1.3 to 1.4 times the flexural modulus when bent toward the layer 1.

本発明の電極をレドックスフロー電池に組み込む際に、該電池のイオン交換膜側に層1を配置することで電解液の拡散性を良好に保つことができ、該電池の双極板側に曲げ剛性の高い層2を配置することで、セル締結時に双極板に形成された電解液の供給流路に電極がたわみ込むことを抑制することできる。 When the electrode of the present invention is incorporated into a redox flow battery, by arranging the layer 1 on the ion exchange membrane side of the battery, the diffusivity of the electrolytic solution can be kept good, and the bending rigidity is set to the bipolar plate side of the battery. By arranging the high layer 2, it is possible to prevent the electrode from bending into the supply flow path of the electrolytic solution formed on the bipolar plate at the time of cell fastening.

電極の層1の側に曲げた際の曲げ弾性率が130MPa未満の場合は、双極板の流路に電極がたわみ込み、流路上の電極の密度が低下することで導電抵抗が悪化する傾向があり、180MPaを超える場合は、電極内への電解液の拡散性が低くなり、拡散抵抗が悪化する傾向がある。また、電極の層2の側に曲げた際の曲げ剛性が、層1の側に曲げた際の曲げ弾性率の1.2倍未満であると、双極板の流路に電極がたわみ込みやすい傾向があり、1.4倍を超えると、電極内への電解液の拡散性が低くなる傾向がある。 When the flexural modulus when bent toward the layer 1 side of the electrode is less than 130 MPa, the electrode bends into the flow path of the bipolar plate, and the density of the electrode on the flow path decreases, so that the conductive resistance tends to deteriorate. If it exceeds 180 MPa, the diffusibility of the electrolytic solution into the electrode tends to decrease, and the diffusion resistance tends to deteriorate. Further, if the flexural rigidity when the electrode is bent toward the layer 2 side is less than 1.2 times the flexural modulus when bent toward the layer 1, the electrode is likely to bend into the flow path of the bipolar plate. There is a tendency, and if it exceeds 1.4 times, the diffusibility of the electrolytic solution into the electrode tends to decrease.

本発明のレドックスフロー電池用電極の目付は、300〜680g/mであり、好ましくは350〜650g/mであり、より好ましくは400〜600g/mである。目付が300g/m未満であると反応場としての表面積不足により内部抵抗が高くなる傾向にあり、680g/mを超えると基材が厚くなることにより電解液の拡散性が低下し、内部抵抗が高くなる傾向にある。電極の表面積と電解液の拡散性の観点から、電極中で層1が占める目付は260〜580g/mであり、好ましくは300〜550g/mであり、より好ましくは350〜550g/mである。また、層2が占める目付は40〜100g/mであり、好ましくは50〜90g/mであり、より好ましくは50〜80g/mである。 Basis weight of the redox flow battery electrode of the present invention is a 300~680g / m 2, preferably 350~650g / m 2, more preferably 400-600 g / m 2. Basis weight tend to internal resistance is increased by the surface area insufficient as a reaction field is less than 300 g / m 2, diffusion of the electrolytic solution is lowered by the substrate becomes thick exceeds 680 g / m 2, the internal Resistance tends to be high. From the viewpoint of the surface area of the electrode and the diffusivity of the electrolytic solution, the basis weight occupied by the layer 1 in the electrode is 260 to 580 g / m 2 , preferably 300 to 550 g / m 2 , and more preferably 350 to 550 g / m. It is 2. The basis weight occupied by the layer 2 is 40 to 100 g / m 2 , preferably 50 to 90 g / m 2 , and more preferably 50 to 80 g / m 2 .

また、電解液の拡散性の観点から、電極を構成する層1の厚さは560〜1900μmであり、好ましくは670〜1700μm、より好ましくは850μm〜1600μmである。層1の厚さが560μm未満であると、層中の空隙が小さくなるため電解液の拡散性が低下する傾向にあり、1900μmを超えると、セル組み時の圧縮で折れた炭素繊維がイオン交換膜にピンホールを開けやすくなる傾向にある。 From the viewpoint of diffusivity of the electrolytic solution, the thickness of the layer 1 constituting the electrode is 560 to 1900 μm, preferably 670 to 1700 μm, and more preferably 850 μm to 1600 μm. If the thickness of layer 1 is less than 560 μm, the voids in the layer become smaller and the diffusibility of the electrolytic solution tends to decrease. If it exceeds 1900 μm, the carbon fibers broken by compression during cell assembly tend to undergo ion exchange. It tends to make it easier to make pinholes in the membrane.

また、層2の厚さは110〜420μmであり、好ましくは140〜370μm、より好まくは150〜320μmである。層2の厚さが110μm未満であると、層中の空隙が小さくなるため電解液の拡散性が低下する傾向にあり、420μmを超えると、密度の低下により曲げ剛性が低下し、流路にたわみ込みやすくなる傾向にある。 The thickness of the layer 2 is 110 to 420 μm, preferably 140 to 370 μm, and more preferably 150 to 320 μm. If the thickness of the layer 2 is less than 110 μm, the voids in the layer become smaller and the diffusibility of the electrolytic solution tends to decrease. It tends to bend easily.

本発明のレドックスフロー電池用電極の構成は特に限定されないが、炭素繊維(A)、炭素質(B)、及び黒鉛粒子(C)を含む基材として、層1に炭素繊維織物又は炭素繊維フェルトを用いて、層2に炭素繊維ペーパーを用いる態様が1つの好ましい構成である。このように、層1と層2に別の基材を用いることで、電極仕様の変更に対して組み合わせを変えることで容易に対応することができる。 The configuration of the electrode for the redox flow battery of the present invention is not particularly limited, but as a base material containing carbon fibers (A), carbonaceous materials (B), and graphite particles (C), a carbon fiber woven fabric or carbon fiber felt is formed on the layer 1. One preferred configuration is to use carbon fiber paper for the layer 2 using the above. As described above, by using different base materials for the layer 1 and the layer 2, it is possible to easily respond to the change in the electrode specifications by changing the combination.

また別の好適な構成として、炭素繊維(A)、炭素質(B)、及び黒鉛粒子(C)を含む基材として、層1及び層2に炭素繊維フェルトを用いて、層1を100質量%とした際の層1中の炭素質(B)の含有率よりも、層2を100質量%とした際の層2中の炭素質(B)の含有率の方が多い態様をあげることができる。このように層1と層2の基材を炭素繊維フェルトとすることで、他種の基材を作製するための製造工程がないため、製造コストを抑制することができる。 As another suitable configuration, as a base material containing carbon fibers (A), carbonaceous materials (B), and graphite particles (C), carbon fiber felt is used for layers 1 and 2, and layer 1 is 100% by mass. The aspect in which the content of carbon (B) in layer 2 is higher than the content of carbon (B) in layer 1 when the ratio is 100% by mass is given. Can be done. By using carbon fiber felt as the base material of the layer 1 and the layer 2 in this way, the manufacturing cost can be suppressed because there is no manufacturing process for manufacturing the base material of other kinds.

本発明のレドックスフロー電池用電極100質量%において、炭素質(B)及び黒鉛粒子(C)を合計で20〜45質量%含むことが好ましく、25〜40質量%含むことがより好ましく、25〜35質量%含むことがさらに好ましい。炭素質(B)及び黒鉛粒子(C)の合計の含有率がこの範囲であると、電解液の拡散性と、双極板の流路へのたわみ込み抑制の効果が得られやすく、レドックスフロー電池のセル抵抗を低減することができる。 In 100% by mass of the electrode for a redox flow battery of the present invention, it is preferable that the carbonaceous material (B) and the graphite particles (C) are contained in a total amount of 20 to 45% by mass, more preferably 25 to 40% by mass, and 25 to 50% by mass. It is more preferable to contain 35% by mass. When the total content of carbonaceous (B) and graphite particles (C) is in this range, the diffusivity of the electrolytic solution and the effect of suppressing the deflection of the bipolar plate into the flow path can be easily obtained, and the redox flow battery Cell resistance can be reduced.

なお、本発明のレドックスフロー電池用電極における層1と層2の各層における炭素質(B)と黒鉛粒子(C)の割合として、層1は、黒鉛粒子(C)を添加することにより、電解液の酸化還元の反応性を向上させるため、炭素質(B)/黒鉛粒子(C)の質量比が0.15〜0.30であることが好ましい。一方で層2は、曲げ剛性を高め、双極板の流路へのたわみ込みを抑制するため、炭素質(B)/黒鉛粒子(C)の質量比が0.40〜0.75であることが好ましい。また、電極の拡散性を維持する観点から、層1と層2において、各層を100質量%とした際の炭素繊維(A)の含有率は、層1においては55〜85質量%であることが好ましく、層2においては、50〜70質量%であることがより好ましい。 As a ratio of carbonaceous material (B) and graphite particles (C) in each layer of layer 1 and layer 2 in the electrode for a redox flow battery of the present invention, layer 1 is electrolyzed by adding graphite particles (C). In order to improve the redox reactivity of the liquid, the mass ratio of carbonaceous material (B) / graphite particles (C) is preferably 0.15 to 0.30. On the other hand, the layer 2 has a mass ratio of carbonaceous (B) / graphite particles (C) of 0.40 to 0.75 in order to increase the flexural rigidity and suppress the deflection of the bipolar plate into the flow path. Is preferable. Further, from the viewpoint of maintaining the diffusivity of the electrode, the content of carbon fibers (A) in the layers 1 and 2 when each layer is 100% by mass is 55 to 85% by mass in the layer 1. Is preferable, and in layer 2, it is more preferably 50 to 70% by mass.


次に、本発明のレドックスフロー電池用電極の製造方法について説明する。

Next, a method for manufacturing the electrode for a redox flow battery of the present invention will be described.

本発明の層1に炭素繊維織物を用いたレドックスフロー電池用電極は、例えば、炭素繊維の前駆体繊維としてPAN系耐炎糸を用いて紡績加工により、撚り数150〜1000回/mの紡績糸を作製し、製織により平織、綾織、朱子織などの織物にした物や、炭素繊維を束ねたストランドを製織して織物を作製する。次に、フェノール樹脂などの熱硬化性樹脂バインダーと黒鉛粒子を含む溶液を含浸またはスプレーし乾燥させた後、後述する方法などで得られる炭素繊維ペーパーを層2として重ねて加熱プレスすることで樹脂バインダーの熱硬化と一体化を行い、不活性雰囲気中にて1200℃以上で焼成する方法などにより得ることができる。 The electrode for a redox flow battery using a carbon fiber woven fabric for layer 1 of the present invention is, for example, a spun yarn having a twist number of 150 to 1000 times / m by spinning using a PAN-based flame-resistant yarn as a precursor fiber of the carbon fiber. Is produced, and woven fabrics such as plain weave, twill weave, and red weave are woven by weaving, and strands of carbon fibers are woven to produce woven fabrics. Next, a thermosetting resin binder such as phenol resin and a solution containing graphite particles are impregnated or sprayed and dried, and then carbon fiber paper obtained by a method described later or the like is layered and heat-pressed to form a resin. It can be obtained by a method of performing thermosetting and integration of the binder and firing at 1200 ° C. or higher in an inert atmosphere.

また、層1に炭素繊維フェルトを用いたレドックスフロー電池用電極は、捲縮を付与した繊維長30〜100mmのPAN系耐炎糸をウェブ状に加工し、さらにニードルパンチやウォータジェット加工で繊維同士を交絡することでフェルト化を行う。次に、フェノール樹脂などの熱硬化性樹脂バインダーと黒鉛粒子を含む溶液を含浸またはスプレーして乾燥させた後、加熱プレスすることで樹脂バインダーの熱硬化を行い、不活性雰囲気中にて1200℃以上で炭化することで炭素繊維フェルトを得る。炭素繊維フェルトに熱硬化性樹脂バインダーを塗布した後に炭素繊維ペーパーを層2として重ね、加熱プレスすることで一体化し、不活性雰囲気中にて1200℃以上で炭化する方法などにより得ることができる。なお、炭素繊維織物または、炭素繊維フェルトと炭素繊維ペーパーを一体化せずに作製し、レドックスフロー電池のセルの中で重ねる方法を用いても良い。 Further, in the electrode for a redox flow battery using carbon fiber felt for layer 1, PAN-based flame-resistant yarn having a fiber length of 30 to 100 mm with crimp is processed into a web shape, and the fibers are further processed by needle punching or water jet processing. Is made into felt by entwining. Next, a solution containing a thermosetting resin binder such as phenol resin and graphite particles is impregnated or sprayed to dry, and then heat-pressed to heat-cure the resin binder at 1200 ° C. in an inert atmosphere. Carbon fiber felt is obtained by carbonizing as described above. After applying a thermosetting resin binder to the carbon fiber felt, carbon fiber paper is layered as a layer 2, and the carbon fiber paper is integrated by heat pressing, and can be obtained by a method of carbonizing at 1200 ° C. or higher in an inert atmosphere. A method of producing carbon fiber woven fabric or carbon fiber felt and carbon fiber paper without integrating them and stacking them in a cell of a redox flow battery may be used.

本発明のレドックスフロー電池用電極の層2に用いられる炭素繊維ペーパーは、繊維長3〜20mmの炭素繊維を液中に分散させ、湿式抄紙法により抄紙し、これにバインダーとしてポリビニルアルコール水溶液を塗布、乾燥を行う。次に、フェノール樹脂などの熱硬化性樹脂バインダーと黒鉛粒子を含む溶液を含浸またはスプレーし、加熱プレスすることで樹脂バインダーの熱硬化した後、不活性雰囲気中にて1200℃以上で焼成してする方法などにより得ることができる。 The carbon fiber paper used for the layer 2 of the electrode for a redox flow battery of the present invention is prepared by dispersing carbon fibers having a fiber length of 3 to 20 mm in a liquid, making a paper by a wet paper making method, and applying an aqueous polyvinyl alcohol solution as a binder to the paper. , Dry. Next, the resin binder is heat-cured by impregnating or spraying a solution containing a thermosetting resin binder such as phenol resin and graphite particles and heat-pressing, and then firing at 1200 ° C. or higher in an inert atmosphere. It can be obtained by the method of

層1および層2が炭素繊維フェルトからなるレドックスフロー電池用電極は、捲縮を付与した繊維長30〜100mmのPAN系耐炎糸をウェブ状に加工し、さらにニードルパンチやウォータジェット加工で繊維同士を交絡することでフェルト化を行う。次に、フェノール樹脂などの熱硬化性樹脂バインダーと黒鉛粒子を含む溶液を含浸またはスプレーして乾燥した後、片面のみに熱硬化性樹脂バインダーが付着するようさらに含浸またはスプレーを行い、加熱プレスにより樹脂バインダーを熱硬化させた後、不活性雰囲気中にて1200℃以上で焼成する方法。また別方法としては、捲縮を付与した繊維長30〜100mmのPAN系耐炎糸をウェブ状に加工し、さらにニードルパンチやウォータジェット加工で繊維同士を交絡して作製して高目付と低目付のフェルトを作製する。次にフェノール樹脂などの熱硬化性樹脂バインダーと黒鉛粒子を含む溶液を含浸またはスプレーして乾燥し、高目付フェルト中の樹脂バインダーの質量%よりも低目付フェルト中の樹脂バインダーの質量%が高くなるように付着させた後、高目付フェルトを層1、低目付フェルトを層2として重ねて加熱プレスすることで樹脂バインダーを熱硬化した後、不活性雰囲気中にて1200℃以上で焼成してする方法により得ることができる。 The redox flow battery electrode, in which the layers 1 and 2 are made of carbon fiber felt, is made by processing a crimped PAN-based flame-resistant yarn having a fiber length of 30 to 100 mm into a web shape, and further processing the fibers with each other by needle punching or water jet processing. Is made into felt by entwining. Next, a solution containing a thermosetting resin binder such as phenol resin and graphite particles is impregnated or sprayed to dry, and then further impregnated or sprayed so that the thermosetting resin binder adheres to only one side, and then heat-pressed. A method in which a resin binder is thermoset and then fired at 1200 ° C. or higher in an inert atmosphere. Alternatively, a crimped PAN-based flame-resistant yarn having a fiber length of 30 to 100 mm is processed into a web shape, and the fibers are entangled with each other by needle punching or water jet processing to produce high basis weight and low basis weight. Make the felt. Next, a solution containing a thermosetting resin binder such as phenol resin and graphite particles is impregnated or sprayed and dried, and the mass% of the resin binder in the low-grained felt is higher than the mass% of the resin binder in the high-grained felt. After adhering the resin binder so that it becomes It can be obtained by the method of

本発明のレドックスフロー電池は、前述の本発明のレドックスフロー電池用電極を、正極及び/又は負極に用いたレドックスフロー電池であって、層1をイオン交換膜側、層2を双極板側に向けて配置したものである。これについて、以下、具体的に説明する。 The redox flow battery of the present invention is a redox flow battery in which the above-mentioned electrodes for the redox flow battery of the present invention are used for the positive electrode and / or the negative electrode, and the layer 1 is on the ion exchange membrane side and the layer 2 is on the bipolar plate side. It is placed facing. This will be specifically described below.

本発明のレドックスフロー電池用電極は、フロースルータイプとフローバイタイプのいずれのセルでも使用することができ、正極、負極のいずれか一方、または両方において、層1をイオン交換膜側、層2を双極板側に向けて配置したフローバイタイプのセルにおいて本発明の電極は大きな効果が得られる。フローバイタイプとは、イオン交換膜と、溝を有する双極板に挟まれた電極に、双極板の溝から電解液を供給して通液させる方式のことであり、双極板の溝に電極が撓み込みことで導電抵抗悪化により内部抵抗が増加するため、本発明の電極において曲げ剛性が高い層2を双極板側に向けて配置することで内部抵抗を低下することができる。なお、フローバイタイプの双極板の溝の形状はパラレル、カラム、サーペンタイン、櫛歯型等、レドックスフロー電池または固体高分子形燃料電池で知られる形状を用いることができる。 The electrode for a redox flow battery of the present invention can be used in any of the flow-through type and flow-by type cells, and the layer 1 is placed on the ion exchange membrane side and the layer 2 on either or both of the positive electrode and the negative electrode. The electrode of the present invention can obtain a great effect in a flow-by type cell in which the electrodes are arranged toward the bipolar plate side. The flow-by type is a method in which an electrolytic solution is supplied from the groove of the bipolar plate to the electrode sandwiched between the ion exchange membrane and the bipolar plate having a groove, and the electrode is passed through the groove of the bipolar plate. Since the internal resistance increases due to the deterioration of the conductive resistance due to the bending, the internal resistance can be reduced by arranging the layer 2 having high flexural rigidity toward the bipolar plate side in the electrode of the present invention. As the groove shape of the flow-by type bipolar plate, a shape known as a redox flow battery or a polymer electrolyte fuel cell such as parallel, column, serpentine, and comb tooth type can be used.

以下、実施例により本発明をさらに詳細に説明する。まず、各実施例および比較例における評価方法について説明する。 Hereinafter, the present invention will be described in more detail with reference to Examples. First, the evaluation method in each Example and Comparative Example will be described.

(1)電極の厚さ(μm)
各実施例および比較例により得られた電極を、50mm長×10mm幅の寸法で試験片を5枚カットした。ダイヤルシックネスゲージG−2.4N(株)尾崎製作所製)を用いて、1枚当たり4箇所の厚さ(μm)を測定し、小数点第1位を四捨五入した。試験片5枚についてそれぞれ厚さ(μm)を測定し、数平均値を算出して小数点第1位を四捨五入した値を電極の厚さとした。
(1) Electrode thickness (μm)
The electrodes obtained in each Example and Comparative Example were cut into 5 test pieces having a size of 50 mm length × 10 mm width. Using a dial thickness gauge G-2.4N (manufactured by Ozaki Seisakusho Co., Ltd.), the thickness (μm) at four points per sheet was measured, and the first decimal place was rounded off. The thickness (μm) of each of the five test pieces was measured, the number average value was calculated, and the value rounded to the first decimal place was taken as the electrode thickness.

(2)電極の曲げ弾性率(MPa)
各実施例および比較例により得られた電極を、50mm長×10mm幅の寸法で試験片をカットし、JIS K6911(1995)に基づき、圧子半径5mm、支点半径5mm、支点間距離32mmとして試験片小型卓上試験機EZ−LX((株)島津製作所製)を用いて、3点曲げにて測定した値を、電極の曲げ弾性率とした。なお、曲げ弾性率の計算において用いた電極の厚さは、(1)の「電極の厚さ」に従って求めた値とした。
(2) Electrode flexural modulus (MPa)
The electrodes obtained in each Example and Comparative Example were cut into test pieces with dimensions of 50 mm length × 10 mm width, and based on JIS K6911 (1995), the test pieces were set to have an indenter radius of 5 mm, a fulcrum radius of 5 mm, and a distance between fulcrums of 32 mm. The value measured by 3-point bending using a small desktop tester EZ-LX (manufactured by Shimadzu Corporation) was used as the flexural modulus of the electrode. The thickness of the electrode used in the calculation of the flexural modulus was a value obtained according to the "thickness of the electrode" in (1).

(3)電極の目付(g/m
各実施例および比較例により得られた電極のそれぞれ無作為に選択した5箇所から、50mm長×50mm幅の寸法で試験片をカットし、質量W(g)を測定し、次式により電極の目付(g/m)を算出した。試験片5枚の目付(g/m)から平均値を算出して小数点第1位を四捨五入した値を電極の目付とした。
(3) Electrode basis weight (g / m 2 )
A test piece was cut from five randomly selected electrodes obtained in each of the examples and comparative examples to a size of 50 mm length × 50 mm width, and the mass W (g) was measured. The basis weight (g / m 2 ) was calculated. The average value was calculated from the basis weight (g / m 2 ) of 5 test pieces, and the value rounded to the first decimal place was used as the basis weight of the electrode.

電極目付[g/m]=W[g]/(長50[mm]×幅50[mm]/100)×10000
(4)電極中の層1および層2の厚さ(μm)
各実施例および比較例により得られた電極を無作為に選択した10箇所において刃物で面方向に対する垂直断面を切り出し、電子顕微鏡(KEYENCE製VHX−D500)を用いて倍率100倍にて拡大観察した。断面における炭素繊維(A)の配向状態や炭素質(B)の付着状態から層1と層2の界面を判別した。層1および層2の界面から表面までの厚さ(μm)を10箇所について測定してその平均値を算出し、小数点第1位を四捨五入した値を層1および層2の厚さとした。
Electrode basis weight [g / m 2 ] = W [g] / (length 50 [mm] x width 50 [mm] / 100) x 10000
(4) Thickness (μm) of layer 1 and layer 2 in the electrode
Electrodes obtained in each Example and Comparative Example were randomly selected at 10 locations, and a cross section perpendicular to the plane direction was cut out with a cutting tool and magnified and observed at a magnification of 100 times using an electron microscope (VHX-D500 manufactured by KEYENCE). .. The interface between the layer 1 and the layer 2 was discriminated from the orientation state of the carbon fiber (A) and the adhesion state of the carbon substance (B) in the cross section. The thickness (μm) from the interface of the layers 1 and 2 to the surface was measured at 10 points, the average value was calculated, and the value rounded off to the first decimal place was taken as the thickness of the layers 1 and 2.

(5)電極の加圧時厚さ(μm)
各実施例および比較例により得られた電極のそれぞれ無作為に選択した5箇所から、タテ40mm、ヨコ40mmの寸法で試験片をカットした。小型卓上試験機EZ−LX((株)島津製作所製)を用いて、試験種類を圧縮試験とし、試験片を挟まない状態で上部の圧縮治具を下降させて、下部の治具に接触した地点を厚さのゼロ点とした。次に、試験片を治具の中央に置いて、速度2mm/分の速度で圧縮を行い、1MPa荷重下での厚さ(μm)を測定し、小数点第1位を四捨五入した。試験片5枚の1MPa荷重下での厚さ(μm)について、平均値を算出して、小数点第1位を四捨五入した値を電極の加圧時厚さ(μm)とした。
(5) Thickness of electrode when pressurized (μm)
Specimens were cut to a length of 40 mm and a width of 40 mm from five randomly selected electrodes obtained in each of the examples and comparative examples. Using a small desktop tester EZ-LX (manufactured by Shimadzu Corporation), the test type was a compression test, and the upper compression jig was lowered without sandwiching the test piece to contact the lower jig. The point was set to the zero point of thickness. Next, the test piece was placed in the center of the jig, compressed at a speed of 2 mm / min, the thickness (μm) under a 1 MPa load was measured, and the first decimal place was rounded off. An average value was calculated for the thickness (μm) of five test pieces under a load of 1 MPa, and the value rounded to the first decimal place was taken as the thickness (μm) of the electrode when pressed.

(6)セル抵抗(Ωcm
電極を50mm×50mmの正方形にカットし、これらの電極の間に陽イオン交換膜(ナフィオンNRE−212、デュポン社製)を配置し、1列サーペンタインタイプ(溝幅1mm、溝深さ1mm、リブ幅1mm)の溝が形成された双極板で挟んで単セルとした。また、電極を双極板で挟む際、上記の方法で測定した電極の加圧時厚さとするためにスペーサーを入れて、セル締結時の電極厚さを調整した。
(6) Cell resistance (Ωcm 2 )
The electrodes are cut into a square of 50 mm x 50 mm, and a cation exchange membrane (Nafion NRE-212, manufactured by DuPont) is placed between these electrodes, and a single-row serpentine type (groove width 1 mm, groove depth 1 mm, ribs) is placed. A single cell was formed by sandwiching it between bipolar plates having a groove having a width of 1 mm). Further, when the electrode was sandwiched between the bipolar plates, a spacer was inserted to obtain the thickness of the electrode at the time of pressurization measured by the above method, and the thickness of the electrode at the time of cell fastening was adjusted.

正極電解液として、5価と4価のバナジウム1M(硫酸5M)を質量比1:1で混合し充電率50%の電解液とし、負極電解液として2価と3価のバナジウム1M(硫酸5M)を質量比1:1で混合し、充電率50%の電解液を用い、それぞれ90ml/分で循環させ、電流密度1.0A/cmまでの放電I−Vカーブを測定した。得られたI−Vカーブについて、電流密度0A/cm時の電圧V0と0.40A/cm時の電圧V1から次式により、セル抵抗(Ωcm)を算出した。
セル抵抗[Ωcm]=(電圧V0−電圧V1)/0.4(A/cm
(7)電極の導電抵抗(Ωcm
上記I−Vカーブを測定後、市販の測定装置を利用して交流インピーダンス法によりCole−Coleプロットを行い、円弧を描くまでの抵抗部分から導電抵抗(Ωcm)を求めた。測定は、電圧振幅を10mV、測定周波数範囲を10kHzから10mHzとして行った。
As a positive electrode electrolyte, pentavalent and tetravalent vanadium 1M (sulfuric acid 5M) is mixed at a mass ratio of 1: 1 to obtain an electrolytic solution having a charge rate of 50%, and as a negative electrode electrolyte, divalent and trivalent vanadium 1M (sulfuric acid 5M). ) Was mixed at a mass ratio of 1: 1 and circulated at 90 ml / min using an electrolytic solution having a charge rate of 50%, and the discharge IV curve up to a current density of 1.0 A / cm 2 was measured. For the obtained IV curve, the cell resistance (Ωcm 2 ) was calculated from the voltage V0 at a current density of 0 A / cm 2 and the voltage V1 at 0.40 A / cm 2 by the following equation.
Cell resistance [Ωcm 2 ] = (voltage V0-voltage V1) /0.4 (A / cm 2 )
(7) Conductive resistance of the electrode (Ωcm 2 )
After measuring the IV curve, a Core-Cole plot was performed by the AC impedance method using a commercially available measuring device, and the conductive resistance (Ωcm 2 ) was obtained from the resistance portion until the arc was drawn. The measurement was performed with a voltage amplitude of 10 mV and a measurement frequency range of 10 kHz to 10 MHz.

(製造例1 炭素繊維フェルト1)
PAN系耐炎糸を押し込み式クリンパーにより捲縮糸とした。この耐炎糸を数平均繊維長76mmに切断した後、カード、クロスラッパーを用いてウェブシートとし、次いでニードルパンチを行い、目付350g/m、見かけ密度が0.13g/cmのPAN系耐炎糸フェルトを得た。これをフェノール樹脂(不活性雰囲気下にて1300℃で焼成した際の質量残分が46%)1.6質量%、平均粒径5μmの薄片化黒鉛2.9質量%、メタノール95.5質量%を混合した溶液に該フェルトを浸漬してマングルで絞り、100℃で10分間乾燥させ、フェノール樹脂と黒鉛が付着したフェルトを得た。該フェルトを200℃で5MPaのプレス圧、圧縮時間は3分間として密度を調整後、窒素ガス中で1300℃まで昇温して炭化を行い、炭素繊維フェルト100質量%における、炭素質(B)と黒鉛粒子(C)の含有量が20質量%である、目付282g/m、厚さ881μmの炭素繊維フェルト1を得た。
(Manufacturing Example 1 Carbon Fiber Felt 1)
The PAN-based flame-resistant yarn was made into a crimped yarn by a push-in crimper. After cutting this flame-resistant yarn to a number average fiber length of 76 mm, a web sheet is made using a card and a cloth wrapper, and then needle punching is performed to perform a PAN-based flame resistance having a basis weight of 350 g / m 2 and an apparent density of 0.13 g / cm 3. Obtained thread felt. This is 1.6% by mass of phenol resin (mass residue when calcined at 1300 ° C. in an inert atmosphere is 46%), 2.9% by mass of flaky graphite having an average particle size of 5 μm, and 95.5% by mass of methanol. The felt was immersed in a mixed solution of%, squeezed with a mangle, and dried at 100 ° C. for 10 minutes to obtain a felt to which phenol resin and graphite were attached. After adjusting the density of the felt at 200 ° C. with a press pressure of 5 MPa and a compression time of 3 minutes, the temperature was raised to 1300 ° C. in nitrogen gas for carbonization, and carbon (B) in 100% by mass of carbon fiber felt. A carbon fiber felt 1 having a grain size of 282 g / m 2 and a thickness of 881 μm was obtained in which the content of the graphite particles (C) was 20% by mass.

(製造例2 炭素繊維フェルト2)
PAN系耐炎糸を押し込み式クリンパーにより捲縮糸とした。この耐炎糸を数平均繊維長76mmに切断した後、カード、クロスラッパーを用いてウェブシートとし、次いでニードルパンチを行い、目付540g/m、見かけ密度が0.13g/cmのPAN系耐炎糸フェルトを得た。その後、製造例1と同じフェノール樹脂と薄片化黒鉛を用いて、フェノール樹脂1.8質量%、薄片化黒鉛3.3質量%、メタノール94.9質量%を混合した溶液に該フェルトを浸漬してマングルで絞り、100℃で10分間乾燥させ、フェノール樹脂と黒鉛が付着したフェルトを得た。該フェルトを200℃で5MPaのプレス圧、圧縮時間は3分間として密度を調整後、窒素ガス中で1300℃まで昇温して炭化を行い、炭素繊維フェルト100質量%における、炭素質(B)と黒鉛粒子(C)の含有量が22質量%である、目付442g/m、厚さ1421μmの炭素繊維フェルト2を得た。
(Manufacturing Example 2 Carbon Fiber Felt 2)
The PAN-based flame-resistant yarn was made into a crimped yarn by a push-in crimper. After cutting the flame yarn number average fiber length of 76 mm, cards, and a web sheet with a cross-wrapper, then subjected to needle punching, PAN-based flame having a basis weight of 540 g / m 2, an apparent density of 0.13 g / cm 3 Obtained thread felt. Then, using the same phenol resin and flaky graphite as in Production Example 1, the felt was immersed in a solution in which 1.8% by mass of phenol resin, 3.3% by mass of flaky graphite, and 94.9% by mass of methanol were mixed. The mixture was squeezed with a mangle and dried at 100 ° C. for 10 minutes to obtain a felt to which phenol resin and graphite were attached. After adjusting the density of the felt at 200 ° C. with a press pressure of 5 MPa and a compression time of 3 minutes, the temperature was raised to 1300 ° C. in nitrogen gas for carbonization, and carbon (B) in 100% by mass of carbon fiber felt. A carbon fiber felt 2 having a grain size of 442 g / m 2 and a thickness of 1421 μm was obtained, which contained 22% by mass of the graphite particles (C).

(製造例3 炭素繊維フェルト3)
フェノール樹脂と薄片化黒鉛の混合濃度をフェノール樹脂2.6質量%、薄片化黒鉛4.7質量%、メタノール92.7質量%に変更した以外は、実施例1と同様に行い、炭素繊維フェルト100質量%における、炭素質(B)と黒鉛粒子(C)の含有量が37質量%である、目付354g/m、厚さ1049μmの炭素繊維フェルト3を得た。
(Manufacturing Example 3 Carbon Fiber Felt 3)
The carbon fiber felt was carried out in the same manner as in Example 1 except that the mixed concentration of the phenol resin and the flaky graphite was changed to 2.6% by mass of the phenol resin, 4.7% by mass of the flaky graphite, and 92.7% by mass of the methanol. A carbon fiber felt 3 having a grain size of 354 g / m 2 and a thickness of 1049 μm having a carbon content (B) and graphite particles (C) of 37% by mass at 100% by mass was obtained.

(製造例4 炭素繊維フェルト4)
フェノール樹脂と薄片化黒鉛の混合濃度をフェノール樹脂3.9質量%、薄片化黒鉛7.1質量%、メタノール89.0質量%に変更した以外は、実施例1と同様に行い、炭素繊維フェルト100質量%における、炭素質(B)と黒鉛粒子(C)の含有量が62質量%である、目付590g/m、厚さ1306μmの炭素繊維フェルト4を得た。
(Production Example 4 Carbon Fiber Felt 4)
The carbon fiber felt was carried out in the same manner as in Example 1 except that the mixed concentration of the phenol resin and the flaky graphite was changed to 3.9% by mass of the phenol resin, 7.1% by mass of the flaky graphite, and 89.0% by mass of the methanol. A carbon fiber felt 4 having a grain size of 590 g / m 2 and a thickness of 1306 μm having a carbon content (B) and graphite particles (C) of 62% by mass at 100% by mass was obtained.

(製造例5 炭素繊維フェルト5)
製造例1と同じフェノール樹脂と薄片化黒鉛を用いて、製造例1で用いたPAN系耐炎糸フェルトをフェノール樹脂1.6質量%、薄片化黒鉛2.9質量%、メタノール95.5質量%を混合した溶液に浸漬してマングルで絞り、100℃で10分間乾燥させ、フェノール樹脂と黒鉛が付着したフェルトを得た。次いで、該フェルトの厚さの内、表面から210μmの部分のみをフェノール樹脂10質量%、メタノール90質量%を混合した溶液に浸漬してマングルで絞り、100℃で10分間乾燥し、片面の表層側にさらにフェノール樹脂が付着したフェルトを得た。該フェルトを200℃で5MPaのプレス圧、圧縮時間は3分間として密度を調整後、窒素ガス中で1300℃まで昇温して炭化を行い、炭素繊維フェルト100質量%における、炭素質(B)と黒鉛粒子(C)の含有量が43質量%である、目付384g/m、厚さ1000μmの炭素繊維フェルト4を得た。
(Production Example 5 Carbon Fiber Felt 5)
Using the same phenol resin and flaky graphite as in Production Example 1, the PAN-based flame-resistant yarn felt used in Production Example 1 was 1.6% by mass of phenol resin, 2.9% by mass of flaky graphite, and 95.5% by mass of methanol. Was immersed in the mixed solution, squeezed with a mangle, and dried at 100 ° C. for 10 minutes to obtain a felt to which phenol resin and graphite were attached. Next, of the thickness of the felt, only the portion 210 μm from the surface was immersed in a solution containing 10% by mass of phenol resin and 90% by mass of methanol, squeezed with a mangle, dried at 100 ° C. for 10 minutes, and the surface layer on one side. A felt having a phenol resin further attached to the side was obtained. After adjusting the density of the felt at 200 ° C. with a press pressure of 5 MPa and a compression time of 3 minutes, the temperature was raised to 1300 ° C. in nitrogen gas for carbonization, and carbon (B) in 100% by mass of carbon fiber felt. A carbon fiber felt 4 having a grain size of 384 g / m 2 and a thickness of 1000 μm was obtained in which the content of the graphite particles (C) was 43% by mass.

(製造例6 炭素繊維ペーパー1)
PAN系炭素繊維を繊維長6mmにカットし、湿式抄紙法により炭素繊維抄紙とし、バインダーとしてポリビニルアルコール水溶液を付与した後、乾燥、加熱プレスを行い、ポリビニルアルコールが20質量%付着した、目付33g/mの炭素繊維抄紙を得た。これを製造例1と同じフェノール樹脂と薄片化黒鉛を用いて、フェノール樹脂2.2質量%、薄片化黒鉛2.3質量%、メタノール95.5質量%を混合した溶液に浸漬してマングルで絞り、100℃で10分間乾燥させ、フェノール樹脂と黒鉛が付着した炭素繊維抄紙を得た。この炭素繊維抄紙を200℃で5MPaのプレス圧、圧縮時間は3分間として密度を調整後、窒素ガス中で1500℃まで昇温して炭化を行い、炭素繊維ペーパー100質量%における、炭素質(B)と黒鉛粒子(C)の含有量が47質量%である目付50g/m、厚さ191μmの炭素繊維ペーパー1を得た。
(Production Example 6 Carbon Fiber Paper 1)
PAN-based carbon fibers are cut to a fiber length of 6 mm, made into carbon fiber paper by a wet papermaking method, an aqueous solution of polyvinyl alcohol is applied as a binder, and then dried and heat-pressed. A carbon fiber papermaking of m 2 was obtained. Using the same phenol resin and flaky graphite as in Production Example 1, dip this in a mixed solution of 2.2% by mass of phenol resin, 2.3% by mass of flaky graphite, and 95.5% by mass of methanol with a mangle. It was squeezed and dried at 100 ° C. for 10 minutes to obtain a carbon fiber paper with phenol resin and graphite attached. After adjusting the density of this carbon fiber paper by setting a press pressure of 5 MPa at 200 ° C. and a compression time of 3 minutes, the temperature is raised to 1500 ° C. in nitrogen gas to carbonize the carbon fiber (carbon fiber paper) in 100% by mass of the carbon fiber paper. A carbon fiber paper 1 having a grain size of 50 g / m 2 and a thickness of 191 μm having a content of B) and graphite particles (C) of 47% by mass was obtained.

(製造例7 炭素繊維ペーパー2)
PAN系炭素繊維を繊維長6mmにカットし、湿式抄紙法により炭素繊維抄紙とし、バインダーとしてポリビニルアルコール水溶液を付与した後、乾燥、加熱プレスを行い、ポリビニルアルコールが20質量%付着した、目付56g/mの炭素繊維抄紙を得た。これを製造例1と同じフェノール樹脂と薄片化黒鉛を用いて、フェノール樹脂2.2質量%、薄片化黒鉛2.3質量%、メタノール95.5質量%を混合した溶液に浸漬してマングルで絞り、100℃で10分間乾燥させ、フェノール樹脂と黒鉛が付着した炭素繊維抄紙を得た。この炭素繊維抄紙を200℃で5MPaのプレス圧、圧縮時間は3分間として密度を調整後、窒素ガス中で1500℃まで昇温して炭化を行い、炭素繊維ペーパー100質量%における、炭素質(B)と黒鉛粒子(C)の含有量が45質量%である目付84g/m、厚さ320μmの炭素繊維ペーパー2を得た。
(Manufacturing Example 7 Carbon Fiber Paper 2)
PAN-based carbon fibers are cut to a fiber length of 6 mm, made into carbon fiber paper by a wet papermaking method, an aqueous solution of polyvinyl alcohol is applied as a binder, and then dried and heat-pressed. A carbon fiber papermaking of m 2 was obtained. Using the same phenol resin and flaky graphite as in Production Example 1, dip this in a mixed solution of 2.2% by mass of phenol resin, 2.3% by mass of flaky graphite, and 95.5% by mass of methanol with a mangle. It was squeezed and dried at 100 ° C. for 10 minutes to obtain a carbon fiber paper with phenol resin and graphite attached. After adjusting the density of this carbon fiber paper by setting a press pressure of 5 MPa at 200 ° C. and a compression time of 3 minutes, the temperature is raised to 1500 ° C. in nitrogen gas to carbonize the carbon fiber (carbon fiber paper) in 100% by mass of the carbon fiber paper. A carbon fiber paper 2 having a grain size of 84 g / m 2 and a thickness of 320 μm having a content of B) and graphite particles (C) of 45% by mass was obtained.

(製造例8 炭素繊維ペーパー3)
フェノール樹脂および薄片化黒鉛の濃度を、フェノール樹脂1.0質量%、薄片化黒鉛1.1質量%、メタノール97.9質量%に変更した以外は製造例6と同様に行い、炭素繊維ペーパー100質量%における、炭素質(B)と黒鉛粒子(C)の含有量が20質量%である目付34g/m、厚さ190μmの炭素繊維ペーパー3を得た。
(Production Example 8 Carbon Fiber Paper 3)
The carbon fiber paper 100 was carried out in the same manner as in Production Example 6 except that the concentrations of the phenol resin and the flaky graphite were changed to 1.0% by mass of the phenol resin, 1.1% by mass of the flaky graphite, and 97.9% by mass of the methanol. A carbon fiber paper 3 having a grain size of 34 g / m 2 and a thickness of 190 μm having a content of carbonaceous material (B) and graphite particles (C) in mass% of 20% by mass was obtained.

(製造例9 炭素繊維ペーパー4)
PAN系炭素繊維を繊維長6mmにカットし、湿式抄紙法により炭素繊維抄紙とし、バインダーとしてポリビニルアルコール水溶液を付与した後、乾燥、加熱プレスを行い、ポリビニルアルコールが20質量%付着した、目付65g/mの炭素繊維抄紙を得た。これを製造例1と同じフェノール樹脂と薄片化黒鉛を用いて、フェノール樹脂3.0質量%、薄片化黒鉛3.1質量%、メタノール93.9質量%を混合した溶液に浸漬してマングルで絞り、100℃で10分間乾燥させ、フェノール樹脂と黒鉛が付着した炭素繊維抄紙を得た。この炭素繊維抄紙を200℃で5MPaのプレス圧、圧縮時間は3分間として密度を調整後、窒素ガス中で1500℃まで昇温して炭化を行い、炭素繊維ペーパー100質量%における、炭素質(B)と黒鉛粒子(C)の含有量が66質量%である目付158g/m、厚さ460μmの炭素繊維ペーパー4を得た。
(Manufacturing Example 9 Carbon Fiber Paper 4)
PAN-based carbon fibers are cut to a fiber length of 6 mm, made into carbon fiber paper by a wet papermaking method, an aqueous solution of polyvinyl alcohol is applied as a binder, and then dried and heat-pressed. A carbon fiber papermaking of m 2 was obtained. Using the same phenol resin and flaky graphite as in Production Example 1, this is immersed in a mixed solution of 3.0% by mass of phenol resin, 3.1% by mass of flaky graphite, and 93.9% by mass of methanol with a mangle. It was squeezed and dried at 100 ° C. for 10 minutes to obtain a carbon fiber paper with phenol resin and graphite attached. After adjusting the density of this carbon fiber paper by setting a press pressure of 5 MPa at 200 ° C. and a compression time of 3 minutes, the temperature is raised to 1500 ° C. in nitrogen gas to carbonize the carbon fiber (carbon fiber paper) in 100% by mass of the carbon fiber paper. A carbon fiber paper 4 having a grain size of 158 g / m 2 and a thickness of 460 μm having a content of B) and graphite particles (C) of 66 mass% was obtained.

(製造例10 負極用電極)
PAN系耐炎糸を押し込み式クリンパーにより捲縮糸とした。この耐炎糸を数平均繊維長76mmに切断した後、カード、クロスラッパーを用いてウェブシートとし、ついでニードルパンチを行い、見かけ密度が0.13g/cmのPAN系耐炎糸フェルトを得た。次いで窒素雰囲気中1,300℃の温度まで昇温して炭化を行い、目付280g/m、密度0.08g/cm3の炭素繊維フェルトとした。その後、空気雰囲気下にて700℃で20分加熱を行い、目付240g/mの負極用電極材を得た。
(Manufacturing Example 10 Negative electrode)
The PAN-based flame-resistant yarn was made into a crimped yarn by a push-in crimper. After cutting this flame-resistant yarn to a number average fiber length of 76 mm, a web sheet was formed using a card and a cross wrapper, and then needle punching was performed to obtain a PAN-based flame-resistant yarn felt having an apparent density of 0.13 g / cm 3. Next, the material was carbonized by raising the temperature to a temperature of 1,300 ° C. in a nitrogen atmosphere to obtain a carbon fiber felt having a grain size of 280 g / m 2 and a density of 0.08 g / cm 3. Then, it was heated at 700 ° C. for 20 minutes in an air atmosphere to obtain an electrode material for a negative electrode having a basis weight of 240 g / m 2.

(実施例1)
製造例1で得た炭素繊維フェルト1の片面にフェノール樹脂を塗布した後、製造例6で得た炭素繊維ペーパー1を重ね、200℃で5MPaのプレス圧、圧縮時間は3分間として一体化を行い、再度窒素ガス中で1300℃まで昇温して炭化を行うことで電極を作製した。この電極の炭素繊維フェルト側をイオン交換膜側として正極に用い、負極に製造例10で得た負極用電極を用いたセルにて、単セルのレドックスフロー電池を組み、セル抵抗および電極の導電抵抗の測定を行った。この組み合わせのセルでは、導電抵抗と拡散抵抗が低減されており、セル抵抗が低いレドックスフロー電池が得られた。得られた電極の特性を表1に示す。
(Example 1)
After applying a phenol resin to one side of the carbon fiber felt 1 obtained in Production Example 1, the carbon fiber paper 1 obtained in Production Example 6 was laminated, pressed at 200 ° C. at 5 MPa, and the compression time was 3 minutes for integration. Then, the temperature was raised to 1300 ° C. again in nitrogen gas and carbonization was performed to prepare an electrode. A single-cell redox flow battery is assembled in a cell using the carbon fiber felt side of this electrode as the ion exchange membrane side as the positive electrode and the negative electrode obtained in Production Example 10 as the negative electrode, and the cell resistance and the conductivity of the electrode are conductive. The resistance was measured. In the cell of this combination, the conductive resistance and the diffusion resistance were reduced, and a redox flow battery having a low cell resistance was obtained. The characteristics of the obtained electrodes are shown in Table 1.

(実施例2)
製造例2で得た炭素繊維フェルト2の片面にフェノール樹脂を塗布した後、製造例7で得た炭素繊維ペーパー2を重ね、200℃で5MPaのプレス圧、圧縮時間は3分間として一体化を行い、再度窒素ガス中で1300℃まで昇温して炭化を行うことで電極を作製した。この電極の炭素繊維フェルト側をイオン交換膜側として正極に用い、負極に製造例10で得た負極用電極を用いたセルにて、単セルのレドックスフロー電池を組み、セル抵抗および電極の導電抵抗の測定を行った。この組み合わせのセルでは、導電抵抗と拡散抵抗が低減されており、セル抵抗が低いレドックスフロー電池が得られた。得られた電極の特性を表1に示す。
(Example 2)
After applying a phenol resin to one side of the carbon fiber felt 2 obtained in Production Example 2, the carbon fiber paper 2 obtained in Production Example 7 was laminated, pressed at 200 ° C. at 5 MPa, and the compression time was 3 minutes for integration. Then, the temperature was raised to 1300 ° C. again in nitrogen gas and carbonization was performed to prepare an electrode. A single-cell redox flow battery is assembled in a cell using the carbon fiber felt side of this electrode as the ion exchange membrane side as the positive electrode and the negative electrode obtained in Production Example 10 as the negative electrode, and the cell resistance and the conductivity of the electrode are conductive. The resistance was measured. In the cell of this combination, the conductive resistance and the diffusion resistance were reduced, and a redox flow battery having a low cell resistance was obtained. The characteristics of the obtained electrodes are shown in Table 1.

(実施例3)
製造例3で得た炭素繊維フェルト3の片面にフェノール樹脂を塗布した後、製造例6で得た炭素繊維ペーパー1を重ね、200℃で5MPaのプレス圧、圧縮時間は3分間として一体化を行い、再度窒素ガス中で1300℃まで昇温して炭化を行うことで電極を作製した。この電極の炭素繊維フェルト側をイオン交換膜側として正極に用い、負極に製造例10で得た負極用電極を用いたセルにて、単セルのレドックスフロー電池を組み、セル抵抗および電極の導電抵抗の測定を行った。この組み合わせのセルでは、導電抵抗と拡散抵抗が低減されており、セル抵抗が低いレドックスフロー電池が得られた。得られた電極の特性を表1に示す。
(Example 3)
After applying a phenol resin to one side of the carbon fiber felt 3 obtained in Production Example 3, the carbon fiber paper 1 obtained in Production Example 6 was laminated, pressed at 200 ° C. at 5 MPa, and the compression time was 3 minutes for integration. Then, the temperature was raised to 1300 ° C. again in nitrogen gas and carbonization was performed to prepare an electrode. A single-cell redox flow battery is assembled in a cell using the carbon fiber felt side of this electrode as the ion exchange membrane side as the positive electrode and the negative electrode obtained in Production Example 10 as the negative electrode, and the cell resistance and the conductivity of the electrode are conductive. The resistance was measured. In the cell of this combination, the conductive resistance and the diffusion resistance were reduced, and a redox flow battery having a low cell resistance was obtained. The characteristics of the obtained electrodes are shown in Table 1.

(実施例4)
製造例5で得た炭素繊維フェルト5のフェノール樹脂付着量が少ない面をイオン交換膜側として正極に用い、負極に製造例10で得た負極用電極を用いたセルにて、単セルのレドックスフロー電池を組み、セル抵抗および電極の導電抵抗の測定を行った。この組み合わせのセルでは、導電抵抗と拡散抵抗が低減されており、セル抵抗が低いレドックスフロー電池が得られた。得られた電極の特性を表1に示す。
(Example 4)
A single cell redox is used in a cell in which the surface of the carbon fiber felt 5 obtained in Production Example 5 having a small amount of phenol resin adhered is used as the ion exchange membrane side for the positive electrode and the negative electrode obtained in Production Example 10 is used as the negative electrode. A flow battery was assembled and the cell resistance and the conductive resistance of the electrodes were measured. In the cell of this combination, the conductive resistance and the diffusion resistance were reduced, and a redox flow battery having a low cell resistance was obtained. The characteristics of the obtained electrodes are shown in Table 1.

(実施例5)
実施例1の電極の炭素繊維フェルト側をイオン交換膜側として正極と負極に用いたセルにて、単セルのレドックスフロー電池を組み、セル抵抗および電極の導電抵抗の測定を行った。この組み合わせのセルでは、導電抵抗と拡散抵抗が低減されており、セル抵抗が低いレドックスフロー電池が得られた。得られた電極の特性を表1に示す。
(Example 5)
A single-cell redox flow battery was assembled in a cell used for the positive electrode and the negative electrode with the carbon fiber felt side of the electrode of Example 1 as the ion exchange membrane side, and the cell resistance and the conductive resistance of the electrode were measured. In the cell of this combination, the conductive resistance and the diffusion resistance were reduced, and a redox flow battery having a low cell resistance was obtained. The characteristics of the obtained electrodes are shown in Table 1.

(比較例1)
製造例1で得た炭素繊維フェルト1を正極、負極に製造例10で得た負極用電極を用いたセルにて、単セルのレドックスフロー電池を組み、セル抵抗および電極の導電抵抗の測定を行った。この組み合わせのセルでは、双極板の流路に電極が撓み込んだことにより、導電抵抗が高く、その影響でセル抵抗が高い結果となった。得られた電極の特性を表1に示す。
(Comparative Example 1)
A single-cell redox flow battery was assembled in a cell using the carbon fiber felt 1 obtained in Production Example 1 as the positive electrode and the negative electrode obtained in Production Example 10 as the negative electrode, and the cell resistance and the conductive resistance of the electrode were measured. went. In the cell of this combination, the conductive resistance was high due to the bending of the electrode into the flow path of the bipolar plate, and the result was that the cell resistance was high due to the influence. The characteristics of the obtained electrodes are shown in Table 1.

(比較例2)
製造例4で得た炭素繊維フェルト4を正極、負極に製造例10で得た負極用電極を用いたセルにて、単セルのレドックスフロー電池を組み、セル抵抗および電極の導電抵抗の測定を行った。この組み合わせのセルでは、双極板の流路への電極の撓み込みがなく、導電抵抗は低かったものの、電極の拡散性が低いため、セル抵抗が高い結果となった。得られた電極の特性を表1に示す。
(Comparative Example 2)
A single-cell redox flow battery was assembled in a cell using the carbon fiber felt 4 obtained in Production Example 4 as the positive electrode and the negative electrode obtained in Production Example 10 as the negative electrode, and the cell resistance and the conductive resistance of the electrode were measured. went. In the cell of this combination, the electrode did not bend into the flow path of the bipolar plate and the conductive resistance was low, but the diffusivity of the electrode was low, so that the cell resistance was high. The characteristics of the obtained electrodes are shown in Table 1.


(比較例3)
製造例1で得た炭素繊維フェルト1の片面にフェノール樹脂を塗布した後、製造例8で得た炭素繊維ペーパー3を重ね、200℃で5MPaのプレス圧、圧縮時間は3分間として一体化を行い、再度窒素ガス中で1300℃まで昇温して炭化を行うことで電極を作製した。この電極の炭素繊維フェルト側をイオン交換膜側として正極に用い、負極に製造例10で得た負極用電極を用いたセルにて、単セルのレドックスフロー電池を組み、セル抵抗および電極の導電抵抗の測定を行った。この組み合わせのセルでは、双極板の流路に電極が撓み込んだことにより、導電抵抗が高く、その影響でセル抵抗が高い結果となった。得られた電極の特性を表1に示す。

(Comparative Example 3)
After applying a phenol resin to one side of the carbon fiber felt 1 obtained in Production Example 1, the carbon fiber paper 3 obtained in Production Example 8 is laminated, and the press pressure is 5 MPa at 200 ° C. and the compression time is 3 minutes. Then, the temperature was raised to 1300 ° C. again in nitrogen gas and carbonization was performed to prepare an electrode. A single-cell redox flow battery is assembled in a cell using the carbon fiber felt side of this electrode as the ion exchange membrane side as the positive electrode and the negative electrode obtained in Production Example 10 as the negative electrode, and the cell resistance and the conductivity of the electrode are conductive. The resistance was measured. In the cell of this combination, the conductive resistance was high due to the bending of the electrode into the flow path of the bipolar plate, and the result was that the cell resistance was high due to the influence. The characteristics of the obtained electrodes are shown in Table 1.

(比較例4)
製造例1で得た炭素繊維フェルト1の片面にフェノール樹脂を塗布した後、製造例9で得た炭素繊維ペーパー4を重ね、200℃で5MPaのプレス圧、圧縮時間は3分間として一体化を行い、再度窒素ガス中で1300℃まで昇温して炭化を行うことで電極を作製した。この電極の炭素繊維フェルト側をイオン交換膜側として正極に用い、負極に製造例10で得た負極用電極を用いたセルにて、単セルのレドックスフロー電池を組み、セル抵抗および電極の導電抵抗の測定を行った。この組み合わせのセルでは、双極板の流路への電極の撓み込みがなく、導電抵抗は低かったものの、電極の拡散性が低いため、セル抵抗が高い結果となった。得られた電極の特性を表1に示す。
(Comparative Example 4)
After applying a phenol resin to one side of the carbon fiber felt 1 obtained in Production Example 1, the carbon fiber paper 4 obtained in Production Example 9 was laminated, and the press pressure was 5 MPa at 200 ° C. and the compression time was 3 minutes for integration. Then, the temperature was raised to 1300 ° C. again in nitrogen gas and carbonization was performed to prepare an electrode. A single-cell redox flow battery is assembled in a cell using the carbon fiber felt side of this electrode as the ion exchange membrane side as the positive electrode and the negative electrode obtained in Production Example 10 as the negative electrode, and the cell resistance and the conductivity of the electrode are conductive. The resistance was measured. In the cell of this combination, the electrode did not bend into the flow path of the bipolar plate and the conductive resistance was low, but the diffusivity of the electrode was low, so that the cell resistance was high. The characteristics of the obtained electrodes are shown in Table 1.

Figure 2021125385
Figure 2021125385

Figure 2021125385
Figure 2021125385

Claims (5)

層1及び層2からなる電極であって、
前記層1及び前記層2は、炭素繊維(A)、炭素質(B)、及び黒鉛粒子(C)を含み、
前記層1の側へ曲げた際の曲げ弾性率が、130〜180MPaであり、
前記層2の側へ曲げた際の曲げ弾性率が、前記層1の側に曲げた際の曲げ弾性率の1.2〜1.4倍であり、
前記層1の厚さが、560〜1900μmであり、
前記層2の厚さが110〜420μmであり、
前記電極の目付が300〜680g/mである、レドックスフロー電池用電極。
An electrode composed of layers 1 and 2
The layer 1 and the layer 2 contain carbon fibers (A), carbonaceous (B), and graphite particles (C).
The flexural modulus when bent toward the layer 1 is 130 to 180 MPa.
The flexural modulus when bent toward the layer 2 is 1.2 to 1.4 times the flexural modulus when bent toward the layer 1.
The thickness of the layer 1 is 560 to 1900 μm.
The thickness of the layer 2 is 110 to 420 μm.
An electrode for a redox flow battery having a basis weight of the electrode of 300 to 680 g / m 2.
前記層1は、炭素繊維織物、又は、炭素繊維フェルトであり、
前記層2は、炭素繊維ペーパーである、請求項1に記載のレドックスフロー電池用電極。
The layer 1 is a carbon fiber woven fabric or a carbon fiber felt.
The electrode for a redox flow battery according to claim 1, wherein the layer 2 is a carbon fiber paper.
前記層1及び前記層2は、炭素繊維フェルトであり、
前記層1を100質量%とした際の前記層1中の炭素質(B)の含有率よりも、前記層2を100質量%とした際の前記層2中の炭素質(B)の含有率の方が多い、請求項1に記載のレドックスフロー電池用電極。
The layer 1 and the layer 2 are carbon fiber felts, and the layer 1 and the layer 2 are carbon fiber felts.
The content of carbonaceous material (B) in the layer 2 when the layer 2 is 100% by mass is higher than the content of carbonaceous material (B) in the layer 1 when the layer 1 is 100% by mass. The electrode for a redox flow battery according to claim 1, which has a higher rate.
前記電極100質量%において、炭素質(B)及び黒鉛粒子(C)を合計で20〜45質量%含む、請求項1〜3のいずれかに記載のレドックスフロー電池用電極。 The electrode for a redox flow battery according to any one of claims 1 to 3, wherein the electrode contains 100% by mass of carbonaceous material (B) and graphite particles (C) in a total amount of 20 to 45% by mass. 請求項1〜4のいずれかに記載のレドックスフロー電池用電極を、正極及び/又は負極に用いたレドックスフロー電池であって、
前記層1をイオン交換膜側、前記層2を双極板側に向けて配置した、レドックスフロー電池。
A redox flow battery in which the electrode for a redox flow battery according to any one of claims 1 to 4 is used for a positive electrode and / or a negative electrode.
A redox flow battery in which the layer 1 is arranged toward the ion exchange membrane side and the layer 2 is arranged toward the bipolar plate side.
JP2020018501A 2020-02-06 2020-02-06 Electrode for redox flow battery and redox flow cell Pending JP2021125385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020018501A JP2021125385A (en) 2020-02-06 2020-02-06 Electrode for redox flow battery and redox flow cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020018501A JP2021125385A (en) 2020-02-06 2020-02-06 Electrode for redox flow battery and redox flow cell

Publications (1)

Publication Number Publication Date
JP2021125385A true JP2021125385A (en) 2021-08-30

Family

ID=77460159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020018501A Pending JP2021125385A (en) 2020-02-06 2020-02-06 Electrode for redox flow battery and redox flow cell

Country Status (1)

Country Link
JP (1) JP2021125385A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116565244A (en) * 2023-07-10 2023-08-08 北京普能世纪科技有限公司 Bipolar plate for flow battery and flow battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116565244A (en) * 2023-07-10 2023-08-08 北京普能世纪科技有限公司 Bipolar plate for flow battery and flow battery
CN116565244B (en) * 2023-07-10 2023-10-31 北京普能世纪科技有限公司 Bipolar plate for flow battery and flow battery

Similar Documents

Publication Publication Date Title
JP4083784B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
JP5537664B2 (en) Conductive sheet and manufacturing method thereof
US20100159357A1 (en) Separator for Fuel Cell and Process for Producing the Same
KR101719887B1 (en) Flow battery with carbon paper
JP6577697B2 (en) Carbon fiber felt, method for producing the same, and liquid flow electrolytic cell
KR20200046041A (en) Carbon electrode material for redox flow battery and manufacturing method thereof
WO1999036980A1 (en) Material for electrode
EP2973783A1 (en) Improved electrode for flow batteries
JP2014029035A (en) Carbon fiber felt, method for producing the same and electrode
WO2014109957A1 (en) Improved bipolar plate for flow batteries
US20090130534A1 (en) Separator for fuel cell and process for producing the same
JP2021125385A (en) Electrode for redox flow battery and redox flow cell
JP7305935B2 (en) Electrodes for redox flow batteries and redox flow batteries
JP4366802B2 (en) Carbon electrode material assembly and manufacturing method thereof
JP2018133141A (en) Redox battery using thin diaphragm
JP6847217B2 (en) Electrode structure and redox flow battery containing it
WO2000049213A1 (en) Carbon fiber woven fabric and method for production thereof
JP4280883B2 (en) Electrolyzer and electrode material for redox flow battery
JP3844101B2 (en) Grooved electrode material and manufacturing method thereof
JPH01239767A (en) Electrode substrate and manufacture thereof
CN107785587B (en) Electrode for vanadium redox flow battery with improved functionality and vanadium redox flow battery adopting same
JP2001085028A (en) Carbon electrode material assembly
JPH0546668B2 (en)
JP2014531118A (en) Gas diffusion substrate
JP2020161388A (en) Flow battery electrode