JP2001085024A - Carbon electrode material assembly - Google Patents

Carbon electrode material assembly

Info

Publication number
JP2001085024A
JP2001085024A JP25656299A JP25656299A JP2001085024A JP 2001085024 A JP2001085024 A JP 2001085024A JP 25656299 A JP25656299 A JP 25656299A JP 25656299 A JP25656299 A JP 25656299A JP 2001085024 A JP2001085024 A JP 2001085024A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
electrode material
carbonaceous
carbon atoms
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP25656299A
Other languages
Japanese (ja)
Inventor
Makoto Inoue
誠 井上
Masanobu Kobayashi
真申 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP25656299A priority Critical patent/JP2001085024A/en
Publication of JP2001085024A publication Critical patent/JP2001085024A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a carbon electrode material assembly capable of reducing the cell resistance of a redox flow battery by improving both the characteristics of carbonaceous fibers and the physical properties of non-woven fabric, enhancing the energy efficiency by allowing the electrolytic solution in an electrolytic bath to flow smoothly, and maintaining low the contact resistance of the carbon electrode material for a long period of time. SOLUTION: The carbon electrode material assembly used in a redox flow battery using aqueous solution electrolytic solution consists of a non-woven fabric of carbonaceous fibers, wherein the fibers simultaneously meet the requisite conditions (a) and (b) obtained through XPS surface analysis; (a) the amount of surface acid functional radicals is 0.2-2.0% of the total number of surface carbon atoms and (b) the number of surface carbon atoms in double bond with nitrogen is 0.3-3.0% of the total number of surface carbon atoms. The non-woven fabric has a bulk density of 0.05-0.17 g/cm3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水溶液系電解液に
よるレドックスフロー電池に使用され、炭素質繊維の不
織布よりなる炭素電極材集合体に関するものであり、特
に、バナジウム系レドックスフロー電池に有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a redox flow battery using an aqueous electrolytic solution, and more particularly to a carbon electrode material assembly made of a nonwoven fabric of carbonaceous fibers, and is particularly useful for a vanadium redox flow battery. is there.

【0002】[0002]

【従来の技術】従来より、電極は電池の性能を左右する
ものとして重点的に開発されている。電極には、それ自
体が活物質とならず、活物質の電気化学的反応を促進さ
せる反応場として働くタイプのものがあり、このタイプ
には導電性や耐薬品性などから炭素材料がよく用いられ
る。特に電力貯蔵用に開発が盛んなレドックスフロー電
池の電極には、耐薬品性があり、導電性を有し、かつ通
液性のある炭素質繊維の不織布等が用いられている。
2. Description of the Related Art Conventionally, electrodes have been developed with emphasis on the performance of batteries. Some electrodes do not become active materials themselves, but work as a reaction field to promote the electrochemical reaction of the active material.For this type, carbon materials are often used due to their conductivity and chemical resistance. Can be In particular, a nonwoven fabric of carbon fiber having chemical resistance, conductivity, and liquid permeability is used for an electrode of a redox flow battery which is actively developed for power storage.

【0003】レドックスフロー電池は、正極に鉄の塩酸
水溶液、負極にクロムの塩酸水溶液を用いたタイプか
ら、起電力の高いバナジウムの硫酸水溶液を両極に用い
るタイプに替わり、高エネルギー密度化されたが、最近
さらに活物質濃度を高める開発が進み、一段と高エネル
ギー密度化が進んでいる。
[0003] Redox flow batteries have a higher energy density from a type using an aqueous hydrochloric acid solution of iron for the positive electrode and an aqueous solution of chromium hydrochloric acid for the negative electrode, to a type using a high-electromotive force aqueous solution of vanadium sulfuric acid for both electrodes. Recently, developments for further increasing the concentration of the active material have been advanced, and the energy density has been further increased.

【0004】レドックスフロー型電池の主な構成は、図
1に示すように電解液を貯える外部タンク6,7と電解
槽ECからなり、ポンプ8,9にて活物質を含む電解液
を外部タンク6,7から電解槽ECに送りながら、電解
槽ECに組み込まれた電極上で電気化学的なエネルギー
変換、すなわち充放電が行われる。
The main structure of a redox flow type battery is, as shown in FIG. 1, composed of external tanks 6 and 7 for storing an electrolytic solution and an electrolytic cell EC, and pumps 8 and 9 for supplying an electrolytic solution containing an active material to the external tank. While being sent from 6, 7 to the electrolytic cell EC, electrochemical energy conversion, that is, charge / discharge is performed on the electrodes incorporated in the electrolytic cell EC.

【0005】一般に、充放電の際には、電解液を外部タ
ンクと電解槽との間で循環させるため、電解槽は図1に
示すような液流通型構造をとる。該液流通型電解槽を単
セルと称し、これを最小単位として単独もしくは多段積
層して用いられる。液流通型電解槽における電気化学反
応は、電極表面で起こる不均一相反応であるため、一般
的には二次元的な電解反応場を伴うことになる。電解反
応場が二次元的であると、電解槽の単位体積当たりの反
応量が小さいという難点がある。
In general, during charging and discharging, an electrolytic solution is circulated between an external tank and an electrolytic bath, so that the electrolytic bath has a liquid flow type structure as shown in FIG. The liquid flow type electrolytic cell is referred to as a single cell, which is used as a minimum unit and is used alone or in a multi-layered structure. Since the electrochemical reaction in the liquid flowing type electrolytic cell is a heterogeneous phase reaction occurring on the electrode surface, it generally involves a two-dimensional electrolytic reaction field. When the electrolytic reaction field is two-dimensional, there is a disadvantage that the reaction amount per unit volume of the electrolytic cell is small.

【0006】そこで、単位面積当りの反応量、すなわち
電流密度を増すために電気化学反応場の三次元化が行わ
れるようになった。図2は、三次元電極を有する液流通
型電解槽の分解斜視図である。該電解槽では、相対する
二枚の集電板1,1間にイオン交換膜3が配設され、イ
オン交換膜3の両側にスペーサ2によって集電板1,1
の内面に沿った電解液の流路4a,4bが形成されてい
る。該流通路4a,4bの少なくとも一方には炭素質繊
維の不織布等よりなる電極材5が配設されており、この
ようにして三次元電極が構成されている。なお、集電板
1には、電解液の液流入口10と液流出口11とが設け
られている。
In order to increase the amount of reaction per unit area, that is, the current density, three-dimensional electrochemical reaction fields have been used. FIG. 2 is an exploded perspective view of a liquid flow type electrolytic cell having three-dimensional electrodes. In the electrolytic cell, an ion exchange membrane 3 is arranged between two opposing current collector plates 1 and 1, and the current collector plates 1 and 1 are disposed on both sides of the ion exchange membrane 3 by spacers 2.
Are formed along the inner surface of the cell. At least one of the flow passages 4a, 4b is provided with an electrode material 5 made of a nonwoven fabric of carbonaceous fiber or the like, thus forming a three-dimensional electrode. The current collector 1 is provided with a liquid inlet 10 and a liquid outlet 11 for the electrolytic solution.

【0007】正極電解液にオキシ硫酸バナジウム、負極
電解液に硫酸バナジウムの各々硫酸酸性水溶液を用いた
レドックスフロー型電池の場合、放電時には、V2+を含
む電解液が負極側の液流路4aに供給され、正極側の流
路4bにはV5+(実際には酸素を含むイオン)を含む電
解液が供給される。負極側の流路4aでは、三次元電極
5内でV2+が電子を放出しV3+に酸化される。放出され
た電子は外部回路を通って正極側の三次元電極内でV5+
をV4+(実際には酸素を含むイオン)に還元する。この
酸化還元反応に伴って負極電解液中のSO4 2-が不足
し、正極電解液ではSO4 2-が過剰になるため、イオン
交換膜3を通ってSO4 2-が正極側から負極側に移動し
電荷バランスが保たれる。あるいは、H+ がイオン交換
膜を通って負極側から正極側へ移動することによっても
電荷バランスを保つことができる。充電時には放電と逆
の反応が進行する。
[0007] In the case of a redox flow battery using a sulfuric acid aqueous solution of vanadium oxysulfate as the positive electrode electrolyte and vanadium sulfate as the negative electrode electrolyte, during discharge, the electrolyte containing V 2+ is supplied to the liquid flow path 4a on the negative electrode side. And an electrolyte containing V 5+ (actually, ions containing oxygen) is supplied to the flow path 4b on the positive electrode side. In the flow path 4a on the negative electrode side, V 2+ emits electrons in the three-dimensional electrode 5 and is oxidized to V 3+ . The emitted electrons pass through an external circuit and enter V 5+ in the three-dimensional electrode on the positive electrode side.
To V 4+ (actually an ion containing oxygen). The redox reaction SO 4 2-of the negative electrode electrolytic solution is insufficient with the, for SO 4 2-becomes excessive in the positive electrolyte, negative electrode SO 4 2-is from the positive electrode side through the ion-exchange membrane 3 Side and the charge balance is maintained. Alternatively, the charge balance can be maintained by moving H + from the negative electrode side to the positive electrode side through the ion exchange membrane. At the time of charging, a reaction reverse to that of discharging proceeds.

【0008】バナジウム系レドックスフロー電池用電極
材の特性としては、特に以下に示す性能が要求される。
As the characteristics of the electrode material for a vanadium-based redox flow battery, the following performance is particularly required.

【0009】1)目的とする反応以外の副反応を起こさな
いこと(反応選択性が高いこと)、具体的には電流効率
(ηI )が高いこと。 2)電極反応活性が高いこと、具体的にはセル抵抗(R)
が小さいこと。すなわち電圧効率(ηV )が高いこと。 3)上記1)、2)に関連する電池エネルギー効率(ηE )が
高いこと。 ηE =ηI ×ηV 4)くりかえし使用に対する劣化が小さいこと(高寿
命)、具体的には電池エネルギー効率(ηE )の低下量
が小さいこと。
1) No side reaction other than the intended reaction should occur (high reaction selectivity), specifically, high current efficiency (η I ). 2) High electrode reaction activity, specifically cell resistance (R)
Is small. That is, the voltage efficiency (η V ) is high. 3) High battery energy efficiency (η E ) related to 1) and 2) above. η E = η I × η V 4) Deterioration due to repeated use is small (long life), and specifically, the amount of decrease in battery energy efficiency (η E ) is small.

【0010】そして、セル抵抗(R)に関しては、炭素
質繊維集合体等の電極材と集電板との接触抵抗、及び電
極材を構成する炭素質繊維間の接触抵抗が寄与する割合
が大きく、これらの接触抵抗やその経時変化が、電池エ
ネルギー効率やその経時変化に及ぼす影響は大きい。
As for the cell resistance (R), the contact resistance between the electrode material such as the carbonaceous fiber aggregate and the current collector and the contact resistance between the carbonaceous fibers constituting the electrode material greatly contribute. The effect of these contact resistances and changes over time on battery energy efficiency and changes over time is large.

【0011】一方、特開昭60−232669号公報に
は、X線広角解析より求めた<002>面間隔が、平均
3.70Å以下であり、またc軸方向の結晶子の大きさ
が平均9.0Å以上の擬黒鉛微結晶を有し、かつ全酸性
官能基量が少なくとも0.01meq/gである炭素質
材料をレドックスフロー電池の電解槽用電極材として用
いることが提案されている。
On the other hand, Japanese Patent Application Laid-Open No. Sho 60-232669 discloses that the <002> plane spacing determined by X-ray wide-angle analysis is 3.70 ° or less on average, and the crystallite size in the c-axis direction is average. It has been proposed to use a carbonaceous material having pseudographite crystallites of 9.0 ° or more and having a total acidic functional group content of at least 0.01 meq / g as an electrode material for an electrolytic cell of a redox flow battery.

【0012】また、特開平5−234612号公報に
は、ポリアクリロニトリル系繊維を原料とする炭素質繊
維で、X線広角解析より求めた<002>面間隔が3.
50〜3.60Åの擬黒鉛結晶構造を有し、炭素質材料
表面の結合酸素原子数が炭素原子数の10〜25%とな
るような炭素質材料をレドックスフロー電池の電解槽用
電極材として用いることが提案されている。
Japanese Unexamined Patent Publication No. Hei 5-234612 discloses a carbonaceous fiber made of polyacrylonitrile-based fiber having a <002> plane spacing of 3.002 obtained by X-ray wide-angle analysis.
A carbonaceous material having a pseudo-graphite crystal structure of 50 to 3.60 ° and having a number of bonded oxygen atoms of 10 to 25% of the number of carbon atoms on the surface of the carbonaceous material is used as an electrode material for an electrolytic cell of a redox flow battery. It has been proposed to use.

【0013】[0013]

【発明が解決しようとする課題】しかしながら、特開昭
60−232669号公報、特開平5−234612号
公報では、炭素質材料表面と電解液との間に有効な濡れ
性を発現させるために、全酸性官能基量が0.01me
q/g以上か、あるいはX線広角解析より求めた<00
2>面間隔が3.50以上、かつ炭素質材料表面の結合
酸素原子数が炭素原子数の10%以上必要であったの
で、炭素電極材表面の官能基が多すぎて、上記の如き接
触抵抗が高くなり、その結果、セル抵抗が高くなり高い
電池エネルギー効率が得られないことが判明した。
However, JP-A-60-232669 and JP-A-5-234612 disclose that in order to exhibit effective wettability between the carbonaceous material surface and the electrolyte, Total acidic functional group content is 0.01me
q / g or more, or determined by X-ray wide-angle analysis <00
2> Since the interplanar spacing was 3.50 or more and the number of bonded oxygen atoms on the surface of the carbonaceous material was required to be 10% or more of the number of carbon atoms, the number of functional groups on the surface of the carbon electrode material was too large, and It was found that the resistance was increased, and as a result, the cell resistance was increased, and high battery energy efficiency could not be obtained.

【0014】また、特開平5−234612号公報の電
極材では、ポリアクリロニトリル系繊維を原料とするた
め、窒素原子が炭素質繊維表面に残存し易く、その量が
適当に制御されていないために、レドックスフロー電池
に使用すると経時的にアンモニウム塩含有基等が生成
し、これが上記接触抵抗を高める原因となることが判明
した。
In the electrode material disclosed in JP-A-5-234612, since polyacrylonitrile fiber is used as a raw material, nitrogen atoms easily remain on the surface of the carbonaceous fiber, and the amount thereof is not properly controlled. It has been found that when used in a redox flow battery, an ammonium salt-containing group or the like is generated with the passage of time, and this causes an increase in the contact resistance.

【0015】一方、炭素質材料表面と集電板との接触抵
抗や電解槽内を流通する電解液の通液圧損は、炭素質材
料で構成される不織布(集合体)の物性によっても変化
するため、炭素質材料の特性の改善だけでは、接触抵抗
と通液圧損を十分小さくするのが容易ではなかった。ま
た、当該不織布の物性は炭素質材料の製法や物性、及び
不織布の製法等により変化するため、炭素質材料の物性
等に応じて不織布の製法を最適化する必要があった。
On the other hand, the contact resistance between the surface of the carbonaceous material and the current collector plate and the pressure loss of the electrolyte flowing through the electrolytic cell vary depending on the physical properties of the nonwoven fabric (aggregate) made of the carbonaceous material. Therefore, it has not been easy to reduce the contact resistance and the liquid pressure loss sufficiently only by improving the characteristics of the carbonaceous material. In addition, since the physical properties of the nonwoven fabric change depending on the manufacturing method and physical properties of the carbonaceous material, the manufacturing method of the nonwoven fabric, and the like, it is necessary to optimize the manufacturing method of the nonwoven fabric according to the physical properties of the carbonaceous material.

【0016】そこで、本発明の目的は、かかる事情に鑑
み、炭素質繊維の特性と不織布の物性を共に改善するこ
とで、レドックスフロー電池のセル抵抗を低減するとと
もに電解槽内における電解液の流通をスムーズに進行さ
せることでエネルギー効率を高めることができ、かつ長
期間にわたって炭素電極材の接触抵抗を低く維持できる
炭素電極材集合体を提供することにある。
In view of such circumstances, an object of the present invention is to improve both the properties of the carbonaceous fiber and the physical properties of the non-woven fabric to reduce the cell resistance of the redox flow battery and to distribute the electrolyte in the electrolytic cell. It is an object of the present invention to provide a carbon electrode material assembly that can improve energy efficiency by smoothly progressing the process and can maintain low contact resistance of the carbon electrode material for a long period of time.

【0017】[0017]

【課題を解決するための手段】本発明者らは、上記目的
を達成すべく鋭意研究したところ、表面酸性官能基量、
及び窒素と二重結合している表面炭素原子数を所定の範
囲に制御した炭素質繊維にて不織布を構成し、その嵩密
度を特定の範囲とすることで、上記目的を達成できるこ
とを見出し、本発明を完成するに至った。
Means for Solving the Problems The present inventors have made intensive studies to achieve the above object, and found that the amount of surface acidic functional groups,
It has been found that the above object can be achieved by forming a nonwoven fabric with carbonaceous fibers in which the number of surface carbon atoms that are double-bonded with nitrogen is controlled within a predetermined range, and by setting the bulk density to a specific range, The present invention has been completed.

【0018】即ち、本発明の炭素電極材集合体は、水溶
液系電解液によるレドックスフロー電池に使用され、炭
素質繊維の不織布よりなる炭素電極材集合体において、
前記炭素質繊維は、XPS表面分析より求めた下記
(a)、(b)の要件を同時に満たすと共に、前記不織
布は、嵩密度が0. 05〜0. 17g/cm3 %である
ことを特徴とする。(a)表面酸性官能基量が全表面炭
素原子数の0.2〜2.0%である。(b)窒素と二重
結合している表面炭素原子数が全表面炭素原子数の0.
3〜3.0%である。
That is, the carbon electrode material assembly of the present invention is used in a redox flow battery using an aqueous electrolyte solution, and in a carbon electrode material assembly made of a nonwoven fabric of carbonaceous fibers,
The carbonaceous fiber simultaneously satisfies the following requirements (a) and (b) determined by XPS surface analysis, and the nonwoven fabric has a bulk density of 0.05 to 0.17 g / cm 3 %. And (A) The amount of surface acidic functional groups is 0.2 to 2.0% of the total number of surface carbon atoms. (B) The number of surface carbon atoms double-bonded to nitrogen is 0.1% of the total number of surface carbon atoms.
3 to 3.0%.

【0019】上記(a)の要件を満たすことにより、炭
素電極材集合体を構成する炭素質繊維等の曲げ強度を良
好にしてセル装着時の圧縮応力(換言すると集電板との
圧接力)を長期間にわたり維持しつつ、酸性官能基等の
存在による接触抵抗の増大を防止することができる。ま
た、上記(b)の要件を満たすことにより、炭素電極材
集合体を構成する炭素質繊維等の曲げ強度を良好にして
セル装着時の圧縮応力を長期間にわたり維持しつつ、接
触抵抗を増加させるアンモニウム塩含有基等の経時的な
生成を防止することができる。その結果、本発明の炭素
電極材集合体によると、炭素電極材表面の接触抵抗を低
減し、かつ長期間にわたって炭素電極材の接触抵抗を低
く維持でき、これにより、電池等のエネルギー効率を長
期間にわたり高く維持することができる。更に、不織布
の嵩密度を上記範囲にすることで、集電板との接触性を
良好にして接触抵抗を小さくするとともに、電解槽内に
おける電解液の流通をスムーズに進行させることができ
る。その結果、レドックスフロー電池のセル抵抗を低減
してエネルギー効率を高めることができる。
By satisfying the above requirement (a), the bending strength of the carbonaceous fiber or the like constituting the carbon electrode material assembly is improved, and the compressive stress at the time of mounting the cell (in other words, the pressure contact force with the current collector plate). Can be maintained for a long period of time, and an increase in contact resistance due to the presence of an acidic functional group or the like can be prevented. In addition, by satisfying the above requirement (b), the contact resistance is increased while maintaining the compressive stress at the time of cell attachment for a long period of time by improving the bending strength of the carbonaceous fiber or the like constituting the carbon electrode material assembly. It is possible to prevent the generation of an ammonium salt-containing group or the like over time. As a result, according to the carbon electrode material assembly of the present invention, the contact resistance of the surface of the carbon electrode material can be reduced, and the contact resistance of the carbon electrode material can be kept low for a long period of time. Can be kept high over time. Further, by setting the bulk density of the nonwoven fabric in the above range, the contact property with the current collector plate is improved, the contact resistance is reduced, and the flow of the electrolytic solution in the electrolytic cell can be smoothly advanced. As a result, the cell resistance of the redox flow battery can be reduced and the energy efficiency can be increased.

【0020】上記において、XPS表面分析より求めた
表面4級アンモニウム性窒素原子数が全表面炭素原子数
の1.0%以下であることが好ましい。前述のように、
本発明者らは、経時的なアンモニウム塩含有基等の生成
が、接触抵抗を高める原因となることを見出したが、初
期の炭素電極材についても、その指標となる表面4級ア
ンモニウム性窒素原子数が1.0%以下であることが、
初期の接触抵抗を好適にする上で好ましい。
In the above, the number of quaternary ammonium nitrogen atoms on the surface determined by XPS surface analysis is preferably 1.0% or less of the total number of carbon atoms on the surface. As aforementioned,
The present inventors have found that the formation of an ammonium salt-containing group or the like over time causes an increase in contact resistance. However, even for the initial carbon electrode material, the surface quaternary ammonium nitrogen That the number is 1.0% or less,
It is preferable to make the initial contact resistance suitable.

【0021】また、本発明の炭素電極材集合体は、バナ
ジウム系レドックスフロー電池に用いられることが好ま
しい。バナジウム系のレドックスフロー電池では、鉄−
クロム系電解液に比べ活物質と電極材表面の反応速度が
速く、電極材の接触抵抗は電極材との反応にともなう抵
抗(反応抵抗)に比べて相対的に高くなる傾向にある。
したがって電極材を構成する繊維間や集電板に対する電
極材表面の接触抵抗が特に問題となりやすいので、上記
作用効果を有する本発明の炭素電極材が特に有用なもの
となる。
Further, the carbon electrode material assembly of the present invention is preferably used for a vanadium redox flow battery. In vanadium redox flow batteries, iron-
The reaction rate between the active material and the electrode material surface is higher than that of the chromium-based electrolyte, and the contact resistance of the electrode material tends to be relatively higher than the resistance (reaction resistance) associated with the reaction with the electrode material.
Therefore, the contact resistance between the fibers constituting the electrode material and the surface of the electrode material with respect to the current collector plate tends to be particularly problematic, so that the carbon electrode material of the present invention having the above-described effects is particularly useful.

【0022】[0022]

【発明の実施の形態】本発明の炭素電極材集合体は炭素
質繊維からなり、取扱いや加工性、製造性等の点から炭
素質繊維の不織布が使用される。当該不織布は、焼成
(炭化)前の不融化あるいは耐炎化された短繊維を開繊
し、カードにかけ、幾層かに重ねられたレイヤーからな
るウェブをまず作成し、さらにニードルパンチ法、サー
マルボンド法、ステッチボンド法等の公知の方法を組み
合わせて、好適に作製される。
BEST MODE FOR CARRYING OUT THE INVENTION The carbon electrode material aggregate of the present invention is made of carbonaceous fiber, and a nonwoven fabric of carbonaceous fiber is used from the viewpoint of handling, workability, manufacturability and the like. The non-woven fabric is obtained by opening infusible or flame-resistant short fibers before firing (carbonization), applying them to a card, first creating a web composed of several layers, then needle punching, thermal bonding It is suitably manufactured by combining known methods such as a method and a stitch bonding method.

【0023】不織布の目付量は、100〜1000g/
2 が好ましく、、特に200〜600g/m2 が望ま
しい。また片面に凹溝加工が施された不織布が通液性の
点から好んで用いられる。その場合の溝幅、溝深さは少
なくとも0.3mm、特に0.5mm以上が望ましい。
該炭素質繊維不織布の厚みは、上記充填状態の厚みより
少なくとも大きいこと、好ましくは充填状態の厚みの
1.2〜3.3倍程度である。また、圧縮応力が高いと
膜を突き破ってしまうので不織布の圧縮応力を1kgf
/cm2 以下に設計するのが好ましい。
The basis weight of the nonwoven fabric is 100 to 1000 g /
m 2 is preferable, and particularly preferably 200 to 600 g / m 2 . In addition, a nonwoven fabric having a groove on one side is preferably used from the viewpoint of liquid permeability. In this case, the groove width and groove depth are desirably at least 0.3 mm, particularly preferably 0.5 mm or more.
The thickness of the carbonaceous fiber nonwoven fabric is at least larger than the thickness in the above-mentioned filled state, and preferably about 1.2 to 3.3 times the thickness in the filled state. Also, if the compressive stress is high, the film breaks through the film.
/ Cm 2 or less.

【0024】なお、上記の炭素質繊維の平均繊維径は5
〜20μm程度が好ましく、平均長さは30〜100m
m程度が好ましい。
The average fiber diameter of the carbonaceous fibers is 5
About 20 μm is preferable, and the average length is 30 to 100 m.
m is preferable.

【0025】炭素質繊維不織布は、電池の中に圧接され
て組み込まれ、その薄い隙間を粘度の高い電解液が流れ
るため、脱落を防止して形態保持するためには引張強度
を0.1kg/cm以上にすることが望ましい。また集
電板との接触抵抗を良くするために、隔膜、集電板に挟
まれた充填層の密度を0.05g/cm3 以上に、電極
面に対する反発力を0.1kgf/cm2 以上にするこ
とが好ましい。
The carbonaceous fiber non-woven fabric is assembled by being pressed into the battery, and a high-viscosity electrolytic solution flows through the thin gap. cm or more. Also, in order to improve the contact resistance with the current collector, the density of the diaphragm and the packed layer sandwiched between the current collectors is set to 0.05 g / cm 3 or more, and the repulsive force to the electrode surface is set to 0.1 kgf / cm 2 or more. Is preferable.

【0026】さらに本発明の炭素質繊維は、表面酸性官
能基量が全表面炭素原子数の0.2〜2.0%である
が、好ましくは表面酸性官能基量が0.2〜1.2%、
より好ましくは0.3〜1.0%である。表面酸性官能
基量が0.2%未満の場合には、電極材を構成する短繊
維等の曲げ強度が低くなり、セル装着により繊維等が破
壊され必要な圧縮応力を維持しきれず、短繊維等の接触
の圧接力が低下して、接触抵抗が経時的に上昇する。ま
た炭素電極材の濡れ性が低下して電解液の流路が確保さ
れず通液性が悪化する。一方、2.0%より大きい場
合、官能基の存在が大きく影響し、電極材を構成する繊
維間接触および繊維−集電板間の導電性が阻害され好ま
しくない。また炭素電極材の濡れ性が高すぎて電解液の
保持性が高くなり流れにくくなる。なお、上記の表面酸
性官能基量とは、含酸素官能基のうち硝酸銀処理によっ
て銀イオン置換されうる水酸基やカルボキシル基の量を
意味し、XPS表面分析によって検出される表面銀イオ
ン量の表面炭素原子数に対する割合として表すものであ
る。
Furthermore, the carbonaceous fiber of the present invention has a surface acidic functional group content of 0.2 to 2.0% of the total number of surface carbon atoms, and preferably has a surface acidic functional group content of 0.2 to 1. 2%,
More preferably, it is 0.3 to 1.0%. When the surface acidic functional group content is less than 0.2%, the bending strength of the short fibers and the like constituting the electrode material is low, and the fibers and the like are broken by cell attachment, and the required compressive stress cannot be maintained. Etc., the contact pressure decreases, and the contact resistance increases with time. In addition, the wettability of the carbon electrode material is reduced, and the flow path of the electrolyte is not secured, so that the liquid permeability deteriorates. On the other hand, if it is more than 2.0%, the presence of the functional group greatly affects, and the inter-fiber contact and the conductivity between the fiber and the current collector plate constituting the electrode material are undesirably hindered. In addition, the wettability of the carbon electrode material is too high, so that the retention of the electrolyte is increased and the flow becomes difficult. The above-mentioned surface acidic functional group amount refers to the amount of hydroxyl groups or carboxyl groups that can be replaced with silver ions by silver nitrate treatment among the oxygen-containing functional groups, and indicates the surface carbon ion amount of the surface carbon ions detected by XPS surface analysis. It is expressed as a ratio to the number of atoms.

【0027】また、本発明の炭素質繊維は、窒素と二重
結合している表面炭素原子数が全表面炭素原子数の0.
3〜3.0%であり、好ましくは窒素と二重結合してい
る表面炭素原子数が0.5〜2.8%、より好ましくは
0.8〜2.5%である。窒素と二重結合している表面
炭素原子数が0.3%未満の場合、炭素中の窒素脱落に
より炭素質繊維の結晶配向性が増加し、繊維自体の導電
性は向上するものの、反面繊維の曲げ強度が低くなり、
セル装着により繊維が破壊されて必要な圧縮応力を維持
しきれず、短繊維等の接触の圧接力が低下して、接触抵
抗が経時的に上昇する。一方、3.0%を越える場合、
二重結合した窒素が通電時経時的に系内の不純物と結合
し、アンモニウム塩を含む基を形成し、こうした基が電
極材の維維間接触および繊維−集電板間の導電性を阻害
するので好ましくない。なお、窒素と二重結合している
表面炭素原子数の割合は、XPS表面分析より測定され
るC1sピーク分離により求められる。
In the carbonaceous fiber of the present invention, the number of surface carbon atoms double-bonded to nitrogen is 0.1% of the total number of surface carbon atoms.
3 to 3.0%, preferably 0.5 to 2.8%, more preferably 0.8 to 2.5%, of the number of surface carbon atoms double-bonded to nitrogen. When the number of surface carbon atoms that are double-bonded to nitrogen is less than 0.3%, the crystal orientation of the carbonaceous fiber increases due to the loss of nitrogen in carbon, and the conductivity of the fiber itself improves, but the fiber The bending strength of
When the cell is mounted, the fiber is broken and the required compressive stress cannot be maintained, and the pressure contact force of contact of short fibers or the like decreases, and the contact resistance increases with time. On the other hand, if it exceeds 3.0%,
The double-bonded nitrogen combines with the impurities in the system over time during energization to form a group containing ammonium salts, which inhibits the contact between the electrodes and the conductivity between the fibers and the current collector. Is not preferred. The ratio of the number of surface carbon atoms that are double-bonded to nitrogen can be determined by C1s peak separation measured by XPS surface analysis.

【0028】さらに炭素質繊維の表面処理方法によって
は、炭素表面に4級窒素が形成されることがある。これ
は酸等の存在下で炭素中の窒素原子が酸と結合して4ア
ンモニウム塩を形成するためと考えられ、こうした基が
電極材の繊維間接触および繊維−集電板間の導電性を阻
害する。従って、こうした4級窒素の存在は多くとも全
表面炭素原子数の1.0%以下、さらには0.8%以下
である事が望ましい。なお、4級窒素の全表面炭素原子
数に対する割合は、XPS表面分析より測定されるC1
sピークとN1sピークのピーク分離により求められ
る。
Further, depending on the surface treatment method of the carbonaceous fiber, quaternary nitrogen may be formed on the carbon surface. This is thought to be because nitrogen atoms in the carbon bond with the acid to form a tetraammonium salt in the presence of an acid or the like, and such a group enhances the contact between the fibers of the electrode material and the conductivity between the fibers and the current collector. Inhibit. Therefore, the presence of such quaternary nitrogen is preferably at most 1.0% or less, more preferably 0.8% or less of the total number of surface carbon atoms. The ratio of the quaternary nitrogen to the total number of carbon atoms on the surface is C1 measured by XPS surface analysis.
It is determined by the peak separation between the s peak and the N1s peak.

【0029】こうした表面特性を有する本発明の炭素質
繊維は、緊張下200〜300℃の初期空気酸化を経た
ポリアクリロニトリル、窒素原子を付加した等方性ピッ
チ、メソフェーズピッチ、セルロースやフェノールなど
窒素原子を持たない材料に窒素を付加したもの、ポリパ
ラフェニレンベンゾビスオキサゾール(PBO)などを
原料にして、不活性雰囲気下1000〜1800℃で焼
成(炭化)した擬黒鉛結晶構造を有する炭素材料を所定
の酸素濃度で乾式酸化処理し、さらに水蒸気や酸性ガス
の存在下で活性化するすることによって得られる。特に
表面の窒素量を本発明の範囲に調整するためには、アル
ゴンやネオンガスのような不活性ガス下で1400〜1
800℃で焼成することが望ましい。また、公知の空気
酸化だけでは、本来電極の濡れ性に寄与できる酸性基の
ほかに、電極反応を抑制する非酸性官能基もかなりの割
合で構成されるので好ましくない。このため、制御され
た酸素濃度下で酸化処理を行うことで、余分な非酸性官
能基の生成を最小限に押さえ、さらに水蒸気や酸性ガス
の存在下で酸化することによって、不要な官能基を有効
な酸性基に変換することが好ましい。但し酸性ガスを多
用すると表面の窒素原子と反応して4級アンモニウム性
窒素原子を形成するので注意が必要である。使用する酸
性ガスとしては、塩化水素ガス、亜硫酸ガス、炭酸ガ
ス、青酸ガスなどがあるが特に限定されない。
The carbonaceous fibers of the present invention having such surface characteristics include polyacrylonitrile which has been subjected to an initial air oxidation at a tension of 200 to 300 ° C., isotropic pitch to which nitrogen atoms are added, mesophase pitch, and nitrogen atoms such as cellulose and phenol. A carbon material having a pseudo-graphite crystal structure which is obtained by calcining (carbonizing) at 1000 to 1800 ° C. in an inert atmosphere a material obtained by adding nitrogen to a material having no carbon, or a material such as polyparaphenylenebenzobisoxazole (PBO). It is obtained by performing a dry oxidation treatment at an oxygen concentration of, and further activating in the presence of steam or an acid gas. In particular, in order to adjust the amount of nitrogen on the surface within the range of the present invention, it is necessary to set the amount of nitrogen at 1400 to 1
It is desirable to fire at 800 ° C. In addition, known air oxidation alone is not preferable because, in addition to acidic groups that can originally contribute to the wettability of the electrode, non-acidic functional groups that suppress the electrode reaction are formed in a considerable proportion. Therefore, by performing the oxidation treatment under a controlled oxygen concentration, the generation of extra non-acidic functional groups is minimized, and furthermore, by oxidizing in the presence of steam or an acidic gas, unnecessary functional groups are eliminated. Preferably, it is converted to an effective acidic group. However, care must be taken because excessive use of an acidic gas will react with nitrogen atoms on the surface to form quaternary ammonium nitrogen atoms. Examples of the acidic gas used include, but are not particularly limited to, hydrogen chloride gas, sulfurous acid gas, carbon dioxide gas, and hydrocyanic acid gas.

【0030】上記の如き製造方法において、上記原料は
所定の炭化温度の範囲内で焼成されることにより、適切
な導電性を満足する擬黒鉛結晶構造を有するものとな
り、炭化後の表面処理において、低濃度の酸素下での表
面処理によって酸性官能基と非酸性官能基を形成し、さ
らに一部に酸を含む水蒸気による活性化によって、非酸
性官能基の酸性化が進行しかつ適度の炭素と二重結合し
ている窒素が形成される。これによって炭素質繊維の適
度な接触性を保持しつつ安定した接触性を維持できる。
またこの方法では接触性の低下をもたらす4級アンモニ
ウム性窒素を極力抑えることが可能となる。これにより
繊維間接触や繊維−集電板間の導電性が良くかつ安定し
た接触性が保たれる。
In the above-mentioned production method, the raw material is fired within a predetermined carbonization temperature to have a pseudo-graphite crystal structure satisfying appropriate conductivity. Forming acidic and non-acidic functional groups by surface treatment under low-concentration oxygen, and further activation by water vapor containing acid partially promotes acidification of non-acidic functional groups and moderate carbon and A double bonded nitrogen is formed. As a result, it is possible to maintain stable contact while maintaining appropriate contact of the carbonaceous fiber.
In addition, this method makes it possible to minimize quaternary ammonium nitrogen, which causes a decrease in contact properties. As a result, good fiber-to-fiber contact and good conductivity between the fiber and the current collector plate can be maintained.

【0031】本発明における炭素質繊維不織布は、嵩密
度が0. 05〜0. 17g/cm3であるが、好ましく
は、嵩密度が0.055〜0.165g/cm3 %であ
る。嵩密度が0. 05g/cm3 未満の場合、通液圧損
は減少傾向にあるものの、セル装着時の圧縮応力が少な
くなりセルの抵抗が上昇する。一方、嵩密度が0. 17
g/cm3 を越える場合は、通液圧損が上昇し、送液ポ
ンプロスが上昇して、電池の総合効率が低下する。
The carbon fiber nonwoven fabric of the present invention has a bulk density of 0.05 to 0.17 g / cm 3 , and preferably has a bulk density of 0.055 to 0.165 g / cm 3 %. When the bulk density is less than 0.05 g / cm 3 , although the liquid pressure loss tends to decrease, the compressive stress at the time of mounting the cell decreases and the resistance of the cell increases. On the other hand, the bulk density is 0.17
If it exceeds g / cm 3 , the liquid-flow pressure loss increases, the liquid-feeding pump loss increases, and the overall efficiency of the battery decreases.

【0032】このような炭素質繊維不織布の嵩密度に係
わる特性は、上述した炭素の結晶構造と表面酸性官能基
を持つことが前提となるが、たとえば、 前段階でニー
ドルパンチ法を採用する場合には、前記所定の嵩密度を
得るために不織布化時のニードルパンチ用針の特性や針
密度、針深度、押さえギャップなどのニードルパンチ法
における不織布化条件を適正化する必要がある。原綿と
して初期空気酸化されたポリアクリロニトリル(繊維直
径16μm、繊維長80mm)を用い、ニードルパンチ
用針としてバーブ間隔l.3mmの三角針(Foste
rHDB)40番を用いた場合、針密度が278本/平
方インチ以上、深度4〜8mm、押さえギャップは4m
m以下であることが好ましい。
The properties relating to the bulk density of such a carbonaceous fiber nonwoven fabric are premised on the above-described carbon crystal structure and surface acidic functional groups. In order to obtain the predetermined bulk density, it is necessary to optimize the characteristics of the needle for needle punching at the time of forming the nonwoven fabric and the conditions for forming the nonwoven fabric in the needle punching method, such as the needle density, the needle depth, and the pressing gap. Initially oxidized polyacrylonitrile (fiber diameter 16 μm, fiber length 80 mm) was used as the raw cotton, and the barb interval l. 3mm triangular needle (Foste
When rHDB) No. 40 is used, the needle density is 278 needles / in 2 or more, the depth is 4 to 8 mm, and the holding gap is 4 m.
m or less.

【0033】さらにニードルパンチ法で実現できない様
な高密度にするには熱プレスを行ったりバインダーの存
在下で熱圧着する事によって達成される。一般に、不織
布化における嵩密度を向上するためにはニードルパンチ
針の密度を高くする手段が採用されるが、熱プレスやバ
インダーを用いた熱圧着を行う場合は不織布の形態が保
持される程度の針密度でニードルパンチを行いその後熱
プレスやバインダーを用いた熱圧着を行う方が好まし
い。熱プレスを行う場合には各繊維の性質によって温度
・圧力を調整する必要があるが、通常、プレス温度10
0〜240℃、カレンダーロールによる線圧として6〜
60kg/cmで行うのが好ましい。また、バインダー
を用いる場合には、種類としてアクリル系、でんぷんの
り、ポリビニルアルコール系、エポキシ樹脂系、酢酸ビ
ニル系、フェノール樹脂系の各種のものを特に制限なく
使用できるが、炭化後も炭化して接着性を保持させるた
めにはフェノール樹脂系バインダーを用いることが最も
好ましい。さらにバインダーの不織布への添加方法とし
ては、原綿の開織後混綿工程で添加する方法、水や有機
溶媒などに溶解または分散させ不織布に添着し乾燥する
方法、粉末バインダーを大気分散させ不織布表面に付着
させる方法などがあるが、これらの方法は特に限定され
ず、各素材に適した条件で実施することが望ましい。
Further, high density, which cannot be realized by the needle punching method, can be achieved by hot pressing or thermocompression bonding in the presence of a binder. Generally, means for increasing the density of needle punch needles is adopted in order to improve the bulk density in the formation of nonwoven fabric, but when performing hot pressing or thermocompression bonding using a binder, the form of the nonwoven fabric is maintained. It is preferable to perform needle punching at a needle density and then perform hot pressing or thermocompression bonding using a binder. When performing hot pressing, it is necessary to adjust the temperature and pressure according to the properties of each fiber.
0 to 240 ° C, 6 to 6 as linear pressure by calender roll
It is preferably performed at 60 kg / cm. When using a binder, acrylic, starch paste, polyvinyl alcohol-based, epoxy resin-based, vinyl acetate-based, phenolic resin-based various types can be used without particular limitation, but carbonized after carbonization. It is most preferable to use a phenolic resin binder in order to maintain the adhesiveness. Further, as a method of adding the binder to the nonwoven fabric, a method of adding the raw cotton in a weaving process after opening the fabric, a method of dissolving or dispersing in water or an organic solvent, and attaching and drying the nonwoven fabric, and dispersing the powder binder in the air to the surface of the nonwoven fabric Although there is a method of attaching, etc., these methods are not particularly limited, and it is desirable to carry out under conditions suitable for each material.

【0034】次に、本発明において採用される不織布の
嵩密度、XPS表面分析、通液圧損、集電板との初期接
触抵抗、100サイクル後の接触抵抗の各測定法につい
て説明する。
Next, methods for measuring the bulk density, XPS surface analysis, liquid pressure loss, initial contact resistance with the current collector, and contact resistance after 100 cycles of the nonwoven fabric employed in the present invention will be described.

【0035】1.嵩密度 嵩密度(g/cm3 )=炭素繊維質不織布の目付け(g
/m2 )/厚み(mm)/1000。
1. Bulk density Bulk density (g / cm 3 ) = basis weight of carbon fiber nonwoven fabric (g
/ M 2 ) / thickness (mm) / 1000.

【0036】2.XPS表面分析 ESCAあるいはXPSと略称されているX線光電子分
光法の測定に用いた装置は島津ESCA750で、解析
にはESCAPAC760を用いる。各試料を硝酸銀の
アセトン溶液に浸漬し、酸性官能基のプロトンを完全に
銀置換し、アセトン及び水でそれぞれ洗浄後、6mm径
に打ち抜き、導電性ぺーストにより加熱式試料台に貼り
付け、分析に供する。予め、測定前に試料を120℃に
加熱し、3時間以上真空脱気する。線源にはMgKα線
(1253.6eV)を用い、装置内真空度は10-7
orrとする。
2. XPS Surface Analysis The equipment used for measurement by X-ray photoelectron spectroscopy, which is abbreviated as ESCA or XPS, is Shimadzu ESCA750, and ESCAPAC760 is used for analysis. Each sample was immersed in a solution of silver nitrate in acetone, the protons of the acidic functional groups were completely replaced with silver, washed with acetone and water, punched out to a diameter of 6 mm, attached to a heated sample table with a conductive paste, and analyzed. To serve. Before the measurement, the sample is heated to 120 ° C. and evacuated for 3 hours or more. A MgKα ray (1253.6 eV) was used as a radiation source, and the degree of vacuum in the apparatus was 10 −7 t.
orr.

【0037】測定はC1s、N1s、Ag3dのピーク
に対して行い、各ピークをESCAPAC760(J,
H.Scofieldによる補正法に基づく)を用いて
補正解析し、各ピーク面積を求める。得られた面積にC
1sについては1.00、N1sについては1.77、
Ag3dについては10.68の相対強度を乗じたもの
の比が原子数比であり、全表面炭素原子数に対する表面
酸性官能基量は(表面銀原子数/表面炭素原子数)比を
百分率(%)で算出する。
The measurement was performed on the peaks of C1s, N1s, and Ag3d, and each peak was identified as ESCAPAC760 (J,
H. Correction analysis is performed using the correction method based on Scofield) to determine each peak area. C to the obtained area
1.00 for 1s, 1.77 for N1s,
The ratio of Ag3d multiplied by the relative intensity of 10.68 is the atomic ratio, and the amount of surface acidic functional groups to the total number of surface carbon atoms is expressed as a percentage (%) of (surface silver atoms / surface carbon atoms). Is calculated by

【0038】次に、C1sピークに対して、ピーク形状
が各構造におけるケミカルシフト値に一致するように分
離し、窒素と二重結合している炭素(−C=N−)のピ
ークの面積を決定し、全表面炭素に対する面積比を百分
率(%)で算出する。
Next, the C1s peak was separated so that the peak shape matched the chemical shift value of each structure, and the area of the peak of carbon (-C = N-) double-bonded to nitrogen was determined. It is determined and the area ratio to the total surface carbon is calculated in percentage (%).

【0039】さらにN1sピークは400.1eV、4
02.5eVのピークに分離し、402.5eVに現れ
るピークを4級窒素としてピーク面積を決定し、全表面
炭素に対する面積比を百分率(%)で算出する。
Further, the N1s peak is 400.1 eV, 4
The peak is separated into 02.5 eV peaks, the peak appearing at 402.5 eV is determined as quaternary nitrogen, the peak area is determined, and the area ratio to the total surface carbon is calculated as a percentage (%).

【0040】なお、各構造における炭素ピークのケミカ
ルシフト値は文献(A.Ishitani,Carbo
n,19,269(1981))を参考にした。図3に
は、測定されるC1sピークをその結合構造別に分離し
た例を、図4には、測定されるN1sピークをその結合
構造別に分離した例を示す。
The chemical shift value of the carbon peak in each structure is described in the literature (A. Ishitani, Carbo).
n, 19, 269 (1981)). FIG. 3 shows an example in which the measured C1s peak is separated according to its bonding structure, and FIG. 4 shows an example in which the measured N1s peak is separated according to its bonding structure.

【0041】3.通液圧損 液流通型電解槽と同じ形状で通液方向に20cm、幅方
向(流路幅)10cm、1. 2mmのスペーサーで形成
された液流通型電解槽を用意し、作成された電極材(炭
素繊維質不織布)を10cm角に切て設置する。液量5
リットル/時のイオン交換水を流通させ、電解槽の出入
口の通液圧力損失を測定する。ブランクとして電極材を
設置しない系で同様に測定し、測定値とブランク測定値
との差を電極材の通液圧力損失とする。
3. Liquid-flow pressure loss A liquid-flow-type electrolytic cell having the same shape as the liquid-flow-type electrolytic cell and formed of spacers of 20 cm in the liquid-passing direction, 10 cm in the width direction (flow path width), and 1.2 mm is prepared. The prepared electrode material (carbon fibrous nonwoven fabric) is cut into 10 cm square and placed. Liquid volume 5
The liter / hour of ion-exchanged water is allowed to flow, and the pressure loss at the entrance and exit of the electrolytic cell is measured. The same measurement is performed in a system in which the electrode material is not provided as a blank, and the difference between the measured value and the blank measured value is defined as the pressure loss through the electrode material.

【0042】4. 初期接触抵抗 サンプルを1cm×10cmの大きさにカットし、厚さ
1.2mmのテフロン製スペーサーを用いて厚み方向か
ら2枚の導電板でサンプルを所定のスペーサー厚みにな
るまで圧縮し、導電板の両端の抵抗をデジタルマルチメ
ータ(アドバンテスト製TR6846)を用いて測定す
る。
4. Initial Contact Resistance The sample is cut into a size of 1 cm × 10 cm, and the sample is cut with two conductive plates from the thickness direction using a 1.2 mm thick Teflon spacer until the sample reaches a predetermined spacer thickness. After compression, the resistance at both ends of the conductive plate is measured using a digital multimeter (TR6846 manufactured by Advantest).

【0043】5.100サイクル後の接触抵抗 上下方向(通液方向)に10cm、幅方向に1cmの電
極面積10cm2 を有する小型のセルを作り、定電流密
度で100サイクルの充放電を繰り返し、終了後正極に
用いていたサンプルをよく水洗し、乾燥した後、初期接
触抵抗を測定する要領で接触抵抗を測定する。
5. Contact resistance after 100 cycles A small cell having an electrode area of 10 cm 2 of 10 cm in the vertical direction (liquid flowing direction) and 1 cm in the width direction was made, and charge and discharge of 100 cycles were repeated at a constant current density. After the completion, the sample used for the positive electrode is thoroughly washed with water and dried, and then the contact resistance is measured in the manner of measuring the initial contact resistance.

【0044】なお、充放電試験には正極電解液に2mo
l/lのオキシ硫酸バナジウムの2mol/l硫酸水溶
液を用い、負極電解液には2mol/lの硫酸バナジウ
ムの2mol/l硫酸水溶液を用いる。電解液量はセ
ル、配管に対して大過剰とし、液流量は毎分62mlと
し、30℃で行う。
In the charge / discharge test, 2 mo
A 1 mol / l vanadium oxysulfate aqueous 2 mol / l sulfuric acid solution is used, and a 2 mol / l vanadium sulfate 2 mol / l sulfuric acid aqueous solution is used as a negative electrode electrolyte. The amount of the electrolytic solution is set to a large excess with respect to the cell and the piping, and the flow rate of the solution is set to 62 ml / min.

【0045】本発明の炭素電極材集合体は、水溶液系電
解液を使用するレドックスフロー電池に用いられるもの
である。当該レドックスフロー電池は、前述のように、
例えば間隙を介した状態で対向して配設された一対の集
電板間に隔膜が配設され、該集電板と隔膜との間に少な
くとも一方に電極材が圧接挟持され、電極材は活物質を
含んだ水溶液からなる電解液を含んだ構造を有する電解
槽を備える。
The carbon electrode material assembly of the present invention is used for a redox flow battery using an aqueous electrolyte solution. The redox flow battery, as described above,
For example, a diaphragm is disposed between a pair of current collectors disposed to face each other with a gap therebetween, and an electrode material is pressed and sandwiched between at least one of the current collector and the diaphragm. An electrolytic cell having a structure containing an electrolytic solution composed of an aqueous solution containing an active material is provided.

【0046】水溶液系電解液としては、前述の如きバナ
ジウム系電解液の他、鉄−クロム系、チタン−マンガン
系、マンガン−クロム系、クロム−クロム系、鉄−チタ
ン系などが挙げられるが、バナジウム系電解液が好まし
い。本発明の炭素電極材集合体は、特に、粘度が25℃
にて0.005Pa・s以上であるバナジウム系電解
液、あるいは1.5mol/l以上のバナジウムイオン
を含むバナジウム系電解液を使用するレドックスフロー
電池に用いるのが有用である。
Examples of the aqueous electrolytic solution include iron-chromium-based, titanium-manganese-based, manganese-chromium-based, chromium-chromium-based, iron-titanium-based and the like, in addition to the vanadium-based electrolyte described above. Vanadium-based electrolytes are preferred. In particular, the carbon electrode material aggregate of the present invention has a viscosity of 25 ° C.
It is useful to use in a redox flow battery using a vanadium-based electrolyte solution of 0.005 Pa · s or more or a vanadium-based electrolyte solution containing 1.5 mol / l or more of vanadium ions.

【0047】[0047]

【実施例】以下、本発明の構成及び効果を具体的に示
す、実施例等について説明する。
EXAMPLES Examples and the like that specifically show the structure and effects of the present invention will be described below.

【0048】(実施例1)平均繊維径16μmのポリア
クリロニトリル繊維を空気中200〜300℃で耐炎化
した後、長さ約80mmにカットし、耐炎化繊維の短繊
維を作成した。これを、フォスター社製HDB40番の
針、針密度278本/平方インチ、深度8mm、押さえ
ギャップ4mmの条件で不織布化し、目付量400g/
2 、厚み4.6mmの不織布を作成した。次いで、該
不織布を窒素気流下で100℃/分の昇温速度でそれぞ
れ1600℃まで昇温し、この温度で1時間保持し炭化
を行つて冷却し、続いて酸素濃度5vol%の窒素気流
下で700℃にて重量収率93%になるまで処理した。
さらに20vol%の水蒸気を含む窒素気流下で500
℃10分間活性化し炭素質繊維不織布を得た。
Example 1 Polyacrylonitrile fibers having an average fiber diameter of 16 μm were oxidized in air at 200 to 300 ° C., and then cut to a length of about 80 mm to prepare oxidized short fibers. This was made into a non-woven fabric under the conditions of a Foster No. 40 HDB needle, a needle density of 278 needles / square inch, a depth of 8 mm and a holding gap of 4 mm, and a basis weight of 400 g /
A nonwoven fabric having a thickness of m 2 and a thickness of 4.6 mm was prepared. Next, the nonwoven fabric was heated to 1600 ° C. at a rate of 100 ° C./min under a nitrogen stream, held at this temperature for 1 hour, cooled by carbonization, and subsequently cooled under a nitrogen stream having an oxygen concentration of 5 vol%. At 700 ° C. until the weight yield became 93%.
Further, under a nitrogen stream containing 20 vol% of steam, 500
Activated at 10 ° C. for 10 minutes to obtain a carbonaceous fiber nonwoven fabric.

【0049】(実施例2)平均繊維径16μmのポリア
クリロニトリル繊維を空気中200〜300℃で耐炎化
した後、長さ約80mmにカットし、耐炎化繊維の短繊
維を作成した。これを、フォスター社製HDB40番の
針、針密度470本/平方インチ、深度8mm、押さえ
ギャップ4mmの条件で不織布化し、目付量400g/
2 、厚み4.3mmの不織布を作成した。次いで、該
不織布を窒素気流下で100℃/分の昇温速度でそれぞ
れ1600℃まで昇温し、この温度で1時間保持し炭化
を行つて冷却し、続いて酸素濃度5vol%の窒素気流
下で700℃にて重量収率93%になるまで処理した。
さらに20vol%の水蒸気を含む窒素気流下で500
℃10分間活性化し炭素質繊維不織布を得た。
Example 2 Polyacrylonitrile fibers having an average fiber diameter of 16 μm were oxidized in air at 200 to 300 ° C., and then cut to a length of about 80 mm to prepare oxidized short fibers. This was made into a nonwoven fabric under the conditions of a Foster No. 40 HDB needle, a needle density of 470 needles / square inch, a depth of 8 mm and a holding gap of 4 mm, and a basis weight of 400 g /
A nonwoven fabric having a thickness of m 2 and a thickness of 4.3 mm was prepared. Next, the nonwoven fabric was heated to 1600 ° C. at a rate of 100 ° C./min under a nitrogen stream, held at this temperature for 1 hour, cooled by carbonization, and subsequently cooled under a nitrogen stream having an oxygen concentration of 5 vol%. At 700 ° C. until the weight yield became 93%.
Further, under a nitrogen stream containing 20 vol% of steam, 500
Activated at 10 ° C. for 10 minutes to obtain a carbonaceous fiber nonwoven fabric.

【0050】(実施例3)平均繊維径16μmのポリア
クリロニトリル繊維を空気中200〜300℃で耐炎化
した後、長さ約80mmにカットし、耐炎化繊維の短繊
維を作成した。これを、フォスター社製HDB40番の
針、針密度748本/平方インチ、深度8mm、押さえ
ギャップ4mmの条件で不織布化し、目付量400g/
2 、厚み4.0mmの不織布を作成した。次いで、該
不織布を窒素気流下で100℃/分の昇温速度でそれぞ
れ1600℃まで昇温し、この温度で1時間保持し炭化
を行つて冷却し、続いて酸素濃度5vol%の窒素気流
下で700℃にて重量収率93%になるまで処理した。
さらに20vol%の水蒸気を含む窒素気流下で500
℃10分間活性化し炭素質繊維不織布を得た。
Example 3 Polyacrylonitrile fibers having an average fiber diameter of 16 μm were oxidized in air at 200 to 300 ° C., and then cut to a length of about 80 mm to prepare oxidized short fibers. This was made into a nonwoven fabric under the conditions of a Foster No. 40 HDB needle, a needle density of 748 needles / square inch, a depth of 8 mm and a holding gap of 4 mm, and a basis weight of 400 g /
A non-woven fabric with m 2 and a thickness of 4.0 mm was prepared. Next, the nonwoven fabric was heated to 1600 ° C. at a rate of 100 ° C./min under a nitrogen stream, held at this temperature for 1 hour, cooled by carbonization, and subsequently cooled under a nitrogen stream having an oxygen concentration of 5 vol%. At 700 ° C. until the weight yield became 93%.
Further, under a nitrogen stream containing 20 vol% of steam, 500
Activated at 10 ° C. for 10 minutes to obtain a carbonaceous fiber nonwoven fabric.

【0051】(実施例4)平均繊維径16μmのポリア
クリロニトリル繊維を空気中200〜300℃で耐炎化
した後、長さ約80mmにカットし、耐炎化繊維の短繊
維を作成した。これを、フォスター社製HDB40番の
針、針密度748本/平方インチ、深度8mm、押さえ
ギャップ4mmの条件で不織布化し、目付量400g/
2 、厚み4.0mmの不織布を作成した。次いで、該
不織布を180℃、線圧60kg/cmのカレンダーロ
ールに通し厚み3.6mmに圧縮した。該不織布を窒素
気流下で100℃/分の昇温速度でそれぞれ1600℃
まで昇温し、この温度で1時間保持し炭化を行つて冷却
し、続いて酸素濃度5vol%の窒素気流下で700℃
にて重量収率93%になるまで処理した。さらに20v
ol%の水蒸気を含む窒素気流下で500℃10分間活
性化し炭素質繊維不織布を得た。
Example 4 Polyacrylonitrile fibers having an average fiber diameter of 16 μm were oxidized in air at 200 to 300 ° C., and then cut to a length of about 80 mm to prepare oxidized short fibers. This was made into a nonwoven fabric under the conditions of a Foster No. 40 HDB needle, a needle density of 748 needles / square inch, a depth of 8 mm and a holding gap of 4 mm, and a basis weight of 400 g /
A non-woven fabric with m 2 and a thickness of 4.0 mm was prepared. Next, the nonwoven fabric was passed through a calender roll at 180 ° C. and a linear pressure of 60 kg / cm, and was compressed to a thickness of 3.6 mm. Each of the nonwoven fabrics is heated at a rate of 100 ° C./min.
Temperature, held at this temperature for 1 hour, cooled by carbonization, and subsequently 700 ° C. under a nitrogen stream with an oxygen concentration of 5 vol%.
To give a weight yield of 93%. 20v more
Activated at 500 ° C. for 10 minutes under a nitrogen stream containing ol% steam to obtain a carbonaceous fiber nonwoven fabric.

【0052】(実施例5)平均繊維径16μmのポリア
クリロニトリル繊維を空気中200〜300℃で耐炎化
した後、長さ約80mmにカットし、耐炎化繊維の短繊
維を作成した。これを、フォスター社製HDB40番の
針、針密度146本/平方インチ、深度4mm、押さえ
ギャップ4mmの条件で不織布化し、目付量400g/
2 、厚み5.2mmの不織布を作成した。次いで、該
不織布を240℃、線圧60kg/cmのカレンダーロ
ールに通し厚み3.1mmに圧縮した。該不織布を窒素
気流下で100℃/分の昇温速度でそれぞれ1600℃
まで昇温し、この温度で1時間保持し炭化を行つて冷却
し、続いて酸素濃度5vol%の窒素気流下で700℃
にて重量収率93%になるまで処理した。さらに20v
ol%の水蒸気を含む窒素気流下で500℃10分間活
性化し炭素質繊維不織布を得た。
Example 5 Polyacrylonitrile fibers having an average fiber diameter of 16 μm were oxidized in air at 200 to 300 ° C., and then cut to a length of about 80 mm to prepare oxidized short fibers. This was made into a nonwoven fabric under the conditions of a Foster No. 40 HDB needle, a needle density of 146 needles / square inch, a depth of 4 mm and a holding gap of 4 mm, and a basis weight of 400 g /
A nonwoven fabric of m 2 and 5.2 mm in thickness was prepared. Next, the nonwoven fabric was passed through a calender roll at 240 ° C. and a linear pressure of 60 kg / cm, and was compressed to a thickness of 3.1 mm. Each of the nonwoven fabrics is heated at a rate of 100 ° C./min.
Temperature, held at this temperature for 1 hour, cooled by carbonization, and subsequently 700 ° C. under a nitrogen stream with an oxygen concentration of 5 vol%.
To give a weight yield of 93%. 20v more
Activated at 500 ° C. for 10 minutes under a nitrogen stream containing ol% steam to obtain a carbonaceous fiber nonwoven fabric.

【0053】(実施例6)平均繊維径16μmのポリア
クリロニトリル繊維を空気中200〜300℃で耐炎化
した後、長さ約80mmにカットし、耐炎化繊維の短繊
維を作成した。これにフェノール系樹脂粉末(商品名ベ
ルパールS890,鐘紡(株)製)を耐炎化繊維重量に
対して、0.5重量%を加えて混合し、フォスター社製
HDB40番の針、針密度146本/平方インチ、深度
4mm、押さえギャップ4mmの条件で不織布化し、目
付量400g/m2 、厚み5.2mmの不織布を作成し
た。次いで、該不織布を180℃、線圧60kg/cm
のカレンダーロールに通し厚み2.4mmに圧縮した。
該不織布を窒素気流下で100℃/分の昇温速度でそれ
ぞれ1600℃まで昇温し、この温度で1時間保持し炭
化を行つて冷却し、続いて酸素濃度5vol%の窒素気
流下で700℃にて重量収率93%になるまで処理し
た。さらに20vol%の水蒸気を含む窒素気流下で5
00℃10分間活性化し炭素質繊維不織布を得た。
Example 6 Polyacrylonitrile fibers having an average fiber diameter of 16 μm were oxidized in air at 200 to 300 ° C., and then cut to a length of about 80 mm to prepare oxidized short fibers. A phenolic resin powder (trade name: Bellpearl S890, manufactured by Kanebo Co., Ltd.) was added in an amount of 0.5% by weight based on the weight of the oxidized fiber, and the mixture was mixed. / Square inch, a depth of 4 mm, and a pressing gap of 4 mm, to form a nonwoven fabric having a basis weight of 400 g / m 2 and a thickness of 5.2 mm. Next, the nonwoven fabric was heated at 180 ° C. and a linear pressure of 60 kg / cm.
And calendered to a thickness of 2.4 mm.
The non-woven fabric was heated to 1600 ° C. at a rate of 100 ° C./min under a nitrogen stream, held at this temperature for 1 hour, cooled by carbonization, and subsequently cooled to 700 ° C. under a nitrogen stream having an oxygen concentration of 5 vol%. It was processed at 93 ° C. until the weight yield was 93%. Further, under a nitrogen stream containing 20 vol% of steam, 5
Activated at 00 ° C. for 10 minutes to obtain a carbonaceous fiber nonwoven fabric.

【0054】(実施例7)平均繊維径16μmのポリア
クリロニトリル繊維を空気中200〜300℃で耐炎化
した後、長さ約80mmにカットし、耐炎化繊維の短繊
維を作成した。これにフェノール系樹脂粉末(商品名ベ
ルパールS890,鐘紡(株)製)を耐炎化繊維重量に
対して、0.5重量%を加えて混合し、フォスター社製
HDB40番の針、針密度146本/平方インチ、深度
4mm、押さえギャップ4mmの条件で不織布化し、目
付量400g/m2 、厚み5.2mmの不織布を作成し
た。次いで、該不織布を200℃、線圧60kg/cm
のカレンダーロールに通し厚み2.0mmに圧縮した。
該不織布を窒素気流下で100℃/分の昇温速度でそれ
ぞれ1600℃まで昇温し、この温度で1時間保持し炭
化を行つて冷却し、続いて酸素濃度5vol%の窒素気
流下で700℃にて重量収率93%になるまで処理し
た。さらに20vol%の水蒸気を含む窒素気流下で5
00℃10分間活性化し炭素質繊維不織布を得た。
Example 7 Polyacrylonitrile fibers having an average fiber diameter of 16 μm were oxidized in air at 200 to 300 ° C., and then cut to a length of about 80 mm to prepare oxidized short fibers. A phenolic resin powder (trade name: Bellpearl S890, manufactured by Kanebo Co., Ltd.) was added in an amount of 0.5% by weight based on the weight of the oxidized fiber, and the mixture was mixed. / Square inch, a depth of 4 mm, and a pressing gap of 4 mm, to form a nonwoven fabric having a basis weight of 400 g / m 2 and a thickness of 5.2 mm. Next, the nonwoven fabric was heated at 200 ° C. and a linear pressure of 60 kg / cm.
And compressed to a thickness of 2.0 mm.
The non-woven fabric was heated to 1600 ° C. at a rate of 100 ° C./min under a nitrogen stream, held at this temperature for 1 hour, cooled by carbonization, and subsequently cooled to 700 ° C. under a nitrogen stream having an oxygen concentration of 5 vol%. It was processed at 93 ° C. until the weight yield was 93%. Further, under a nitrogen stream containing 20 vol% of steam, 5
Activated at 00 ° C. for 10 minutes to obtain a carbonaceous fiber nonwoven fabric.

【0055】(実施例8)平均繊維径16μmのポリア
クリロニトリル繊維を空気中200〜300℃で耐炎化
した後、長さ約80mmにカットし、耐炎化繊維の短繊
維を作成した。これにフェノール系樹脂粉末(商品名ベ
ルパールS890,鐘紡(株)製)を耐炎化繊維重量に
対して、0.5重量%を加えて混合し、フォスター社製
HDB40番の針、針密度146本/平方インチ、深度
4mm、押さえギャップ4mmの条件で不織布化し、目
付量400g/m2 、厚み5.2mmの不織布を作成し
た。次いで、該不織布を220℃、線圧60kg/cm
のカレンダーロールに通し厚み1.5mmに圧縮した。
該不織布を窒素気流下で100℃/分の昇温速度でそれ
ぞれ1600℃まで昇温し、この温度で1時間保持し炭
化を行つて冷却し、続いて酸素濃度5vol%の窒素気
流下で700℃にて重量収率93%になるまで処理し
た。さらに20vol%の水蒸気を含む窒素気流下で5
00℃10分間活性化し炭素質繊維不織布を得た。
Example 8 Polyacrylonitrile fibers having an average fiber diameter of 16 μm were oxidized in air at 200 to 300 ° C., and then cut to a length of about 80 mm to prepare oxidized short fibers. A phenolic resin powder (trade name: Bellpearl S890, manufactured by Kanebo Co., Ltd.) was added in an amount of 0.5% by weight based on the weight of the oxidized fiber, and the mixture was mixed. / Square inch, a depth of 4 mm, and a pressing gap of 4 mm, to form a nonwoven fabric having a basis weight of 400 g / m 2 and a thickness of 5.2 mm. Next, the nonwoven fabric was heated at 220 ° C. and a linear pressure of 60 kg / cm.
And compressed to a thickness of 1.5 mm.
The non-woven fabric was heated to 1600 ° C. at a rate of 100 ° C./min under a nitrogen stream, held at this temperature for 1 hour, cooled by carbonization, and subsequently cooled to 700 ° C. under a nitrogen stream having an oxygen concentration of 5 vol%. It was processed at 93 ° C. until the weight yield was 93%. Further, under a nitrogen stream containing 20 vol% of steam, 5
Activated at 00 ° C. for 10 minutes to obtain a carbonaceous fiber nonwoven fabric.

【0056】(比較例1)平均繊維径16μmのポリア
クリロニトリル繊維を空気中200〜300℃で耐炎化
した後、長さ約80mmにカットし、耐炎化繊維の短繊
維を作成した。これを、フォスター社製HDB40番の
針、針密度146本/平方インチ、深度4mm、押さえ
ギャップ4mmの条件で不織布化し、目付量400g/
2 、厚み5.2mmの不織布を作成した。次いで、該
不織布を窒素気流下で100℃/分の昇温速度でそれぞ
れ1600℃まで昇温し、この温度で1時間保持し炭化
を行つて冷却し、続いて酸素濃度5vol%の窒素気流
下で700℃にて重量収率93%になるまで処理した。
さらに20vol%の水蒸気を含む窒素気流下で500
℃10分間活性化し炭素質繊維不織布を得た。
Comparative Example 1 Polyacrylonitrile fibers having an average fiber diameter of 16 μm were oxidized in air at 200 to 300 ° C., and then cut to a length of about 80 mm to prepare oxidized short fibers. This was made into a nonwoven fabric under the conditions of a Foster No. 40 HDB needle, a needle density of 146 needles / square inch, a depth of 4 mm and a holding gap of 4 mm, and a basis weight of 400 g /
A nonwoven fabric of m 2 and 5.2 mm in thickness was prepared. Next, the nonwoven fabric was heated to 1600 ° C. at a rate of 100 ° C./min under a nitrogen stream, held at this temperature for 1 hour, cooled by carbonization, and subsequently cooled under a nitrogen stream having an oxygen concentration of 5 vol%. At 700 ° C. until the weight yield became 93%.
Further, under a nitrogen stream containing 20 vol% of steam, 500
Activated at 10 ° C. for 10 minutes to obtain a carbonaceous fiber nonwoven fabric.

【0057】(比較例2)平均繊維径16μmのポリア
クリロニトリル繊維を空気中200〜300℃で耐炎化
した後、長さ約80mmにカットし、耐炎化繊維の短繊
維を作成した。これにフェノール系樹脂粉末(商品名ベ
ルパールS890,鐘紡(株)製)を耐炎化繊維重量に
対して、0.5重量%を加えて混合し、フォスター社製
HDB40番の針、針密度146本/平方インチ、深度
4mm、押さえギャップ4mmの条件で不織布化し、目
付量400g/m2 、厚み5.2mmの不織布を作成し
た。次いで、該不織布を240℃、線圧60kg/cm
のカレンダーロールに通し厚み1.5mmに圧縮した。
該不織布を窒素気流下で100℃/分の昇温速度でそれ
ぞれ1600℃まで昇温し、この温度で1時間保持し炭
化を行つて冷却し、続いて酸素濃度5vol%の窒素気
流下で700℃にて重量収率93%になるまで処理し
た。さらに20vol%の水蒸気を含む窒素気流下で5
00℃10分間活性化し炭素質繊維不織布を得た。
(Comparative Example 2) Polyacrylonitrile fiber having an average fiber diameter of 16 µm was oxidized in air at 200 to 300 ° C, and then cut to a length of about 80 mm to prepare oxidized short fibers. A phenolic resin powder (trade name: Bellpearl S890, manufactured by Kanebo Co., Ltd.) was added in an amount of 0.5% by weight based on the weight of the oxidized fiber, and the mixture was mixed. / Square inch, a depth of 4 mm, and a pressing gap of 4 mm, to form a nonwoven fabric having a basis weight of 400 g / m 2 and a thickness of 5.2 mm. Next, the nonwoven fabric was heated at 240 ° C. and a linear pressure of 60 kg / cm.
And compressed to a thickness of 1.5 mm.
The non-woven fabric was heated to 1600 ° C. at a rate of 100 ° C./min under a nitrogen stream, held at this temperature for 1 hour, cooled by carbonization, and subsequently cooled to 700 ° C. under a nitrogen stream having an oxygen concentration of 5 vol%. It was processed at 93 ° C. until the weight yield was 93%. Further, under a nitrogen stream containing 20 vol% of steam, 5
Activated at 00 ° C. for 10 minutes to obtain a carbonaceous fiber nonwoven fabric.

【0058】(比較例3)平均繊維径16μmのポリア
クリロニトリル繊維を空気中200〜300℃で耐炎化
した後、長さ約80mmにカットし、耐炎化繊維の短繊
維を作成した。これを、フォスター社製HDB40番の
針、針密度748本/平方インチ、深度4mm、押さえ
ギャップ4mmの条件で不織布化し、目付量400g/
2 、厚み4.2mmの不織布を作成した。次いで、該
不織布を240℃、線圧60kg/cmのカレンダーロ
ールに通し厚み3.1mmに圧縮した。該不織布を窒素
ガス中で10℃/分の昇温速度で1200℃まで昇温
し、この温度で1時間保持し炭化を行つて冷却し、続い
て酸素濃度7vol%の窒素気流下で700℃にて重量
収率93%になるまで処理し炭素質繊維不織布を得た。
(Comparative Example 3) Polyacrylonitrile fibers having an average fiber diameter of 16 µm were oxidized in air at 200 to 300 ° C, and then cut to a length of about 80 mm to prepare oxidized short fibers. This was made into a non-woven fabric under the conditions of a Foster No. 40 HDB needle, a needle density of 748 needles / square inch, a depth of 4 mm, and a holding gap of 4 mm.
A nonwoven fabric having a thickness of m 2 and a thickness of 4.2 mm was prepared. Next, the nonwoven fabric was passed through a calender roll at 240 ° C. and a linear pressure of 60 kg / cm, and was compressed to a thickness of 3.1 mm. The non-woven fabric is heated to 1200 ° C. at a rate of 10 ° C./min in nitrogen gas, kept at this temperature for 1 hour, cooled by carbonization, and subsequently cooled to 700 ° C. in a nitrogen stream having an oxygen concentration of 7 vol%. To obtain a carbon fiber nonwoven fabric.

【0059】(比較例4)平均繊維径16μmのポリア
クリロニトリル繊維を空気中200〜300℃で耐炎化
した後、長さ約80mmにカットし、耐炎化繊維の短繊
維を作成した。これを、フォスター社製HDB40番の
針、針密度748本/平方インチ、深度4mm、押さえ
ギャップ4mmの条件で不織布化し、目付量400g/
2 、厚み4.2mmの不織布を作成した。次いで、該
不織布を240℃、線圧60kg/cmのカレンダーロ
ールに通し厚み3.1mmに圧縮した。
Comparative Example 4 Polyacrylonitrile fibers having an average fiber diameter of 16 μm were oxidized in air at 200 to 300 ° C., and then cut to a length of about 80 mm to prepare oxidized short fibers. This was made into a non-woven fabric under the conditions of a Foster No. 40 HDB needle, a needle density of 748 needles / square inch, a depth of 4 mm, and a holding gap of 4 mm.
A nonwoven fabric having a thickness of m 2 and a thickness of 4.2 mm was prepared. Next, the nonwoven fabric was passed through a calender roll at 240 ° C. and a linear pressure of 60 kg / cm, and was compressed to a thickness of 3.1 mm.

【0060】該不織布にアルゴンガスを絶えず600c
c/min/m2 吹き付けた状態で10℃/分の昇温速
度で2000℃まで昇温し、この温度で1時間保持し炭
化を行つて冷却し、続いて酸素濃度7vol%の窒素気
流下で700℃にて重量収率93%になるまで処理し
た。さらに20vol%の水蒸気を含む窒素気流下で5
00℃10分間活性化し炭素質繊維不織布を得た。
Argon gas is continuously applied to the nonwoven fabric for 600 c.
The temperature was raised to 2000 ° C. at a rate of 10 ° C./min while spraying c / min / m 2 , the temperature was maintained for 1 hour, and carbonization was performed for cooling, followed by a nitrogen stream with an oxygen concentration of 7 vol%. At 700 ° C. until the weight yield became 93%. Further, under a nitrogen stream containing 20 vol% of steam, 5
Activated at 00 ° C. for 10 minutes to obtain a carbonaceous fiber nonwoven fabric.

【0061】(比較例5)平均繊維径16μmのポリア
クリロニトリル繊維を空気中200〜300℃で耐炎化
した後、長さ約80mmにカットし、耐炎化繊維の短繊
維を作成した。これを、フォスター社製HDB40番の
針、針密度748本/平方インチ、深度4mm、押さえ
ギャップ4mmの条件で不織布化し、目付量400g/
2 、厚み4.2mmの不織布を作成した。次いで、該
不織布を240℃、線圧60kg/cmのカレンダーロ
ールに通し厚み3.1mmに圧縮した。該不織布にアル
ゴンガスを絶えず600cc/min/m2 吹き付けた
状態で10℃/分の昇温速度で1600℃まで昇温し、
この温度で1時間保持し炭化を行つて冷却し、続いて酸
素濃度0.5vol%の窒素気流下で700℃にて重量
収率93%になるまで処理し炭素質繊維不織布を得た。
Comparative Example 5 A polyacrylonitrile fiber having an average fiber diameter of 16 μm was oxidized in air at 200 to 300 ° C., and then cut to a length of about 80 mm to prepare oxidized short fibers. This was made into a non-woven fabric under the conditions of a Foster No. 40 HDB needle, a needle density of 748 needles / square inch, a depth of 4 mm, and a holding gap of 4 mm.
A nonwoven fabric having a thickness of m 2 and a thickness of 4.2 mm was prepared. Next, the nonwoven fabric was passed through a calender roll at 240 ° C. and a linear pressure of 60 kg / cm, and was compressed to a thickness of 3.1 mm. The temperature was raised to 1600 ° C. at a rate of 10 ° C./min while continuously blowing argon gas at 600 cc / min / m 2 onto the nonwoven fabric.
The mixture was kept at this temperature for 1 hour, carbonized and cooled, and subsequently treated at 700 ° C. under a nitrogen stream having an oxygen concentration of 0.5 vol% until the weight yield became 93% to obtain a carbonaceous fiber nonwoven fabric.

【0062】(比較例6)平均繊維径16μmのポリア
クリロニトリル繊維を空気中200〜300℃で耐炎化
した後、長さ約80mmにカットし、耐炎化繊維の短繊
維を作成した。これを、フォスター社製HDB40番の
針、針密度748本/平方インチ、深度4mm、押さえ
ギャップ4mmの条件で不織布化し、目付量400g/
2 、厚み4.2mmの不織布を作成した。次いで、該
不織布を240℃、線圧60kg/cmのカレンダーロ
ールに通し厚み3.1mmに圧縮した。該不織布にアル
ゴンガスを絶えず600cc/min/m2 吹き付けた
状態で10℃/分の昇温速度で1600℃まで昇温し、
この温度で1時間保持し炭化を行つて冷却し、続いて酸
素濃度0.5vol%の窒素ガス雰囲気下で700℃に
て重量収率93%になるまで処理した。さらに5vol
%の塩化水素ガスと20vol%の水蒸気を含む窒素気
流下で200℃5分活性化し炭素質繊維不織布を得た。
Comparative Example 6 Polyacrylonitrile fibers having an average fiber diameter of 16 μm were oxidized in air at 200 to 300 ° C., and then cut to a length of about 80 mm to prepare oxidized short fibers. This was made into a non-woven fabric under the conditions of a Foster No. 40 HDB needle, a needle density of 748 needles / square inch, a depth of 4 mm, and a holding gap of 4 mm.
A nonwoven fabric having a thickness of m 2 and a thickness of 4.2 mm was prepared. Next, the nonwoven fabric was passed through a calender roll at 240 ° C. and a linear pressure of 60 kg / cm, and was compressed to a thickness of 3.1 mm. The temperature was raised to 1600 ° C. at a rate of 10 ° C./min while continuously blowing argon gas at 600 cc / min / m 2 onto the nonwoven fabric.
It was kept at this temperature for 1 hour, cooled by carbonization, and subsequently treated in a nitrogen gas atmosphere with an oxygen concentration of 0.5 vol% at 700 ° C. until the weight yield became 93%. Further 5vol
% Of hydrogen chloride gas and 20% by volume of water vapor at 200 ° C. for 5 minutes to obtain a carbonaceous fiber nonwoven fabric.

【0063】(比較例7)平均繊維径16μmのポリア
クリロニトリル繊維を空気中200〜300℃で耐炎化
した後、長さ約80mmにカットし、耐炎化繊維の短繊
維を作成した。これを、フォスター社製HDB40番の
針、針密度748本/平方インチ、深度4mm、押さえ
ギャップ4mmの条件で不織布化し、目付量400g/
2 、厚み4.2mmの不織布を作成した。次いで、該
不織布を240℃、線圧60kg/cmのカレンダーロ
ールに通し厚み3.1mmに圧縮した。
Comparative Example 7 Polyacrylonitrile fibers having an average fiber diameter of 16 μm were oxidized in air at 200 to 300 ° C., and then cut to a length of about 80 mm to prepare oxidized short fibers. This was made into a non-woven fabric under the conditions of a Foster No. 40 HDB needle, a needle density of 748 needles / square inch, a depth of 4 mm, and a holding gap of 4 mm.
A nonwoven fabric having a thickness of m 2 and a thickness of 4.2 mm was prepared. Next, the nonwoven fabric was passed through a calender roll at 240 ° C. and a linear pressure of 60 kg / cm, and was compressed to a thickness of 3.1 mm.

【0064】該不織布にアルゴンガスを絶えず600c
c/min/m2 吹き付けた状態で100℃/分の昇温
速度で1600℃まで昇温し、この温度で1時間保持し
炭化を行つて冷却し、続いて酸素濃度0.5vol%の
窒素ガス雰囲気下で700℃にて重量収率93%になる
まで処理した。さらに20vol%の水蒸気を含む窒素
気流下で500℃60分活性化し炭素質繊維不織布を得
た。
An argon gas was continuously applied to the nonwoven fabric for 600 c.
The temperature was raised to 1600 ° C. at a rate of 100 ° C./min while spraying c / min / m 2 , kept at this temperature for 1 hour, cooled by carbonization, and subsequently nitrogen with an oxygen concentration of 0.5 vol% The treatment was performed at 700 ° C. under a gas atmosphere until the weight yield was 93%. Further, activation was performed at 500 ° C. for 60 minutes under a nitrogen stream containing 20 vol% water vapor to obtain a carbonaceous fiber nonwoven fabric.

【0065】(参考例1)平均繊維径16μmのポリア
クリロニトリル繊維を空気中200〜300℃で耐炎化
した後、長さ約80mmにカットし、耐炎化繊維の短繊
維を作成した。これを、フォスター社製HDB40番の
針、針密度748本/平方インチ、深度4mm、押さえ
ギャップ4mmの条件で不織布化し、目付量400g/
2 、厚み4.2mmの不織布を作成した。次いで、該
不織布を240℃、線圧60kg/cmのカレンダーロ
ールに通し厚み3.1mmに圧縮した。
Reference Example 1 Polyacrylonitrile fibers having an average fiber diameter of 16 μm were oxidized in air at 200 to 300 ° C., and then cut to a length of about 80 mm to prepare oxidized short fibers. This was made into a non-woven fabric under the conditions of a Foster No. 40 HDB needle, a needle density of 748 needles / square inch, a depth of 4 mm, and a holding gap of 4 mm.
A nonwoven fabric having a thickness of m 2 and a thickness of 4.2 mm was prepared. Next, the nonwoven fabric was passed through a calender roll at 240 ° C. and a linear pressure of 60 kg / cm, and was compressed to a thickness of 3.1 mm.

【0066】該不織布にアルゴンガスを絶えず600c
c/min/m2 吹き付けた状態で10℃/分の昇温速
度で1600℃まで昇温し、この温度で1時間保持し炭
化を行つて冷却し、続いて酸素濃度0.5vol%の窒
素ガス雰囲気下で700℃にて重量収率98%になるま
で処理した。さらに5vol%の塩化水素ガスと20v
ol%の水蒸気を含む窒素気流下で200℃5分活性化
し炭素質繊維不織布を得た。
The argon gas is continuously applied to the nonwoven fabric for 600 c.
The temperature was raised to 1600 ° C. at a rate of 10 ° C./min while spraying c / min / m 2 , the temperature was maintained for 1 hour, carbonized and cooled, and then nitrogen with an oxygen concentration of 0.5 vol% The treatment was performed at 700 ° C. under a gas atmosphere until the weight yield became 98%. In addition, 5vol% hydrogen chloride gas and 20v
Activated at 200 ° C. for 5 minutes under a nitrogen stream containing ol% steam to obtain a carbonaceous fiber nonwoven fabric.

【0067】以上の実施例、比較例で得られた炭素質繊
維不織布の嵩密度、XPS表面分析、通液圧損、集電板
との初期接触抵抗、100サイクル後の接触抵抗を、製
造条件と共に表1に示す。
The bulk density, XPS surface analysis, liquid pressure loss, initial contact resistance with the current collector plate, and contact resistance after 100 cycles of the carbonaceous fiber nonwoven fabric obtained in the above Examples and Comparative Examples were determined together with the production conditions. It is shown in Table 1.

【0068】[0068]

【表1】 表1の結果から明らかなように、実施例1〜8の炭素質
繊維不織布は、通液圧損、集電板との接触抵抗の低減を
図ることが可能となり、セル抵抗を低く抑えて電圧効率
が高めることができ、電池エネルギー効率を高めること
ができる。さらに充放電サイクルの経時変化による電極
材の接触性の低下を低減することができ、電圧効率の長
期安定化に寄与することが出来る。このことは特にバナ
ジウム系レドックスフロー電池にとって効果的である。
[Table 1] As is evident from the results in Table 1, the carbonaceous fiber nonwoven fabrics of Examples 1 to 8 can reduce the liquid pressure loss and the contact resistance with the current collector plate, reduce the cell resistance, and increase the voltage efficiency. And the energy efficiency of the battery can be increased. Further, it is possible to reduce a decrease in the contact property of the electrode material due to a change over time in the charge / discharge cycle, which can contribute to long-term stabilization of voltage efficiency. This is particularly effective for vanadium-based redox flow batteries.

【0069】これに対し、不織布の嵩密度が本発明の範
囲より小さい比較例1では通液圧損は良好なものの、集
電板との接触抵抗が大きく、一方、不織布の嵩密度が本
発明の範囲より大きい比較例2では、集電板との接触抵
抗は良好なものの通液圧損が大きく、電圧効率とエネル
ギー効率のうえで好ましくない。また、炭素質繊維の特
性が適当でない比較例3〜7では、集電板との接触抵抗
が大きく、電圧効率とエネルギー効率のうえで好ましく
ない。
On the other hand, in Comparative Example 1 in which the bulk density of the nonwoven fabric was smaller than the range of the present invention, although the liquid pressure loss was good, the contact resistance with the current collector plate was large, while the bulk density of the nonwoven fabric of the present invention was low. In Comparative Example 2, which is larger than the range, the contact resistance with the current collector plate is good, but the liquid passing pressure loss is large, which is not preferable in terms of voltage efficiency and energy efficiency. In Comparative Examples 3 to 7, in which the properties of the carbonaceous fiber are not appropriate, the contact resistance with the current collector plate is large, which is not preferable in terms of voltage efficiency and energy efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】バナジウム系レドックスフロー電池の概略図FIG. 1 is a schematic diagram of a vanadium-based redox flow battery.

【図2】三次元電極を有するバナジウム系レドックスフ
ロー電池の電解槽の分解斜図
FIG. 2 is an exploded perspective view of an electrolytic cell of a vanadium-based redox flow battery having a three-dimensional electrode.

【図3】XPS表面分析で測定されるC1sピークの結
合構造別分離図の一例
FIG. 3 is an example of a separation diagram of a C1s peak measured by XPS surface analysis according to a bonding structure.

【図4】XPS表面分析で測定されるN1sピークの結
合構造別分離図の一例
FIG. 4 is an example of a separation diagram of the N1s peak measured by XPS surface analysis according to a bonding structure.

【符号の説明】[Explanation of symbols]

1 集電板 2 スペーサ 3 イオン交換膜 4a,4b 通液路 5 電極材 6 外部液タンク(正極側) 7 外部液タンク(負極側) 8,9 ポンプ 10 液流入口 11 液流出口 DESCRIPTION OF SYMBOLS 1 Current collection plate 2 Spacer 3 Ion exchange membrane 4a, 4b Liquid passage 5 Electrode material 6 External liquid tank (positive electrode side) 7 External liquid tank (negative electrode side) 8, 9 Pump 10 Liquid inlet 11 Liquid outlet

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 水溶液系電解液によるレドックスフロー
電池に使用され、炭素質繊維の不織布よりなる炭素電極
材集合体において、 前記炭素質繊維は、XPS表面分析より求めた下記
(a)、(b)の要件を同時に満たすと共に、 前記不織布は、嵩密度が0. 05〜0. 17g/cm3
であることを特徴とする炭素電極材集合体。 (a)表面酸性官能基量が全表面炭素原子数の0.2〜
2.0%である。 (b)窒素と二重結合している表面炭素原子数が全表面
炭素原子数の0.3〜3.0%である。
1. A carbon electrode material aggregate used for a redox flow battery using an aqueous electrolytic solution and made of a nonwoven fabric of carbonaceous fibers, wherein the carbonaceous fibers are determined by the following (a) and (b) obtained by XPS surface analysis. ), And the nonwoven fabric has a bulk density of 0.05 to 0.17 g / cm 3.
A carbon electrode material assembly, characterized in that: (A) The amount of surface acidic functional groups is 0.2 to less than the total number of surface carbon atoms.
2.0%. (B) The number of surface carbon atoms that are double-bonded to nitrogen is 0.3 to 3.0% of the total number of surface carbon atoms.
【請求項2】 炭素質繊維の、XPS表面分析より求め
た表面4級アンモニウム性窒素原子数が全表面炭素原子
数の1.0%以下である請求項1記載の炭素電極材集合
体。
2. The carbon electrode material assembly according to claim 1, wherein the number of surface quaternary ammonium nitrogen atoms of the carbonaceous fiber determined by XPS surface analysis is 1.0% or less of the total number of surface carbon atoms.
【請求項3】 バナジウム系レドックスフロー電池に使
用される請求項1または2記載の炭素電極材集合体。
3. The carbon electrode material assembly according to claim 1, which is used for a vanadium redox flow battery.
JP25656299A 1999-09-10 1999-09-10 Carbon electrode material assembly Withdrawn JP2001085024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25656299A JP2001085024A (en) 1999-09-10 1999-09-10 Carbon electrode material assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25656299A JP2001085024A (en) 1999-09-10 1999-09-10 Carbon electrode material assembly

Publications (1)

Publication Number Publication Date
JP2001085024A true JP2001085024A (en) 2001-03-30

Family

ID=17294374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25656299A Withdrawn JP2001085024A (en) 1999-09-10 1999-09-10 Carbon electrode material assembly

Country Status (1)

Country Link
JP (1) JP2001085024A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9414944B2 (en) 2010-11-11 2016-08-16 W. L. Gore & Associates, Inc. Deployment sleeve shortening mechanism
US9468547B2 (en) 2010-11-11 2016-10-18 W. L. Gore & Associates, Inc. Deployment of endoluminal devices

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9414944B2 (en) 2010-11-11 2016-08-16 W. L. Gore & Associates, Inc. Deployment sleeve shortening mechanism
US9468547B2 (en) 2010-11-11 2016-10-18 W. L. Gore & Associates, Inc. Deployment of endoluminal devices
US9468549B2 (en) 2010-11-11 2016-10-18 W. L. Gore & Associates, Inc. Deployment of endoluminal devices

Similar Documents

Publication Publication Date Title
JP3601581B2 (en) Carbon electrode material for vanadium redox flow battery
JP6617464B2 (en) Carbon electrode material for redox batteries
JP7088197B2 (en) Carbon electrode material for redox flow batteries and its manufacturing method
JP6786776B2 (en) Manufacturing method of electrode material for redox batteries
JP2017027918A (en) Electrode material for redox flow battery
WO2017022564A1 (en) Carbon electrode material for redox batteries
JPH02281564A (en) Carbon electrode material for electrolytic bath
JP2017027920A (en) Electrode material for redox battery
JP2015138692A (en) integrated carbon electrode
US20220153591A1 (en) Carbon electrode material for manganese/titanium-based redox flow battery
WO2018143123A1 (en) Carbonaceous material, electrode material using same, and battery
JP4366802B2 (en) Carbon electrode material assembly and manufacturing method thereof
EP3940830A1 (en) Carbon electrode material and redox battery
JP2001085024A (en) Carbon electrode material assembly
JP2001006690A (en) Carbon electrode material
JP2001085025A (en) Carbon electrode material assembly
JP4280883B2 (en) Electrolyzer and electrode material for redox flow battery
JP6557824B2 (en) Carbon electrode and carbon electrode manufacturing method
JP2001085021A (en) Carbon electrode material assembly
JP2001085028A (en) Carbon electrode material assembly
JP3589285B2 (en) Carbon electrode material for redox flow batteries
JP2001085022A (en) Carbon electrode material and carbon electrode material assembly
JP2001167785A (en) Electrolytic bath for redox flow cell and electrode material
JP2001085026A (en) Carbon electrode material assembly
JP2001085023A (en) Carbon electrode material assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070109

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080704