JPH1012260A - Redox flow battery - Google Patents

Redox flow battery

Info

Publication number
JPH1012260A
JPH1012260A JP8158463A JP15846396A JPH1012260A JP H1012260 A JPH1012260 A JP H1012260A JP 8158463 A JP8158463 A JP 8158463A JP 15846396 A JP15846396 A JP 15846396A JP H1012260 A JPH1012260 A JP H1012260A
Authority
JP
Japan
Prior art keywords
electrode
negative electrode
positive
chamber
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8158463A
Other languages
Japanese (ja)
Inventor
Kanji Sato
完二 佐藤
Yoshiteru Kageyama
芳輝 景山
Mitsutaka Miyabayashi
光孝 宮林
Haruo Oyama
春生 大山
Yasuhiko Ikemoto
泰彦 池本
Tomonari Takada
智成 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KASHIMAKITA KYODO HATSUDEN KK
Mitsubishi Heavy Industries Ltd
Original Assignee
KASHIMAKITA KYODO HATSUDEN KK
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KASHIMAKITA KYODO HATSUDEN KK, Mitsubishi Heavy Industries Ltd filed Critical KASHIMAKITA KYODO HATSUDEN KK
Priority to JP8158463A priority Critical patent/JPH1012260A/en
Publication of JPH1012260A publication Critical patent/JPH1012260A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a redox flow battery having high energy efficiency and electric power efficiency. SOLUTION: A porous electrode to be used in a redox flow battery is arranged on a separating plate so as to satisfy conditions of the following (1) and (2). (1) The ratio H/L of an average height H in the direction for flowing an electrolyte of the porous electrode to a length L vertical to the direction for flowing the electrolyte of this electrode must be in a range of 0.18 to 1.95. (2) Grooves are respectively provided between a bottom surface of a positive electrode chamber and a negative electrode chamber having an electrolyte introducing port and the porous electrode and between another bottom surface of the positive electrode chamber and the negative electrode chamber having an electrolyte discharge port and the porous electrode, and the ratio h/H of an average height (h) of these grooves to an average height H in the direction for flowing the electrolyte of the porous electrode must be in a range of 0.01 to 0.14.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レドックスフロー
型二次電池に関するものであり、特に該電池に使用され
る、多孔性電極が配設された分液板の構造に特徴を有す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a redox flow secondary battery, and more particularly to a redox flow type secondary battery having a structure of a liquid separating plate provided with a porous electrode. .

【0002】[発明の背景]現在、化石燃料の大量使用
による大気中炭酸ガス濃度の増加が著しく、地球の温暖
化が大きな問題となっている。このために、クリーンな
エネルギー源である太陽電池の開発が活発に行われてい
るが、太陽電池は、夜間や雨天時は発電できないため太
陽電池と組み合わせる高性能な二次電池の開発が待たれ
ている。一方、従来の発電設備に於いても夜と昼等で電
力需要の差が大きく、需要のピークにあわせて発電能力
を備えねばならないため、発電設備の負荷率は低下して
いる。そのため大型の電力貯蔵電池により夜間電力を貯
蔵し、昼間活用することで運転負荷の平滑化を図り、発
電設備の負荷率を上げて効率的な運転を行うことが必要
になってきており、大型の電力貯蔵電池の開発が待たれ
ている。さらには、電気自動車等の移動体電源に適した
出力密度の大きい二次電池の開発も待たれている。レド
ックス電池はタッピングによって太陽電池の出力電圧に
合わせて充電できることや、構造が比較的シンプルで大
型化しやすい等の特徴を持つために、上記の用途に適し
た新型の二次電池として有望である。
[Background of the Invention] At present, the concentration of carbon dioxide in the atmosphere is remarkably increased due to the large use of fossil fuels, and global warming is a major problem. For this reason, solar cells, which are clean energy sources, are being actively developed.However, since solar cells cannot generate power at night or in rainy weather, the development of high-performance secondary cells combined with solar cells is awaited. ing. On the other hand, even in the conventional power generation equipment, the difference in power demand between night and day is large, and the power generation capacity must be provided according to the peak of the demand, so that the load factor of the power generation equipment is decreasing. For this reason, it is necessary to store power at night with a large power storage battery and use it during the day to smooth the operating load and raise the load factor of the power generation equipment for efficient operation. The development of power storage batteries is awaited. Further, development of a secondary battery having a high output density suitable for a mobile power source of an electric vehicle or the like is also awaited. A redox battery is promising as a new type of secondary battery suitable for the above-mentioned applications because it can be charged according to the output voltage of the solar cell by tapping, and has features such as a relatively simple structure and easy enlargement.

【0003】[0003]

【従来の技術】レドックスフロー型二次電池とは、電池
活物質が液状であり、正極及び負極の電池活物質を液透
過型の電解槽に流通せしめ、酸化還元反応を利用して充
放電を行うものであり、従来の二次電池と比べレドック
スフロー型二次電池は次の利点を有する。 (1) 蓄電容量を大きくするためには、貯蔵容器の容量を
大きくし、活物質量を増加させるだけでよく、出力を大
きくしない限り、電解槽自体はそのままでよい。 (2) 正、負極活物質は容器に完全に分離して貯蔵できる
ので、活物質が電極に接しているような電池と異なり、
自己放電の可能性が小さい。 (3) 本電池で使用する液透過型炭素多孔質電極において
は、活物質イオンの充放電反応(電極反応)は、単に、電
極表面で電子の交換を行うのみで、亜鉛−臭素電池にお
ける、亜鉛イオンのように電極に析出することはないの
で、電池の反応が単純である。
2. Description of the Related Art A redox flow type secondary battery is a battery in which a battery active material is in a liquid state, and a battery active material of a positive electrode and a negative electrode is passed through a liquid-permeable electrolytic cell, and charge and discharge are performed using an oxidation-reduction reaction. The redox flow type secondary battery has the following advantages as compared with the conventional secondary battery. (1) In order to increase the storage capacity, it is only necessary to increase the capacity of the storage container and increase the amount of active material, and the electrolytic cell itself may be used as long as the output is not increased. (2) Since the positive and negative electrode active materials can be completely separated and stored in the container, unlike batteries where the active material is in contact with the electrodes,
The possibility of self-discharge is small. (3) In the liquid-permeable carbon porous electrode used in the present battery, the charge / discharge reaction of the active material ions (electrode reaction) is simply performed by exchanging electrons on the electrode surface, and in the zinc-bromine battery, The reaction of the battery is simple because it does not deposit on the electrode as zinc ions do.

【0004】しかし、レドックスフロー型二次電池でも
従来開発が行われてきた鉄−クロム系電池は、エネルギ
ー密度が小さく、イオン交換膜を介して鉄とクロムが混
合するなどの欠点があるために実用化に至っていない。
そのため全バナジウムレドックスフロー型電池(J.Elec
trochem.Soc., 1331057(1986)、特公昭62-186473号公
報)が提案されており、この電池は、鉄−クロム系電池
に比して起電力が高く、容量密度が大きく、また電解液
が一元素系であるために、隔膜を介して正極液及び負極
液が相互に混合しても充電によって簡単に再生すること
ができ、電池容量が低下せず、電解液を完全にクローズ
ド化できる等の利点を持っている。
[0004] However, iron-chromium batteries, which have been conventionally developed even in redox flow type secondary batteries, have disadvantages such as low energy density and mixing of iron and chromium through an ion exchange membrane. It has not been put to practical use.
Therefore, all vanadium redox flow batteries (J. Elec
trochem. Soc., 1331057 (1986), Japanese Patent Publication No. 62-186473), which has a higher electromotive force, a higher capacity density, and a higher electrolyte density than iron-chromium batteries. Is a one-element system, even if the positive electrode solution and the negative electrode solution are mixed with each other through the diaphragm, it can be easily regenerated by charging, the battery capacity does not decrease, and the electrolyte solution can be completely closed. And so on.

【0005】しかしながら、この全バナジウムレドック
スフロー電池でも、電極面積を大きくして電池の大型化
を図り、且つ電解液の電極中での流れを均一に分布さ
せ、また電解液を透過させるためのポンプ動力を小さく
してエネルギー効率を高くする必要があるが、従来の全
バナジウムレドックスフロー電池では不十分であった。
特に電極面積を大きくし正極室及び負極室のセルの高さ
が高くなると、電解液を透過させるためのポンプ動力が
大きくなり、エネルギー効率は低下する。逆に、正極室
及び負極室のセルの高さを小さくして電解液を透過させ
るためのポンプ動力を小さくし、電極面積を大きくする
ために正極室及び負極室のセルの幅を大きくすると、電
解液の電極中での流れの分布が不均一になり、比較的高
い電流密度を流そうとするとセル抵抗率が増大し電力効
率が低下する。従って、電極面積を大きくして電池の大
型化をはかり且つ電解液の電極中での流れを均一に分布
させてセル抵抗率を小さくし、比較的高い電流密度にお
いても高い電力効率を維持し且つ電解液を透過させるた
めのポンプ動力を小さくしてエネルギー効率の大きなレ
ドックスフロー型電池の開発が求められていた。
[0005] However, in this all-vanadium redox flow battery as well, a pump for increasing the size of the battery by increasing the electrode area, uniformly distributing the flow of the electrolyte in the electrode, and permeating the electrolyte is also used. Although it is necessary to reduce power and increase energy efficiency, conventional all-vanadium redox flow batteries have been insufficient.
In particular, when the electrode area is increased and the height of the cells in the positive electrode chamber and the negative electrode chamber is increased, the pump power for permeating the electrolyte increases, and the energy efficiency decreases. Conversely, when the height of the cells in the positive electrode chamber and the negative electrode chamber is reduced to reduce the pump power for transmitting the electrolyte, and the width of the cells in the positive electrode chamber and the negative electrode chamber is increased to increase the electrode area, The distribution of the flow of the electrolyte in the electrodes becomes non-uniform, and when a relatively high current density is attempted to flow, the cell resistivity increases and the power efficiency decreases. Therefore, the size of the battery is increased by increasing the electrode area, the flow of the electrolyte in the electrode is evenly distributed, the cell resistivity is reduced, and high power efficiency is maintained even at a relatively high current density; There has been a demand for the development of a redox flow battery having high energy efficiency by reducing the pump power for permeating the electrolyte.

【0006】[0006]

【発明が解決しようとする課題】本発明の課題は、電極
面積を大きくして電池の大型化をはかり且つ電解液の電
極中での流れを均一に分布させ、比較的高い電流密度に
おいてもセル抵抗率を小さくして高い電力効率を維持
し、また電解液を透過させるためのポンプ動力を小さく
してエネルギー効率の大きなレドックスフロー電池を提
供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to increase the size of the battery by increasing the electrode area, to distribute the flow of the electrolyte in the electrode uniformly, and to obtain a cell with a relatively high current density. It is an object of the present invention to provide a redox flow battery having high energy efficiency by reducing the resistivity to maintain high power efficiency and reducing the pump power for permeating the electrolyte.

【0007】[0007]

【課題を解決するための手段】即ち、本発明によれば、
隔膜によって分離され且つ多孔性電極が配設された正極
室と負極室に、正極液と負極液を通液して酸化還元反応
を行い充放電する液循環式型のレドックスフロー電池に
おいて、該多孔性電極が下記(1)及び(2)の条件を
満たすように、分液板に配設されていることを特徴とす
る電池が提供される。 (1)多孔性電極の電解液が流れる方向の平均高さ
(H)と該電極の電解液が流れる方向に垂直な長さ
(L)との比(H/L)が0.18〜1.95の範囲にあ
ること。 (2)正極室および負極室に正極液と負極液を導入する
ための導入口を有する正極室及び負極室の底面と多孔性
電極との間、および正極室および負極室から正極液と負
極液を排出するための排出口を有する正極室及び負極室
のもう一方の底面と多孔性電極との間にそれぞれ溝を有
し、該溝を電解液が流れる方向の平均高さ(H)と該溝
の平均高さ(h:正極室及び負極室の底面と多孔性電極
との間の距離)との比(h/H)が0.01〜0.14の
範囲にあること。
That is, according to the present invention,
In a liquid circulation type redox flow battery in which a positive electrode solution and a negative electrode solution are passed through a positive electrode chamber and a negative electrode chamber separated by a diaphragm and provided with a porous electrode to perform an oxidation-reduction reaction and charge and discharge, A battery is provided, wherein the non-conductive electrode is disposed on the liquid separating plate so as to satisfy the following conditions (1) and (2). (1) The ratio (H / L) of the average height (H) of the porous electrode in the direction in which the electrolyte flows to the length (L) of the electrode perpendicular to the direction in which the electrolyte flows (H / L) is 0.18 to 1 Must be in the range of .95. (2) The positive and negative electrode chambers have inlets for introducing the positive and negative electrode solutions into the positive and negative electrode chambers, between the bottom surfaces of the positive and negative electrode chambers and the porous electrode, and from the positive and negative electrode chambers to the positive and negative electrode solutions. A groove between the other bottom surface of the positive electrode chamber and the other side of the negative electrode chamber having a discharge port for discharging water, and the porous electrode. The ratio (h / H) to the average height of the groove (h: distance between the bottom surface of the positive electrode chamber and the negative electrode chamber and the porous electrode) is in the range of 0.01 to 0.14.

【0008】本発明は、さらに、上記(1)及び(2)
の条件に加えて、(3)電極の電解液が流れる方向に垂
直な長さ(L)を正極室および負極室に正極液と負極液
を導入するための導入口の数(N)で除した値(L/
N)、及び電極の電解液が流れる方向に垂直な長さ
(L)を正極室および負極室から正極液と負極液を排出
するための排出口の数(N')で除した値(L/N')が
125〜700mmの範囲にあるという条件を満たす電
池を提供するものである。
The present invention further provides the above (1) and (2)
In addition to (3), the length (L) of the electrode perpendicular to the direction in which the electrolyte flows is divided by the number (N) of inlets for introducing the positive electrode solution and the negative electrode solution into the positive electrode chamber and the negative electrode chamber. Value (L /
N) and a value (L) obtained by dividing the length (L) of the electrode perpendicular to the flowing direction of the electrolytic solution by the number (N ′) of outlets for discharging the positive electrode solution and the negative electrode solution from the positive electrode chamber and the negative electrode chamber. / N ') is within the range of 125 to 700 mm.

【0009】[0009]

【発明の実施の形態】上記のように、本発明のレドック
スフロー電池は、多孔性電極が配設された分液板の構造
にその特徴を有するものである。多孔性電極の電解液が
流れる方向の平均高さ(H)と該電極の電解液が流れる
方向に垂直な長さ(L)との比(H/L)が0.18〜
1.95の範囲にあることが必要である。H/Lが1.9
5を越えると、電極中を電解液を透過させるためのポン
プ動力が増大し、エネルギー効率が低下する。また、H
/Lが0.18未満であると、電極面積を大きくするとき
に過度に電極の幅が大きくなり、電極中の電解液の流れ
の分布が不均一になったり、電池の専有面積が増大す
る。H/Lは、好ましくは0.20〜1.50の範囲にあ
り、より好ましくは0.25〜1.00、さらに好ましく
は0.30〜0.90であり、特に好ましくは0.35〜
0.80であり、最も好ましくは0.35〜0.60であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, the redox flow battery of the present invention is characterized by the structure of a liquid separation plate provided with a porous electrode. The ratio (H / L) between the average height (H) of the porous electrode in the direction in which the electrolyte flows and the length (L) of the electrode perpendicular to the direction in which the electrolyte flows (0.18)
It must be in the range of 1.95. H / L is 1.9
If it exceeds 5, the pump power for permeating the electrolyte through the electrode increases, and the energy efficiency decreases. Also, H
When / L is less than 0.18, the width of the electrode becomes excessively large when the electrode area is increased, the distribution of the flow of the electrolyte in the electrode becomes uneven, and the occupied area of the battery increases. . H / L is preferably in the range of 0.20 to 1.50, more preferably 0.25 to 1.00, still more preferably 0.30 to 0.90, and particularly preferably 0.35 to 0.95.
0.80, most preferably 0.35 to 0.60.

【0010】また、本発明の電池は、正極室および負極
室に正極液と負極液を導入するための導入口を有する正
極室及び負極室の底面と多孔性電極との間に溝を有し、
且つ正極室および負極室から正極液と負極液を排出する
ための排出口を有する正極室及び負極室のもう一方の底
面と多孔性電極との間にも溝を有する。そして、多孔性
電極の電解液が流れる方向の平均高さ(H)と溝の平均
高さ(h:正極室及び負極室の底面と多孔性電極との間
の距離)との比(h/H)が0.01〜0.14の範囲で
あることが必要である。h/Hが0.01未満であると、
溝による電解液の均一な分散が不十分となり、0.14
を越えると電極の有効反応面積が低下するわりに溝によ
る電解液の均一な分散効果が飽和する。h/Hは、好ま
しくは0.012〜0.12、より好ましくは0.015
〜0.10、さらに好ましくは0.018〜0.08であ
り、特に好ましくは0.02〜0.07であり、最も好ま
しくは0.025〜0.06である。
Further, the battery of the present invention has a groove between the bottom surface of the positive electrode chamber and the negative electrode chamber having an inlet for introducing the positive electrode solution and the negative electrode solution into the positive electrode chamber and the negative electrode chamber, and the porous electrode. ,
In addition, a groove is also provided between the porous electrode and the other bottom surface of the positive electrode chamber and the negative electrode chamber having a discharge port for discharging the positive electrode liquid and the negative electrode liquid from the positive electrode chamber and the negative electrode chamber. Then, the ratio (h / h / distance) between the average height (H) of the porous electrode in the direction in which the electrolyte flows and the average height of the grooves (h: the distance between the bottom surface of the positive electrode chamber and the negative electrode chamber and the porous electrode). H) needs to be in the range of 0.01 to 0.14. When h / H is less than 0.01,
Uniform dispersion of the electrolyte by the grooves becomes insufficient, and 0.14
Exceeding the range, the effective reaction area of the electrode is reduced, but the effect of uniformly dispersing the electrolytic solution by the grooves is saturated. h / H is preferably 0.012 to 0.12, more preferably 0.015.
To 0.10, more preferably 0.018 to 0.08, particularly preferably 0.02 to 0.07, and most preferably 0.025 to 0.06.

【0011】さらに、本発明の電池においては、多孔性
電極の電解液が流れる方向に垂直な長さ(L)を正極室
および負極室に正極液と負極液を導入するための導入口
の数(N)で除した値(L/N)、及び多孔性電極の電
解液が流れる方向に垂直な長さ(L)を正極室および負
極室から正極液と負極液を排出するための排出口の数
(N')で除した値(L/N')が125〜700mmで
あることが望ましい。L/N又はL/N'が125mm未
満であると、電極面積を大きくしたいときに導入口及び
排出口の数が多くなり、導入口及び排出口での電解液を
流す圧力損失が大きくなってポンプ動力が増大し、エネ
ルギー効率が低下する。また導入口及び排出口の数が多
くなると、導入口及び排出口周りでの電解液の漏洩が生
じやすくなる。また、L/N及びL/N'が700mmを
越えると、電極中を流れる電解液の分散が不良となる。
L/N及びL/N'は、好ましくは150〜600mm、
より好ましくは170〜500mm、さらに好ましくは
180〜400mm、特に好ましくは200〜350m
m、最も好ましくは220〜300mmである。
Further, in the battery of the present invention, the length (L) of the porous electrode perpendicular to the flowing direction of the electrolytic solution is determined by the number of inlets for introducing the positive and negative electrode solutions into the positive and negative electrode chambers. The value obtained by dividing the value (L / N) divided by (N) and the length (L) of the porous electrode perpendicular to the direction in which the electrolyte flows, is a discharge port for discharging the positive and negative electrodes from the positive and negative electrode chambers. It is desirable that the value (L / N ′) divided by the number (N ′) is 125 to 700 mm. When L / N or L / N 'is less than 125 mm, the number of inlets and outlets increases when it is desired to increase the electrode area, and the pressure loss for flowing the electrolyte at the inlets and outlets increases. Pump power increases and energy efficiency decreases. Also, when the number of inlets and outlets increases, leakage of the electrolyte around the inlets and outlets tends to occur. When L / N and L / N ′ exceed 700 mm, dispersion of the electrolyte flowing in the electrode becomes poor.
L / N and L / N ′ are preferably 150 to 600 mm,
More preferably 170 to 500 mm, further preferably 180 to 400 mm, particularly preferably 200 to 350 m
m, most preferably 220-300 mm.

【0012】本発明の電池においては、多孔性電極を電
解液が流れる方向の平均高さ(H)は、通常100〜8
00mm程度であり、より好ましくは150〜700m
m、さらに好ましくは200〜600mm、特に好まし
くは300〜500mm、最も好ましくは350〜45
0mmである。多孔性電極の電解液が流れる方向に垂直
な長さ(L)は、通常300〜1500mm、より好ま
しくは500〜1400mm、さらに好ましくは600
〜1300mm、特に好ましくは700〜1200m
m、最も好ましくは800〜1100mmである。
In the battery of the present invention, the average height (H) in the direction in which the electrolyte flows through the porous electrode is usually 100 to 8
About 00 mm, more preferably 150 to 700 m
m, more preferably 200 to 600 mm, particularly preferably 300 to 500 mm, most preferably 350 to 45
0 mm. The length (L) of the porous electrode perpendicular to the direction in which the electrolytic solution flows is usually 300 to 1500 mm, more preferably 500 to 1400 mm, and further preferably 600.
~ 1300mm, particularly preferably 700 ~ 1200m
m, most preferably from 800 to 1100 mm.

【0013】正極室および負極室に正極液と負極液を導
入するための導入口及び正極室および負極室から正極液
と負極液を排出するための排出口は、それぞれ複数のス
リットとそれに電解液を供給するためのマニホールドか
ら構成される。スリット及びマニホールドは、多孔性電
極が配設された分液板に設けられる。各スリットの幅
は、通常0.5〜3mmであり、好ましくは0.6〜2.
5mm、より好ましくは0.8〜2mmである。スリッ
トの深さは、通常0.5〜2.5mmであり、好ましくは
0.6〜2.0mm、より好ましくは0.8〜1.5mmで
ある。スリットは、好ましくは電解液が0.5〜5m/s
ec、より好ましくは0.8〜4m/sec、さらに好ま
しくは1.0〜3m/secの速度で正極室および負極室
に正極液と負極液が導入され、正極室および負極室から
正極液と負極液が排出されるように、その断面積と数を
調整することが好ましい。
An inlet for introducing a positive electrode solution and a negative electrode solution into the positive electrode chamber and the negative electrode chamber and an outlet for discharging the positive electrode solution and the negative electrode solution from the positive electrode chamber and the negative electrode chamber respectively have a plurality of slits and an electrolytic solution. It is composed of a manifold for supplying the air. The slit and the manifold are provided on a liquid separating plate provided with the porous electrodes. The width of each slit is usually 0.5 to 3 mm, preferably 0.6 to 2.5 mm.
It is 5 mm, more preferably 0.8 to 2 mm. The depth of the slit is usually 0.5 to 2.5 mm, preferably 0.6 to 2.0 mm, and more preferably 0.8 to 1.5 mm. The slit preferably has an electrolyte of 0.5 to 5 m / s.
ec, more preferably 0.8 to 4 m / sec, and still more preferably 1.0 to 3 m / sec, the positive and negative electrode solutions are introduced into the positive and negative electrode chambers, and the positive and negative electrode solutions are introduced from the positive and negative electrode chambers. It is preferable to adjust the cross-sectional area and the number so that the negative electrode solution is discharged.

【0014】本発明の電池に用いられる電解液、即ち正
極液又は負極液は、0.5〜8.0モル/リットルバナジ
ウムの濃度を有する水溶液であることが好ましい。バナ
ジウムの濃度は、好ましくは0.6〜6.0モル/リット
ル、より好ましくは0.8〜5.0モル/リットル、さら
に好ましくは1.0〜4.5モル/リットル、特に好まし
くは1.2〜4.0モル/リットル、最も好ましくは1.5
〜3.5モル/リットルである。バナジウムの濃度が、
0.5モル/リットル未満であると電池のエネルギー密度
が小さくなり、8.0モル/リットルを越えると電解液の
粘度が高くなり電池セルの抵抗が高くなり、電力効率も
低いものとなる。また、電解液としてはバナジウムの硫
酸水溶液が好ましく用いられ、電解液における硫酸根の
濃度は、好ましくは0.5〜9.0モル/リットル、より
好ましくは0.8〜8.5モル/リットル、さらに好まし
くは1.0〜8.0モル/リットル、特に好ましくは1.2
〜7.0モル/リットル、最も好ましくは1.5〜6.0モ
ル/リットルである。
The electrolytic solution used in the battery of the present invention, that is, the positive electrode solution or the negative electrode solution is preferably an aqueous solution having a concentration of 0.5 to 8.0 mol / liter vanadium. The concentration of vanadium is preferably 0.6 to 6.0 mol / l, more preferably 0.8 to 5.0 mol / l, still more preferably 1.0 to 4.5 mol / l, particularly preferably 1 to 4.5 mol / l. 0.2-4.0 mol / l, most preferably 1.5
~ 3.5 mol / l. When the concentration of vanadium is
If it is less than 0.5 mol / l, the energy density of the battery will be low, and if it exceeds 8.0 mol / l, the viscosity of the electrolytic solution will be high, the resistance of the battery cell will be high, and the power efficiency will be low. Further, as the electrolytic solution, an aqueous solution of vanadium in sulfuric acid is preferably used, and the concentration of sulfate in the electrolytic solution is preferably 0.5 to 9.0 mol / l, more preferably 0.8 to 8.5 mol / l. , More preferably 1.0 to 8.0 mol / l, particularly preferably 1.2.
77.0 mol / l, most preferably 1.5-6.0 mol / l.

【0015】本発明に用いる液透過性の多孔性電極は、
好ましくはフェルト状、スダレ編み状、メリアス編み状
の炭素繊維成形体や、シート状多孔性炭素成形体である
ことができる。
The liquid-permeable porous electrode used in the present invention comprises:
Preferably, it may be a carbon fiber molded article in the shape of a felt, a sump knit, or a melias, or a sheet-shaped porous carbon molded article.

【0016】本発明の電池における隔膜は、有機高分子
からなるイオン交換膜を用いることが好ましい。カチオ
ン交換膜及びアニオン交換膜いずれのイオン交換膜も用
いることができる。
It is preferable to use an ion exchange membrane made of an organic polymer for the membrane in the battery of the present invention. Either a cation exchange membrane or an anion exchange membrane can be used.

【0017】本発明の電池に使用される多孔性電極が配
設された分液板の一例を図1に示す。また、本発明の電
池セルの単セル構造の一例を図2に示す。本発明の電池
は、二枚のバイポーラプレートおよび隔膜の両側に液透
過性多孔質電極を配置し、これらの部材を二枚の集電板
電極によってサンドイッチ状態に押圧し、隔膜で仕切ら
れた室の一方を正極室、他方を負極室とし、その室の厚
さは適当なスペーサーによって確保される。この各室、
すなわち正極室にV4+/V5+から成る正極電解液を、負
極室にV3+/V2+から成る負極電解液を流通させること
によりレドックス電池が構成される。レドックスフロー
型電池の場合、充電時には正極室では、電子を放出しV
4+がV5+に酸化される。放出された電子は、外部回路を
通して負極室に供給される。負極室では、供給された電
子によってV3+がV2+に還元される。この酸化還元反応
に伴って正極室では、水素イオンH+が過剰になる。一
方、負極室では、水素イオンH+が不足する。隔膜は、
正極室の過剰な水素イオンH+を選択的に負極室へ移動
させ電気的中性が保たれる。放電時には、この逆の反応
が進む。上述の電池反応では、エネルギ−効率は、下記
式−1で示される。
FIG. 1 shows an example of a liquid separation plate provided with a porous electrode used in the battery of the present invention. FIG. 2 shows an example of the single cell structure of the battery cell of the present invention. In the battery of the present invention, a liquid-permeable porous electrode is disposed on both sides of two bipolar plates and a diaphragm, and these members are pressed in a sandwich state by the two current collector electrodes to form a chamber partitioned by the diaphragm. Is a positive electrode chamber and the other is a negative electrode chamber, and the thickness of the chamber is secured by a suitable spacer. Each of these rooms,
That is, a redox battery is formed by flowing a positive electrode electrolyte composed of V 4+ / V 5+ through the positive electrode chamber and a negative electrode electrolyte composed of V 3+ / V 2+ through the negative electrode chamber. In the case of a redox flow battery, electrons are emitted from the positive electrode chamber during charging, and V
4+ is oxidized to V5 + . The emitted electrons are supplied to the negative electrode chamber through an external circuit. In the negative electrode chamber, V 3+ is reduced to V 2+ by the supplied electrons. Along with this oxidation-reduction reaction, hydrogen ions H + become excessive in the positive electrode chamber. On the other hand, in the negative electrode chamber, hydrogen ions H + are insufficient. The diaphragm is
Excessive hydrogen ions H + in the positive electrode chamber are selectively transferred to the negative electrode chamber to maintain electrical neutrality. During discharge, the reverse reaction proceeds. In the above-described battery reaction, the energy efficiency is represented by the following equation-1.

【0018】[0018]

【数1】 (Equation 1)

【0019】この式中の充放電電力量は、電池セルの内
部抵抗と隔膜のイオン選択性およびシャント電流損失等
に依存している。内部抵抗の減少は、電圧効率を向上さ
せる。イオン選択性の向上およびシャント電流損失の低
減は、電流効率を向上させる。
The charge / discharge power amount in this equation depends on the internal resistance of the battery cell, the ion selectivity of the diaphragm, the shunt current loss, and the like. The reduction in the internal resistance improves the voltage efficiency. Improving ion selectivity and reducing shunt current loss improves current efficiency.

【0020】[0020]

【実施例】以下、実施例及び比較例に基づいて、本発明
を具体的に説明する。 実施例1 図2に示すようなレドックスフロー電池セルを用い正極
室および負極室の厚さを3mmとした。多孔性電極とし
て、セルロース系炭素繊維フェルト電極を用いた。多孔
性電極の電解液が流れる方向の平均高さ(H)が400
mm、電極の電解液が流れる方向に垂直な長さ(L)が
1000mm、多孔性電極の電解液が流れる方向の平均
高さ(H)と電極の電解液が流れる方向に垂直な長さ
(L)との比(H/L)が0.40である多孔性電極を使
用した。正極室および負極室に正極液と負極液を導入す
るための導入口並びに正極室および負極室から正極液と
負極液を排出するための排出口を有する正極室及び負極
室の底面と多孔性電極との間に、平均高さが(h:正極
室及び負極室の底面と多孔性電極との間の距離)18m
mの溝を有するように、分液板に多孔性電極を配置し
た。多孔性電極の電解液が流れる方向の平均高さ(H)
と溝の平均高さ(h:正極室及び負極室の底面と多孔性
電極との間の距離)との比(h/H)は0.045であっ
た。正極室および負極室に正極液と負極液を導入するた
めの導入口の数(N)、及び正極室および負極室から正
極液と負極液を排出するための排出口の数(N')は、
ともに4個であった。電極の電解液が流れる方向に垂直
な長さ(L)を導入口の数(N)で除した値(L/
N)、及び電極の電解液が流れる方向に垂直な長さ
(L)を排出口の数(N')で除した値(L/N')は2
50mmであった。正極室および負極室に正極液と負極
液を導入する導入口を5本の細溝からなるスリットとそ
れに電解液を供給するマニホールドから構成し、正極室
および負極室から正極液と負極液を排出する排出口を5
本の細溝からなるスリットとそれに続くマニホールドか
ら構成した。さらに、正極液と負極液は、バナジウムイ
オン濃度が2モル/リットルの硫酸水溶液であり、電解
液における硫酸根の濃度は4モル/リットルであるもの
を使用した。電池セル電圧1.65Vまで充電し、電池
セル電圧が1.16Vまで放電する充放電実験を繰り返
し実施した。結果を表−1に示す。
The present invention will be specifically described below based on examples and comparative examples. Example 1 A redox flow battery cell as shown in FIG. 2 was used, and the thickness of the positive electrode chamber and the negative electrode chamber was set to 3 mm. A cellulosic carbon fiber felt electrode was used as the porous electrode. The average height (H) of the porous electrode in the direction in which the electrolyte flows is 400.
mm, the length (L) perpendicular to the direction in which the electrolyte flows in the electrode is 1000 mm, the average height (H) in the direction in which the electrolyte flows in the porous electrode, and the length perpendicular to the direction in which the electrolyte flows in the electrode (H). A porous electrode having a ratio (H / L) to L) of 0.40 was used. The bottom surface of the positive and negative electrode chambers and the porous electrode having an inlet for introducing the positive and negative electrode solutions into the positive and negative electrode chambers and an outlet for discharging the positive and negative electrode solutions from the positive and negative electrode chambers And the average height is 18 m (h: distance between the bottom surfaces of the positive electrode chamber and the negative electrode chamber and the porous electrode).
The porous electrode was arranged on the liquid separating plate so as to have a groove of m. Average height of porous electrode in the direction of electrolyte flow (H)
And the average height of the grooves (h: distance between the bottom surface of the positive electrode chamber and the negative electrode chamber and the porous electrode) (h / H) was 0.045. The number of inlets (N) for introducing the positive electrode solution and the negative electrode solution into the positive electrode room and the negative electrode room, and the number of outlets (N ′) for discharging the positive electrode solution and the negative electrode solution from the positive electrode room and the negative electrode room are as follows. ,
Both were four. A value (L / L) obtained by dividing the length (L) of the electrode perpendicular to the direction in which the electrolyte flows by the number of inlets (N).
N) and the length (L) of the electrode perpendicular to the direction in which the electrolyte flows (L / N ′) divided by the number of outlets (N ′) is 2
It was 50 mm. The inlet for introducing the positive and negative electrode solutions into the positive and negative electrode chambers is composed of a slit consisting of five narrow grooves and a manifold for supplying the electrolytic solution to the slits, and the positive and negative electrode solutions are discharged from the positive and negative electrode chambers 5 outlets
It consisted of a slit consisting of book narrow grooves followed by a manifold. Further, the positive electrode solution and the negative electrode solution were aqueous sulfuric acid solutions having a vanadium ion concentration of 2 mol / l, and the concentration of sulfate groups in the electrolytic solution was 4 mol / l. A charge / discharge experiment in which the battery cell voltage was charged to 1.65 V and the battery cell voltage was discharged to 1.16 V was repeatedly performed. The results are shown in Table 1.

【0021】比較例1 正極室および負極室に正極液と負極液を導入するための
導入口並びに正極室および負極室から正極液と負極液を
排出するための排出口を有する正極室及び負極室の底面
と多孔性電極との間に、平均高さが(h:正極室及び負
極室の底面と多孔性電極との間の距離)3.2mmの溝
を有するように、分液板に多孔性電極を配置した。多孔
性電極の電解液が流れる方向の平均高さ(H)と溝の平
均高さ(h)との比(h/H)は0.008であった。正
極室および負極室に正極液と負極液を導入するための導
入口の数(N)、正極室および負極室から正極液と負極
液を排出するための排出口の数(N')は、ともに2個
とした。電極の電解液が流れる方向に垂直な長さ(L)
を導入口の数(N)で除した値(L/N)、及び電極の
電解液が流れる方向に垂直な長さ(L)を排出口の数
(N')で除した値(L/N')は、500mmである。
それ以外は全て実施例1と同様にして充放電実験を実施
した。結果を表−1に示す。
COMPARATIVE EXAMPLE 1 A positive electrode chamber and a negative electrode chamber having an inlet for introducing the positive electrode liquid and the negative electrode liquid into the positive electrode chamber and the negative electrode chamber, and an outlet for discharging the positive electrode liquid and the negative electrode liquid from the positive electrode chamber and the negative electrode chamber. Between the bottom surface of the porous plate and the porous electrode so that an average height (h: the distance between the bottom surface of the positive electrode chamber and the negative electrode chamber and the porous electrode) is 3.2 mm. A negative electrode was placed. The ratio (h / H) of the average height (H) of the porous electrode in the flowing direction of the electrolyte to the average height (h) of the grooves was 0.008. The number of inlets (N) for introducing the positive electrode solution and the negative electrode solution into the positive electrode room and the negative electrode room, and the number of outlets (N ′) for discharging the positive electrode solution and the negative electrode solution from the positive electrode room and the negative electrode room are: Both were two. Length (L) perpendicular to the direction in which the electrolyte flows in the electrode
Divided by the number of inlets (N) (L / N), and the length (L) of the electrode perpendicular to the direction in which the electrolyte flows (L / N) divided by the number of outlets (N '). N ′) is 500 mm.
Except for this, a charge / discharge experiment was performed in the same manner as in Example 1. The results are shown in Table 1.

【0022】比較例2 正極室および負極室に正極液と負極液を導入するための
導入口並びに正極室および負極室から正極液と負極液を
排出するための排出口を有する正極室及び負極室の底面
と多孔性電極との間に、平均高さが(h)3.3mmの
溝を有するように、分液板に多孔性電極を配置した。多
孔性電極の電解液が流れる方向の平均高さ(H)と溝の
平均高さ(h)との比(h/H)は、0.008であっ
た。導入口の数(N)及び排出口の数(N')はともに
1個とした。電極の電解液が流れる方向に垂直な長さ
(L)を導入口の数(N)で除した値(L/N)、及び
電極の電解液が流れる方向に垂直な長さ(L)を排出口
の数(N')で除した値(L/N')は1000mmであ
った。それ以外は全て実施例1と同様にして充放電実験
を実施した。結果を表−1に示す。
COMPARATIVE EXAMPLE 2 A positive electrode chamber and a negative electrode chamber having an inlet for introducing the positive electrode liquid and the negative electrode liquid into the positive electrode chamber and the negative electrode chamber, and an outlet for discharging the positive electrode liquid and the negative electrode liquid from the positive electrode chamber and the negative electrode chamber. The porous electrode was arranged on the liquid separating plate such that a groove having an average height (h) of 3.3 mm was provided between the bottom surface of the sample and the porous electrode. The ratio (h / H) of the average height (H) of the porous electrode in the flowing direction of the electrolytic solution to the average height (h) of the grooves was 0.008. The number of inlets (N) and the number of outlets (N ') were both one. The value (L / N) obtained by dividing the length (L) of the electrode perpendicular to the direction in which the electrolyte flows by the number of inlets (N), and the length (L) of the electrode perpendicular to the direction in which the electrolyte flows. The value (L / N ') divided by the number of outlets (N') was 1000 mm. Except for this, a charge / discharge experiment was performed in the same manner as in Example 1. The results are shown in Table 1.

【0023】[0023]

【表1】 [Table 1]

【0024】上記の結果から明らかなように、本発明の
レドックスフロー電池は、電圧効力が高く、高い電力効
率を有する。
As is clear from the above results, the redox flow battery of the present invention has high voltage efficacy and high power efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電池に使用される多孔性電極が配設さ
れた分液板の一例を示す概略説明図である。
FIG. 1 is a schematic explanatory view showing an example of a liquid separation plate provided with a porous electrode used in the battery of the present invention.

【図2】本発明のレドックス電池を構成する単一セルの
概略説明図である。
FIG. 2 is a schematic explanatory view of a single cell constituting the redox battery of the present invention.

【符号の説明】[Explanation of symbols]

H 多孔性電極の電解液が流れる方向の平均高さ h 多孔性電極の電解液が流れる溝の平均高さ L 多孔性電極の電解液が流れる方向に垂直な長さ H Average height of porous electrode in direction of electrolyte flow h Average height of groove of porous electrode through which electrolyte flows L Length perpendicular to direction of flow of electrolyte of porous electrode

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年2月26日[Submission date] February 26, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項1[Correction target item name] Claim 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0007】[0007]

【課題を解決するための手段】即ち、本発明によれば、
隔膜によって分離され且つ多孔性電極が配設された正極
室と負極室に、正極液と負極液を通液して酸化還元反応
を行い充放電する液循環式型のレドックスフロー電池に
おいて、該多孔性電極が下記(1)及び(2)の条件を
満たすように、分液板に配設されていることを特徴とす
る電池が提供される。 (1)多孔性電極の電解液が流れる方向の平均高さ
(H)と該電極の電解液が流れる方向に垂直な長さ
(L)との比(H/L)が0.18〜1.95の範囲にあ
ること。 (2)正極室および負極室に正極液と負極液を導入する
ための導入口を有する正極室及び負極室の底面と多孔性
電極との間、および正極室および負極室から正極液と負
極液を排出するための排出口を有する正極室及び負極室
のもう一方の底面と多孔性電極との間にそれぞれ溝を有
し、多孔性電極の電解液が流れる方向の平均高さ(H)
と該溝の平均高さ(h:正極室及び負極室の底面と多孔
性電極との間の距離)との比(h/H)が0.01〜0.
14の範囲にあること。
That is, according to the present invention,
In a liquid circulation type redox flow battery in which a positive electrode solution and a negative electrode solution are passed through a positive electrode chamber and a negative electrode chamber separated by a diaphragm and provided with a porous electrode to perform an oxidation-reduction reaction and charge and discharge, A battery is provided, wherein the non-conductive electrode is disposed on the liquid separating plate so as to satisfy the following conditions (1) and (2). (1) The ratio (H / L) of the average height (H) of the porous electrode in the direction in which the electrolyte flows to the length (L) of the electrode perpendicular to the direction in which the electrolyte flows (H / L) is 0.18 to 1 Must be in the range of .95. (2) The positive and negative electrode chambers have inlets for introducing the positive and negative electrode solutions into the positive and negative electrode chambers, between the bottom surfaces of the positive and negative electrode chambers and the porous electrode, and from the positive and negative electrode chambers to the positive and negative electrode solutions. Average height (H) of the porous electrode in the direction in which the electrolyte flows, having grooves between the porous electrode and the other bottom surfaces of the positive electrode chamber and the negative electrode chamber each having a discharge port for discharging water.
And the average height of the groove (h: distance between the bottom surface of the positive electrode chamber and the negative electrode chamber and the porous electrode) (h / H) is 0.01 to 0.1.
14 range.

フロントページの続き (72)発明者 宮林 光孝 茨城県稲敷郡阿見町中央8丁目3番1号 鹿島北共同発電株式会社V電池開発室内 (72)発明者 大山 春生 茨城県稲敷郡阿見町中央8丁目3番1号 鹿島北共同発電株式会社V電池開発室内 (72)発明者 池本 泰彦 兵庫県神戸市兵庫区和田崎町一丁目1番1 号 三菱重工業株式会社神戸造船所内 (72)発明者 高田 智成 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂研究所内Continued on the front page. (72) Mitsutaka Miyabayashi 8-3-1 Chuo, Ami-cho, Inashiki-gun, Ibaraki Prefecture V Battery Development Room, Kashima Kita Joint Power Generation Co., Ltd. (72) Haruo Oyama 8-chome, Ami-cho, Inashiki-gun, Ibaraki No.3-1 Kashima Kita Joint Power Generation Co., Ltd. V Battery Development Room (72) Inventor Yasuhiko Ikemoto 1-1-1, Wadazakicho, Hyogo-ku, Kobe-shi, Hyogo Pref. Mitsubishi Heavy Industries, Ltd.Kobe Shipyard (72) Inventor Tomonari Takada Mitsubishi Heavy Industries, Ltd. Takasago Research Laboratory 2-1-1, Nihama, Arai-machi, Takasago-shi, Hyogo

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 隔膜によって分離され且つ多孔性電極が
配設された正極室と負極室に、正極液と負極液を通液し
て酸化還元反応を行い充放電する液循環式型のレドック
スフロー電池において、該多孔性電極が下記(1)及び
(2)の条件を満たすように分液板に配設されているこ
とを特徴とする電池: (1)多孔性電極の電解液が流れる方向の平均高さ
(H)と該電極の電解液が流れる方向に垂直な長さ
(L)との比(H/L)が0.18〜1.95の範囲にあ
ること。 (2)正極室および負極室に正極液と負極液を導入する
ための導入口を有する正極室及び負極室の底面と多孔性
電極との間、および正極室および負極室から正極液と負
極液を排出するための排出口を有する正極室及び負極室
のもう一方の底面と多孔性電極との間に、それぞれ溝を
有し、該溝を電解液が流れる方向の平均高さ(H)と該
溝の平均高さ(h:正極室及び負極室の底面と多孔性電
極との間の距離)との比(h/H)が0.01〜0.14
の範囲にあること。
1. A liquid circulation type redox flow in which a positive electrode solution and a negative electrode solution are passed through a positive electrode chamber and a negative electrode chamber separated by a diaphragm and provided with a porous electrode to perform an oxidation-reduction reaction and charge and discharge. In the battery, the porous electrode is disposed on a liquid separating plate so as to satisfy the following conditions (1) and (2): (1) The direction in which the electrolyte of the porous electrode flows The ratio (H / L) of the average height (H) to the length (L) of the electrode perpendicular to the direction in which the electrolyte flows is in the range of 0.18 to 1.95. (2) The positive and negative electrode chambers have inlets for introducing the positive and negative electrode solutions into the positive and negative electrode chambers, between the bottom surfaces of the positive and negative electrode chambers and the porous electrode, and from the positive and negative electrode chambers to the positive and negative electrode solutions. A groove between each of the bottom surfaces of the positive electrode chamber and the negative electrode chamber having a discharge port for discharging water and the porous electrode, and the grooves have an average height (H) in a direction in which the electrolyte flows, and The ratio (h / H) to the average height of the groove (h: distance between the bottom surface of the positive electrode chamber and the negative electrode chamber and the porous electrode) is 0.01 to 0.14.
Be in the range.
【請求項2】 電極の電解液が流れる方向に垂直な長さ
(L)を正極室および負極室に正極液と負極液を導入す
るための導入口の数(N)で除した値(L/N)、及び
電極の電解液が流れる方向に垂直な長さ(L)を正極室
および負極室から正極液と負極液を排出するための排出
口の数(N')で除した値(L/N')が125〜700
mmの範囲にある請求項1記載の電池。
2. A value (L) obtained by dividing the length (L) of the electrode perpendicular to the flowing direction of the electrolytic solution by the number (N) of inlets for introducing the positive electrode solution and the negative electrode solution into the positive electrode chamber and the negative electrode chamber. / N) and the length (L) of the electrode perpendicular to the direction in which the electrolyte flows, divided by the number of outlets (N ′) for discharging the positive and negative electrodes from the positive and negative electrode chambers (N ′) ( L / N ') is 125 to 700
The battery of claim 1 in the range of mm.
【請求項3】 前記導入口及び前記排出口が、複数のス
リットとそれに続くマニホールドから構成される請求項
1又は2記載の電池。
3. The battery according to claim 1, wherein the inlet and the outlet comprise a plurality of slits followed by a manifold.
【請求項4】 正極液と負極液が、0.5〜8モル/リッ
トルのバナジウムイオン濃度を有する水溶液である請求
項1〜3のいずれかに記載の電池。
4. The battery according to claim 1, wherein the positive electrode solution and the negative electrode solution are aqueous solutions having a vanadium ion concentration of 0.5 to 8 mol / l.
【請求項5】 正極液と負極液が、バナジウムの硫酸水
溶液であり、電解液における硫酸根の濃度が0.5〜9.
0モル/リットルである請求項1〜4のいずれかに記載
の電池。
5. The cathode solution and the anode solution are aqueous solutions of vanadium in sulfuric acid, and the concentration of sulfate in the electrolyte is 0.5 to 9.5.
The battery according to any one of claims 1 to 4, wherein the amount is 0 mol / liter.
JP8158463A 1996-06-19 1996-06-19 Redox flow battery Pending JPH1012260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8158463A JPH1012260A (en) 1996-06-19 1996-06-19 Redox flow battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8158463A JPH1012260A (en) 1996-06-19 1996-06-19 Redox flow battery

Publications (1)

Publication Number Publication Date
JPH1012260A true JPH1012260A (en) 1998-01-16

Family

ID=15672299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8158463A Pending JPH1012260A (en) 1996-06-19 1996-06-19 Redox flow battery

Country Status (1)

Country Link
JP (1) JPH1012260A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7855005B2 (en) 2007-02-12 2010-12-21 Deeya Energy, Inc. Apparatus and methods of determination of state of charge in a redox flow battery
US7919204B2 (en) 2008-10-10 2011-04-05 Deeya Energy, Inc. Thermal control of a flow cell battery
US7927731B2 (en) 2008-07-01 2011-04-19 Deeya Energy, Inc. Redox flow cell
US8230736B2 (en) 2008-10-10 2012-07-31 Deeya Energy, Inc. Level sensor for conductive liquids
US8231993B2 (en) 2008-10-10 2012-07-31 Deeya Energy, Inc. Flexible multi-walled tubing assembly
US8236463B2 (en) 2008-10-10 2012-08-07 Deeya Energy, Inc. Magnetic current collector
US8338008B2 (en) 2009-05-28 2012-12-25 Deeya Energy, Inc. Electrolyte compositions
US8349477B2 (en) 2009-05-28 2013-01-08 Deeya Energy, Inc. Optical leak detection sensor
US8877365B2 (en) 2009-05-28 2014-11-04 Deeya Energy, Inc. Redox flow cell rebalancing
US8883297B2 (en) 2008-10-10 2014-11-11 Imergy Power Systems, Inc. Methods for bonding porous flexible membranes using solvent
US8951665B2 (en) 2010-03-10 2015-02-10 Imergy Power Systems, Inc. Methods for the preparation of electrolytes for chromium-iron redox flow batteries
US9035617B2 (en) 2009-05-28 2015-05-19 Imergy Power Systems, Inc. Control system for a flow cell battery
US9281535B2 (en) 2010-08-12 2016-03-08 Imergy Power Systems, Inc. System dongle
US9479056B2 (en) 2009-05-28 2016-10-25 Imergy Power Systems, Inc. Buck-boost circuit with protection feature
CN111224126A (en) * 2018-11-26 2020-06-02 中国科学院大连化学物理研究所 Flow frame for flow battery and application thereof

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7855005B2 (en) 2007-02-12 2010-12-21 Deeya Energy, Inc. Apparatus and methods of determination of state of charge in a redox flow battery
US7927731B2 (en) 2008-07-01 2011-04-19 Deeya Energy, Inc. Redox flow cell
US7919204B2 (en) 2008-10-10 2011-04-05 Deeya Energy, Inc. Thermal control of a flow cell battery
US8230736B2 (en) 2008-10-10 2012-07-31 Deeya Energy, Inc. Level sensor for conductive liquids
US8231993B2 (en) 2008-10-10 2012-07-31 Deeya Energy, Inc. Flexible multi-walled tubing assembly
US8236463B2 (en) 2008-10-10 2012-08-07 Deeya Energy, Inc. Magnetic current collector
US8883297B2 (en) 2008-10-10 2014-11-11 Imergy Power Systems, Inc. Methods for bonding porous flexible membranes using solvent
US8877365B2 (en) 2009-05-28 2014-11-04 Deeya Energy, Inc. Redox flow cell rebalancing
US8349477B2 (en) 2009-05-28 2013-01-08 Deeya Energy, Inc. Optical leak detection sensor
US8338008B2 (en) 2009-05-28 2012-12-25 Deeya Energy, Inc. Electrolyte compositions
US9035617B2 (en) 2009-05-28 2015-05-19 Imergy Power Systems, Inc. Control system for a flow cell battery
US9479056B2 (en) 2009-05-28 2016-10-25 Imergy Power Systems, Inc. Buck-boost circuit with protection feature
US8951665B2 (en) 2010-03-10 2015-02-10 Imergy Power Systems, Inc. Methods for the preparation of electrolytes for chromium-iron redox flow batteries
US9281535B2 (en) 2010-08-12 2016-03-08 Imergy Power Systems, Inc. System dongle
CN111224126A (en) * 2018-11-26 2020-06-02 中国科学院大连化学物理研究所 Flow frame for flow battery and application thereof
CN111224126B (en) * 2018-11-26 2024-01-16 中国科学院大连化学物理研究所 Flow frame for flow battery and application of flow frame

Similar Documents

Publication Publication Date Title
JP3505918B2 (en) Redox flow battery
EP0517217B1 (en) Redox battery
US20070072067A1 (en) Vanadium redox battery cell stack
JPH1012260A (en) Redox flow battery
US20090047571A1 (en) Electrochemical battery incorporating internal manifolds
CN101593841B (en) Redox flow battery and redox flow battery pack
JPH06140062A (en) Circulating solution type battery
JPH087913A (en) Full vanadium redox cell
Hsieh et al. Measurement of local current density of all-vanadium redox flow batteries
JP2002530816A (en) Bipolar plate for fuel cell and fuel cell with such plate
CN109037725B (en) Flow battery capable of improving distribution uniformity of electrolyte, electrode structure and method
Pan et al. Preliminary study of alkaline single flowing Zn–O2 battery
US11611098B2 (en) Cell for flow battery
KR101163996B1 (en) a redox flow secondary cell having metal foam electrodes
JPH0992321A (en) Redox cell
CN108598543B (en) Flow battery
EP2800181A1 (en) Use of proton exchange membrane in iron-chromium liquid fluid battery
JPH0529006A (en) Fuel cell
JP3555303B2 (en) Redox battery
JP2017134938A (en) Redox secondary battery system
AU2019228266A1 (en) Redox flow battery with at least one cell and an electrode element, and method for producing a conductor structure of an electrode element of a redox flow battery
JPH08138685A (en) Whole vanadium redox battery
KR20170097416A (en) Redox Flow Battery for Monopolar type
JPH0546063B2 (en)
CN113517452A (en) Composite electrode for flow battery, flow battery and electric pile

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061018

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070123