JPH087913A - Full vanadium redox cell - Google Patents

Full vanadium redox cell

Info

Publication number
JPH087913A
JPH087913A JP6140359A JP14035994A JPH087913A JP H087913 A JPH087913 A JP H087913A JP 6140359 A JP6140359 A JP 6140359A JP 14035994 A JP14035994 A JP 14035994A JP H087913 A JPH087913 A JP H087913A
Authority
JP
Japan
Prior art keywords
thickness
plate
cell
battery
packing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6140359A
Other languages
Japanese (ja)
Inventor
Toshiyuki Tayama
利行 田山
Toshihiko Tanimoto
敏彦 谷本
Masato Nakajima
正人 中島
Kanji Sato
完二 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KASHIMA KITA KYODO HATSUDEN KK
Original Assignee
KASHIMA KITA KYODO HATSUDEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KASHIMA KITA KYODO HATSUDEN KK filed Critical KASHIMA KITA KYODO HATSUDEN KK
Priority to JP6140359A priority Critical patent/JPH087913A/en
Publication of JPH087913A publication Critical patent/JPH087913A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To provide a high-output vanadium redox type secondary battery capable of application to high-current density of 80mA/cm<2> or over by thinning the thickness of a bipolar board as far as possible and reducing the inner resistance of a battery. CONSTITUTION:A battery cell 2.5mm in thickness is made by collecting and stacking an ion exchanging film consisting of polysulfonic polymer 100mum thick, a felt-shaped electrode 12 of carbon fibers, a bipolar plate 1, 1mm in thickness consisting of an outer frame of polyvinyl chloride and a glassy carbon plate of the same thickness, a packing 9 of ethylene-propylene rubber 0.5mm in thickness, and a liquid dividing plate 6 made of polyvinyl chloride. For the liquid dividing plate, slits 1mm in thickness are recessed on the obverse and reverse. The thickness of a positive electrode chamber and the negative electrode chamber is made 2.5mm or under by adjusting the thickness of this liquid dividing plate 6 and the packing 9. Hereby, the inner resistance of the battery cell is reduced, thus the charge and discharge in high current density of 80mA/cm<2> or over becomes possible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、二次電池に関し、さら
に詳しくは、バナジウム(II/III)とバナジウム(V/I
V)をレドックス対とするレドックスフロー型二次電池
(略して、「レドックス電池」と呼ぶことがある)に関
するものであり、特に高電流密度で使用可能な全バナジ
ウムレドックス電池のセル構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary battery, and more specifically to vanadium (II / III) and vanadium (V / I).
V) is a redox flow type secondary battery (sometimes abbreviated as "redox battery" for short), especially the cell structure of all vanadium redox batteries that can be used at high current density. is there.

【0002】[0002]

【発明の背景】現在、化石燃料の大量使用による大気中
の炭酸ガス濃度の増加が著しく、地球の温暖化が大きな
問題となっている。このために、クリーンなエネルギー
源である太陽電池の開発が活発に行われているが、太陽
電池は、夜間や雨天時は発電できないため適切な2次電
池の開発が待たれている。一方、従来の発電設備に於い
ても夜と昼、ピーク時の需要の差が激しく発電設備の負
荷率は低下しており、大型の電力貯蔵電池による運転の
平滑化は省エネルギーの面で大きな意味を持っている。
電気エネルギーを貯蔵することは電力関係者の長年の夢
であるが、現在のところ揚水発電以外は実用化されてお
らず、大型の電力貯蔵電池の必要性は大きなものであ
る。レドックス電池はタッピングによって太陽電池の出
力電圧に合わせて充電できることや、構造が比較的シン
プルで大型化しやすい等の特徴を持つために、新型の2
次電池として大きな可能性を秘めている。
BACKGROUND OF THE INVENTION At present, the concentration of carbon dioxide in the atmosphere is remarkably increased due to the large use of fossil fuels, and the global warming is a serious problem. For this reason, solar cells, which are clean energy sources, are being actively developed. However, since the solar cells cannot generate power at night or in rainy weather, the development of appropriate secondary batteries is awaited. On the other hand, even in the conventional power generation equipment, the load difference of the power generation equipment is decreasing due to the large difference in demand between night, daytime, and peak hours, and smoothing the operation with a large power storage battery is significant in terms of energy saving. have.
Storing electrical energy has been a dream of electric power companies for many years, but at present, there is no practical application other than pumped storage power generation, and there is a great need for large power storage batteries. The redox battery can be charged according to the output voltage of the solar cell by tapping, and the structure is relatively simple and easy to increase in size.
It has great potential as a secondary battery.

【0003】レドックス型二次電池とは、電池活物質が
液状であり、正、負極の電池活物質を液透過型の電解槽
に流通せしめ、酸化還元反応を利用して充放電を行うも
のである。従来の二次電池と比べレドックス型二次電池
は 次の利点を有する。 (1) 蓄電容量を大きくするためには、貯蔵容器の容量を
大きくし、活物質量を増加させるだけでよく、出力を大
きくしない限り、電解槽自体はそのままでよい。 (2) 正、負極活物質は容器に完全に分離して貯蔵できる
ので、活物質が電極に接しているような電池と異なり、
自己放電の可能性が小さい。 (3) この電池で使用される液透過型炭素多孔質電極にお
いては、活物質イオンの充放電反応(電極反応)は、単
に、電極表面で電子の交換を行うのみで、亜鉛ー臭素電
池における、亜鉛イオンのように電極に析出することは
ないので、電池の反応が単純である。
A redox type secondary battery is a battery in which the battery active material is liquid, and the positive and negative battery active materials are circulated in a liquid permeation type electrolytic cell and charged and discharged by utilizing an oxidation-reduction reaction. is there. Redox type secondary batteries have the following advantages over conventional secondary batteries. (1) In order to increase the storage capacity, it is sufficient to increase the capacity of the storage container and increase the amount of the active material, and the electrolytic cell itself can be used as long as the output is not increased. (2) Since the positive and negative electrode active materials can be completely separated and stored in a container, unlike a battery in which the active material is in contact with the electrodes,
The possibility of self-discharge is low. (3) In the liquid-permeable carbon porous electrode used in this battery, the charge / discharge reaction of the active material ions (electrode reaction) is simply carried out by exchanging electrons on the electrode surface. Since it does not deposit on the electrode like zinc ions, the reaction of the battery is simple.

【0004】[0004]

【従来の技術】レドックスフロー型二次電池として、鉄
−クロム系電池が知られているが、該電池はエネルギー
密度が小さいこと、イオン交換膜を介して鉄とクロムが
混合することなどの欠点があるために、これに代わるも
のとして全バナジウム系電池が提案されている(特開昭
62-186473号公報)。この電池は、起電力、電池容量など
に優れており、電解液が一金属系であるため隔膜を介し
て正、負極液が相互に混合しても充電によって簡単に再
生することができ、電池容量が低下せず、電解液を完全
にクローズド化できる等の利点を持っている。しかし、
従来の全バナジウム系電池では、使用可能な高電流密度
は高々60mA/cm2程度であり、さらに高い電流密度での
使用は不可能であった。
2. Description of the Related Art Iron-chromium batteries are known as redox flow type secondary batteries, but they have drawbacks such as low energy density and mixing of iron and chromium through an ion exchange membrane. Therefore, an all-vanadium-based battery has been proposed as an alternative to this (Japanese Patent Application Laid-Open No. Sho-06-1999).
62-186473). This battery is excellent in electromotive force, battery capacity, etc., and because the electrolyte is a single metal type, it can be easily regenerated by charging even if positive and negative electrode liquids are mixed with each other through the diaphragm. It has the advantage that the capacity does not decrease and the electrolyte can be completely closed. But,
In the conventional all-vanadium battery, the high current density that can be used is about 60 mA / cm 2 at most, and it is impossible to use it at a higher current density.

【0005】例えば80mA/cm2以上の高電流密度を採用
して、高い電力効率を維持するためには、セルの抵抗を
1.5Ω/cm2以下にしなければならず、電極の電気抵
抗、電解液の導電率を考慮すると正極室及び負極室のセ
ル厚は2.5mm以下にすることが望ましく、新たなる
セルの開発が必要となってきた。
For example, in order to maintain a high power efficiency by adopting a high current density of 80 mA / cm 2 or more, the resistance of the cell must be 1.5 Ω / cm 2 or less. Considering the conductivity of the electrolytic solution, it is desirable that the cell thickness of the positive electrode chamber and the negative electrode chamber be 2.5 mm or less, and it has become necessary to develop a new cell.

【0006】従来の鉄−クロム系レドックス電池のセル
構造の一例としては、バイポーラ板とマニホールドから
電解液をセル内に分液するスリットとが一体化された構
造になっている。詳しくは、厚さ3mm前後の樹脂製の
外枠に、マニホールド、スリット、液漏れと接着時ズレ
を防止するための溝を刻み込み、内側にカーボン板をは
め込み、その両側からスリット及び液漏れとズレ防止用
の溝を刻み込んだ樹脂製の板を接着剤で張り合わせて、
分液するスリットとバイポーラ板が一体化されている。
このために、非常に多くの人手による接着作業を要し、
量産化する事は難しく、不良品等の解体、修理にも多く
の手間がかかり、経済的に制作するには支障がある。ま
た、バイポーラ板やセルの厚みを薄くすることが出来
ず、セルの抵抗を下げることも難しい。
As an example of a cell structure of a conventional iron-chromium redox battery, a bipolar plate and a slit for separating an electrolytic solution into a cell from a manifold are integrated. Specifically, a resin outer frame with a thickness of about 3 mm is engraved with a manifold, slits, and grooves to prevent liquid leakage and displacement during bonding, and a carbon plate is fitted inside, and slits and liquid leakage are provided from both sides. Glue a resin plate with grooves to prevent misalignment with an adhesive,
The slit for liquid separation and the bipolar plate are integrated.
This requires a great deal of manual bonding work,
Mass production is difficult, and dismantling and repair of defective products takes a lot of work, which hinders economical production. In addition, it is difficult to reduce the thickness of the bipolar plate and the cell, and it is difficult to reduce the resistance of the cell.

【0007】特開昭63-298977号では、弾性体で作成さ
れた反応電極の支持枠の外部に、トンネル状のスリット
孔を有するマニホールド部を設け、これをバイポーラ板
と隔膜により押圧したレドックスフロー型セルが提案さ
れている。このセルは、弾性体による面シールにより接
着作業の大幅な削減ができるが、隔膜にイオン交換膜を
使用した場合、イオン交換膜の外側に取り付けられるマ
ニホールドスペーサをを0.1mm以下の弾性体で作ら
なければシールが完全にできず、現実的ではない。ま
た、多孔性電極、樹脂製の電解液流通配管、セルの製作
時に使用される接着剤等の劣化による電解液中のコンタ
ミがスリットに詰まるため、特開昭63-281362号では電
解液を濾過したり、特開昭63-291365では、電解液の通
液方向を逆転する事などが提案されている。しかし、フ
ィルターは、いずれ目詰まりし、スリット等の洗浄が必
要となるために、セルを解体しなければならなず、より
簡単に解体洗浄できるセル構造であることが必要とな
る。
In Japanese Laid-Open Patent Publication No. 63-298977, a redox flow is provided in which a manifold portion having a tunnel-shaped slit hole is provided outside a supporting frame of a reaction electrode made of an elastic body and which is pressed by a bipolar plate and a diaphragm. Type cells have been proposed. This cell can greatly reduce the adhesive work by surface sealing with an elastic body, but when an ion exchange membrane is used for the diaphragm, the manifold spacer attached to the outside of the ion exchange membrane is made of an elastic body of 0.1 mm or less. If you do not make it, the seal cannot be completely created, which is not realistic. Also, since the porous electrode, the electrolytic solution flow pipe made of resin, the contamination in the electrolytic solution due to the deterioration of the adhesive used when manufacturing the cell, etc. are clogged in the slit, the electrolytic solution is filtered in JP-A-63-281362. In addition, Japanese Patent Laid-Open No. 63-291365 proposes to reverse the flow direction of the electrolytic solution. However, since the filter eventually becomes clogged and cleaning of slits and the like is required, the cell must be disassembled, and a cell structure that enables easier disassembly and cleaning is required.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、バナ
ジウムレドックス電池の内部抵抗を低減させて高電流密
度に適応することができ、且つ量産が可能なセル構造を
持った、高出力の新規なバナジウムレドックス電池セル
を開発することである。本発明における高電流密度と
は、80〜120mA/cm2である。電流密度をあげて、高
い効率を維持するためには、セルの内部抵抗を出来るだ
け小さくしなければならない。従来のレドックスセル
は、セルの構造上の問題から40〜60mA/cm2までの低
電流密度用に設計されており、上記目的を達成すること
は困難である。
SUMMARY OF THE INVENTION An object of the present invention is to reduce the internal resistance of vanadium redox batteries to adapt to high current densities, and to have a cell structure capable of mass production and having a high output. Is to develop a new vanadium redox battery cell. The high current density in the present invention is 80 to 120 mA / cm 2 . In order to increase the current density and maintain high efficiency, the internal resistance of the cell must be minimized. The conventional redox cell is designed for a low current density of 40 to 60 mA / cm 2 due to a structural problem of the cell, and it is difficult to achieve the above object.

【0009】バナジウムレドックス電池の内部抵抗は、
バイポーラ板の抵抗、多孔性電極の抵抗、電解液の抵
抗、イオン交換膜の抵抗、及び各部材の接触抵抗の総和
である。本発明者らは、先に、ポリスルホン系のイオン
交換膜を採用して、イオン交換膜の抵抗を大幅に下げ、
高電流密度に適応しうるバナジウムレドックス電池を提
案したが(特願平4−4043号)、80mA/cm2以上の
電流を流して、高い効率を出すバナジウムレドックス電
池とするには、バイポーラ板の抵抗、多孔性電極の抵抗
および電解液の抵抗を共に低減し、なおかつ、量産が可
能なセル構造にしなければならない。レドックス電池に
おいては、電流は厚さ方向に流れるため出来るだけ薄い
方が抵抗は小さくなる。しかしながら、カーボン板やセ
ルの厚さを薄くしようとすると、バイポーラ板、パッキ
ン等のセルの構成部材を制作する上で種々の問題にぶつ
かる。
The internal resistance of a vanadium redox battery is
It is the sum of the resistance of the bipolar plate, the resistance of the porous electrode, the resistance of the electrolytic solution, the resistance of the ion exchange membrane, and the contact resistance of each member. The present inventors previously adopted a polysulfone-based ion exchange membrane to significantly reduce the resistance of the ion exchange membrane,
We proposed a vanadium redox battery that can adapt to high current densities (Japanese Patent Application No. 4-4043), but in order to make a vanadium redox battery with a high efficiency by passing a current of 80 mA / cm 2 or more, a bipolar plate It is necessary to reduce the resistance, the resistance of the porous electrode, and the resistance of the electrolytic solution, and to make the cell structure capable of mass production. In the redox battery, the electric current flows in the thickness direction, so that the resistance becomes smaller as thin as possible. However, when trying to reduce the thickness of the carbon plate or the cell, various problems are encountered in manufacturing the cell constituent members such as the bipolar plate and the packing.

【0010】[0010]

【課題を解決するための手段】本発明は、セルの厚み、
殊にバイポーラ板の厚みを出来るだけ薄くして、抵抗を
下げ、なおかつ、面シールによってセルの接着作業を大
幅に低減し、量産が可能なセル構造とすることにより上
記問題点を解決した。即ち、本発明の全バナジウム系レ
ドックス電池は、樹脂製の外枠の内部に導電性の板を嵌
め込んだバイポーラ板と、電解液をセルに循環させるた
めのマニホールド及びスリットを有し且つ内部に電極が
装入保持されるくりぬき部を有する分液板と、隔膜と
を、適度な剛性を有するパッキンを介して面シールによ
り集層させて厚さ2.5mm以下の正極室又は負極室を
形成し、その際該スリットは該マニホールドと該くりぬ
き部の間に穿設された分液穴を境に表と裏に凹設されて
いることを特徴とするものである。
SUMMARY OF THE INVENTION The present invention provides a cell thickness,
In particular, the above problems have been solved by making the thickness of the bipolar plate as thin as possible to reduce the resistance, and by significantly reducing the cell bonding work by the face seal, and by providing a cell structure that enables mass production. That is, the all-vanadium redox battery of the present invention has a bipolar plate in which a conductive plate is fitted inside a resin-made outer frame, and a manifold and a slit for circulating the electrolytic solution into the cell and having the inside. A separator plate having a hollow portion into which an electrode is charged and held, and a diaphragm are layered by a face seal through a packing having an appropriate rigidity to form a positive electrode chamber or a negative electrode chamber having a thickness of 2.5 mm or less. At this time, the slit is characterized by being formed on the front and the back with a liquid separation hole formed between the manifold and the hollow portion as a boundary.

【0011】[0011]

【発明の具体的説明】本発明のレドックス電池の構成に
ついて、図面を参考にしてに詳しく説明する。 (1)セル構成部材 (1) バイポーラ板 本発明の新規なセルに使用されるバイポーラ板1は、樹
脂性の外枠2の内部に、導電性の板3を嵌め込んだもの
である。外枠2に用いられる樹脂は、適度の耐薬品性と
剛性を有するものであれば良く、例えば、ポリ塩化ビニ
ル、高密度ポリエチレン、ポリプロピレン,AS樹脂,
ABS樹脂、ポリスルフォン、ポリエーテルスルフォ
ン、ポリエーテルエーテルケトン、テフロン等を用いる
ことができ、各成型法により最適の物を適宜使用するこ
とができる。
DETAILED DESCRIPTION OF THE INVENTION The structure of the redox battery of the present invention will be described in detail with reference to the drawings. (1) Cell Constituent Members (1) Bipolar Plate The bipolar plate 1 used in the novel cell of the present invention has a conductive outer plate 2 and a conductive plate 3 fitted therein. The resin used for the outer frame 2 may be one having appropriate chemical resistance and rigidity, and examples thereof include polyvinyl chloride, high density polyethylene, polypropylene, AS resin,
ABS resin, polysulfone, polyethersulfone, polyetheretherketone, Teflon, etc. can be used, and the most suitable one can be appropriately used according to each molding method.

【0012】導電性板3としては、導電性が良く、加工
性と剛性が適度なものであれば特に制限されないが、グ
ラッシーカーボン、フェノール結着カーボン、プラスチ
ックカーボン等が使用できる。バイポーラ板1は、電気
抵抗を少なくするために、出来るだけ薄くすることが好
ましいが、内部に導電性板3、例えばカーボン板を加工
装着する必要性から、0.5〜1.5mmの厚さである
ことが好ましい。樹脂性の外枠2の内部にくり貫かれた
部分に、同じ厚さのカーボン板を完全に密着させ、外枠
2とカーボン板3が同一平面になるようにする。カーボ
ン板は加工性が悪く、通常の切削工具では割れてしまう
ため、水流ジェットにより切削することが好ましい。こ
れによりバイポーラ板1は、特注品でなく、従来リン酸
型燃料電池に用いらているカーボン材料を使って自由に
作ることが出来る。
The conductive plate 3 is not particularly limited as long as it has good conductivity, workability and rigidity, but glassy carbon, phenol-bonded carbon, plastic carbon or the like can be used. The bipolar plate 1 is preferably made as thin as possible in order to reduce the electric resistance, but it is necessary to process and mount the conductive plate 3, for example, a carbon plate, so that the bipolar plate 1 has a thickness of 0.5 to 1.5 mm. Is preferred. A carbon plate having the same thickness is completely adhered to a portion which is hollowed out inside the resinous outer frame 2 so that the outer frame 2 and the carbon plate 3 are flush with each other. Since the carbon plate has poor workability and breaks with an ordinary cutting tool, it is preferable to cut with a water jet. As a result, the bipolar plate 1 can be freely made by using a carbon material conventionally used for phosphoric acid fuel cells, not a custom-made product.

【0013】(2) 分液板 本発明のセルにおいては、電解液をマニホールド4から
カーボン板3の表面および電極へ通液し、ついで排出す
るためのスリット5を、従来のようにバイポーラ板1に
付設せずに、バイポーラ板1から独立した分液板6を使
用することが重要である。該分液板6の採用により、ス
リットの断面積と長さを変えて、使用目的により種々の
セルを作ることができ、セルの設計の自由度が大幅に向
上する。また、スリットの詰まり等が起こったときも簡
単に分解洗浄が可能となる。
(2) Separation Plate In the cell of the present invention, the slit 5 for passing the electrolytic solution from the manifold 4 to the surface of the carbon plate 3 and the electrodes and then discharging it is provided with the bipolar plate 1 as in the conventional case. It is important to use the liquid separating plate 6 independent of the bipolar plate 1 without attaching it to the bipolar plate 1. By adopting the liquid separating plate 6, various cells can be produced by changing the cross-sectional area and length of the slit, depending on the purpose of use, and the degree of freedom in cell design is greatly improved. Further, even when the slit is clogged, the disassembly and cleaning can be easily performed.

【0014】分液板6は、バイポーラ板内部のカーボン
板接合部13の保護及びバイポーラ板側の面シールとイ
オン交換膜側の面シールをする役割がある。電解液を通
液させるスリット5が分液板6の片面にのみ刻設され、
特にスリット5の溝面積が大きい場合は、その面積に対
してパッキンと接触する分液板平面の面積が少なくな
り、十分な面シールが困難となることがある。このた
め、本発明の分液板6では、図2、図3および図4に示
すように、マニホールド4とくりぬき部7との間に分液
穴8を設け、この穴を境に分液板6の表と裏にスリット
5a及び5bを刻むことにより、完全な両面のシールを
可能にすることができる。分液板6の表側とは隔膜側の
面であり、裏側とはバイポーラ板の面を意味する。分液
板6の表側に凹設されるスリット5aは分液穴とくりぬ
き部の間に設けられ、裏側に凹設されるスリット5bは
マニホールドと分液穴の間に設けられる。分液穴8およ
びスリット5は、分液板6の中心より対称の位置に2箇
所に設けられ、その一方が電解液の供給に、他方が電解
液の排出に寄与する。このようにスリット5を付設する
ことにより、スリット溝の面積に対してパッキンと接触
する分液板の表面の面積が大きくなり、パッキンが該溝
に食い込むことが防止されると共に、完全なシールが可
能となる。
The liquid separating plate 6 has a role of protecting the carbon plate joint portion 13 inside the bipolar plate and performing a face seal on the bipolar plate side and a face seal on the ion exchange membrane side. The slit 5 for passing the electrolytic solution is engraved only on one surface of the liquid separating plate 6,
In particular, when the groove area of the slit 5 is large, the area of the plane of the liquid separating plate that comes into contact with the packing is smaller than that area, and it may be difficult to perform sufficient surface sealing. Therefore, in the liquid separating plate 6 of the present invention, as shown in FIGS. 2, 3 and 4, a liquid separating hole 8 is provided between the manifold 4 and the hollowed-out portion 7, and the liquid separating plate is bordered by this hole. By engraving slits 5a and 5b on the front and back of 6, it is possible to enable complete double-sided sealing. The front side of the liquid separating plate 6 is the surface on the diaphragm side, and the back side is the surface of the bipolar plate. The slit 5a recessed on the front side of the liquid separating plate 6 is provided between the liquid separating hole and the hollow portion, and the slit 5b recessed on the back side is provided between the manifold and the liquid separating hole. The liquid separating holes 8 and the slits 5 are provided at two positions symmetrical with respect to the center of the liquid separating plate 6, one of which contributes to the supply of the electrolytic solution and the other of which contributes to the discharging of the electrolytic solution. By providing the slit 5 in this way, the area of the surface of the liquid separating plate that comes into contact with the packing is larger than the area of the slit groove, the packing is prevented from biting into the groove, and a complete seal is provided. It will be possible.

【0015】スリットの口径(溝の幅と深さ)と長さ
は、シャント電流損失に関係し、口径は小さいほど、長
さは長い程、シャント電流損失は少なくなる。一方、電
解液の流動抵抗は小さければ小さい程、ポンプロスが少
なく望ましいが、スリットの口径が大きく、長さは短い
ほど小さくなる。従って、スリットの口径、本数及び長
さは、シャント電流損失と流動抵抗の両者を考慮して決
定される。各スリットの溝幅は1〜3mm、その深さは
0.5〜1.5mmが好ましい。溝幅が3mm超過で
は、パッキンが溝に食い込み、1mm未満では電解液の
流動抵抗が高くなりすぎるので好ましくない。スリット
の深さが0.5mm未満では切削加工が困難であり、
1.5mm超過では分液板を厚くしなければならないの
で好ましくない。複数設けられたスリットの間隔は、自
由に取れるが、広く取ると電池が大きくなり、極端に狭
いと締め付け応力に樹脂板が耐えられず、スリット間隔
は1〜3mmが適している。また、スリット全体の幅
(溝及び間隔の和)はスリットの本数により異なるが、
通常はマニホールドの径と一致させることが好ましい。
分液穴8は、表側スリット5aから裏側スリット5bへ
の(またはその逆)の電解液の流通が支障なく行われる
のに適したサイズであればよく、例えば、長辺がマニホ
ールド径と同一で、短辺が2〜5mmの長方形状または
楕円形状のものが適当である。
The slit diameter (groove width and depth) and length are related to the shunt current loss. The smaller the diameter and the longer the length, the smaller the shunt current loss. On the other hand, the smaller the flow resistance of the electrolytic solution is, the smaller the pump loss is, which is desirable, but the smaller the diameter of the slit and the shorter the length, the smaller. Therefore, the diameter, the number and the length of the slits are determined in consideration of both the shunt current loss and the flow resistance. The groove width of each slit is preferably 1 to 3 mm and the depth thereof is preferably 0.5 to 1.5 mm. If the groove width exceeds 3 mm, the packing bites into the groove and if it is less than 1 mm, the flow resistance of the electrolytic solution becomes too high, which is not preferable. If the slit depth is less than 0.5 mm, it is difficult to cut,
If it exceeds 1.5 mm, the separating plate must be made thick, which is not preferable. A plurality of slits can be freely spaced, but if they are wide, the battery becomes large, and if they are extremely narrow, the resin plate cannot withstand the tightening stress, and a slit spacing of 1 to 3 mm is suitable. Also, the width of the entire slit (sum of grooves and intervals) varies depending on the number of slits,
Generally, it is preferable to match the diameter of the manifold.
The liquid separating hole 8 may be of any size suitable for allowing the flow of the electrolytic solution from the front side slit 5a to the back side slit 5b (or vice versa) without any hindrance, and for example, the long side is the same as the manifold diameter. A rectangular or elliptical shape having a short side of 2 to 5 mm is suitable.

【0016】分液板6に用いる樹脂性の板は、適度の耐
薬品性と剛性を有するものであれば良く、バイポーラ板
1の外枠2に使用することのできる上記した材料から選
ぶことができる。
The resin plate used for the liquid separating plate 6 may be any one having appropriate chemical resistance and rigidity, and is selected from the above-mentioned materials that can be used for the outer frame 2 of the bipolar plate 1. it can.

【0017】(3) パッキン 本発明のセルに使用されるパッキン9は、その周縁部に
はマニホールド4が、その内部にはバイポーラ板の外枠
とカーボン板の境目13を被うように、カーボン板のサ
イズより僅かに小さめにくり貫かれており(10)、境
目からの液漏れを防いでいる。パッキン9は、その厚さ
が0.2〜1mmで、デュ−ロ硬度(Aタイプ)が80
〜120のものであれば良く、低密度ポリエチレン、エ
チレン−プロピレンゴム、ポリプロピレン、ネオプレン
ゴム、バイトンゴム、テフロンシート等の樹脂またはゴ
ム質材料を使用することができる。パッキンの厚さが
0.2mm未満では面タッチシールが不可能であり、1m
m超過ではセルの厚さを薄くできない。また、デュ−ロ
硬度が80未満では、スリットにパッキンが食い込み、
詰まったり、電解液の均等分配ができなくなり、硬度1
20超過では面シールが困難となる。
(3) Packing The packing 9 used in the cell of the present invention is made of carbon so that the manifold 4 is provided at the peripheral portion thereof and the outer frame of the bipolar plate and the boundary 13 of the carbon plate are covered therein. It is hollowed out slightly smaller than the size of the plate (10) to prevent liquid leakage from the border. The packing 9 has a thickness of 0.2 to 1 mm and a Duro hardness (A type) of 80.
As long as it is up to 120, a resin or rubber material such as low density polyethylene, ethylene-propylene rubber, polypropylene, neoprene rubber, viton rubber or Teflon sheet can be used. If the packing thickness is less than 0.2 mm, face touch seal is not possible and it is 1 m
If it exceeds m, the cell thickness cannot be reduced. If the Duro hardness is less than 80, the packing will dig into the slit,
Clogs, electrolyte cannot be evenly distributed, and hardness is 1
If it exceeds 20, face sealing becomes difficult.

【0018】(4) 隔膜 正極室と負極室とを分離する隔膜11は通常イオン交換
膜が使用される。イオン交換膜としては、5価のバナジ
ウムイオンの酸化力に耐性のあるものであれば、陽イオ
ン、陰イオンどちらのイオン交換膜でも良い。具体的に
は、ポリスルホン樹脂をベースにしたイオン交換膜やフ
ッ素樹脂をベースにしたイオン交換膜が使用できるが、
80mA/cm2以上の高電流密度で使用するには、イオン交
換樹脂層の厚さが20μm〜150μmであることが好
ましい。これより薄い膜であればセル抵抗は低くなる
が、正極と負極の液移動が激しくて充放電をすることが
難しく、これ以上厚ければセル抵抗が高くなりすぎて所
定の効率を達成することが困難となる。
(4) Separating Membrane 11 which normally separates the positive electrode chamber and the negative electrode chamber is usually an ion exchange membrane. The ion exchange membrane may be either a cation or anion ion exchange membrane as long as it is resistant to the oxidizing power of pentavalent vanadium ions. Specifically, an ion exchange membrane based on polysulfone resin or an ion exchange membrane based on fluororesin can be used,
For use at a high current density of 80 mA / cm 2 or more, the thickness of the ion exchange resin layer is preferably 20 μm to 150 μm. If the film is thinner than this, the cell resistance will be low, but it will be difficult to charge and discharge due to the strong liquid transfer between the positive and negative electrodes, and if it is thicker than this, the cell resistance will be too high to achieve the specified efficiency. Will be difficult.

【0019】(5) 電極 本発明に使用される電極12は、レドックスフロー型電
池に通常用いられる液透過性の多孔性電極であれば、い
ずれでも使用することができる。好ましい電極の例とし
ては、セルロース系の炭素繊維やPAN系の炭素繊維を
挙げることができる。
(5) Electrode The electrode 12 used in the present invention may be any liquid-permeable porous electrode commonly used in redox flow type batteries. Examples of preferable electrodes include cellulose-based carbon fibers and PAN-based carbon fibers.

【0020】(2)セルの構成 上記のバイポーラ板1、分液板6、パッキン9および隔
膜11の各部材を、図1に示す順序の配列で集積して正
極室(または負極室)を構成し、一方、隔膜を挟んで対
称的に同様の構成の負極室(または正極室)を構成し
て、単位セルが形成される。さらに、該単位セルが複数
個、例えば20〜30個積層させることにより、電池の
内部抵抗を大幅に低減させ、高電流密度に最適で且つ量
産可能な積層型全バナジウムレドックス電池が提供され
る。
(2) Structure of Cell A positive electrode chamber (or a negative electrode chamber) is formed by integrating the above-mentioned members of the bipolar plate 1, the liquid separating plate 6, the packing 9 and the diaphragm 11 in the order shown in FIG. On the other hand, a unit cell is formed by symmetrically forming a negative electrode chamber (or a positive electrode chamber) having the same structure with the diaphragm interposed therebetween. Further, by stacking a plurality of, for example, 20 to 30, the unit cells, it is possible to significantly reduce the internal resistance of the battery, provide a stacked all-vanadium redox battery that is suitable for high current density and can be mass-produced.

【0021】本発明のセルでは、パッキン9によりバイ
ポーラ板1と分液板6と隔膜11とがそれぞれ面タッチ
シールにより集積されるので、接着作業が不要である。
パッキン9の硬度とスリットの幅を上記範囲で適度に組
み合わせることにより、スリット5の内部にパッキンが
食い込んでスリットの径が変わるような事はなく、各セ
ルへの電解液の均等な配分を保証している。隔膜11を
介しての正・負極液の混合は、分液板6の表と裏にスリ
ットを分けて刻み、分液板6の両面にフラットな面を必
ず残し、面シールする事によって完全に防いでいる。セ
ルの厚さは、パッキン9と分液板6の厚さの和であり、
これらを適宜組み合わせることにより、2.5mm以下
の最適のセル厚みを設定することができる。
In the cell of the present invention, since the bipolar plate 1, the liquid separating plate 6 and the diaphragm 11 are integrated by the surface touch seal by the packing 9, the bonding work is unnecessary.
By appropriately combining the hardness of the packing 9 and the width of the slit within the above range, the packing will not bite into the inside of the slit 5 and the diameter of the slit will not change, and an even distribution of the electrolyte solution to each cell is guaranteed. are doing. Mixing the positive and negative electrode liquids through the diaphragm 11 is done by dividing the front and back of the liquid separating plate 6 into slits, leaving a flat surface on both surfaces of the liquid separating plate 6 and sealing the surfaces completely. It is preventing. The thickness of the cell is the sum of the thicknesses of the packing 9 and the liquid separating plate 6,
An optimum cell thickness of 2.5 mm or less can be set by appropriately combining these.

【0022】[0022]

【実施例】以下、実施例及び比較例に基づいて、本発明
を具体的に説明する。 実施例1 第1図に示したようなセル構成において、厚さ100μ
mのポリスルホン系ポリマーから成るイオン交換膜11
(旭硝子社製)、炭素繊維のフェルト状電極12(面積
20cm2)、ポリ塩化ビニルの外枠に同じ厚さのグラ
ッシーカーボン板から成るバイポーラ板1(厚さ1m
m)、エチレンープロピレンラバーのパッキン9(デュ
−ロ硬度A90,厚さ0.5mm)および厚さ1.5m
mのポリ塩化ビニル製分液板6を集層して、セル厚さが
2.5mmの電池セル(縦150mm及び横110m
m)を作製した。該分液板としては、図2〜4に示すよ
うに、外枠のコーナー部4箇所にマニホールド4(直径
10mm)、その中央部にくりぬき部7(50×50m
m)、該マニホールドと該くりぬき部との中間に分液穴
8(2×10mm)がそれぞれ穿設されており、さらに
3本のスリット5(深さ1.0mm、幅2.0mm、間
隔2.0mm)が、該分液板の表側には分液穴からくり
ぬき部へ向けて、及びその裏側には該マニホールドから
該分液穴へ向けて、それぞれ7mmの長さで凹設されて
いるものを用いた。得られた電池セルを用いて80mA/c
m2及び100mA/cm2で充放電を実施した。その結果を表
−1に示す。
EXAMPLES The present invention will be specifically described below based on Examples and Comparative Examples. Example 1 In the cell structure as shown in FIG.
ion-exchange membrane 11 composed of m polysulfone-based polymer
(Manufactured by Asahi Glass Co., Ltd.), a carbon fiber felt-like electrode 12 (area 20 cm 2 ), a bipolar plate 1 (thickness 1 m) made of a glassy carbon plate of the same thickness in an outer frame of polyvinyl chloride
m), ethylene-propylene rubber packing 9 (Duro hardness A90, thickness 0.5 mm) and thickness 1.5 m
m of polyvinyl chloride separator plates 6 are collected to form a battery cell having a cell thickness of 2.5 mm (length 150 mm and width 110 m).
m) was prepared. As the liquid separating plate, as shown in FIGS. 2 to 4, the manifold 4 (diameter 10 mm) is provided at four corners of the outer frame, and the hollow portion 7 (50 × 50 m) is provided at the center thereof.
m), a liquid separation hole 8 (2 × 10 mm) is provided in the middle between the manifold and the hollowed portion, and three slits 5 (depth 1.0 mm, width 2.0 mm, interval 2) are provided. 0.0 mm) is recessed on the front side of the liquid separating plate from the liquid separating hole to the hollowed-out portion and on the back side thereof from the manifold to the liquid separating hole with a length of 7 mm. I used one. 80mA / c using the obtained battery cell
Charge / discharge was performed at m 2 and 100 mA / cm 2 . The results are shown in Table-1.

【0023】実施例2 ポリ塩化ビニル製の分液板の厚さを1.0mm、スリッ
トの深さを0.5mmに変える以外は、実施例1と同じ
セル構成でセルの厚さが2mmの電池セルを作製し、8
0mA/cm2及び100mA/cm2で充放電を実施した。結果を
表−1に示す。
Example 2 The same cell construction as in Example 1 except that the thickness of the polyvinyl chloride separator was changed to 1.0 mm and the slit depth was changed to 0.5 mm, and the cell thickness was 2 mm. Make a battery cell,
Charge and discharge were performed at 0 mA / cm 2 and 100 mA / cm 2 . The results are shown in Table 1.

【0024】実施例3 図5に示した深さ1.0mm、幅2.0mmのスリットを
3本刻み込んだ厚さ1.5mmのポリ塩化ビニル製分液
板を用いた以外は、実施例1と同じく充放電を行った。
結果を表−1に示す。
Example 3 Example 1 was repeated except that a polyvinyl chloride separator having a thickness of 1.5 mm in which three slits having a depth of 1.0 mm and a width of 2.0 mm shown in FIG. 5 were engraved was used. It was charged and discharged in the same manner as in.
The results are shown in Table 1.

【0025】実施例4 隔膜を厚さ60μmのフッ素系ポリマーから成るイオン
交換膜(デユポン社製)を使用した以外は、実施例1と
同様な電池セルを作製し、充放電を実施した。結果を表
−1に示す。
Example 4 A battery cell similar to that of Example 1 was prepared except that an ion-exchange membrane (manufactured by Dyupon Co., Ltd.) having a thickness of 60 μm and made of a fluoropolymer was used as the diaphragm, and charging / discharging was carried out. The results are shown in Table 1.

【0026】実施例5 隔膜を厚さ120μmのフッ素系ポリマーから成るイオ
ン交換膜(デユポン社製)を使用した以外は、実施例1
と同様な電池セルを作製し、充放電を実施した。結果を
表−1に示す。
Example 5 Example 1 was repeated except that an ion exchange membrane (manufactured by Dyupon) having a thickness of 120 μm and made of a fluoropolymer was used as the diaphragm.
A battery cell similar to that was prepared and charged and discharged. The results are shown in Table 1.

【0027】[0027]

【表1】 [Table 1]

【0028】比較例1 従来から鉄-クロム系で使用されている3枚のポリ塩化
ビニル製の板を接着剤で張り付けたスリット一体型のセ
ルを用いて、実施例1と同様な充放電実験を行った。結
果を表−2に示す。外枠に炭素板をはめ込んでいる境界
面がパッキンで覆われていないため、電解液に直接触れ
シリコンペーストが劣化して液漏れが生じた。
Comparative Example 1 A charge / discharge experiment similar to that of Example 1 was carried out using a slit-integrated cell in which three polyvinyl chloride plates, which have been conventionally used in an iron-chromium system, are attached with an adhesive. I went. Table 2 shows the results. Since the boundary surface in which the carbon plate was fitted in the outer frame was not covered with the packing, the silicon paste was directly contacted with the electrolytic solution and the silicon paste was deteriorated to cause liquid leakage.

【0029】比較例2 厚さ1.0mmのエチレンープロピレンラバーパッキン
用いて、セル厚3.0mmのセルを作製して使用した以
外は、実施例1と同様に行った。結果を表−2に示す。
セル厚を3.0mmにすると効率は低下する。
Comparative Example 2 The procedure of Example 1 was repeated, except that a cell having a cell thickness of 3.0 mm was prepared by using an ethylene-propylene rubber packing having a thickness of 1.0 mm. Table 2 shows the results.
If the cell thickness is 3.0 mm, the efficiency will decrease.

【0030】比較例3 エチレンープロピレンラバーパッキンのデュ−ロ硬度A
を70にする以外は実施例1と同様に行った。結果を表
−2に示す。パッキンがスリット内部に食い込み電解液
が均一に流れず効率が低下した。
Comparative Example 3 Duro hardness A of ethylene-propylene rubber packing
The same procedure as in Example 1 was performed except that the value was changed to 70. Table 2 shows the results. The packing bite into the slit and the electrolyte did not flow uniformly, resulting in a decrease in efficiency.

【0031】[0031]

【表2】 [Table 2]

【0032】[0032]

【発明の効果】本発明によれば、以下の効果が達成でき
る。 (1)バイポーラ板及びセルの厚さを薄くして、電池セ
ルの内部抵抗を大幅に低減できる。 (2)セルの制作過程で接着作業が不要となり、量産化
が可能である。 (3)バイポーラ板とスリットを有する分液板を分離す
ることにより、セルの組立、解体が容易となり、セルの
破損、スリットの目詰まり等の対応が簡単に出来る。 (4)特殊な切削加工が不要である。 (5)分液板のみを取り替えることで、スリット径及び
長さの異なるセルを作ることができ、セルの設計におい
て大幅な自由度が得られる。
According to the present invention, the following effects can be achieved. (1) The internal resistance of the battery cell can be significantly reduced by reducing the thickness of the bipolar plate and the cell. (2) Adhesive work is not required in the cell production process, and mass production is possible. (3) By separating the bipolar plate and the separating plate having slits, the cell can be easily assembled and disassembled, and the cell damage and slit clogging can be easily handled. (4) No special cutting process is required. (5) By exchanging only the separating plate, cells with different slit diameters and lengths can be made, and a great degree of freedom in cell design can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の単一セルの正極室を構成する部材を示
す斜視説明図である。
FIG. 1 is a perspective explanatory view showing members constituting a positive electrode chamber of a single cell of the present invention.

【図2】本発明の分液板の一例を示す平面説明図であ
る。
FIG. 2 is a plan view showing an example of the liquid separating plate of the present invention.

【図3】本発明の分液板の表側表面に設けたスリット近
傍の拡大斜視説明図である。
FIG. 3 is an enlarged perspective explanatory view of the vicinity of a slit provided on the front surface of the liquid separating plate of the present invention.

【図4】本発明の分液板の裏側表面に設けたスリット近
傍の拡大斜視説明図である。
FIG. 4 is an enlarged perspective view illustrating the vicinity of a slit provided on the back surface of the liquid separating plate of the present invention.

【図5】本発明の分液板の他の例を示す平面説明図であ
る。
FIG. 5 is an explanatory plan view showing another example of the liquid separating plate of the present invention.

【符号の説明】 1 バイポーラ板 2 バイポーラ板の外枠 3 導電性板 4 マニホールド 5 スリット 6 分液板 7 くりぬき部 8 分液穴 9 パッキン 10 くりぬき部 11 隔膜 12 電極[Explanation of symbols] 1 bipolar plate 2 outer frame of bipolar plate 3 conductive plate 4 manifold 5 slit 6 liquid separating plate 7 hollowing part 8 liquid separating hole 9 packing 10 hollowing part 11 diaphragm 12 electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 完二 茨城県稲敷郡阿見町中央8丁目3番1号 鹿島北共同発電株式会社V電池開発室内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kanji Sato 8-3-1 Chuo, Ami-cho, Inashiki-gun, Ibaraki Kashima Kita Kyodo Power Co., Ltd. V battery development room

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 隔膜を介して正電極及び負電極が配設さ
れ、該電極をその外側から挟持するバイポーラ板により
構成される正極室及び負極室からなるセルを、該バイポ
ーラ板を介して交互に複数個積層して電気的に直列に接
続し、該セル内に設けられたマニホールドを通して複数
個の正極室及び負極室に5価/4価バナジウムからなる
正極電解液および2価/3価バナジウムからなる負極電
解液を通液し、酸化還元反応により充放電する電解液循
環型の全バナジウムレドックス電池において、樹脂製の
外枠の内部に導電性の板を嵌め込んだバイポーラ板と、
電解液をセルに循環させるためのマニホールド及びスリ
ットを有し且つ内部に電極が装入保持されるくりぬき部
を有する分液板と、隔膜とを、適度な剛性を有するパッ
キンを介して面シールにより集層させて厚さ2.5mm
以下の正極室又は負極室を形成し、その際該スリットは
該マニホールドと該くりぬき部の間に穿設された分液穴
を境に表と裏に凹設されていることを特徴とする全バナ
ジウムレドックス電池。
1. A cell comprising a positive electrode chamber and a negative electrode chamber, which are composed of a bipolar plate in which a positive electrode and a negative electrode are disposed with a diaphragm interposed therebetween, and which sandwich the electrode from outside, alternate cells are disposed through the bipolar plate. A plurality of positive electrode electrolytes made of vanadium pentavalent and tetravalent vanadium in a plurality of positive electrode chambers and negative electrode chambers through a manifold provided in the cells and electrically connected in series. In passing through the negative electrode electrolyte consisting of, the electrolyte circulation type all-vanadium redox battery to charge and discharge by the oxidation-reduction reaction, a bipolar plate in which a conductive plate is fitted inside a resin outer frame,
A partition plate having a manifold and a slit for circulating the electrolytic solution into the cell and having a hollow portion in which an electrode is inserted and held, and a diaphragm are provided by a face seal via a packing having an appropriate rigidity. 2.5mm thick
The following positive electrode chamber or negative electrode chamber is formed, in which case the slit is recessed on the front side and the back side with a liquid separation hole formed between the manifold and the hollow portion as a boundary. Vanadium redox battery.
【請求項2】 前記バイポーラ板は、カーボン板が前記
外枠と同一平面となるようにその内部に嵌め込まれてお
り、0.5〜1.5mmの厚さを有するものである請求
項1記載の電池。
2. The bipolar plate has a carbon plate fitted therein such that the carbon plate is flush with the outer frame, and has a thickness of 0.5 to 1.5 mm. Batteries.
【請求項3】 前記分液板が、幅1〜3mm及び深さ
0.5〜1.5mmの溝状スリットを複数本有し、該ス
リットが分液穴とくりぬき部との間では表側(膜側)
に、マニホールドと分液穴との間では裏側に凹設された
樹脂製の板からなるものである請求項1記載の電池。
3. The liquid separating plate has a plurality of groove-shaped slits having a width of 1 to 3 mm and a depth of 0.5 to 1.5 mm, and the slits are on the front side between the liquid separating hole and the hollow portion. Membrane side)
The battery according to claim 1, wherein the battery is formed of a resin plate recessed on the back side between the manifold and the liquid separation hole.
【請求項4】 前記パッキンが、80〜100のデュー
ロ硬度A(JISK6301)を有し、その厚さが0.
2〜1mmのものである請求項1記載の電池。
4. The packing has a Duro hardness A (JISK6301) of 80 to 100 and a thickness of 0.
The battery according to claim 1, which has a length of 2 to 1 mm.
【請求項5】 前記パッキンおよび分液板の厚さを調節
することにより、正極室または負極室の厚さを2.5m
m以下にする請求項1記載の電池。
5. The thickness of the positive electrode chamber or the negative electrode chamber is 2.5 m by adjusting the thickness of the packing and the liquid separating plate.
The battery according to claim 1, which is not more than m.
【請求項6】 前記隔膜が20〜150μmの厚さを有
する耐酸性イオン交換膜である請求項1記載の電池。
6. The battery according to claim 1, wherein the diaphragm is an acid-resistant ion exchange membrane having a thickness of 20 to 150 μm.
【請求項7】 80mA/cm2以上の高電流密度で充放電が
行われる請求項1記載の電池。
7. The battery according to claim 1, which is charged and discharged at a high current density of 80 mA / cm 2 or more.
JP6140359A 1994-06-22 1994-06-22 Full vanadium redox cell Pending JPH087913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6140359A JPH087913A (en) 1994-06-22 1994-06-22 Full vanadium redox cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6140359A JPH087913A (en) 1994-06-22 1994-06-22 Full vanadium redox cell

Publications (1)

Publication Number Publication Date
JPH087913A true JPH087913A (en) 1996-01-12

Family

ID=15266995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6140359A Pending JPH087913A (en) 1994-06-22 1994-06-22 Full vanadium redox cell

Country Status (1)

Country Link
JP (1) JPH087913A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0790658A2 (en) * 1996-02-19 1997-08-20 Kashima-Kita Electric Power Corporation Redox flow cell battery with vanadium electrolyte and a polysulfone-based semipermeable membrane
EP1059685A2 (en) * 1999-06-11 2000-12-13 Toyo Boseki Kabushiki Kaisha Carbon electrode material for vanadium-based redox-flow type battery
WO2002101864A1 (en) 2001-06-12 2002-12-19 Sumitomo Electric Industries, Ltd. Cell frame for redox flow cell and redox flow cell
CN1306636C (en) * 2005-03-25 2007-03-21 攀钢集团攀枝花钢铁研究院 Battery current collector and preparation method thereof
WO2009025672A1 (en) * 2007-08-17 2009-02-26 Jd Holding, Inc. Electrochemical battery incorporating internal manifolds
CN101847724A (en) * 2010-03-31 2010-09-29 清华大学 Bipolar plate frame and galvanic pile of flow battery
US7855005B2 (en) 2007-02-12 2010-12-21 Deeya Energy, Inc. Apparatus and methods of determination of state of charge in a redox flow battery
US7919204B2 (en) 2008-10-10 2011-04-05 Deeya Energy, Inc. Thermal control of a flow cell battery
US7927731B2 (en) 2008-07-01 2011-04-19 Deeya Energy, Inc. Redox flow cell
US8231993B2 (en) 2008-10-10 2012-07-31 Deeya Energy, Inc. Flexible multi-walled tubing assembly
US8230736B2 (en) 2008-10-10 2012-07-31 Deeya Energy, Inc. Level sensor for conductive liquids
US8236463B2 (en) 2008-10-10 2012-08-07 Deeya Energy, Inc. Magnetic current collector
US8338008B2 (en) 2009-05-28 2012-12-25 Deeya Energy, Inc. Electrolyte compositions
US8349477B2 (en) 2009-05-28 2013-01-08 Deeya Energy, Inc. Optical leak detection sensor
JP2014508384A (en) * 2011-02-08 2014-04-03 ユナイテッド テクノロジーズ コーポレイション Flow battery with low resistance film
US8883297B2 (en) 2008-10-10 2014-11-11 Imergy Power Systems, Inc. Methods for bonding porous flexible membranes using solvent
US8951665B2 (en) 2010-03-10 2015-02-10 Imergy Power Systems, Inc. Methods for the preparation of electrolytes for chromium-iron redox flow batteries
US9017869B2 (en) 2001-06-12 2015-04-28 Sumitomo Electric Industries, Ltd. Cell stack for redox flow battery
JP2017134919A (en) * 2016-01-25 2017-08-03 京セラ株式会社 Cell frame and flow battery
JP2017134920A (en) * 2016-01-25 2017-08-03 京セラ株式会社 Cell frame and flow battery
KR20170137602A (en) * 2015-04-14 2017-12-13 스미토모덴키고교가부시키가이샤 Cell frame for redox flow battery, cell stack for redox flow battery, and redox flow battery
US9853306B2 (en) 2004-01-15 2017-12-26 Jd Holding Inc. System and method for optimizing efficiency and power output from a vanadium redox battery energy storage system
US9853454B2 (en) 2011-12-20 2017-12-26 Jd Holding Inc. Vanadium redox battery energy storage system
CN107534162A (en) * 2015-04-30 2018-01-02 标准能量株式会社 Redox flow batteries
US10141594B2 (en) 2011-10-07 2018-11-27 Vrb Energy Inc. Systems and methods for assembling redox flow battery reactor cells
CN108957345A (en) * 2018-08-02 2018-12-07 东北大学 Information about power acquisition device, method and the detection method of quantity of electricity of all-vanadium liquid flow energy storage system
KR20180133467A (en) * 2016-04-07 2018-12-14 록히드 마틴 에너지, 엘엘씨 A high-throughput manufacturing process for manufacturing an electrochemical unit cell and an electrochemical unit cell
EP3443608A4 (en) * 2016-04-07 2019-12-25 Lockheed Martin Energy, LLC Electrochemical cells having designed flow fields and methods for producing the same
US11777128B1 (en) 2022-05-09 2023-10-03 Lockheed Martin Energy, Llc Flow battery with a dynamic fluidic network

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0790658A2 (en) * 1996-02-19 1997-08-20 Kashima-Kita Electric Power Corporation Redox flow cell battery with vanadium electrolyte and a polysulfone-based semipermeable membrane
EP0790658A3 (en) * 1996-02-19 1998-03-11 Kashima-Kita Electric Power Corporation Redox flow cell battery with vanadium electrolyte and a polysulfone-based semipermeable membrane
AU706224B2 (en) * 1996-02-19 1999-06-10 Sumitomo Electric Industries, Ltd. Liquid-circulating battery
EP1059685A2 (en) * 1999-06-11 2000-12-13 Toyo Boseki Kabushiki Kaisha Carbon electrode material for vanadium-based redox-flow type battery
EP1059685A3 (en) * 1999-06-11 2002-02-27 Toyo Boseki Kabushiki Kaisha Carbon electrode material for vanadium-based redox-flow type battery
US7670719B2 (en) 2001-06-12 2010-03-02 Sumitomo Electric Industries, Ltd. Cell stack for redox flow battery, and redox flow battery
WO2002101864A1 (en) 2001-06-12 2002-12-19 Sumitomo Electric Industries, Ltd. Cell frame for redox flow cell and redox flow cell
EP1411576A4 (en) * 2001-06-12 2009-09-23 Sumitomo Electric Industries Cell frame for redox flow cell and redox flow cell
EP1411576A1 (en) * 2001-06-12 2004-04-21 Sumitomo Electric Industries, Ltd. Cell frame for redox flow cell and redox flow cell
US9017869B2 (en) 2001-06-12 2015-04-28 Sumitomo Electric Industries, Ltd. Cell stack for redox flow battery
US9853306B2 (en) 2004-01-15 2017-12-26 Jd Holding Inc. System and method for optimizing efficiency and power output from a vanadium redox battery energy storage system
CN1306636C (en) * 2005-03-25 2007-03-21 攀钢集团攀枝花钢铁研究院 Battery current collector and preparation method thereof
US7855005B2 (en) 2007-02-12 2010-12-21 Deeya Energy, Inc. Apparatus and methods of determination of state of charge in a redox flow battery
WO2009025672A1 (en) * 2007-08-17 2009-02-26 Jd Holding, Inc. Electrochemical battery incorporating internal manifolds
US7682728B2 (en) 2007-08-17 2010-03-23 Jd Holding Inc. Electrochemical battery incorporating internal manifolds
US7687193B2 (en) 2007-08-17 2010-03-30 Jd Holding Inc. Electrochemical battery incorporating internal manifolds
US7927731B2 (en) 2008-07-01 2011-04-19 Deeya Energy, Inc. Redox flow cell
US8883297B2 (en) 2008-10-10 2014-11-11 Imergy Power Systems, Inc. Methods for bonding porous flexible membranes using solvent
US8230736B2 (en) 2008-10-10 2012-07-31 Deeya Energy, Inc. Level sensor for conductive liquids
US8236463B2 (en) 2008-10-10 2012-08-07 Deeya Energy, Inc. Magnetic current collector
US8231993B2 (en) 2008-10-10 2012-07-31 Deeya Energy, Inc. Flexible multi-walled tubing assembly
US7919204B2 (en) 2008-10-10 2011-04-05 Deeya Energy, Inc. Thermal control of a flow cell battery
US8338008B2 (en) 2009-05-28 2012-12-25 Deeya Energy, Inc. Electrolyte compositions
US8349477B2 (en) 2009-05-28 2013-01-08 Deeya Energy, Inc. Optical leak detection sensor
US8951665B2 (en) 2010-03-10 2015-02-10 Imergy Power Systems, Inc. Methods for the preparation of electrolytes for chromium-iron redox flow batteries
CN101847724A (en) * 2010-03-31 2010-09-29 清华大学 Bipolar plate frame and galvanic pile of flow battery
JP2014508384A (en) * 2011-02-08 2014-04-03 ユナイテッド テクノロジーズ コーポレイション Flow battery with low resistance film
US10141594B2 (en) 2011-10-07 2018-11-27 Vrb Energy Inc. Systems and methods for assembling redox flow battery reactor cells
US9853454B2 (en) 2011-12-20 2017-12-26 Jd Holding Inc. Vanadium redox battery energy storage system
KR20170137602A (en) * 2015-04-14 2017-12-13 스미토모덴키고교가부시키가이샤 Cell frame for redox flow battery, cell stack for redox flow battery, and redox flow battery
US11011759B2 (en) 2015-04-30 2021-05-18 Standard Energy Co., Ltd. Redox flow battery
CN107534162A (en) * 2015-04-30 2018-01-02 标准能量株式会社 Redox flow batteries
JP2018519619A (en) * 2015-04-30 2018-07-19 スタンダード エナジー カンパニー リミテッドStandard Energy Co., Ltd. Redox flow battery
EP3291349A4 (en) * 2015-04-30 2019-01-16 Standard Energy Co., Ltd. Redox flow battery
JP2017134919A (en) * 2016-01-25 2017-08-03 京セラ株式会社 Cell frame and flow battery
JP2017134920A (en) * 2016-01-25 2017-08-03 京セラ株式会社 Cell frame and flow battery
KR20180133467A (en) * 2016-04-07 2018-12-14 록히드 마틴 에너지, 엘엘씨 A high-throughput manufacturing process for manufacturing an electrochemical unit cell and an electrochemical unit cell
EP3443608A4 (en) * 2016-04-07 2019-12-25 Lockheed Martin Energy, LLC Electrochemical cells having designed flow fields and methods for producing the same
EP3443609A4 (en) * 2016-04-07 2019-12-25 Lockheed Martin Energy, LLC High-throughput manufacturing processes for making electrochemical unit cells and electrochemical unit cells produced using the same
US11165085B2 (en) 2016-04-07 2021-11-02 Lockheed Martin Energy, Llc High-throughput manufacturing processes for making electrochemical unit cells and electrochemical unit cells produced using the same
CN108957345A (en) * 2018-08-02 2018-12-07 东北大学 Information about power acquisition device, method and the detection method of quantity of electricity of all-vanadium liquid flow energy storage system
US11777128B1 (en) 2022-05-09 2023-10-03 Lockheed Martin Energy, Llc Flow battery with a dynamic fluidic network
US11916272B2 (en) 2022-05-09 2024-02-27 Lockheed Martin Energy, Llc Flow battery with a dynamic fluidic network

Similar Documents

Publication Publication Date Title
JPH087913A (en) Full vanadium redox cell
US11824243B2 (en) Electrode assembly and flow battery with improved electrolyte distribution
EP1821357B1 (en) Unit cell for solid polymer electrolyte fuel cell
US6905797B2 (en) Porous mat electrodes for electrochemical reactor having electrolyte solution distribution channels
CN109786783B (en) Electrode frame for flow battery with multi-cavity structure and battery stack formed by electrode frame
US20150125768A1 (en) Cell and Cell Block Configurations for Redox Flow Battery Systems
US20040241544A1 (en) Cell stack for flow cell
US7615308B2 (en) Dual function, bipolar separator plates for fuel cells
EP1265303A4 (en) Polymer electrolyte fuel cell and method of manufacturing the same
ES2162700T3 (en) REDOX FLOW BATTERY SYSTEM AND BATTERY CELL.
KR101291752B1 (en) Combined complex electrode cell with inner seal and redox flow battery comprising thereof
EP2926400B1 (en) Back plate-electrode-membrane assembly for a redox, flow energy storage electrochemical cell
KR101353961B1 (en) Stack structure of electrochemical flow cell and redox flow battery including the same
US20070193880A1 (en) Electrochemical cell structure and method of making the same
US8221930B2 (en) Bipolar separators with improved fluid distribution
WO2020129022A2 (en) Redox flow battery comprising stack of flow frames and redox flow frame thereof
WO2012042288A1 (en) Frameless electrochemical cell stack having self centering rigid plastic bushings in aligned through holes of interconnects and membrane assemblies
US20150221959A1 (en) Integrated complex electrode cell having inner seal structure and redox flow cell comprising same
KR101570700B1 (en) Manifold and Redox Flow Battery Including the Same
WO2008024401A1 (en) Bipolar separators with improved fluid distribution
JPH02281567A (en) Methanol fuel cell
CN209200075U (en) A kind of parallel-connection type hydraulic galvanic battery electrode frame
KR20170097416A (en) Redox Flow Battery for Monopolar type
JP2000012053A (en) Solid high-polymer electrolyte-type fuel cell
KR20200055311A (en) Manifold with back side flow path and Redox flow battery