JPH02281567A - Methanol fuel cell - Google Patents

Methanol fuel cell

Info

Publication number
JPH02281567A
JPH02281567A JP1099952A JP9995289A JPH02281567A JP H02281567 A JPH02281567 A JP H02281567A JP 1099952 A JP1099952 A JP 1099952A JP 9995289 A JP9995289 A JP 9995289A JP H02281567 A JPH02281567 A JP H02281567A
Authority
JP
Japan
Prior art keywords
methanol
electrode
fuel cell
separator
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1099952A
Other languages
Japanese (ja)
Other versions
JP2840287B2 (en
Inventor
Osamu Kuroda
修 黒田
Toshio Shimizu
利男 清水
Katsuya Ebara
江原 勝也
Sankichi Takahashi
燦吉 高橋
Ryota Doi
良太 土井
Toshio Ogawa
敏雄 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1099952A priority Critical patent/JP2840287B2/en
Publication of JPH02281567A publication Critical patent/JPH02281567A/en
Application granted granted Critical
Publication of JP2840287B2 publication Critical patent/JP2840287B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To largely reduce the weight of a cell by using a separator which comprises a film or sheet formed from synthetic resin and carbon powders, and also providing a methanol supply passage and an air supply passage in the electrode base of a methanol electrode and that of an air electrode, respectively. CONSTITUTION:A separator 4 comprising a flexible and electron conductive film or sheet formed from synthetic resin and carbon powder is used and also a methanol supply passage and an air supply passage are provided in the electrode base of a methanol electrode 1 and that of an air electrode 2, respectively. The above film or sheet is formed as a film or sheet of electrical resistance less than 0.5OMEGAcm<2>, sulfate and methanol resistance, and a methanol transmission coefficient of less than 8X10<-5>mol/cm<2> h(mol/l) under a cell operating temperature condition (about 60 deg.C). The above film or sheet is formed by mixing of carbon powder with polytetrafluoroethylene, polypropylene, polyethylene, vinyl chloride and the like. The thickness of the above film or sheet is from 0.15 to 0.05mm.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はメタノール燃料電池に関し、特に、メタノール
を燃料とし空気を酸化剤とし硫酸水溶液を電解質とする
、酸性電解質型メタノール燃料電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a methanol fuel cell, and more particularly to an acidic electrolyte methanol fuel cell that uses methanol as a fuel, air as an oxidizing agent, and an aqueous sulfuric acid solution as an electrolyte.

〔従来の技術〕[Conventional technology]

燃料電池は、燃料および酸化剤の反応エネルギーを直接
電気エネルギーとして取出すもので、発電効率が高く、
騒音、振動も少なく、排ガスもクリーンであるため、新
発電方式として期待されている。特に、メタノールを燃
料とし硫酸等を電解質とする酸性電解質型メタノール燃
料電池は、常圧かつ比較的低温(約60℃)で運転され
、小形化も容易であるため、中小容量の電源として広範
な用途が開けている。
Fuel cells extract the reaction energy of fuel and oxidizer directly as electrical energy, and have high power generation efficiency.
It is expected to be a new power generation method because it produces less noise and vibration and produces clean exhaust gas. In particular, acid electrolyte methanol fuel cells, which use methanol as fuel and sulfuric acid as electrolyte, operate at normal pressure and relatively low temperature (approximately 60°C), and can be easily miniaturized, so they are widely used as small to medium capacity power sources. It has many uses.

本電池においては、酸化剤極(空気極)、燃料極(メタ
ノール極)およびこれらの間にイオン導電性を持たせる
ための電解質(イオン交換膜)が基本構成要素でこれら
各々1つからなる電池を単位電池と称する。単位電池の
出力電圧は0.5v内外であり、実用上は単位電池を多
数直列に接続し使用目的に応じた出力電圧を得る。単位
電池の直列回路を構成する一般的な方法はセパレータを
介しての単位電池の積層である。この場合セパレータに
は単位電池を電気的に直列に接続する機能の他に空気極
に空気をメタノール極に燃料(アノライト:硫酸とメタ
ノールの混合水溶液)を供給するための機能を持たせる
。すなわち、セパレータ材料には電子導電性材料を適用
しく耐食性、加工性、コスト等考慮し通常はカーボン材
料が選定される)単位電池の直列回路を構成し、セパレ
ータの空気極に接する側には空気極に空気を供給するた
めの流路が設けられ、セパレータの他の面のメタノール
極に接する側にはメタノール極に燃料(アノライト)を
供給するための流路が設けられる。以上の方式で構成さ
れる燃料電池の問題点としては、セパレータの重量が大
きく、従って電池重量が大きくなることがある。
The basic components of this battery are an oxidizer electrode (air electrode), a fuel electrode (methanol electrode), and an electrolyte (ion exchange membrane) to provide ion conductivity between them. is called a unit battery. The output voltage of a unit battery is around 0.5V, and in practice, a large number of unit batteries are connected in series to obtain an output voltage depending on the purpose of use. A common method for constructing a series circuit of unit batteries is to stack unit batteries with separators interposed therebetween. In this case, the separator has the function of electrically connecting the unit cells in series, as well as the function of supplying air to the air electrode and fuel (anolyte: mixed aqueous solution of sulfuric acid and methanol) to the methanol electrode. In other words, an electronically conductive material is used as the separator material (carbon material is usually selected in consideration of corrosion resistance, processability, cost, etc.). A flow path is provided for supplying air to the electrode, and a flow path for supplying fuel (anolyte) to the methanol electrode is provided on the other surface of the separator that is in contact with the methanol electrode. A problem with the fuel cell constructed using the above method is that the weight of the separator is large, which increases the weight of the cell.

第5図に、これまで述べてきた従来の電池の構成を示し
た。電池は、メタノール極1、イオン交換膜3、空気極
2からなる単位電池の両側にカーボンセパレータ4を配
し、単位電池を繰返し多数積層することにより (単位
電池の間に1枚ずつセパレータが入ることになる)構成
される。セパレータの一方の面にはアノライト流路5が
設けられアノライトがこの流路を流れる間にアノライト
中のメタノールがメタノール極lに供給され反応に関与
する。一方、セパレータの他の面(図では裏面)には空
気流路6が設けられ空気がこの流路を流れる間に空気中
の酸素が空気極2に供給され反応に関与する0以上の電
池構成においてセパレータに設けられる流路の深さは、
アノライトおよび空気の円滑な供給と反応生成物の円滑
な排出を行わせるために1〜数閣必要となり、セパレー
タの厚さは散開以上となる。
FIG. 5 shows the configuration of the conventional battery described above. The battery is constructed by placing carbon separators 4 on both sides of a unit battery consisting of a methanol electrode 1, an ion exchange membrane 3, and an air electrode 2, and by repeatedly stacking a large number of unit batteries (one separator is inserted between each unit battery). ) consists of An anolyte channel 5 is provided on one side of the separator, and while the anolyte flows through this channel, methanol in the anolyte is supplied to the methanol pole 1 and participates in the reaction. On the other hand, an air flow path 6 is provided on the other surface of the separator (back surface in the figure), and while air flows through this flow path, oxygen in the air is supplied to the air electrode 2 and participates in the reaction. The depth of the channel provided in the separator is
In order to smoothly supply the anolyte and air and to smoothly discharge the reaction product, one to several layers are required, and the thickness of the separator becomes larger than that of the separator.

ところで、セパレータでは背中合わせに流れるアノライ
トと空気を隔離する必要があり (セパレータの呼称は
ここからくる)、液体(アノライト)と気体(空気)の
両者の透過性が小さい材料の適用が要求される。以上の
性質を満たすカーボン材料の比重は通常1.5〜2程度
に達する。セパレータの厚さが流路構成のため厚くなり
、その比重も不浸透性のため大きくなる結果、カーボン
セパレータの重量は大きくなり電池重量が太き(なる。
By the way, the separator needs to separate the anolyte and air flowing back to back (this is where the name separator comes from), and it is required to use a material that has low permeability to both liquid (anolyte) and gas (air). The specific gravity of a carbon material that satisfies the above properties usually reaches about 1.5 to 2. The thickness of the separator is increased due to the flow path structure, and its specific gravity is also increased due to its impermeability.As a result, the weight of the carbon separator increases, and the weight of the battery increases.

この問題の解決は、本電池の中小容量電源としての適性
を生かし移動用電源として活用する場合特に重要となる
Solving this problem is particularly important when utilizing this battery as a mobile power source, taking advantage of its suitability as a small to medium capacity power source.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、上記従来の問題点を解決し、従来のも
のに比較して軽量化され、しかも、性能的に遜色のない
メタノール燃料電池を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above conventional problems and provide a methanol fuel cell that is lighter in weight than conventional ones and is comparable in performance.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者は、相対的に比重の大きいセパレータには流路
を設けず、そのかわりに電極に所要の流路を設けるよう
にすることにより、電池性能を良好に維持しつつ、全体
としてのメタノール燃料電池の重量を大幅に軽減できる
ことを見出し、この新知見に基づいて鋭意研究を重ねた
結果、本発明を完成するに至った。
By not providing a flow path in the separator, which has a relatively high specific gravity, and instead providing the required flow path in the electrode, the inventors have discovered that while maintaining good battery performance, the overall methanol After discovering that the weight of the fuel cell can be significantly reduced and conducting extensive research based on this new knowledge, the present invention was completed.

そこで、本発明のメタノール燃料電池は、メタノールを
電気化学的に酸化するメタノール極と空気中の酸素を電
気化学的に還元する空気極と、これらの間のイオン導電
性を保持するための電解質としてのイオン交換膜と、こ
れらで構成される単位電池の電気的直列回路を構成しか
つ燃料のメタノールと酸化剤の空気とを隔離して混合を
防止するセパレータから構成されるメタノール燃料電池
において、メタノール極及び空気極に対応する部分を合
成樹脂とカーボン粉末からなる可撓性及び電子導電性を
有する膜もしくはシートで構成したセパレータに単位電
池の電気的直列回路を構成するための電気的接続機能と
メタノールと空気の隔離機能を持たせると共に、電極基
板とその表面に形成された触媒層からなるメタノール極
と空気極の電極基板にそれぞれメタノールおよび空気の
供給流路を設けたことを特徴とする。
Therefore, the methanol fuel cell of the present invention has a methanol electrode that electrochemically oxidizes methanol, an air electrode that electrochemically reduces oxygen in the air, and an electrolyte that maintains ionic conductivity between them. In a methanol fuel cell, the methanol fuel cell consists of an ion exchange membrane and a separator that forms an electrical series circuit of the unit cell made up of these membranes and separates the methanol fuel and the air the oxidizer to prevent them from mixing. The separator is made of a flexible and electronically conductive film or sheet made of synthetic resin and carbon powder, and the parts corresponding to the electrodes and air electrodes have an electrical connection function for forming an electrical series circuit of the unit battery. The present invention is characterized in that it has a methanol and air isolating function and that methanol and air supply channels are provided in the electrode substrates of the methanol electrode and the air electrode, each consisting of an electrode substrate and a catalyst layer formed on its surface.

前記合成樹脂とカーボン粉末からなる膜もしくはシート
に要求される性質は、可撓性、電子導電性、耐アノライ
ト性及びアノライト中メタノールの非透過性である。電
子導電性は電池組立時の電極およびイオン交換膜との接
触抵抗をも含めてO05Ω・d以下、好ましくは0.2
Ω・d以下が望まれる。耐アノライト性には60℃の硫
酸1.5 mol/ 1およびメタノール1.5 mo
l/ lの水溶液に対する耐久性である。メタノールの
非透過性はメタノール透過係数で8 ×10−’mol
/ ci−h・(mol/ ff1)(膜の両側でメタ
ノールの濃度差があるとき、膜面積1cTaあたり1時
間あたりに膜を透過するメタノールの量)以下が要求さ
れる。発明者らの検討によると熱可塑性樹脂にカーボン
粉末を混練し膜状に成型したものがこれらの条件を満足
する。すなわち、ポリテトラフルオロエチレン、ポリプ
ロピレン、ポリエチレン、塩化ビニル等にカーボン粉末
を混合した膜が良好に適用でき、ポリテトラフルオロエ
チレンにグラファイトを混合した膜は、可撓性、電子導
電性、耐アノライト性およびメタノールの非透過性の全
ての面で優れ、特に良好に適用できる。また、可撓性及
び重量軽減等の観点から、前記膜又はシートの厚さは、
好ましくは、0゜15LI11〜0.05+usである
The properties required of the film or sheet made of the synthetic resin and carbon powder are flexibility, electronic conductivity, anolyte resistance, and impermeability to methanol in the anolyte. Electronic conductivity is 005Ω・d or less, preferably 0.2 including contact resistance with electrodes and ion exchange membrane during battery assembly.
Ω・d or less is desirable. For anolyte resistance, 1.5 mol/1 sulfuric acid and 1.5 mo methanol at 60°C
It is the durability against l/l aqueous solution. The impermeability of methanol is 8 × 10-'mol in terms of methanol permeability coefficient.
/ci-h·(mol/ff1) (when there is a difference in methanol concentration on both sides of the membrane, the amount of methanol that permeates through the membrane per hour per 1 cTa of membrane area) or less is required. According to the inventors' studies, a material obtained by kneading carbon powder into a thermoplastic resin and molding it into a film satisfies these conditions. In other words, films made of polytetrafluoroethylene, polypropylene, polyethylene, vinyl chloride, etc. mixed with carbon powder can be applied well, and films made of polytetrafluoroethylene mixed with graphite have excellent flexibility, electronic conductivity, and anolyte resistance. It is excellent in all aspects, including impermeability to methanol, and can be applied particularly well. In addition, from the viewpoint of flexibility and weight reduction, the thickness of the membrane or sheet is
Preferably, it is 0°15LI11 to 0.05+us.

セパレータ枠には耐アノライト性が要求されるが、上記
の各種プラスチックスが適用できる。耐熱塩化ビニルは
耐アノライト性、耐熱性、加工性に優れ特に良好に適用
できる。
The separator frame is required to have anolyte resistance, and the various plastics mentioned above can be used. Heat-resistant vinyl chloride has excellent anolyte resistance, heat resistance, and processability, and is particularly suitable for use.

セパレータ枠と導電性膜によるセパレータの構成は、両
者の接着剤による接着、熱的融着、機械的な挟み込みに
よって可能である。
The structure of the separator by the separator frame and the conductive film can be achieved by bonding the two with an adhesive, thermal fusion, or mechanical sandwiching.

メタノール極の基板材料には、電子導電性、耐アノライ
ト性と燃料メタノールを触媒層へ供給するためのメタノ
ール透過性が要求され、多孔質カーボン材料がこの要求
を満たすことができる。多孔質カーボン材料では、カー
ボン繊維からなるシート(不織布)が比重が0.8〜0
.4と小さく、特に良好に適用できる。
The substrate material of the methanol electrode is required to have electronic conductivity, anolyte resistance, and methanol permeability for supplying fuel methanol to the catalyst layer, and a porous carbon material can meet these requirements. In porous carbon materials, sheets (nonwoven fabrics) made of carbon fibers have a specific gravity of 0.8 to 0.
.. As small as 4, it can be applied particularly well.

空気極の基板材料には、電子導電性と空気中の酸素を触
媒層へ供給するための気体透過性が要求され、メタノー
ル極基板と同様の材料が良好に適用できる。
The substrate material of the air electrode is required to have electronic conductivity and gas permeability for supplying oxygen in the air to the catalyst layer, and the same material as the methanol electrode substrate can be suitably used.

〔作 用〕[For production]

本発明のメタノール燃料電池におけるセパレータは、メ
タノール極及び空気極に対応する部分を合成樹脂とカー
ボン粉末からなる可撓性及び電子導電性を有する膜もし
くはシートで構成しているが、メタノール燃料電池の運
転温度が約60℃であるから、耐熱性の問題はない、そ
して、従来技術においては、セパレータに、所要の導電
性、耐食性、アノライト及び空気の両者に対する耐透過
性等を付与するために、これを高密度黒鉛やガラス状カ
ーボンなどで構成しているが、このような素材で構成し
たセパレータは必然的に剛性で脆い性質があり、0.5
 ms+程度以下の厚さとすることが難しい。これに反
し、本発明の合成樹脂とカーボン粉末からなる膜もしく
はシートは、所要の導電性、耐食性、耐透過性等を有す
るのみならず、可撓性であって、しかも厚さをかなり薄
くすることができる。
The separator in the methanol fuel cell of the present invention is composed of a flexible and electronically conductive membrane or sheet made of synthetic resin and carbon powder in the portion corresponding to the methanol electrode and the air electrode. Since the operating temperature is about 60°C, there is no problem with heat resistance, and in the prior art, in order to give the separator the required electrical conductivity, corrosion resistance, permeation resistance to both anolyte and air, etc. This is made of high-density graphite, glassy carbon, etc., but separators made of such materials are inevitably rigid and brittle.
It is difficult to achieve a thickness of approximately ms+ or less. On the contrary, the film or sheet made of the synthetic resin and carbon powder of the present invention not only has the required electrical conductivity, corrosion resistance, permeation resistance, etc., but also is flexible and has a considerably thinner thickness. be able to.

したがって、上記のようにセパレータに流路を設けない
構成とした場合、セパレータの電気的接続部(通電部)
の厚みをO,l trrra程度と著しく小さ(でき、
セパレータ重量を大幅に軽減できる。また、電極基板に
空気および燃料供給機能を持たせるため電極の厚さは増
加するが電極基板にセパレート機能は不要であるため軽
量のカーボン材料が適用でき電極重量の増加は小さい、
従って、電池全体として見た場合大幅な重量軽減が達成
される。
Therefore, when the separator is configured without a flow path as described above, the electrical connection part (current-carrying part) of the separator
The thickness of
Separator weight can be significantly reduced. In addition, since the electrode substrate has air and fuel supply functions, the thickness of the electrode increases, but since the electrode substrate does not need a separation function, lightweight carbon materials can be used, and the increase in electrode weight is small.
Therefore, a significant weight reduction is achieved when looking at the battery as a whole.

さらに、上記のようにセパレータを構成する膜もしくは
シートは、可撓性であるので、メタノール燃料電池の組
立状態において、電極面とのなじみがよく所要の密接状
態を保持し、良好な電池性能を与えるものである。
Furthermore, since the membrane or sheet constituting the separator is flexible as described above, it fits well with the electrode surface and maintains the required close contact with the electrode surface when the methanol fuel cell is assembled, resulting in good cell performance. It is something to give.

〔実施例〕〔Example〕

以下、本発明を実施例により更に具体的に説明する。 EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples.

第2−(a)および(b)図は本発明のメタノール燃料
電池に用いるセパレータの一例である。
Figures 2-(a) and 2-(b) are examples of separators used in the methanol fuel cell of the present invention.

第2− (a)および(ハ)において、セパレータはセ
パレータ枠11と導電性膜12から構成される。導電性
膜12は正面図ではセパレータ枠11の中央切欠部に位
置し上面図ではセパレータ枠厚さ方向のほぼ中央に位置
する。従って、セパレータ枠の中央切欠部は導電性膜に
より2つの空間(部屋)に分割される。導電性膜上面の
空間はアノライトダクト14を介してセパレータ枠に穿
たれたアノライト連通孔13 (セパレータを多数積層
して電池を構成した場合アノライトの流路となる)とつ
ながり、この空間は後述のメタノール極を収める部屋と
なる。
2- In (a) and (c), the separator is composed of a separator frame 11 and a conductive film 12. The conductive film 12 is located at the central notch of the separator frame 11 in the front view, and approximately at the center in the thickness direction of the separator frame in the top view. Therefore, the central notch of the separator frame is divided into two spaces (rooms) by the conductive film. The space on the top surface of the conductive film is connected to an anolite communication hole 13 bored in the separator frame via an anolite duct 14 (which becomes an anolyte flow path when a battery is constructed by stacking a large number of separators), and this space will be described later. This is the room that houses the methanol pole.

一方、導電性膜下面の空間は複数の空気ダクトを通じて
枠体外周の空間とつながり、この空間は後述の空気極を
収める部屋となる。導電性膜12は、ポリテトラフルオ
ロエチレンとグラファイト粉末の混練物で構成され、縦
20C11,横10CII、厚さ0.1mmである。導
電性M12の電子導電性は0.15Ω・cm”である。
On the other hand, the space under the conductive film is connected to the space around the outer periphery of the frame through a plurality of air ducts, and this space becomes a room in which an air electrode, which will be described later, is housed. The conductive film 12 is made of a kneaded mixture of polytetrafluoroethylene and graphite powder, and has a length of 20C11, a width of 10CII, and a thickness of 0.1 mm. The electronic conductivity of conductive M12 is 0.15 Ω·cm”.

耐アノライト性は良好で2.000時間のアノライト浸
漬で全く変化を認めない。メタノールの非透過性は、メ
タノール透過係数で3.lX10−’n+ol/cm!
・h (a+ol八〇でへる。
The anolyte resistance is good and no change is observed after 2,000 hours of anolyte immersion. The impermeability of methanol is determined by the methanol permeability coefficient of 3. lX10-'n+ol/cm!
・h (a + ol 80.

セパレータ枠は耐熱塩化ビニル製であり、セパレータ枠
と導電性膜によるセパレータの構成は、接着剤による両
者の接着によった。
The separator frame was made of heat-resistant vinyl chloride, and the structure of the separator consisting of the separator frame and the conductive film was achieved by adhering the two together using an adhesive.

さらに、第2図のセパレータ枠11において発泡プラス
チックス、すなわち発泡ポリエチレン、発泡ポリプロピ
レン、発泡ポリテトラフルオロエチレン等の耐アノライ
ト性を有する発泡プラスチックスを適用することにより
、重量のさらなる軽減を達成できる。
Further, by using foamed plastics, ie, foamed plastics having anolyte resistance such as foamed polyethylene, foamed polypropylene, and foamed polytetrafluoroethylene, in the separator frame 11 of FIG. 2, further weight reduction can be achieved.

第3図は本発明のメタノール燃料電池に用いるメタノー
ル極の一例、第4図は空気極の一例である。
FIG. 3 shows an example of a methanol electrode used in the methanol fuel cell of the present invention, and FIG. 4 shows an example of an air electrode.

メタノール極はメタノール極基板21とその一方の平坦
な面に塗布されたメタノール極触媒5層からなる。メタ
ノール極基板21は縦20am、横10 cm+ +厚
さ3I1mlであり、基板の触媒層の反対側に幅4mm
The methanol electrode consists of a methanol electrode substrate 21 and five layers of methanol electrode catalyst coated on one flat surface thereof. The methanol electrode substrate 21 has a length of 20 am, a width of 10 cm+ + a thickness of 3I1 ml, and a width of 4 mm on the opposite side of the catalyst layer of the substrate.
.

深さ1.8++v+のアノライト流路5が設けられる。An anolyte channel 5 with a depth of 1.8++v+ is provided.

メタノール極の基板材料は、カーボン繊維からなる多孔
質カーボン板で構成されている。
The substrate material of the methanol electrode is a porous carbon plate made of carbon fiber.

空気極も同様に、空気極基板31とその一方の平坦な面
に塗布された空気極触媒層からなる。空気極基tffE
31は縦20C11、横10c11.厚さ4Iであり、
基板の触媒層の反対側に幅41.深さ2.8mmの空気
流路6が設けられる。空気極の基板材料は、メタノール
極と同様にカーボン繊維からなる多孔質カ−ポン板で構
成さている。
Similarly, the air electrode consists of an air electrode substrate 31 and an air electrode catalyst layer coated on one flat surface thereof. air polar group tffE
31 has a length of 20C11 and a width of 10C11. The thickness is 4I,
Width 41. on the side opposite the catalyst layer of the substrate. An air flow path 6 with a depth of 2.8 mm is provided. The substrate material of the air electrode is a porous carbon plate made of carbon fiber, similar to the methanol electrode.

第1図に、第2図に示したセパレータおよび第3図なら
びに第4図に示した電極を用いた、本発明のメタノール
燃料電池の構成の一実施例を示す。
FIG. 1 shows an example of the structure of a methanol fuel cell according to the present invention, using the separator shown in FIG. 2 and the electrodes shown in FIGS. 3 and 4.

第1図において、イオン交換膜の両側に第3図および第
4図に示すメタノール極および空気極が夫々触媒塗布面
をイオン交換膜側にして配せられて単位電池が構成され
る。電極の外側には第2図に示すセパレータが配設され
る。積層電池は、空気極−イオン交換膜−メタノール極
−セパレータを繰返し積層し、両端に一対の集電板を配
して構成される。集電板上は単位電池の直列回路から電
池外に電力を取出す機能を持つ。アノライトは、セパレ
ータの連通孔からアノライトダクトを経てメタノール極
に設けられたアノライト流路に至り、アノライト流路を
流れる間にメタノールをメタノール極触媒層に供給し、
しかる後に他のアノライトダクトおよび連通孔を経て電
池外へ排出される。
In FIG. 1, a methanol electrode and an air electrode shown in FIGS. 3 and 4 are arranged on both sides of an ion exchange membrane, with the catalyst-coated surface facing the ion exchange membrane, thereby forming a unit cell. A separator shown in FIG. 2 is provided on the outside of the electrode. A stacked battery is constructed by repeatedly stacking an air electrode, an ion exchange membrane, a methanol electrode, and a separator, and arranging a pair of current collector plates at both ends. The current collector plate has the function of extracting power from the series circuit of the unit batteries to the outside of the batteries. The anolyte reaches the anolyte channel provided in the methanol electrode from the communication hole of the separator through the anolyte duct, and while flowing through the anolyte channel, methanol is supplied to the methanol electrode catalyst layer,
Thereafter, it is discharged to the outside of the battery through another anorite duct and a communication hole.

一方、酸化剤としての空気は、セパレータの空気ダクト
からセパレータ内に供給され空気極2の空気流路に至り
、空気流路を流れる間に空気中の酸素を空気極触媒層に
供給し、しかる後に他の空気ダクトから電池外へ一排出
される。
On the other hand, air as an oxidizing agent is supplied into the separator from the air duct of the separator and reaches the air flow path of the air electrode 2, and while flowing through the air flow path, it supplies oxygen in the air to the air electrode catalyst layer, and Afterwards, it is exhausted to the outside of the battery through another air duct.

〔発明の効果〕〔Effect of the invention〕

以上の本発明によれば、良好な電池性能は保持しつつ、
セパレータの大幅な重量低減が可能となり、その結果電
池重量の軽減が達成できる。
According to the present invention described above, while maintaining good battery performance,
It is possible to significantly reduce the weight of the separator, and as a result, the weight of the battery can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のメタノール燃料電池の一実施例を示す
部分展開斜視図、第2図、第3図および第4図は、それ
ぞれ本発明のメタノール燃料電池に用いられるセパレー
タ、メタノール極および空気極の具体例を示す図、第5
図は、従来技術による電池の構成を示す部分展開斜視図
である。 1・・・メタノール極、2・・・空気極3・・・イオン
交換膜、4・・・セパレータ5・・・アノライト流路、
6・・・空気流路7・・・アノライトの流れ、8・・・
空気の流れ9・・・集電板、11・・・セパレータ枠1
2・・・導電性膜、13・・・アノライト連通孔14・
・・アノライトダクト、15・・・空気ダクト21・・
・メタノール極基板、22・・・メタノール極触媒層3
1・・・空気極基板、32・・・空気極触媒層。
FIG. 1 is a partially exploded perspective view showing one embodiment of the methanol fuel cell of the present invention, and FIGS. 2, 3, and 4 respectively show a separator, a methanol electrode, and an air Diagram showing a specific example of poles, No. 5
The figure is a partially exploded perspective view showing the configuration of a battery according to the prior art. DESCRIPTION OF SYMBOLS 1... Methanol electrode, 2... Air electrode 3... Ion exchange membrane, 4... Separator 5... Anolyte channel,
6...Air flow path 7...Anolyte flow, 8...
Air flow 9... Current collector plate, 11... Separator frame 1
2... Conductive film, 13... Anolyte communication hole 14.
...Anolyte duct, 15...Air duct 21...
- Methanol electrode substrate, 22...methanol electrode catalyst layer 3
1... Air electrode substrate, 32... Air electrode catalyst layer.

Claims (1)

【特許請求の範囲】 1、メタノールを電気化学的に酸化するメタノール極と
空気中の酸素を電気化学的に還元する空気極と、これら
の間のイオン導電性を保持するための電解質としてのイ
オン交換膜と、これらで構成される単位電池の電気的直
列回路を構成しかつ燃料のメタノールと酸化剤の空気と
を隔離して混合を防止するセパレータから構成されるメ
タノール燃料電池において、メタノール極及び空気極に
対応する部分を合成樹脂とカーボン粉末からなる可撓性
及び電子導電性を有する膜もしくはシートで構成したセ
パレータに単位電池の電気的直列回路を構成するための
電気的接続機能とメタノールと空気の隔離機能を持たせ
ると共に、電極基板とその表面に形成された触媒層から
なるメタノール極と空気極の電極基板にそれぞれメタノ
ールおよび空気の供給流路を設けたことを特徴とするメ
タノール燃料電池。 2、合成樹脂とカーボン粉末からなる可撓性及び電子導
電性を有する膜もしくはシートが、ポリテトラフルオロ
エチレン、ポリプロピレン、ポリエチレン、塩化ビニル
等の熱可塑性樹脂にカーボン粉末を混練し膜状もしくは
シート状に成型したものであることを特徴とする請求項
1記載のメタノール燃料電池。 3、合成樹脂とカーボン粉末からなる可撓性及び電子導
電性を有する膜もしくはシートの厚さが0.15〜0.
05mmであることを特徴とする請求項1又は請求項2
記載のメタノール燃料電池。 4、合成樹脂とカーボン粉末からなる可撓性及び電子導
電性を有する膜もしくはシートが、電池運転温度条件(
約60℃)において、電気抵抗0.5Ω・cm^2以下
、耐硫酸およびメタノール、メタノール透過係数で8×
10^−^5mol/cm^2・h・(mol/l)以
下の膜もしくはシートであることを特徴とする請求項1
乃至請求項3のいずれかの項記載のメタノール燃料電池
。 5、セパレータが、セパレータ枠と合成樹脂とカーボン
粉末からなる可撓性及び電子導電性を有する膜もしくは
シートとからなり、両者を接着剤による接着、熱的融着
、あるいは、機械的な挟み込みによって一体化したもの
であることを特徴とする請求項1乃至請求項4のいずれ
かの項記載のメタノール燃料電池。 6、セパレータ枠が、耐熱性塩化ビニルで構成されてい
ることを特徴とする請求項1乃至請求項5のいずれかの
項記載のメタノール燃料電池。 7、電極基板が、多孔質カーボン材料からなることを特
徴とする請求項1乃至請求項6のいずれかの項記載のメ
タノール燃料電池。 8、多孔質カーボン材料が、カーボン繊維からなる不織
布であることを特徴とする請求項1乃至請求項7のいず
れかの項記載のメタノール燃料電池。
[Claims] 1. A methanol electrode that electrochemically oxidizes methanol, an air electrode that electrochemically reduces oxygen in the air, and ions as an electrolyte to maintain ionic conductivity between them. In a methanol fuel cell consisting of an exchange membrane and a separator that constitutes an electrical series circuit of a unit cell composed of these membranes and separates methanol as a fuel and air as an oxidizer to prevent mixing, a methanol electrode and a separator are used. The part corresponding to the air electrode is made of a separator made of a flexible and electronically conductive film or sheet made of synthetic resin and carbon powder, and has an electrical connection function for constructing an electrical series circuit of the unit battery and methanol. A methanol fuel cell characterized in that it has an air isolation function and that methanol and air supply channels are provided in the electrode substrates of the methanol electrode and the air electrode, which are each composed of an electrode substrate and a catalyst layer formed on its surface. . 2. A flexible and electronically conductive film or sheet made of synthetic resin and carbon powder is produced by kneading carbon powder into a thermoplastic resin such as polytetrafluoroethylene, polypropylene, polyethylene, or vinyl chloride, and then forming a film or sheet into a film or sheet. 2. The methanol fuel cell according to claim 1, wherein the methanol fuel cell is molded as follows. 3. The thickness of the flexible and electronically conductive film or sheet made of synthetic resin and carbon powder is 0.15-0.
Claim 1 or Claim 2 characterized in that the diameter is 05 mm.
The methanol fuel cell described. 4. A flexible and electronically conductive membrane or sheet made of synthetic resin and carbon powder can be used under battery operating temperature conditions (
(approximately 60℃), electrical resistance of 0.5Ω・cm^2 or less, sulfuric acid resistance, methanol resistance, methanol permeability coefficient of 8×
Claim 1, characterized in that it is a film or sheet with a molecular weight of 10^-^5 mol/cm^2.h.(mol/l) or less.
4. The methanol fuel cell according to claim 3. 5. The separator consists of a separator frame and a flexible and electronically conductive film or sheet made of synthetic resin and carbon powder, and the two are bonded by adhesive, thermal fusion, or mechanically sandwiched. The methanol fuel cell according to any one of claims 1 to 4, characterized in that it is an integrated cell. 6. The methanol fuel cell according to any one of claims 1 to 5, wherein the separator frame is made of heat-resistant vinyl chloride. 7. The methanol fuel cell according to any one of claims 1 to 6, wherein the electrode substrate is made of a porous carbon material. 8. The methanol fuel cell according to any one of claims 1 to 7, wherein the porous carbon material is a nonwoven fabric made of carbon fibers.
JP1099952A 1989-04-21 1989-04-21 Methanol fuel cell Expired - Lifetime JP2840287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1099952A JP2840287B2 (en) 1989-04-21 1989-04-21 Methanol fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1099952A JP2840287B2 (en) 1989-04-21 1989-04-21 Methanol fuel cell

Publications (2)

Publication Number Publication Date
JPH02281567A true JPH02281567A (en) 1990-11-19
JP2840287B2 JP2840287B2 (en) 1998-12-24

Family

ID=14261037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1099952A Expired - Lifetime JP2840287B2 (en) 1989-04-21 1989-04-21 Methanol fuel cell

Country Status (1)

Country Link
JP (1) JP2840287B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0778631A1 (en) * 1995-12-06 1997-06-11 Honda Giken Kogyo Kabushiki Kaisha Direct methanol type fuel cell
WO1997050139A1 (en) * 1996-06-25 1997-12-31 E.I. Du Pont De Nemours And Company Polymer electrolyte membrane fuel cell with bipolar plate having integrally molded conductive insert
WO1999000862A1 (en) * 1997-06-27 1999-01-07 Plug Power Inc. Current conducting end plate of fuel cell assembly
JP2002216803A (en) * 2001-01-19 2002-08-02 Sony Corp Fuel cell, its manufacturing method and method of use
KR100376013B1 (en) * 2000-01-11 2003-03-15 니폰 필라고교 가부시키가이샤 Separator for fuel cell
WO2004100296A1 (en) * 2003-05-08 2004-11-18 Dainippon Ink And Chemicals, Inc. Method for producing separator for fuel cell, separator for fuel cell and fuel cell
US7344791B1 (en) 1999-03-08 2008-03-18 Toudai Tlo, Ltd. Electrolytic membrane for fuel cell and its manufacturing method, and fuel cell and its manufacturing method
US7704624B2 (en) 2006-01-25 2010-04-27 Dic Corporation Fuel cell bipolar plate, process for producing the same, and fuel cell including the bipolar plate

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0778631A1 (en) * 1995-12-06 1997-06-11 Honda Giken Kogyo Kabushiki Kaisha Direct methanol type fuel cell
WO1997050139A1 (en) * 1996-06-25 1997-12-31 E.I. Du Pont De Nemours And Company Polymer electrolyte membrane fuel cell with bipolar plate having integrally molded conductive insert
WO1999000862A1 (en) * 1997-06-27 1999-01-07 Plug Power Inc. Current conducting end plate of fuel cell assembly
US6001502A (en) * 1997-06-27 1999-12-14 Plug Power, L.L.C. Current conducting end plate of fuel cell assembly
US7344791B1 (en) 1999-03-08 2008-03-18 Toudai Tlo, Ltd. Electrolytic membrane for fuel cell and its manufacturing method, and fuel cell and its manufacturing method
KR100376013B1 (en) * 2000-01-11 2003-03-15 니폰 필라고교 가부시키가이샤 Separator for fuel cell
JP2002216803A (en) * 2001-01-19 2002-08-02 Sony Corp Fuel cell, its manufacturing method and method of use
WO2004100296A1 (en) * 2003-05-08 2004-11-18 Dainippon Ink And Chemicals, Inc. Method for producing separator for fuel cell, separator for fuel cell and fuel cell
US7704624B2 (en) 2006-01-25 2010-04-27 Dic Corporation Fuel cell bipolar plate, process for producing the same, and fuel cell including the bipolar plate

Also Published As

Publication number Publication date
JP2840287B2 (en) 1998-12-24

Similar Documents

Publication Publication Date Title
US6589681B1 (en) Series/parallel connection of planar fuel cell stacks
JP3731234B2 (en) Polymer electrolyte fuel cell
JP4505204B2 (en) Fuel cell system
JPH0552037B2 (en)
JP2012212678A (en) Fuel cell
JP2002260709A (en) Solid polymer cell assembly, fuel cell stack and operation method of fuel cell
JP3841148B2 (en) Cell plate and stack for solid oxide fuel cell
JP2004087311A (en) Fuel cell stack and metallic separator for for fuel cell stack
JPH02281567A (en) Methanol fuel cell
KR20050094573A (en) Separator for fuel cell using the metal coated with tin, method to prepare thereit, and polymer electrolyte membrane fuel cell comprising the same
JP2007217209A (en) Oxygen enrichment device
JPH1079260A (en) Fuel cell
WO2006090464A1 (en) Solid polymer fuel cell and method for producing same
JPH06338342A (en) Cell stack structure for solid high polymer electrolytic fuel cell
JP2000058100A (en) Electrode layered structure
JPH04298964A (en) Solid electrolyte type fuel cell and manufacture thereof
JP2000195526A (en) Electrode for fuel cell
JPH10134829A (en) Solid electrolyte fuel cell, solid electrolyte fuel cell assembly, manufacture of solid electrolyte fuel cell, and manufacture of solid electrolyte fuel cell assembly unit
JP2002170581A (en) Polymer electrolyte type fuel battery
JP2003282089A (en) Micro fuel cell
JP2004119189A (en) Fuel cell
JPH07296840A (en) Polymer electrolyte fuel cell
JP2002198072A (en) Solid polymer fuel cell
JPH0479163A (en) Solid electrolyte type fuel cell
JP2006344586A (en) Fuel cell