JPS60232669A - Electrode material for electrolytic bath - Google Patents

Electrode material for electrolytic bath

Info

Publication number
JPS60232669A
JPS60232669A JP59088781A JP8878184A JPS60232669A JP S60232669 A JPS60232669 A JP S60232669A JP 59088781 A JP59088781 A JP 59088781A JP 8878184 A JP8878184 A JP 8878184A JP S60232669 A JPS60232669 A JP S60232669A
Authority
JP
Japan
Prior art keywords
carbonaceous material
electrode
amount
electrode material
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59088781A
Other languages
Japanese (ja)
Other versions
JPH0552033B2 (en
Inventor
Shokei Shimada
島田 将慶
Tetsuo Fukatsu
鉄夫 深津
Yasuhiro Iizuka
飯塚 康広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP59088781A priority Critical patent/JPS60232669A/en
Publication of JPS60232669A publication Critical patent/JPS60232669A/en
Publication of JPH0552033B2 publication Critical patent/JPH0552033B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To restrict the amount of gaseous hydrogen generated at charging of an iron-chrome redoxflow secondary battery for improved current efficiency and conductivity by using an electrode material of a specified carbonaceous material. CONSTITUTION:There is used a carbonaceous material having a congulated graphite microcrystal structure whose <002> spacing measured by X-ray wide angle analysis is less than 3.70Angstrom on the average and in which the dimension of the crystal lattice is more than 9.0Angstrom on the average and having the total acid functional group rate more than 0.01meq/g. Using as electrode material such a carbonaceous material having a specified crystal structure with high crystallinity is effective to restrict the amount of gaseous hydrogen generated at charging of the iron-chrome redoxflow secondary battery and to remarkably improve current efficiency. Furthermore, using as electrode material the above-mentioned carbonaceous material having many acid functional groups combined remarkably improves electrode reaction rate and consequently conductivity.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は新規な電極材に関するものであり、さらに詳し
くは特定の結晶構造及び酸性官能基量を有してなる炭素
質材料よりなる電解槽用電極材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a novel electrode material, and more particularly to an electrode for an electrolytic cell made of a carbonaceous material having a specific crystal structure and an amount of acidic functional groups. It is related to materials.

従来の技術 1973年のエネルギー危機以来エネルギー問題が広く
各層で認識される様になって来た。新しいエネルギー源
の開発と同時に発生したエネルギーを有効に利用するエ
ネルギーの変換、貯蔵、輸送、利用を含めたシステムの
開発も重要となって来ている。貯蔵を例にとれば、将来
電源構成で大きな比重を占めると予想されている原子力
1石炭。
BACKGROUND OF THE INVENTION Since the energy crisis of 1973, energy problems have become widely recognized by all walks of life. Along with the development of new energy sources, it is also becoming important to develop systems that effectively utilize the energy generated, including energy conversion, storage, transportation, and utilization. Taking storage as an example, nuclear power and coal are expected to account for a large proportion of the power source mix in the future.

火力等の大型発電では一定の出力を保って定常発電する
ことが高い効率を保つ上で必要であり、夜間の余剰電力
を適切に貯蔵して昼間の需要増大時にこれを放出し、需
要の変動に対応させる(ロードレベリング)ことのでき
る電力貯蔵技術への要求が強くなって来ている。現在で
も主要発電設備の年間稼動率は60%を切っており、低
下が続いている。
In large-scale power generation such as thermal power generation, it is necessary to maintain a constant output and generate electricity at a constant rate in order to maintain high efficiency. There is a growing demand for power storage technology that can accommodate (load leveling). Even now, the annual operating rate of major power generation facilities is below 60% and continues to decline.

電力貯蔵の方法には、実用化されてはいるが送電による
ロスがあり、立地に制約の加わって来ている揚水発電の
他に、新型2次電池、フフイホイール、圧縮空気、超電
導等の各種の方法が検討されているが、新型電池による
電気化学操作が有力であシ、ここ当分の間、輸送を含め
た解決システムとして、揚水発電に替る最も実現性の高
い方式と考えられている。又新!1lu2次電池は、太
陽光。
In addition to pumped-storage power generation, which has been put into practical use but suffers from power transmission losses and is subject to restrictions on location, there are various energy storage methods such as new secondary batteries, Fufui wheels, compressed air, and superconductivity. methods are being considered, but electrochemical operation using a new type of battery is most likely, and for the time being, it is considered the most viable method to replace pumped storage power generation as a solution system that includes transportation. New again! The 1lu secondary battery uses sunlight.

風力、波力等の自然エネルギーを利用した発電のバック
アップ装置、或いは電気自動車用電池としても期待が寄
せられている。手記目的に適用できる2次電池として、
鉛蓄電池、す) IJウムー硫黄電池、リチウム−硫化
鉄電池、金属−ハロゲン電池、レドックスフロー形電池
等が現在開発されている。
It is also expected to be used as a backup device for power generation using natural energy such as wind and wave power, or as a battery for electric vehicles. As a secondary battery that can be used for memo purposes,
Lead-acid batteries, IJ sulfur batteries, lithium-iron sulfide batteries, metal-halogen batteries, redox flow batteries, etc. are currently being developed.

中でもレドックスフロー2次電池は、次の特徴をもち、
米国、日本で開発が急速に進められている。該電池では
、充放電時の電気化学的エネルギー変化を行なわせる流
通型電解槽と活物質であるレドックス水溶液を貯蔵する
タンクが完全に分離しているため、タンク容量を変更す
るだけで電力貯蔵量′t−変えることができること、従
って長時間。
Among them, redox flow secondary batteries have the following characteristics:
Development is progressing rapidly in the United States and Japan. In this battery, the flow-through electrolytic cell that changes electrochemical energy during charging and discharging and the tank that stores the redox aqueous solution that is the active material are completely separated, so the amount of electricity stored can be increased simply by changing the tank capacity. 't - able to change, therefore for a long time.

大容量の電力貯蔵に適していること、液流通型であるた
め電池出力を調整しやすいこと、電池停止時の自己放電
が殆んどなく、m力・太陽発電などの自然エネルギー発
電のバックアップに適していること等の秀れた特徴があ
る。
Suitable for large-capacity power storage, easy to adjust battery output because it is a liquid flow type, and almost no self-discharge when the battery is stopped, making it useful as a backup for natural energy power generation such as m-power and solar power generation. It has excellent features such as being suitable.

しかし、該電池を実用化するためには、他の新型2次電
池と同様に、解決しなければならない問題点が内在して
いる。即ち、レドックスフロー2次電池の中でも現在量
も開発の進んでいるものは正極活物質として塩化鉄水溶
液、負極活物質として塩化クロム水溶液を用いる鉄−ク
ロムレドックスフロー2次電池(以下Fe−Cr電池と
略す)であり、該電池の電極材には耐薬品性があり、導
電性を有する通常の炭素繊維集合体が用いられている。
However, like other new types of secondary batteries, there are inherent problems that must be solved in order to put this battery into practical use. In other words, among the redox flow secondary batteries, the one that is currently being developed is the iron-chromium redox flow secondary battery (hereinafter referred to as Fe-Cr battery), which uses an iron chloride aqueous solution as the positive electrode active material and a chromium chloride aqueous solution as the negative electrode active material. (abbreviated as ), and the electrode material of this battery uses a common carbon fiber aggregate that has chemical resistance and conductivity.

また該電池における解決すべき問題点は負極におけるク
ロムイオン(水溶液中ではクロロアコ錯体となっている
)の酸化還元反応である。正極での鉄イオンの酸化還元
反応は充放電時において反応速度が比較的速く副反応も
生起しないのでさほど問題ではないが鉄イオンに比べて
錯交換反応を含むクロム錯イオンの酸化還元反応が遅い
こと、っ−1シ電池の電導度が低いこと、又充電時に水
素が発生し電池の電流効率が下がり易いこと等が特に挙
げられる問題点なのである。
A problem to be solved in this battery is the redox reaction of chromium ions (which form a chloroaco complex in an aqueous solution) at the negative electrode. The redox reaction of iron ions at the positive electrode has a relatively fast reaction rate during charging and discharging, and side reactions do not occur, so it is not a big problem, but compared to iron ions, the redox reaction of chromium complex ions, including complex exchange reactions, is slower. Particular problems include the fact that the conductivity of the battery is low, and that hydrogen is generated during charging, which tends to reduce the current efficiency of the battery.

このように従来のFe−Cr電池には上述した如き問題
が内在するが、この様な点は電極材の選択とも大いに関
係する。即ち、充放電時の電気化学反応は炭素繊維表面
で進行するので、充電時の水素ガスの発生量を抑止し、
電流効率及び電導度(酸化還元反応の速さに関係)を高
め得る電極材の選定が重要となってくる。
As described above, conventional Fe--Cr batteries have inherent problems as described above, but these points are also closely related to the selection of electrode materials. In other words, since the electrochemical reaction during charging and discharging proceeds on the surface of the carbon fiber, the amount of hydrogen gas generated during charging is suppressed,
It is important to select an electrode material that can increase current efficiency and conductivity (related to the speed of redox reaction).

発明の目的 本発明者らはかかる事情に鑑み電池のトータルエネルギ
ー効率を高め得るF e −Cr電池の電極材について
鋭意検討した結果1本発明に到達した。
Purpose of the Invention In view of the above circumstances, the present inventors have conducted intensive studies on electrode materials for Fe-Cr batteries that can improve the total energy efficiency of the battery, and as a result, have arrived at the present invention.

発明の構成 即ち1本発明HX線広角解析よりめた<002>面間隔
が平均3.70 A以下であり、またC軸方向の結晶子
の大きさが平均9.0λ以上の擬黒鉛微結晶構造を有し
、かつ全酸性官能基量が少なくとも0.01 meq 
/ fである炭素質材料よりなる電極材である。
Components of the Invention: 1. Pseudographite microcrystals in which the <002> plane spacing determined by HX-ray wide-angle analysis is 3.70 A or less on average, and the crystallite size in the C-axis direction is on average 9.0λ or more. structure, and the total amount of acidic functional groups is at least 0.01 meq
/f is an electrode material made of a carbonaceous material.

このような電極材を用いることにより、電池の特性値で
ある電流効率及び電導度が改善されることになる。換言
すれば、上述の如くX線広角解析(解析方法は後述する
)よりめた(002)面間隔が平均3.70 A以下で
あり、またC軸方向の結晶子の大きさが平均9.0Å以
上の擬黒鉛微結晶構造を有する炭素質材料を電極材に用
いるととKより、充電時負極における水素発生量が抑止
され。
By using such an electrode material, the current efficiency and conductivity, which are characteristic values of the battery, are improved. In other words, the (002) plane spacing determined by wide-angle X-ray analysis (the analysis method will be described later) is 3.70 A or less on average, and the crystallite size in the C-axis direction is on average 9. When a carbonaceous material having a pseudographite microcrystalline structure of 0 Å or more is used as an electrode material, the amount of hydrogen generated at the negative electrode during charging is suppressed.

電流効率を著しく高め得ることができた。<002>面
間隔が3.70人を超え、しかもC軸方向の結晶子の大
きさが平均9.0λ未満の結晶性の低い炭素質材料を用
いる場合は充電時負極における水素発生量が大きく、電
流効率す高めることはできない。
It was possible to significantly increase current efficiency. <002> When using a carbonaceous material with low crystallinity in which the interplanar spacing exceeds 3.70 and the average crystallite size in the C-axis direction is less than 9.0λ, the amount of hydrogen generated at the negative electrode during charging is large. , the current efficiency cannot be increased.

このように結晶性の高い特定の結晶構造を有する炭素質
材料を電極材として用いる仁とにより電流効率が高めら
れる理由については明らかでないが。
Although it is not clear why the current efficiency is improved by using a carbonaceous material having a specific crystal structure with high crystallinity as an electrode material.

結晶構造が発達するに従って水素過電圧が上昇シ。As the crystal structure develops, the hydrogen overvoltage increases.

充電時にクロム鮨イオンの還元が選択的に起り。During charging, reduction of chromium ions occurs selectively.

以て電流効率が上昇するものと考えられる。It is thought that this increases the current efficiency.

一方、前述の如く全酸性官能基量が0.01 meq/
を以上の炭素質材料を電極材に用いることにより、電極
反応速度、つまり電導度を著るしく高め得ることができ
た。全酸性官能基量が0.01 meq72未満の全酸
性官能基量の少ない炭素質材料を用いる場合は放電時の
電極反応速度が小さく電導度を高めることはできない。
On the other hand, as mentioned above, the total amount of acidic functional groups is 0.01 meq/
By using the above carbonaceous material as an electrode material, it was possible to significantly increase the electrode reaction rate, that is, the electrical conductivity. When using a carbonaceous material having a small total acidic functional group amount of less than 0.01 meq72, the electrode reaction rate during discharge is low and the conductivity cannot be increased.

このように電極材料酸性官能基を多く結合させた炭素質
材料を電極材として用いることにより電導率、いいかえ
れば電圧効率が高められる理由については明らかでない
が、電子の受授、錯イオンの炭素材料からの脱離。
Although it is not clear why the electrical conductivity, or in other words, the voltage efficiency, can be improved by using a carbonaceous material with many acidic functional groups as an electrode material, it is possible to improve the conductivity, in other words, the voltage efficiency. Detachment from.

錯交換反応等に表面の酸性官能基が有効に働いているも
のと考えられる。
It is thought that the acidic functional groups on the surface work effectively in complex exchange reactions and the like.

このように酸性官能基の濃度を高める炭素質材料を製造
するには前述した内部結晶構造をもつ炭素質材料を乾式
酸化処理することにより得られる。
A carbonaceous material with an increased concentration of acidic functional groups can be produced by subjecting a carbonaceous material having the above-mentioned internal crystal structure to a dry oxidation treatment.

これは例えばI X 102 torr以上の酸素分圧
を有する酸素雰囲気下で重量収率にして65〜99%の
範囲になる様に実施される。処理温度は通常400℃以
上が好ましい。又処理時間は1秒〜60分間が望ましい
。低温(例えば200〜300℃)では処理する炭素質
材料の反応性が落ちるため酸化の効果が得られない。酸
化処理を湿式で行なうと層間化合物の生成、処理時の有
害ガスの発生等問題が多いのでさけるべきである。
This is carried out, for example, in an oxygen atmosphere having an oxygen partial pressure of I x 102 torr or more so that the weight yield is in the range of 65 to 99%. The treatment temperature is usually preferably 400°C or higher. Further, the processing time is preferably 1 second to 60 minutes. At low temperatures (for example, 200 to 300°C), the reactivity of the carbonaceous material to be treated decreases, so that the oxidation effect cannot be obtained. Wet oxidation treatment should be avoided because it causes many problems such as the formation of intercalation compounds and the generation of harmful gases during treatment.

上述の如く乾式酸化処理を行なうこと忙より擬黒鉛微結
晶のC軸に垂直な面のエツジをより多く材料表面に露出
させることができ、かつこのエツジに電気化学反応に有
効な酸性基を形成させることができる。本発明における
官能基測定法(後述)ではカルボキシル基、フェノール
性水酸基が検出されるが、これらの酸性基が電極反応に
大きく寄与し、以て電導率(電圧効率)を高め得るもの
となる。
By performing the dry oxidation treatment as described above, more edges of the plane perpendicular to the C axis of the pseudographite microcrystals can be exposed to the material surface, and acidic groups effective for electrochemical reactions are formed on these edges. can be done. Although carboxyl groups and phenolic hydroxyl groups are detected in the functional group measurement method (described later) in the present invention, these acidic groups greatly contribute to the electrode reaction, thereby increasing electrical conductivity (voltage efficiency).

本発明に係る炭素質材料は炭素繊維、活性炭素繊維、活
性炭の集合体等特に制限を設けるものでないが好ましい
ものは炭素繊維よりなる布帛(織布1編地状布帛、不織
布)を挙げることができる。
The carbonaceous material according to the present invention is not particularly limited to carbon fibers, activated carbon fibers, aggregates of activated carbon, etc., but preferred examples include fabrics made of carbon fibers (woven fabrics, knitted fabrics, non-woven fabrics). can.

なお1本発明において採用せる<002>面間隔(do
o2)、C軸方向の結晶子の大きさC’r、c)s電流
効率、電導度及び全酸性官能基量は次の方法で測定する
ものである。
Note that the <002> plane spacing (do
o2), crystallite size in the C-axis direction C'r, c)s current efficiency, electrical conductivity, and total acidic functional group amount are measured by the following methods.

■ <002>面間隔: dooz 炭素繊維織布をメノウ乳鉢で粉末化し、試料に対して約
15重量−のX#i標準用高純度シリコン粉末を内部標
準物質として加え混合し、試料セルにつめ& CuKc
t線を線源とし、透過型ディフラクトメーター法によっ
て広角X線回折曲線を計測する。
■ <002> Surface spacing: dooz Powder the carbon fiber woven fabric in an agate mortar, add approximately 15 weight of high purity silicon powder for X#i standard to the sample as an internal standard substance, mix, and pack into a sample cell. & CuKc
A wide-angle X-ray diffraction curve is measured using a transmission diffractometer method using t-rays as a radiation source.

曲線の補正には、いわゆるローレンツ、偏光因子、吸収
因子、原子散乱因子等に関する補正は行なわず次の簡便
法を用いる。即ち(002)回折に相当するピークのベ
ースラインを引き。
To correct the curve, the following simple method is used without making corrections regarding so-called Lorentz, polarization factors, absorption factors, atomic scattering factors, etc. That is, draw the baseline of the peak corresponding to (002) diffraction.

ベースラインからの実質強度をプロットし直して(00
2)補正強度曲線を得る。この曲線のピーク高さの3分
の2の高さに引いた角度軸に平行な線が強度曲線と交わ
る線分の中点をめ。
Replot the real intensity from baseline (00
2) Obtain a corrected intensity curve. Find the midpoint of the line segment where a line parallel to the angular axis drawn at two-thirds the height of the peak height of this curve intersects the intensity curve.

中点の角度を内部標準で補正し、これを回折角の2倍と
し、 CuKαの波長λとから次式のBragg式によ
って<OO2>面間隔をめる。
Correct the angle of the midpoint using an internal standard, make it twice the diffraction angle, and calculate the <OO2> plane spacing from the wavelength λ of CuKα using the following Bragg equation.

dooz=−−m−− 2sinθ λ:1.5418人 02回折角 ■ C軸方向の結晶子の大きさくLc j前項で得た補
正回折強度曲線において、ピーク高さの半分の位置にお
けるいわゆる半値巾βを用いてC軸方向の結晶子の大き
さをめる。
dooz=--m-- 2sinθ λ: 1.5418 Person 02 Diffraction angle ■ Size of crystallite in C-axis direction Lc j In the corrected diffraction intensity curve obtained in the previous section, the so-called half-width at the position half the peak height Calculate the size of the crystallite in the C-axis direction using β.

形状因子Kについては0種々議論もあるが。There are various discussions regarding the shape factor K.

K = 0.90を採用した。λ、θについては前項と
同じ意味である。
K = 0.90 was adopted. λ and θ have the same meaning as in the previous section.

■ セル電流効率 第1図に示す小型の流通型電解槽を作り、各種定電流密
度で充放電を繰り返し、電極性能のテストを行う。正極
には塩化第一鉄、塩化第二鉄濃度各IM/!の4N塩酸
酸性水溶液を用い。
■Cell current efficiency A small flow-through type electrolytic cell as shown in Figure 1 was made, and the electrode performance was tested by repeatedly charging and discharging at various constant current densities. The positive electrode contains ferrous chloride and ferric chloride concentrations each IM/! using an acidic aqueous solution of 4N hydrochloric acid.

負極には塩化第ニクロム濃度IM/lの4N塩酸酸性水
溶液を用意した。
A 4N acidic aqueous solution of hydrochloric acid having a concentration of nichrome chloride of IM/l was prepared for the negative electrode.

正極液量は負極液量に対して大過剰とし、負極特性を中
心に検討できるようにした。電極面積は10d、液流量
は毎分的54である。電流密度は20,40,60,8
0.100mA10Jで行ったが、充電時と放電時は同
じ値でテストを行った。充電に始まり放電で終る1サイ
クルのテストにおいて、充電に要した電気量f:Q+ク
ーロン、0.2Vまでの定電流放電及びこれに続< 0
.8 Vでの定電位放電で取り出した電気量を夫々Q2
,03クーロンとし1次式で電流効率をめる。
The amount of positive electrode liquid was set to be in large excess of the amount of negative electrode liquid, allowing the study to focus on the negative electrode characteristics. The electrode area was 10 d, and the liquid flow rate was 54 min. Current density is 20, 40, 60, 8
The test was conducted at 0.100 mA and 10 J, but the same value was used during charging and discharging. In a one-cycle test that starts with charging and ends with discharging, the amount of electricity required for charging f: Q + coulombs, constant current discharging to 0.2 V, and subsequent < 0
.. The amount of electricity taken out by constant potential discharge at 8 V is Q2.
, 03 coulombs, and calculate the current efficiency using a linear equation.

充電時にCr3+からCr2+への還元以外の反応、例
えばH+の還元等の副反応が起ると、取り出せる電気量
が減り、電流効率は減少する。
If a reaction other than the reduction of Cr3+ to Cr2+ occurs during charging, for example a side reaction such as reduction of H+, the amount of electricity that can be taken out decreases and the current efficiency decreases.

■ セA/電導度 負極液中のCra+をCrz+に完全に還元するのに必
要な理論電気量Qthに対して、放電途中までに取り出
した電気量の比を充電率とし、0り 充電率が50%のときの電流・電圧曲線の傾きから、セ
ル抵抗(Ω−)、及びその逆数であるセル電導度(St
yn−2)をめる。セル電導度が大きい程電極でのイオ
ンの酸化還元反応はすみやかに起り、高電流密度での放
電電位は高く、セルの電圧効率が高く、秀れた電極であ
ると狛」断できる。
■ SEA/Electrical conductivity The charging rate is the ratio of the amount of electricity taken out mid-discharge to the theoretical amount of electricity Qth required to completely reduce Cra+ in the negative electrode liquid to Crz+. From the slope of the current/voltage curve at 50%, the cell resistance (Ω-) and its reciprocal cell conductivity (St
yn-2). The higher the cell conductivity, the more quickly the ion redox reaction occurs at the electrode, the higher the discharge potential at high current density, and the higher the voltage efficiency of the cell, making it an excellent electrode.

なお■、■でのテストは25℃近辺で行った。Note that the tests in ■ and ■ were conducted at around 25°C.

■ 強塩基を用いた全酸性官能基量 強塩基として水酸化ナトリウムを用いる。炭素繊維布帛
2fを真空デシケータ巾約100’eで1晩乾燥させ精
秤する。乾燥させた有径三角フラスコに前述の織布22
を入れ、さらに0.02N水酸化す) IJウム水溶液
35stをホールピペットにて加える。この三角フラス
コを25℃下2時間以上振とうさせる。振とぅ後濾過し
、P液5ゴをホールピペットで分取し100m?三角フ
ラスコに入れる。これを0.02N塩酸水溶液で滴定す
る。同様の操作を試料無しでも行ないブランクとする。
■ Total amount of acidic functional groups using a strong base Sodium hydroxide is used as a strong base. The carbon fiber fabric 2f is dried overnight in a vacuum dessicator with a width of about 100' and weighed accurately. The above-mentioned woven fabric 22 is placed in a dried Erlenmeyer flask.
(0.02N hydroxide) Add 35st of IJium aqueous solution using a whole pipette. This Erlenmeyer flask is shaken at 25°C for 2 hours or more. After shaking, filter and collect 5 portions of P solution using a whole pipette. Pour into an Erlenmeyer flask. This is titrated with a 0.02N aqueous hydrochloric acid solution. Perform the same operation without a sample to create a blank.

全酸性官能基量は次式で計算する。The total amount of acidic functional groups is calculated using the following formula.

DBニブランクの滴定量(1/) Ds:織布の滴定量(gl) G:織布重量CP) 発明の効果 以上の様に本発明は特異な黒鉛結晶構造に起因して充電
時負極にふ・ける水素発生量が抑止され、電流効率を著
しく高め得ることができた。又全酸性官能基量を所定の
範囲に設定することにより電、 極反応速度、つ゛まり
電導度を著しく高め得ることができ、以て実用性に優れ
たレドックスフロー型二次電池電極材を提供することを
可能にしたものである。
Titration amount of DB Ni blank (1/) Ds: Titration amount of woven fabric (gl) G: Weight of woven fabric CP) Effects of the Invention As described above, the present invention has a unique graphite crystal structure that causes a drop in the negative electrode during charging.・The amount of hydrogen generated was suppressed, and the current efficiency was significantly increased. Furthermore, by setting the total amount of acidic functional groups within a predetermined range, the electrode reaction rate, that is, the electrical conductivity, can be significantly increased, thereby providing a redox flow type secondary battery electrode material with excellent practicality. This is what made it possible.

実施例 以下本発明を比較例、実施例によって詳しく説明するが
、本発明はこれらの例に限定されるものではない。
EXAMPLES The present invention will be explained in detail below using comparative examples and examples, but the present invention is not limited to these examples.

比較何重。What a comparison.

1.5デニールの再生セルロース繊!を紡績、製布して
作った布帛を毎時50℃の昇温速度で270℃までもた
らし、1時間保持して耐炎化処理を行つた後、同じく毎
時50℃の速度で850℃までもたらし、30分保持し
た後冷却して炭素繊維織布Aを得た。織布Aを不活性ガ
ス中で1400℃。
1.5 denier regenerated cellulose fiber! The fabric made by spinning and making was brought to 270°C at a temperature increase rate of 50°C per hour, held for 1 hour to perform flame-retardant treatment, and then brought to 850°C at the same rate of 50°C per hour, After being held for a few minutes, it was cooled to obtain a carbon fiber woven fabric A. Woven fabric A was heated at 1400°C in an inert gas.

2000℃での再熱処理を1時間行ない、炭素繊維布帛
B、Cを得た。布帛B、CのX線解析1表面分析及び電
池特性の測定結果を第1表に示す。
Reheat treatment at 2000°C was performed for 1 hour to obtain carbon fiber fabrics B and C. Table 1 shows the results of X-ray analysis 1 surface analysis and battery characteristic measurements of fabrics B and C.

第 1 表 結晶性が低く1表面酸性官能基量も少ない布帛Bだけで
なく、結晶性が高い布帛Cでさえ、表面酸性官能基量が
少ないとセル特性が悪い。
Table 1 Not only Fabric B, which has low crystallinity and a small amount of acidic functional groups on one surface, but even Fabric C, which has high crystallinity, has poor cell characteristics when the amount of surface acidic functional groups is small.

比較例2゜ 比較例1で得た布帛Bi酸酸分分圧00torrの不活
性ガス中700℃で3分間酸化を行ない1歩留り96%
で布帛りを得た。布帛りの表面分析結果及び電極性能を
第2表に示す。
Comparative Example 2゜The fabric Bi acid obtained in Comparative Example 1 was oxidized at 700°C for 3 minutes in an inert gas with an acid partial pressure of 00 torr, with a yield of 96%.
I got the fabric. Table 2 shows the surface analysis results of the fabric and the electrode performance.

第 2 表 。Table 2.

酸化処理で酸性官能基量を増加させることによりセル特
性が上昇するが、結晶化度の低い布帛りではまだ満足で
きる値にならない。
Although cell properties are improved by increasing the amount of acidic functional groups through oxidation treatment, satisfactory values are still not achieved for fabrics with low crystallinity.

実施例1゜ 比較例1で得た布帛Ct比較例2におけると同様に酸化
処理を行ない参留り96%で布帛Eを得た。布帛Eの表
面分析結果と電極性能を第3表に示す。
Example 1 Fabric Ct obtained in Comparative Example 1 Oxidation treatment was carried out in the same manner as in Comparative Example 2 to obtain Fabric E with a retention of 96%. Table 3 shows the surface analysis results and electrode performance of Fabric E.

第 3 表 結晶化度が高く、かつ酸性官能基量を増加させた布帛E
は極めて秀れた電極性能を示した。
Table 3 Fabric E with high crystallinity and increased amount of acidic functional groups
showed extremely excellent electrode performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る電極材のセル特性全測定する説明
図である。 に集電用黒鉛板 2ニスペーサ− 3:イオン交換膜 4:炭素繊維布帛(電柾) 5:活物質水溶液流通路 特許出願人 東洋紡績株式会社
FIG. 1 is an explanatory diagram for measuring all cell characteristics of an electrode material according to the present invention. Graphite plate for current collection 2 Varnish spacer 3: Ion exchange membrane 4: Carbon fiber fabric (densei) 5: Active material aqueous solution flow path Patent applicant Toyobo Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] X@広角解析よりめた<002>面間隔が平均3.70
λ以下であり、またC軸方向の結晶子の大きさが平均9
.OA以上の擬黒鉛微結晶構造を有し、かつ全酸性官能
基量が少なくとも0.01 meq/lであ−る炭素質
材料よりなることを特徴とする電解槽用電極材。
The average <002> plane spacing determined by X @ wide-angle analysis is 3.70.
λ or less, and the average size of crystallites in the C-axis direction is 9
.. An electrode material for an electrolytic cell, characterized in that it is made of a carbonaceous material having a pseudographite microcrystalline structure of OA or higher and having a total acidic functional group content of at least 0.01 meq/l.
JP59088781A 1984-05-02 1984-05-02 Electrode material for electrolytic bath Granted JPS60232669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59088781A JPS60232669A (en) 1984-05-02 1984-05-02 Electrode material for electrolytic bath

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59088781A JPS60232669A (en) 1984-05-02 1984-05-02 Electrode material for electrolytic bath

Publications (2)

Publication Number Publication Date
JPS60232669A true JPS60232669A (en) 1985-11-19
JPH0552033B2 JPH0552033B2 (en) 1993-08-04

Family

ID=13952389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59088781A Granted JPS60232669A (en) 1984-05-02 1984-05-02 Electrode material for electrolytic bath

Country Status (1)

Country Link
JP (1) JPS60232669A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01124959A (en) * 1987-11-10 1989-05-17 Toshiba Corp Fuel cell electrode
US6509119B1 (en) 1999-06-11 2003-01-21 Toyo Boseki Kabushiki Kaisha Carbon electrode material for a vanadium-based redox-flow battery
EP2626936A1 (en) * 2012-02-09 2013-08-14 EWE-Forschungszentrum Für Energietechnologie E.V. Activation of carbon electrodes by means of plasma treatment
WO2019049756A1 (en) 2017-09-07 2019-03-14 東洋紡株式会社 Carbon electrode material for redox flow battery, and manufacturing method thereof
JP2020035732A (en) * 2018-08-24 2020-03-05 旭化成株式会社 Electrode for redox flow battery
WO2020184449A1 (en) 2019-03-13 2020-09-17 東洋紡株式会社 Carbon electrode material for redox flow battery and redox flow battery provided with same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59101776A (en) * 1982-11-30 1984-06-12 Toyobo Co Ltd Electrode material
JPS59119680A (en) * 1982-12-27 1984-07-10 Toyobo Co Ltd Electrode for flow type electrolytic cell
JPS6413191A (en) * 1988-06-03 1989-01-18 Namuko Kk Image display device for sample
JPS6413192A (en) * 1987-07-06 1989-01-18 Sumitomo Chemical Co El panel segment driving circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59101776A (en) * 1982-11-30 1984-06-12 Toyobo Co Ltd Electrode material
JPS59119680A (en) * 1982-12-27 1984-07-10 Toyobo Co Ltd Electrode for flow type electrolytic cell
JPS6413192A (en) * 1987-07-06 1989-01-18 Sumitomo Chemical Co El panel segment driving circuit
JPS6413191A (en) * 1988-06-03 1989-01-18 Namuko Kk Image display device for sample

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01124959A (en) * 1987-11-10 1989-05-17 Toshiba Corp Fuel cell electrode
US6509119B1 (en) 1999-06-11 2003-01-21 Toyo Boseki Kabushiki Kaisha Carbon electrode material for a vanadium-based redox-flow battery
EP2626936A1 (en) * 2012-02-09 2013-08-14 EWE-Forschungszentrum Für Energietechnologie E.V. Activation of carbon electrodes by means of plasma treatment
WO2019049756A1 (en) 2017-09-07 2019-03-14 東洋紡株式会社 Carbon electrode material for redox flow battery, and manufacturing method thereof
KR20200046041A (en) 2017-09-07 2020-05-06 도요보 가부시키가이샤 Carbon electrode material for redox flow battery and manufacturing method thereof
US11101466B2 (en) 2017-09-07 2021-08-24 Toyobo Co., Ltd. Carbon electrode material for redox flow battery, and manufacturing method thereof
JP2020035732A (en) * 2018-08-24 2020-03-05 旭化成株式会社 Electrode for redox flow battery
WO2020184449A1 (en) 2019-03-13 2020-09-17 東洋紡株式会社 Carbon electrode material for redox flow battery and redox flow battery provided with same

Also Published As

Publication number Publication date
JPH0552033B2 (en) 1993-08-04

Similar Documents

Publication Publication Date Title
US4496637A (en) Electrode for flowcell
JP2955938B2 (en) Carbon-based electrode materials for electrolytic cells
Tan et al. Rational design of microstructure and interphase enables high-capacity and long-life carbon anodes for potassium ion batteries
JP3496385B2 (en) Redox battery
CN113903884B (en) Positive electrode active material, preparation method thereof, positive electrode and lithium ion battery
Liu et al. Electrochemical behavior of spherical LiNi 1/3 Co 1/3 Mn 1/3 O 2 as cathode material for aqueous rechargeable lithium batteries
Yang et al. Rocking-chair proton battery based on a low-cost “water in salt” electrolyte
CN111916734B (en) Chromium-based sulfoselenide positive electrode material and preparation method and application thereof
CN112670495A (en) Iron-doped manganese dioxide composite carbon nanotube material and preparation and application thereof
JPH0992321A (en) Redox cell
Khedimallah et al. Electrochemical study of the LaFe0. 8Ni0. 2O3 perovskite-type oxide used as anode in nickel-metal hydride batteries
JPS60232669A (en) Electrode material for electrolytic bath
JP6809257B2 (en) Carbon material and batteries using it
JPS59101776A (en) Electrode material
JPH05234612A (en) Carbon electrode material for electrolytic cell
CN110571414B (en) Preparation method of sodium ion battery negative electrode material
JPH0690933B2 (en) Stacked electrolytic cell
Feng et al. Uniform gallium oxyhydroxide nanorod anodes with superior lithium-ion storage
JPH09245805A (en) Redox battery
JPH0711963B2 (en) Carbon-based electrode material for flow-through electrolyzer
CN105958043A (en) Ti&lt;4+&gt; and Cr&lt;3+&gt;-doped iron trifluoride composite material and preparation method therefor, and lithium ion battery
JPH0552034B2 (en)
Li et al. Europium modified TiO 2 as a high-rate long-cycle life anode material for lithium-ion batteries
JP2535877B2 (en) Carbon electrode material for electrolytic cell
JPH11317231A (en) Carbon-based electrode material for electrolytic cell

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term