JPS60246686A - Thin-film nonlinear resistance element - Google Patents

Thin-film nonlinear resistance element

Info

Publication number
JPS60246686A
JPS60246686A JP59102828A JP10282884A JPS60246686A JP S60246686 A JPS60246686 A JP S60246686A JP 59102828 A JP59102828 A JP 59102828A JP 10282884 A JP10282884 A JP 10282884A JP S60246686 A JPS60246686 A JP S60246686A
Authority
JP
Japan
Prior art keywords
insulating film
lower metal
pattern
metal
resistance element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59102828A
Other languages
Japanese (ja)
Inventor
Taketomi Kamikawa
武富 上川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP59102828A priority Critical patent/JPS60246686A/en
Publication of JPS60246686A publication Critical patent/JPS60246686A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N97/00Electric solid-state thin-film or thick-film devices, not otherwise provided for

Landscapes

  • Liquid Crystal (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To reduce the frequency of generation of defective dielectric breakdown voltage, and to strengthen and stabilize the titled resistance element mechanically by making the film thickness of an insulating film formed at the stepped section of a pattern for a lower metal thicker than that of an insulating film shaped to the surface of the pattern for the lower metal. CONSTITUTION:A lower metal 2 is formed onto an insulating substrate 1. A metal, whih can be anodized, such as tantalum, aluminum, etc. is selected as the material of the lower metal. A surface section insulating film 4 is shaped onto the surface of the metal 2. The unnecessary sections of the surface section insulating film 4 and the lower metal 2 are removed through a photoetching method. When the lower metal is anodized under the state, only the stepped section of a pattern for the lower metal 2 is anodized, and a stepped-section insulating film 3 is formed. The stepped-section insulating film 3 is shaped, a resist is peeled, and lastly the upper metal 5 is formed and patterned, thus completing an MIM element having structure in this invention.

Description

【発明の詳細な説明】 〔技術外!!Ir〕 本発明は、紀A匁、〜(板上に下金域・絶紅お9・下金
136の三層両膜4’iIi造を形jへして1”1られ
るハ脚ジ1線形抵抗素子(以下、「MIM素子」と呼称
する。)K関するものである。
[Detailed description of the invention] [Untechnical! ! [Ir] The present invention is based on Ki A momme, ~ (Ha leg 1 which is made 1"1 by forming a three-layer double membrane 4'iIi structure of lower gold area, Zetsukou 9, and lower gold 136 on the board. This relates to a linear resistance element (hereinafter referred to as "MIM element") K.

〔従来波釘〕[Conventional wave nail]

M工M素子は、その非1詠形や(セし特1−1・全第1
j用したスイッチング素子として現在(ilr 北が退
められており、その液晶表示体への尾、用なとが既に休
i”、、−5h。
The M-engine M-element is characterized by its non-1st form and
At present, the switching element used for the display (ilr) has been retired, and its tail and other parts for the liquid crystal display are no longer used.

ている。(JJ、ハ、B(LrOff、 el (Lt
、 3ID ’3Q IJIOEST、P。200.1
980 ) Lかし、従来のM I M 、A子は、そ
の絶#咬股の絶れ&1帖′fれ圧にほらつきを生じるこ
とがあり、ある一定の杷縁破島・、′山、IUの規裕を
設2iしても製造したMIM素子の敬のある割合の数は
その規格より低い印加霜、圧でKe IS破j1.をお
こしてしまうという問題があった。この問題は、絶縁基
根上に多数個のM工M素子を形成し、そのすべてのM工
Mが正常に動作する必要がある場合に特に大きな問題と
なる。たとえば、M工M素子を1液晶表示体へ応用する
場合について考えると、この場合の液晶表示体の表示画
素数は一般に数十個から数万個であって、その各画素に
つき開底−個のMIM累子が心太であるから、結局、完
全な表示を得るためには、基板に形成した数十個から数
万個のM工M素子のすべてが正常に動作することが必要
となり、前記の問題かいかに重要であるかが理解できる
。M工M素子を液晶表示体vc H5,用することを念
頭において、車者らが従来のMIM累子についておこな
った絶縁破壊試験の概要と給米を述べると以下のように
なる。試験に用いたM工M素子は、下金用としてタンタ
ル、絶縁膜として陽極酸化法によって得られた五酸化タ
ンタル、土金属としてクロムをそれぞれ用いて!I!8
+造された。また各沈・肋の股IF?−は、下金1g;
のタンタルが約2000Å、また下金へのクロムが約1
2ooXである。
ing. (JJ, ha, B(LrOff, el (Lt
, 3ID '3Q IJIOEST, P. 200.1
980) L, conventional M I M, A child may cause fluctuations in the rupture of the occlusion & 1 《f pressure, and a certain level of 《edge fracture》. , even with IU specifications 2i, a significant percentage of manufactured MIM devices fail at applied frost and pressures lower than their specifications. There was a problem that it caused This problem becomes particularly serious when a large number of M elements are formed on an insulating base and all M elements need to operate normally. For example, if we consider the case where an M element is applied to a single liquid crystal display, the number of display pixels of the liquid crystal display in this case is generally from several tens to tens of thousands, and each pixel has an open base - number of pixels. Since the MIM element is very thick, in order to obtain a perfect display, it is necessary for all of the tens to tens of thousands of M elements formed on the substrate to operate normally. I can understand how important the issue is. The following is an outline and summary of the dielectric breakdown tests conducted on conventional MIM elements by motorists, keeping in mind that the M element is used in the liquid crystal display VC H5. The M element used in the test used tantalum as the base metal, tantalum pentoxide obtained by anodic oxidation as the insulating film, and chromium as the earth metal! I! 8
+Created. Also, each sink/rib crotch IF? - is 1g of lower gold;
The tantalum is about 2000Å, and the chromium on the bottom gold is about 1
It is 2ooX.

五酸化タンタルの那・厚が500A〜600Aであるこ
とは、MIM素子の非線形抵抗特性が原理的に紀1紅膜
の膜厚に依存しているので、液晶を駆動することに適当
な非1,1形抵抗特性の条件から必然的に決定される。
The thickness of tantalum pentoxide is 500A to 600A, since the nonlinear resistance characteristics of the MIM element depend in principle on the thickness of the red film. , is inevitably determined from the conditions of type 1 resistance characteristics.

一方、液晶の1駆動条件から、MIM素子の絶r、大破
壊′1が圧は直流1h圧で1()1以上であることが砒
求される。
On the other hand, from the driving conditions of the liquid crystal, it is determined that the absolute pressure and major destruction '1 of the MIM element are 1()1 or more at a DC 1h pressure.

約500個のMIM素子試料について、直流11(圧印
加によりて杷す、破壊′電圧を、pi4べたところ、M
IM素子試料の数の約95%については17〜+9Vの
’aj8E範囲に集中的に絶縁破壊↑(1庄が存在して
いたが、絶縁破壊1L圧が10v未満のM I M素子
、すなわち液晶の駆動条件から一敷求される最低絶縁破
壊電圧の条件を満たさないM I M 素子も、全体の
約0.5%程度存在することが示された。以上に述べた
約0.5%の絶縁欠壊電圧不良が発生する原因のひとつ
として、′r心、圧印加されるときにM工M素子の絶縁
膜の電場が不均一になって、電場の集中が発生すること
が考えらhる。従来のMIM素子においては、エツチン
グによって1nられる下金用のパターン段差部の形状は
パターン表面に1ヒ較して平滑でなく、さらに下金ね表
面に形成される絶縁膜の膜厚は下金編のパターン段差部
とパターン表面部で同じであるから、不拘−屯Jj5 
Kよる電場の集中は下金用のパターン段差t、+bの1
ff3 j3、ルどの方が下金用のパターン表面部の絶
れく脱より発生しやすいことになる。以上述べたように
1従来のM工M素子は、その構造において枯t2ス破鰍
−圧不良か発生しやすいという欠陥を持っていた。
For approximately 500 MIM element samples, the breakdown voltage caused by applying DC 11 (pressure) was calculated using pi4, and M
For about 95% of the IM element samples, dielectric breakdown ↑ (1 Sho) was concentrated in the 'aj8E range of 17 to +9 V, but M I M elements with dielectric breakdown 1L voltage less than 10 V, i.e. It was shown that about 0.5% of the total M I M elements do not satisfy the minimum dielectric breakdown voltage condition required from the drive conditions of the above. One of the causes of insulation breakdown voltage defects is thought to be that the electric field in the insulating film of the M element becomes non-uniform when pressure is applied, causing concentration of the electric field. In the conventional MIM device, the shape of the stepped portion of the bottom metal pattern formed by etching is not as smooth as the pattern surface, and furthermore, the thickness of the insulating film formed on the bottom metal surface is Since the pattern step part and the pattern surface part of the lower gold knitting are the same, it is unrelated.
The concentration of electric field due to K is 1 of the pattern step t, +b for the bottom metal.
ff3 j3, ru is more likely to occur than tearing of the pattern surface portion for the bottom metal. As described above, the conventional M-engine M-element has a defect in its structure in that it is prone to rupture and pressure failure.

〔目的〕〔the purpose〕

本発明の目的は、かかる欠陥を取、0除き、MIM素子
の絶縁破壊IL圧不良の発生頻度を減少せしめることで
ある。さらに本発明の他の目的は、(幾械的に強固かつ
安定なIvl 工M素子を提供することである。
An object of the present invention is to eliminate such defects and reduce the frequency of occurrence of dielectric breakdown IL pressure defects in MIM elements. Yet another object of the present invention is to provide a mechanically strong and stable Ivl engineering element.

〔概要〕〔overview〕

本発明は、M工M素子の構造において、MIM糸子の下
金上”バのパターン段差部に形成された絶縁11匂の膜
〃が、前記下金1!・、のパターン表面に形成さhた絶
←膜のJlllo「Iより1゛誹いことを益徴とする。
In the structure of the M element of the M process, the present invention is characterized in that the insulation film formed on the step part of the pattern of the lower metal part of the MIM thread is formed on the pattern surface of the lower metal part 1. Absolutely ← Jllo of Membrane ``It is a sign of benefit to be 1 degree worse than I.

〔実施例〕〔Example〕

以下、本発明を図00を用いて1.)1明していく。 Hereinafter, the present invention will be explained in 1. using FIG. ) 1 will be explained.

第1図は、本発明の一実施例におけるM工M素子の断面
構造を示すし1であって、絶縁卑叛1.下金トハ21段
差部絶縁Ilつ!31表面部絶第χ股4.および土金属
5から6:4成されている。従来のMIM素子と比較し
て、第1図によって示されるM I M素子の傷徴は、
段ip部絶舷枦3が表面部絶縁膜4より厚いことである
。この構造においては段差部組縁膜3が従来より厚くな
っているので、MIM素子に印加される電圧による段九
部絶り膜3の内部の(a場は、従来と1ヒ較して偽めら
れる。1だ、段差部組縁膜3が捏くなっているタトたけ
、エツチングによって得られる下金柘のパターン段差部
の凹凸形状による電場の不−件は小さくなる。以上の理
由により、段差部絶縁膜における低電圧絶縁破壊の発生
頻度は著しく減少する。なお、本発明におけるMIM素
子の構造では、段差部絶tφ膜が厚いために段差部を通
って流れるM4.流は著しく小さくなるので、段差部は
非線形抵抗素子として積能しない。そしてMIM素子に
非線形抵抗特性を与える有効MIM部分は、下金用・絶
縁膜・土金属の三層構造全体から前記段差部を除いた部
分になる。つづいて、本発明におけるM工M素子の描込
を得るための製造工程について述べる。第2図は本発明
における月IM素子の構造を得るための製造工程の第一
の実施例であって、(a)から(7′lは工程順序を示
しており、また図中の番号は、1〜5は第1図のそれら
と対応し、6はレジストである。
FIG. 1 shows a cross-sectional structure of an M element according to an embodiment of the present invention. Lower gold plate 21 step insulation part! 31 Surface section χ crotch 4. and earth metal 5 to 6:4. Compared to the conventional MIM device, the flaw characteristics of the MIM device shown by FIG.
The step IP section insulator 3 is thicker than the surface section insulating film 4. In this structure, the step insulating film 3 is thicker than the conventional one, so the (a field) inside the step insulating film 3 due to the voltage applied to the MIM element is false compared to the conventional one. 1. The electric field defects due to the uneven shape of the pattern step part of the lower gold box obtained by etching are reduced due to the uneven shape of the step part assembly film 3.For the above reasons, The frequency of occurrence of low-voltage dielectric breakdown in the step insulating film is significantly reduced.In the structure of the MIM element according to the present invention, since the step insulating film is thick, the M4. Therefore, the stepped portion does not function as a nonlinear resistance element.The effective MIM portion that gives nonlinear resistance characteristics to the MIM element is the portion excluding the stepped portion from the entire three-layer structure of the bottom metal, insulating film, and soil metal. Next, we will describe the manufacturing process for obtaining the drawing of the M element in the present invention. Figure 2 shows the first embodiment of the manufacturing process for obtaining the structure of the lunar IM element in the present invention. (a) to (7'l indicate the process order, and the numbers 1 to 5 in the drawings correspond to those in FIG. 1, and 6 is the resist.

最初に1第1図(a)に示すごとく、絶縁基板1に下金
用2を形成する。下金用の拐料としては、タンタル、ア
ルミニウムなどの陽極酸化可能な金属を選択する。
First, as shown in FIG. 1(a), a bottom metal layer 2 is formed on an insulating substrate 1. A metal that can be anodized, such as tantalum or aluminum, is selected as the coating material for the lower metal.

次に、(b)に示すごとく、下金性20表面に表面部絶
縁膜4t−形成する。表面部iI!2i* 膜4の形成
方法としては、一般に陽極酸化法が用いられるが、その
他に1酸素雰囲中における高淵処理による酸化法、絶絞
物のスパッタあるいはきイTによる形成方法、あるいは
絶縁性4〜1脂を下金1.1表面に塗布する方法などを
用いてもよい。たvし、本実施例においては、表面部組
れ月・4y4けエツチング可能であることが、安求窟f
する。i”そ面tilt絶豪イn、14が、タンタル酸
化物、アルミニウム戯化物などの場合には、1frj単
にエツチングすることが可i目である。つづいて、(C
)は、フォトエツチング法によって表面部絶縁膜4およ
び下金上S2の不要部分を取り除いた様子を示している
。たM L、(c)t−Jレジストを刺部する以前の状
態で6って、レジスト6がまたパターン上に残っている
。(C)に示す状)ルのま1、下金用の陽極酸化を2と
なうと、(d)に示す状態が得られる。
Next, as shown in (b), a surface insulating film 4t is formed on the surface of the lower metal layer 20. Surface part iI! The 2i* film 4 is generally formed by an anodic oxidation method, but other methods include an oxidation method by high-level treatment in an oxygen atmosphere, a method of forming by sputtering of an extremely thin material, or a method of forming the film by using T, or an insulating method. A method of applying 4 to 1 fat onto the surface of the lower metal 1.1 may also be used. However, in this example, it is important to be able to emboss the surface and 4y4-etch the surface.
do. If 14 is tantalum oxide, aluminum oxide, etc., it is possible to simply etch it.Subsequently, (C
) shows the unnecessary portions of the surface insulating film 4 and the lower metal layer S2 removed by photoetching. ML, (c) t-J Resist 6 still remains on the pattern in the state before being punctured. When the state shown in (C) is 1 and the anodization for the bottom metal is 2, the state shown in (d) is obtained.

前記の下金λ−ハの1も極〜、化においては、下金用2
の表面部絶!i股4と接する部分は、レジスト6延保島
されているため陽4つ酸化の影4すをうけず、下金1%
 2のパターン段差部だけが陽輛酸化されて段差部絶縁
膜3が形成される。このような方法を用いて表面部組緑
用、・4と段差部絶線Bす3を別々に形成することによ
り、表面部組ML< 1%4の1.j厚と段差部絶す、
股3のB’wNを異なった月巳“シ厚にすることが可能
になる。同極酸化法によって酸化物組し、Nを形成する
場合には、そのJl!:、厚は陽極酸化電圧にほぼ比例
する。したがって段差部給紅屏N3のb″p?を八″く
するためには、該段差部絶tm E!を形成するときの
陽極酸化可能を高くすればよい。(g)は、段差部絶縁
膜8の形成後に、レジストを剥離した粉子を示している
。最後に、上金近5を形成・バターニングすると本発明
における衣゛・)造を有するM工M素子が、(イ)K示
すごとく完成する。第3図は、本発明におけるM工M素
子の構造を得るための製造工程の第二の実施例であって
、■)から(Aは工程順序を示しており、塘たし1中の
査号1〜6は第2図のそれらと対応している。最初に、
第3[ソ1(g)に示すことく、絶H基板1に下金J+
!2を形成する。次に、(/1)はフォトエツチング法
を用いて下金拠2の年数部分を取、り除いた様子であり
、レジスト6は未剥離状態のままパターン上に残ってい
る。つづいて(h)に示す状態のま捷で陽極酸化をおこ
なうと、(I)K示す状態を得る。(i)においては、
下金用2のパターン段差部には内積酪化によって段差部
elず腔3が形成されているが、下金用2の表面部はレ
ジスト6によって保hIIさhているために絶I+rは
形成されていない。ここで、レジストを剥離すると、(
j) K示す構造をイ4する。つづいて、表面部組り肺
4を形成すると(&)に示す構造を14)る。表1h1
部絶にψRφ4は本発明においては戊差部絶11B−:
 8より一いので、表面部、1e#j那4を段差部組I
版3より後に形成しても先に形成さ?+、ている段差部
絶縁Jl+:’ 3は何の影卆・1・も受けない、最後
に、土金属5を形成・・くターニングすると本発明にふ
・ける払込をイJするMIM素子が、(AK示すごとり
5L成する。4・発明におけるM I M素イの+1・
糸をイ↓するための製造工程の第一の実施例と第二の犬
旅世1の本t・目’J’J相が点は、表面部絶紅触4と
段4C部絶J、−II’、「3の形成順序であり、第一
の実施例では表面部組4.:: &二4か段X部側縁股
3より先に形成され、1だ第二の実//i・i例では段
差部E +’)胆3が表面剖絶れ月ビさ4より先に形成
さノ1.る 。
1 of the above-mentioned lower metal λ-c is also pole ~, and in the case of 2 for the lower metal
The surface part is perfect! The part in contact with the i-crotch 4 is coated with resist 6, so it is not affected by positive oxidation, and the lower gold is 1%.
Only the stepped portion of the pattern No. 2 is subjected to anodic oxidation to form the stepped portion insulating film 3. By separately forming the surface part assembly 4 for green and the stepped part disconnected line B 3 using such a method, the surface part assembly ML<1%4 of 1. j Thickness and step part cut off,
It is possible to make the B'wN of the crotch 3 different in thickness.When forming an oxide by the same anodic oxidation method to form N, its Jl!:, thickness is determined by the anodic oxidation voltage. It is approximately proportional to .Therefore, b″p? In order to increase the resistance to 8", it is necessary to increase the possibility of anodic oxidation when forming the step insulating film 8. (g) shows the powder from which the resist has been peeled off after the step insulating film 8 is formed. Finally, by forming and buttering the upper metal layer 5, the M element having the structure of the present invention is completed as shown in (a)K. This is a second example of the manufacturing process for obtaining the structure of the M-process M element in They correspond to those in the figure. First,
3. As shown in 1(g), the lower metal J+ is placed on the absolutely H substrate 1.
! form 2. Next, (/1) shows a state in which the old portion of the lower metal base 2 has been removed using a photoetching method, and the resist 6 remains on the pattern in an unpeeled state. Subsequently, anodic oxidation is performed in the state shown in (h) to obtain the state shown in (I)K. In (i),
A cavity 3 is formed in the step part of the pattern of the lower metal part 2 due to internal packing, but since the surface part of the lower metal part 2 is retained by the resist 6, no I+r is formed. It has not been. Here, when the resist is peeled off, (
j) A4 the structure shown in K. Next, the surface assembly 4 is formed, and the structure shown in (&) is obtained (14). Table 1h1
In the present invention, the partial break ψRφ4 is the partial break 11B-:
Since it is larger than 8, the surface part, 1e#jna4, is the step part group I.
Even if it is formed after version 3, will it be formed first? +, step insulation Jl+:' 3 is not affected by any effect.Finally, when the soil metal 5 is formed and turned, the MIM element which is in accordance with the present invention is formed. , (As shown in AK, 5L is formed. 4. M I M element in the invention +1.
The first embodiment of the manufacturing process for making yarn and the second Inutabiyo 1's 'J' and 'J' phases are the surface part 4 and stage 4C section J, -II', is the formation order of 3, and in the first embodiment, the surface part group 4.:: &24 is formed before the side edge 3 of the step X section, and 1 is the second fruit// In example ii and i, the stepped portion E+') gall 3 is formed before the surface rupture 4.

ここで、本発明における棹′1迄を有するMIM素子を
用いておこなった絶縁破壊電圧の概要と結果について述
べる。試駆シで用いたM工M素子は、絶ね基板にはガラ
ス・下金1九には約200OAのタンタル、表面部絶紅
膜11,1極酸化形成さhた500〜600スの五酸化
タンタル、段差部組を境膜には陽極酸化形成さhた約1
50OAの五酸化タンタル、また土金属には約100O
Aのクロムを用いて構成さh、ている。したがって段差
部組れH晃のりHは、表面部組縁膜の膜厚の2.5〜3
倍である。この脱活の14 工M素子試料約500個に
ついて直流を圧印加における絶縁破壊電圧を調べたとこ
ろ、試料の舷の約99%については17〜19Vの電圧
像rノ囲に給糸〕、破壊電圧が集中存在していることが
示され、また絶縁破壊電圧が10 V未渦の試料は1個
も存在しなかった。この結果は、本発明における構造を
南するMIM素子では、従来のM工M素子に比較して絶
縁破壊電圧が一定値に安定集中して絶縁破壊電圧不良の
発生頻度が著しく減少していることを示している。
Here, an overview and results of the dielectric breakdown voltage measured using the MIM element having up to the tip 1 of the present invention will be described. The M element used in the test drive was made of glass for the substrate, about 200 OA of tantalum for the lower metal layer, and 500 to 600 s of tantalum on the surface with polar oxidation formed on it. Tantalum oxide, anodic oxidation formed on the step surface, approximately 1 h.
50OA of tantalum pentoxide, and about 100O for earth metals.
It is constructed using chromium of A. Therefore, the thickness of the step part assembly H is 2.5 to 3 times the thickness of the surface part assembly film.
It's double. When we investigated the dielectric breakdown voltage when applying direct current to about 500 samples of the 14-engine M element due to this deactivation, we found that for about 99% of the sides of the samples, the voltage range was 17 to 19 V. It was shown that the voltage was concentrated, and there was no sample whose dielectric breakdown voltage was less than 10 V. This result shows that in the MIM element with the structure of the present invention, the dielectric breakdown voltage stably concentrates at a constant value and the frequency of occurrence of dielectric breakdown voltage defects is significantly reduced compared to the conventional M-engineered M element. It shows.

〔効果〕〔effect〕

以上述べてきたように、本発明によればMIM素子のi
l、j#ゲ破壊拓、圧不良の発生類PLを著しく減少さ
せ、M工M2子を品歩留りで製造することが可能になる
。また、本発明におけるMIM素子の本4造rcおいて
は段X゛部部側゛II:、]のB!1IJ1:’が従来
のMIM素子のそhより貯く々つているので、設差部側
1゜万一・の機械的強度も従来より強化さilていみ。
As described above, according to the present invention, the i
1, j# It is possible to significantly reduce the occurrence of ridge breakage and pressure defects PL, and to manufacture M-work M2 pieces at a high product yield. In addition, in the four-structure rc of the MIM element according to the present invention, B! 1IJ1:' is larger than that of conventional MIM elements, so the mechanical strength of the gap side is also stronger than before.

したがって本発明1f−blrするIilIM素子仁1
従来のMIM累子より強ν、]かつ安定である。このよ
うVri発明は短気的および扮械的に頑弓重なMIM素
子を七−供するものであって、たとえば6・z山13表
九体への応用の場合のように絶H去i、板土に形成され
た多数個のM工M素子のすべてが正常動作すZ戚1があ
る分野などに本発明を応用すり、け、その効果は特に太
きい。
Therefore, the present invention 1f-blr IilIM element 1
It is stronger and more stable than the conventional MIM resistor. In this way, the Vri invention provides an MIM element that is both short-tempered and mechanically robust. The effect of the present invention is particularly significant when applied to fields where a large number of M-engine M elements formed in soil all operate normally.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一′:J!:M5.例におけるMI
M素子の断面構造を示す図。 第2図(iz)〜U1は、本発明におけるMIM素子の
構造を得るためのひとつの製造工程を示す図。 詑3図(a)〜ωは、本発明におけるM工M素子の構造
を得るだめの他の製造工程を示すし1゜1・ψ・絶り基
板 2・・・下金属 8・・・段差部絶縁膜 4・・・収面部側k R+J 5・・・土金属 6・e・レジスト 以 土 出願人 株式会社fi’l)!訪箱工曾代理人 弁理土
間 上 務 f、″S1図
FIG. 1 shows part of the invention: J! :M5. MI in example
A diagram showing a cross-sectional structure of an M element. FIGS. 2(iz) to U1 are diagrams showing one manufacturing process for obtaining the structure of the MIM element in the present invention. Figures 3 (a) to ω show other manufacturing steps for obtaining the structure of the M element in the present invention. Part insulating film 4... Receiving surface side k R+J 5... Earth metal 6, e, resist (Applicant fi'l Co., Ltd.)! Visiting Hako Koso Attorney, Patent Attorney Doma Jomu f, ``S1 Diagram

Claims (1)

【特許請求の範囲】 1、絶縁基板上に、下金FAを形成・バタ・−ニングし
、つづいて該下金域の表面に絶縁膜を形成し、さらに下
金域を下金域のパターニング形状と交差する形状に形成
・パターニングして侍らり、る型肌1非線形抵抗素子に
おいて、前記下金域のパターン段差部に形成された絶縁
膜の親厚が、前hピ下金属のパターン表面部に形成され
た絶縁膜の設ルーより厚いことを特徴とする?FL膜非
膜形線形抵抗素子、下金域のパターン段差部に形成され
た絶縁膜は、前記下金域を陽極酸化法によって酸化形成
した金属酸化膜であることを特徴とする特、ff 請求
の範囲第1項記載の′mk非ξメ形抵抗素子。 3、下金域のパターン段差部に形成された絶縁膜は、1
000〜200OAの酸化タンタル膜であることを特徴
とする特許請求の範囲第1項あるいは第2項記+14(
の?lli膜非線形祇抗イ、子。 4、下金ス−)ルのパターン段差部に形成さり、た絶縁
膜の脱p7が、下金にτ也のパターン表面部に形成され
た絶t5」9のル・!J吟′の2〜4倍であることを特
徴とする特許請求のRI()回外1項・第2 JJ″1
あるいは第3項記載の動形・非線形抵抗素子。
[Claims] 1. Forming and battering a lower metal FA on an insulating substrate, then forming an insulating film on the surface of the lower metal area, and patterning the lower metal area. In a nonlinear resistance element formed by forming and patterning in a shape that intersects with the shape, the parent thickness of the insulating film formed at the pattern step part of the lower metal area is It is characterized by being thicker than the insulating film formed on the part. FL film non-film type linear resistance element, characterized in that the insulating film formed on the pattern step portion of the lower metal region is a metal oxide film formed by oxidizing the lower metal region by an anodizing method. The 'mk non-ξ square shaped resistance element according to item 1. 3. The insulating film formed on the pattern step part of the lower metal area is 1
000 to 200 OA tantalum oxide film, Claim 1 or 2 +14 (
of? lli membrane nonlinear gyantai, child. 4. The removal of p7 of the insulating film formed on the step part of the pattern on the bottom metal is completely removed on the surface of the pattern on the bottom metal. RI () supination section 1 and section 2 JJ''1 of the patent claim characterized in that it is 2 to 4 times as large as JJ''1
Or the dynamic nonlinear resistance element described in item 3.
JP59102828A 1984-05-22 1984-05-22 Thin-film nonlinear resistance element Pending JPS60246686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59102828A JPS60246686A (en) 1984-05-22 1984-05-22 Thin-film nonlinear resistance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59102828A JPS60246686A (en) 1984-05-22 1984-05-22 Thin-film nonlinear resistance element

Publications (1)

Publication Number Publication Date
JPS60246686A true JPS60246686A (en) 1985-12-06

Family

ID=14337875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59102828A Pending JPS60246686A (en) 1984-05-22 1984-05-22 Thin-film nonlinear resistance element

Country Status (1)

Country Link
JP (1) JPS60246686A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132525U (en) * 1986-02-14 1987-08-21
JPS63160286A (en) * 1986-12-08 1988-07-04 アールシーエー コーポレーシヨン Diode
JPH01105913A (en) * 1987-10-19 1989-04-24 Toshiba Corp Production of matrix array substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132525U (en) * 1986-02-14 1987-08-21
JPS63160286A (en) * 1986-12-08 1988-07-04 アールシーエー コーポレーシヨン Diode
JPH01105913A (en) * 1987-10-19 1989-04-24 Toshiba Corp Production of matrix array substrate

Similar Documents

Publication Publication Date Title
JPS60246686A (en) Thin-film nonlinear resistance element
US6365948B1 (en) Magnetic tunneling junction device
JPS63166236A (en) Electronic device
JP3363973B2 (en) Liquid crystal display device and manufacturing method thereof
JPH08320495A (en) Liquid crystal display device and its production
JPS6266232A (en) Manufacture of liquid crystal displaying device
JP2845929B2 (en) Manufacturing method of nonlinear element
JPH05315615A (en) Thin-film transistor
KR100511258B1 (en) Field emission device and manufacturing method thereof
JPH056793A (en) Manufacture of thin film el element
JPS62115123A (en) Electrode substrate for display element
JPH01231025A (en) Thin-film transistor array
JP2000082817A (en) Active matrix substrate and manufacture thereof
JPH0348822A (en) Production of mim type nonlinear switching element
JPH0643494A (en) Production of electrooptical device
JP3303345B2 (en) Liquid crystal display panel manufacturing method
JPH0352277A (en) Manufacture of nonlinear element
JPH0258606B2 (en)
JPH08320494A (en) Liquid crystal display device and its production
JPH03296024A (en) Mim liquid crystal panel and its manufacture
JPH05203989A (en) Method for eliminating short circuit
JPS599631A (en) Manufacture of electrooptic device
JPH0345933A (en) Production of mim type nonlinear switching element
JPH0720501A (en) Nonlinear resistive element and its production
JPS6027159A (en) Manufacture of thin film non-linear resistance element