JPH08320494A - Liquid crystal display device and its production - Google Patents

Liquid crystal display device and its production

Info

Publication number
JPH08320494A
JPH08320494A JP12607495A JP12607495A JPH08320494A JP H08320494 A JPH08320494 A JP H08320494A JP 12607495 A JP12607495 A JP 12607495A JP 12607495 A JP12607495 A JP 12607495A JP H08320494 A JPH08320494 A JP H08320494A
Authority
JP
Japan
Prior art keywords
metal
tantalum
liquid crystal
transparent conductor
tfd element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12607495A
Other languages
Japanese (ja)
Other versions
JP3559351B2 (en
Inventor
Masashi Ide
昌史 井出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP12607495A priority Critical patent/JP3559351B2/en
Publication of JPH08320494A publication Critical patent/JPH08320494A/en
Application granted granted Critical
Publication of JP3559351B2 publication Critical patent/JP3559351B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE: To decrease the contact resistance between a metal and a transparent conductive body without a complicated production process by forming a joined part having a metal/insulating material/transparent conductive material structure and applying a current on the joined part for welding. CONSTITUTION: An insulating material 9 and a transparent conductive material 10 of ITO are deposited on a metal 8 made of tantalum on a glass substrate 7 except in the area for a welding part 6. Since the surface of the metal tantalum 8 is covered with the insulating material 9 except for the welding part 6, good adhesion property with the ITO transparent conductive body 10 is obtd. A current is applied between the metal tantalum 8 and the conductive material 10 to cause breakdown in the insulating material 9 comprising Ta2 O5 and to weld the metal 8 and the conductive material 10 to produce a welding part 6 essentially comprising tantalum and indium. Thus, the electric contact between the metal tantalum 8 and the ITO transparent body 10 is made as an ohmic contact having enough low resistance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、スイッチング素子に金
属−絶縁体−金属構造の薄膜ダイオード(以下TFDと
記す)を用いるアクティブマトリクス方式の液晶表示装
置において、配線材料であるタンタル(以下Taと記す
こともある)膜などの金属膜と酸化インジウムスズ膜
(以下ITOと記す)などの透明導電体を接続する部分
の構造と製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an active matrix type liquid crystal display device using a thin film diode (hereinafter referred to as TFD) having a metal-insulator-metal structure as a switching element, and tantalum (hereinafter referred to as Ta) which is a wiring material. The present invention relates to a structure and a manufacturing method of a portion for connecting a metal film such as a film and a transparent conductor such as an indium tin oxide film (hereinafter referred to as ITO).

【0002】[0002]

【従来の技術】今日、高品位な画質が得られるアクティ
ブマトリクス方式の液晶表示装置のスイッチング素子と
して、薄膜トランジスタ(TFT)や、ダイオードや、
薄膜ダイオード(TFD)のスイッチング素子が用いら
れている。
2. Description of the Related Art Today, thin film transistors (TFTs), diodes, and
A switching element of a thin film diode (TFD) is used.

【0003】薄膜トランジスタ(TFT)のゲート電極
や配線材料や、さらに薄膜ダイオード(TFD)の電極
や配線材料には、陽極酸化法で容易に高品質の絶縁膜を
形成できるタンタル膜が多く使われる。
For the gate electrode and wiring material of thin film transistors (TFTs) and the electrode and wiring materials of thin film diodes (TFDs), tantalum films that can easily form high-quality insulating films by anodization are often used.

【0004】ところで、画素電極および配線材料として
用いられているITOを、タンタル上にスパッタリング
法などで積層して熱処理を行うと、タンタルの酸素親和
力が大きいためITOからタンタルに酸素が拡散する。
By the way, when ITO used as a pixel electrode and a wiring material is laminated on tantalum by a sputtering method or the like and heat-treated, the oxygen affinity of tantalum is large and oxygen diffuses from the ITO to tantalum.

【0005】このためタンタルとITOの界面では、タ
ンタル側に絶縁性の酸化タンタル層が形成されて接触抵
抗が高くなる。一方、ITO側は界面付近で酸素が欠乏
するので、インジウムの析出層やインジウムの低級酸化
物層が形成され、タンタル膜とITO膜の密着性が低下
する。
Therefore, at the interface between tantalum and ITO, an insulating tantalum oxide layer is formed on the tantalum side, and the contact resistance increases. On the other hand, since oxygen is deficient near the interface on the ITO side, a deposition layer of indium or a lower oxide layer of indium is formed, and the adhesion between the tantalum film and the ITO film is reduced.

【0006】そこでタンタル配線とITO配線との安定
な電気的接続をするのに、タンタル層とITO層の間に
バリア層として他の金属層を設けることや、陽極酸化処
理などの方法で酸化タンタル層を形成しタンタル層とI
TO層を酸化タンタル層をはさんで容量結合することな
どが行われている。
Therefore, in order to make a stable electrical connection between the tantalum wiring and the ITO wiring, another metal layer is provided as a barrier layer between the tantalum layer and the ITO layer, or tantalum oxide is processed by a method such as anodization. A tantalum layer and I
Capacitive coupling between the TO layer and the tantalum oxide layer is performed.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、タンタ
ル膜とITO膜の間にバリア層として他の金属を設ける
方法では、バリア層の成膜およびパターンニング工程が
必要となって製造工程が複雑化する。
However, in the method of providing another metal as a barrier layer between the tantalum film and the ITO film, the barrier layer is required to be formed and patterned, which complicates the manufacturing process. .

【0008】また、酸化物層をはさんで容量結合で接続
する方法では、それぞれの信号線の結合容量を駆動周波
数で充分インピーダンスが下がるように大きくとる必要
があるため表示部に比較して配線部の面積を比較的大き
くしなければならず、とくに小型のディスプレイでは不
利である。
Further, in the method of connecting by capacitive coupling across the oxide layer, it is necessary to make the coupling capacitance of each signal line large so that the impedance is sufficiently lowered at the driving frequency, so that the wiring is compared with the display section. The area of the part must be relatively large, which is disadvantageous especially in a small display.

【0009】また表示ムラを防ぐために、それぞれの信
号線の容量結合部分を等容量とする必要があるため、配
線部の容量結合部分の設計の自由度が減る。
Further, in order to prevent display unevenness, it is necessary to make the capacitance coupling portions of the respective signal lines equal in capacitance, so that the degree of freedom in designing the capacitance coupling portions of the wiring portion is reduced.

【0010】本発明の目的は、これらの問題を解決し
て、複雑な製造工程によらずにタンタル膜とITO膜の
密着性を改善するとともに、タンタル配線とITO配線
を直流結合する接続部をもつ液晶表示素子の構造と製造
方法を提供することである。
An object of the present invention is to solve these problems and improve the adhesion between the tantalum film and the ITO film without using a complicated manufacturing process, and to provide a connecting portion for DC coupling between the tantalum wiring and the ITO wiring. Another object of the present invention is to provide a structure and a manufacturing method of the liquid crystal display device.

【0011】[0011]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の液晶表示装置の構造とその製造方法は、下
記記載の手段を採用する。
In order to achieve the above object, the structure of the liquid crystal display device of the present invention and the manufacturing method thereof adopt the following means.

【0012】本発明の液晶表示装置は、金属と透明導電
体の接続部をガラスからなる基板上のタンタルからなる
金属と、金属上の酸化タンタルからなる絶縁体と、金属
と絶縁体を被覆する透明導電体により構成し、金属と透
明導電体に所定の電流を印加することで絶縁体の所定の
位置を絶縁破壊し金属と透明導電体を溶着した溶着部を
介して金属と透明導電体の電気的接続を得る構造を取
る。
In the liquid crystal display device of the present invention, the connecting portion between the metal and the transparent conductor is coated with the metal made of tantalum on the substrate made of glass, the insulator made of tantalum oxide on the metal, and the metal and the insulator. It is composed of a transparent conductor, and a predetermined current is applied to the metal and the transparent conductor to cause a dielectric breakdown at a predetermined position of the insulator to weld the metal and the transparent conductor to each other through the welded portion where the metal and the transparent conductor are welded. Take a structure to obtain electrical connection.

【0013】本発明の液晶表示装置の製造方法は、ガラ
スからなる基板上にタンタルからなる金属を形成する工
程と、フォトエッチング処理により金属をパターンニン
グする工程と、陽極酸化を行い素子部に絶縁体を形成す
る工程と、透明導電体を形成する工程と、フォトエッチ
ング処理により透明導電体をパターンニングする工程
と、金属と透明導電体に所定の電流を印加することで絶
縁体の所定の位置を絶縁破壊し金属と透明導電体を溶着
した溶着部を形成する工程を有する。
A method of manufacturing a liquid crystal display device according to the present invention comprises a step of forming a metal made of tantalum on a substrate made of glass, a step of patterning the metal by photoetching, and anodization to insulate the element part. A step of forming a body, a step of forming a transparent conductor, a step of patterning the transparent conductor by photoetching, and a predetermined position of the insulator by applying a predetermined current to the metal and the transparent conductor. Dielectric breakdown to form a welded portion in which a metal and a transparent conductor are welded.

【0014】[0014]

【作用】液晶表示装置のアクティブ基板において表示領
域と駆動用半導体装置とは、配線を通して電気的に接続
する。表示領域には多数の信号線や、スイッチング素子
や、画素電極を形成している。
In the active substrate of the liquid crystal display device, the display area and the driving semiconductor device are electrically connected through the wiring. A large number of signal lines, switching elements, and pixel electrodes are formed in the display area.

【0015】本発明においては信号線を駆動用半導体装
置へ接続するのに直流結合を行う接続用TFD素子を介
しておこなう。
In the present invention, the signal line is connected to the driving semiconductor device through a connecting TFD element that performs DC coupling.

【0016】接続用TFD素子は、金属と絶縁体とから
なる信号線上に半導体装置に接続する配線である透明導
電体を積層したTFD構造である。
The connecting TFD element has a TFD structure in which a transparent conductor, which is a wiring for connecting to a semiconductor device, is laminated on a signal line made of metal and an insulator.

【0017】本発明の実施例においては金属にタンタル
を使用し、絶縁体に陽極酸化で形成する酸化タンタル
(Ta2 O5 )膜を使用し、透明導電体として酸化イン
ジウムスズ(ITO)を使用する。
In the embodiment of the present invention, tantalum is used as a metal, a tantalum oxide (Ta2 O5) film formed by anodic oxidation is used as an insulator, and indium tin oxide (ITO) is used as a transparent conductor.

【0018】この接続用TFD素子に定電流源によって
電流を印加すると絶縁体の酸化タンタル(Ta2 O5 )
膜でジュール熱が発生する。発生した熱は接続用TFD
素子の周囲に逃げる。
When a current is applied to this connecting TFD element by a constant current source, tantalum oxide (Ta2 O5) as an insulator is formed.
Joule heat is generated in the film. Generated heat is TFD for connection
Run around the element.

【0019】そして徐々に電流値を大きくするランプ電
流印加を行うと、接続用TFD素子平面内中央部の温度
が最も高くなる温度勾配をもつようになる。
When a lamp current is applied to gradually increase the current value, the temperature gradient in the central portion of the connecting TFD element plane becomes highest.

【0020】温度勾配をもった接続用TFD素子は、温
度が高い素子中央部に電流が集中して、所定の電流値に
達すると絶縁膜のTa2 O5 が絶縁破壊する。
In the connecting TFD element having a temperature gradient, the current is concentrated in the central portion of the element where the temperature is high, and when a predetermined current value is reached, Ta2O5 of the insulating film undergoes dielectric breakdown.

【0021】それは接続用TFD素子の導電率が正の温
度特性を持つために、熱の逃げにくい中央部が最も低抵
抗になるためである。
This is because the conductivity of the connecting TFD element has a positive temperature characteristic, so that the central portion where heat does not easily escape has the lowest resistance.

【0022】この絶縁破壊は熱的に起こるため、絶縁破
壊後は金属のタンタルと透明導電体のITOは絶縁膜の
Ta2 O5 が絶縁破壊した溶着部で溶着され電気的な接
合はオーミック接合となる。
Since this dielectric breakdown occurs thermally, after the dielectric breakdown, metal tantalum and ITO of the transparent conductor are welded at the welded portion where Ta2O5 of the insulating film is dielectrically broken, and the electrical connection becomes ohmic contact. .

【0023】電源に定電流源を用い絶縁破壊時の電流値
を維持すると、溶着後は溶着部が電流の主経路になるが
低抵抗なため、接続用TFD素子の温度は急激に下が
り、反応は進行せずに安定な直流結合が得られる。
When a constant current source is used as the power source and the current value at the time of dielectric breakdown is maintained, the welded portion becomes the main path of current after welding, but the resistance is low, so the temperature of the connecting TFD element drops sharply and the reaction occurs. Does not proceed and stable DC coupling is obtained.

【0024】定電流源によるランプ電流印加で形成した
直流結合部においては、溶着部に比較し接続用TFD素
子の面積が充分大きいため機械的な結合はTa/Ta2
O5/ITO構造で保持するので密着性も良好となる。
In the DC coupling portion formed by applying the lamp current by the constant current source, the mechanical coupling is Ta / Ta2 because the area of the connecting TFD element is sufficiently larger than that of the welding portion.
Since it is held by the O5 / ITO structure, the adhesion is also good.

【0025】[0025]

【実施例】以下、図面を用いて本発明の実施例における
液晶表示装置の構造とその製造方法とを説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of a liquid crystal display device and its manufacturing method according to embodiments of the present invention will be described below with reference to the drawings.

【0026】はじめに本発明の実施例における液晶表示
装置の構造を図面に基づいて説明する。液晶表示装置の
構造を図3を用いて説明する。図3は本発明の実施例に
おける液晶表示装置のアクティブ基板を示す平面図であ
る。
First, the structure of a liquid crystal display device according to an embodiment of the present invention will be described with reference to the drawings. The structure of the liquid crystal display device will be described with reference to FIG. FIG. 3 is a plan view showing an active substrate of a liquid crystal display device according to an embodiment of the present invention.

【0027】素3の二点鎖線で囲った領域の表示領域1
2に多数の信号線や、スイッチング素子や、画素電極を
設ける。この信号線は配線2によってアクティブ基板1
1上に実装する駆動用半導体装置14に接続する。
Display area 1 of the area surrounded by the chain double-dashed line of element 3
2 is provided with a large number of signal lines, switching elements, and pixel electrodes. This signal line is connected to the active substrate 1 by the wiring 2.
1 is connected to the driving semiconductor device 14 mounted on the semiconductor device 1.

【0028】図3においては、アクティブ基板11上に
駆動用半導体装置14を直接実装するチップオングラス
(以下COGと記す)の構成とする。
In FIG. 3, a chip-on-glass (hereinafter referred to as COG) structure is used in which the driving semiconductor device 14 is directly mounted on the active substrate 11.

【0029】ここでCOG実装構造とは、駆動用半導体
装置14を直接ガラス基板であるアクティブ基板11上
にワイヤボンディング法、ハンダや導電性接着剤を用い
てボンディングする実装手段である。
Here, the COG mounting structure is a mounting means for directly bonding the driving semiconductor device 14 onto the active substrate 11, which is a glass substrate, using a wire bonding method, solder or a conductive adhesive.

【0030】つぎに信号線配線接続部の構造を、図1を
用いて説明する。図1は、図3の表示領域12内の配線
2近傍領域の信号線配線接続部13を拡大して示す平面
図である。
Next, the structure of the signal line wiring connection portion will be described with reference to FIG. FIG. 1 is an enlarged plan view showing a signal line wiring connection portion 13 in the area near the wiring 2 in the display area 12 of FIG.

【0031】図1に示すように、信号線3は表面に絶縁
層を形成した金属で、本発明の実施例においては材料に
タンタルを用い、破線で囲んだ領域の表示用TFD素子
4を介して、画素電極5である透明導電体に接続する。
本発明の実施例において画素電極5材料には酸化インジ
ウムスズ(ITO)を用いる。
As shown in FIG. 1, the signal line 3 is a metal having an insulating layer formed on its surface. In the embodiment of the present invention, tantalum is used as the material, and the display TFD element 4 in the area surrounded by the broken line is interposed. Then, the pixel electrode 5 is connected to the transparent conductor.
In the embodiment of the present invention, indium tin oxide (ITO) is used as the material of the pixel electrode 5.

【0032】本発明の実施例において、接続用TFD素
子1によるTa/ITO接続部は図2の断面図に示す構
造をとる。
In the embodiment of the present invention, the Ta / ITO connecting portion of the connecting TFD element 1 has the structure shown in the sectional view of FIG.

【0033】すなわち図2に示すように、ガラス基板7
の上の金属8のタンタルは、溶着部6を除き絶縁体9を
介して透明導電体10のITOを積層している。
That is, as shown in FIG. 2, the glass substrate 7
The tantalum of the metal 8 above the ITO layer is laminated with the ITO of the transparent conductor 10 via the insulator 9 except for the welded portion 6.

【0034】この図2に示す構造によれば、金属8のタ
ンタルは、溶着部6を除いた表面を絶縁体9で被覆して
いるため透明導電体10のITOとの密着性は良好にな
る。
According to the structure shown in FIG. 2, since the surface of tantalum of metal 8 excluding the welded portion 6 is covered with the insulator 9, the adhesion of the transparent conductor 10 to ITO is improved. .

【0035】さらに、金属8のタンタルと透明導電体1
0のITOとの電気的接続は、金属8のタンタルと透明
導電体10のITOとの間に電流を印加して、Ta2 O
5 からなる絶縁体9を絶縁破壊することで金属8と透明
導電体10を加熱溶着したタンタルとInを主成分とす
る溶着部6によって、抵抗地の充分低いオーミック接合
でとる。
Further, tantalum of metal 8 and transparent conductor 1
For electrical connection with ITO of 0, a current is applied between tantalum of metal 8 and ITO of transparent conductor 10 to produce Ta 2 O.
The insulator 9 made of 5 is subjected to dielectric breakdown, and the metal 8 and the transparent conductor 10 are heat-welded to each other by the welded portion 6 containing tantalum and In as main components to obtain ohmic contact with sufficiently low resistance.

【0036】つぎに、上記の図1から図3に示す構造を
得るための製造方法を説明する。表示用TFD素子4に
ついては図4から図7の表示用TFD素子4における工
程順の断面図を用いて説明し、接続用TFD素子1につ
いては図8から図12の接続用TFD素子1における工
程順の断面図を参照しながら説明する。
Next, a manufacturing method for obtaining the structure shown in FIGS. 1 to 3 will be described. The display TFD element 4 will be described with reference to the sectional views in the order of steps of the display TFD element 4 in FIGS. 4 to 7, and the connection TFD element 1 will be described in connection with the connection TFD element 1 in FIGS. This will be described with reference to the sequential sectional views.

【0037】はじめに図4と図8に示すように、アクテ
ィブ基板11を形成するガラス基板7上に金属8として
タンタルをスパッタリング法により、厚さ100nmに
形成する。
First, as shown in FIGS. 4 and 8, tantalum as the metal 8 is formed to a thickness of 100 nm on the glass substrate 7 forming the active substrate 11 by the sputtering method.

【0038】つぎに、図5と図9に示すように、通常の
フォトリソグラフィ処理とエッチングガスに六フッ化イ
オウ(SF6 )を用いたリアクティブイオンエッチング
(以下RIEと略す)処理により、金属8のタンタルを
パターンニングする。
Next, as shown in FIGS. 5 and 9, the metal 8 is subjected to a normal photolithography process and a reactive ion etching (hereinafter abbreviated as RIE) process using sulfur hexafluoride (SF6) as an etching gas. Pattern the tantalum.

【0039】つぎに、図6と図10に示すように、クエ
ン酸0.1%水溶液中で40Vの電圧を印加して陽極酸
化を行い、金属8の表面に絶縁体9のTa2 O5 を厚さ
70nmに形成する。
Next, as shown in FIGS. 6 and 10, a voltage of 40 V is applied in a 0.1% aqueous solution of citric acid to perform anodic oxidation, and Ta 2 O 5 of the insulator 9 is thickened on the surface of the metal 8. To a thickness of 70 nm.

【0040】つぎに、図7と図11に示すように、透明
導電体10としてITOをスパッタリング法で厚さ10
0nmに形成して、熱処理を行い、通常のフォトリソグ
ラフィ処理とエッチャントに塩化第二鉄と塩酸を用いた
ウェットエッチング処理によりITOをパターンニング
する。
Next, as shown in FIGS. 7 and 11, ITO is used as the transparent conductor 10 by sputtering to a thickness of 10
After being formed to a thickness of 0 nm, heat treatment is performed, and the ITO is patterned by ordinary photolithography and wet etching using ferric chloride and hydrochloric acid as etchants.

【0041】以上の説明にて、図1の平面図に示した表
示用TFD素子4は完成することができる。
With the above description, the display TFD element 4 shown in the plan view of FIG. 1 can be completed.

【0042】つぎに、図11の金属8と透明導電体10
の間に定電流源により電流を印加する。このとき接続用
TFD素子の素子特性と、面積と、絶縁体9の厚さに対
して所定の電流を流すことで絶縁体9の局所加熱溶着に
よる溶着部6を形成することができる。
Next, the metal 8 and the transparent conductor 10 shown in FIG.
A current is applied by a constant current source during. At this time, the welding characteristics 6 of the connecting TFD element can be formed by locally heating and welding the insulator 9 by applying a predetermined current to the element characteristics, the area, and the thickness of the insulator 9.

【0043】この溶着部6は低抵抗なオーミック接合と
することができ、図12で示す接続用TFD素子1のT
a/ITO接続を形成することができる。
This welded portion 6 can be an ohmic junction having a low resistance, and T of the connecting TFD element 1 shown in FIG.
An a / ITO connection can be formed.

【0044】この低抵抗なオーミック接合となる溶着部
6の溶着のメカニズムは、おおよそつぎのように考えら
れる。
The welding mechanism of the welded portion 6 which forms the low resistance ohmic junction is considered as follows.

【0045】Ta/Ta2 O5 /ITO構造の接続用T
FD素子1に流れる電流は、活性層となる絶縁体9のT
a2 O5 層の伝導特性により主に支配される。
T for connecting Ta / Ta2 O5 / ITO structure
The current flowing through the FD element 1 is T of the insulator 9 that becomes the active layer.
It is mainly governed by the conduction properties of the a2 O5 layer.

【0046】近似的には伝導機構としてプールフレンケ
ル伝導で説明される。温度依存性については同一バイア
ス電圧を印加したとき温度をあげると電流値が大きくな
る。つまり導電率は温度に対して正の係数をもつ。
Approximately, the pool Frenkel conduction is explained as the conduction mechanism. Regarding the temperature dependence, the current value increases with increasing temperature when the same bias voltage is applied. That is, the conductivity has a positive coefficient with respect to temperature.

【0047】ガラス基板7上に形成された薄膜からなる
接続用TFD素子1に定電流源により電流を供給した場
合を考える。ここで、形成した接続用TFD素子1の絶
縁体9は均質で部分的に導電性の高い欠陥が面内にない
と仮定する。
Consider a case where a constant current source supplies a current to the connecting TFD element 1 made of a thin film formed on the glass substrate 7. Here, it is assumed that the formed insulator 9 of the connecting TFD element 1 is free of in-plane defects that are homogeneous and partially have high conductivity.

【0048】接続用TFD素子1に流れる電流値が小さ
い場合は、絶縁体9で発生した熱は接続用TFD素子1
の法線方向に拡散し、素子面内でほぼ一定のガラス基板
と同じ温度となり、接続用TFD素子1に流れる電流値
はおもに印加電界に応じたプールフレンケル伝導で決ま
る平衡状態で落ちつく。
When the current value flowing in the connecting TFD element 1 is small, the heat generated in the insulator 9 is the heat generated in the insulating TFD element 1.
Of the glass substrate, the temperature of the glass substrate is almost constant in the plane of the element, and the current value flowing in the connecting TFD element 1 settles in an equilibrium state mainly determined by pool Frenkel conduction according to the applied electric field.

【0049】しかし、電流密度を大きくすると絶縁体9
中で発生したジュール熱は局所的に接続用TFD素子1
の法線方向に温度勾配をもちガラス基板を加熱する。
However, if the current density is increased, the insulator 9
The Joule heat generated inside is locally connected to the TFD element 1
The glass substrate is heated with a temperature gradient in the direction of the normal line.

【0050】そして接続用TFD素子1面内でも熱の逃
げやすい接続用TFD素子1周辺部が低く、接続用TF
D素子1中央部で高いという温度勾配をもつようにな
る。
Further, even in the plane of the connecting TFD element 1, the peripheral portion of the connecting TFD element 1 where the heat easily escapes is low, and the connecting TF
The temperature gradient becomes high at the center of the D element 1.

【0051】一度面内で温度勾配が出来ると絶縁体9の
導電率の温度係数が正で温度依存が大きいため、温度の
高い接続用TFD素子1中央部の電流値が大きくなり、
さらに接続用TFD素子1中央部の温度が集中して上が
るというポジティブフィードバックが掛かる。
Once a temperature gradient is generated in the plane, the temperature coefficient of the conductivity of the insulator 9 is positive and the temperature dependence is large, so that the current value in the central portion of the TFD element for connection 1 having a high temperature becomes large,
Further, positive feedback is given that the temperature of the central portion of the connecting TFD element 1 is concentrated and rises.

【0052】これは、接続用TFD素子1面内で温度分
布ができるのに対して、金属8と透明導電体10両電極
の電位は接続用TFD素子1面内で一定になるためであ
る。
This is because the temperature distribution can be made in the surface of the connecting TFD element 1 while the potentials of both electrodes of the metal 8 and the transparent conductor 10 are constant in the surface of the connecting TFD element 1.

【0053】やがて一種の熱暴走により絶縁体9の中央
部が絶縁破壊を起こし、タンタルとインジウム(In)
を主成分とする金属からなるフィラメント状の初期溶着
部を形成する。
Eventually, a kind of thermal runaway causes dielectric breakdown in the central portion of the insulator 9, and tantalum and indium (In)
A filament-shaped initial welded portion made of a metal whose main component is is formed.

【0054】ここで電源に定電流源を用いた場合は絶縁
破壊後の初期溶着部に全電流が集中するが電源の作用に
より一定電流値を保つ。そして初期溶着部は安定で低抵
抗な溶着部6に成長する。
When a constant current source is used as the power source, the total current concentrates on the initial welded portion after the dielectric breakdown, but the constant current value is maintained by the action of the power source. Then, the initial welded portion grows into a welded portion 6 having stable and low resistance.

【0055】成長した溶着部6は低抵抗なため、発生す
るジュール熱は急速に低下し、電流値を大幅に増やさな
ければさらに破壊が進行することはない。以上が溶着部
6の電流印加溶着により安定なオーミック接合が得られ
る理由である。
Since the welded portion 6 that has grown has a low resistance, the Joule heat that is generated decreases rapidly, and further destruction does not proceed unless the current value is significantly increased. The above is the reason why a stable ohmic junction can be obtained by current application welding of the welded portion 6.

【0056】絶縁体9として陽極酸化により形成したT
a2 O5 を用いたときは、ピンホールのほとんどない絶
縁体9膜が得られるため、およそ3μm角から200μ
m角程度の素子について安定に接続用TFD素子1中央
部での電流溶着が可能であった。
T formed by anodic oxidation as the insulator 9
When a2 O5 is used, an insulator 9 film with almost no pinholes can be obtained.
It was possible to stably perform current welding in the central portion of the connecting TFD element 1 for an element of about m square.

【0057】本発明のの実施例の6μm角の大きさの接
続用TFD素子1においては、溶着部6は再現性よく接
続用TFD素子1中央部となった。図13のグラフに6
μm角のTa/ITO積層構造からなる接続用TFD素
子1に定電流源を用いて電流を印加し加熱溶着をおこな
ったときの電圧−電流特性を示す。縦軸が印加電流を示
し、横軸がそのときの接続用TFD素子1両端の電圧で
ある。
In the connecting TFD element 1 having a size of 6 μm square according to the example of the present invention, the welded portion 6 became the central portion of the connecting TFD element 1 with good reproducibility. 6 in the graph of FIG.
The voltage-current characteristic at the time of carrying out heat welding by applying a current using a constant current source to the connecting TFD element 1 having a μm square Ta / ITO laminated structure is shown. The vertical axis represents the applied current, and the horizontal axis is the voltage across the connecting TFD element 1 at that time.

【0058】Ta/Ta2 O5 /ITO構造の接続用T
FD素子1においては電流印加方向によって電圧−電流
特性が変わる非対称特性となるが、図13の例ではIT
Oが正極となる方向で測定した。
T / Ta 2 O 5 / T for connecting the ITO structure
The FD element 1 has an asymmetrical characteristic in which the voltage-current characteristic changes depending on the current application direction, but in the example of FIG.
The measurement was performed in the direction in which O became the positive electrode.

【0059】図13に示す実験例では印加電流を1×1
-11 Aから徐々に大きくしていった場合、2×10-5
Aとしたとき接続用TFD素子1両端の端子電圧が第1
の電圧35から第2の電圧36に急減した。このとき、
接続用TFD素子1中央部が図2の溶着部6の箇所で溶
着した。
In the experimental example shown in FIG. 13, the applied current is 1 × 1.
When gradually increasing from 0 -11 A, 2 × 10 -5
When A, the terminal voltage across the connecting TFD element 1 is the first
The voltage 35 of the second voltage suddenly decreased to the second voltage 36. At this time,
The central portion of the connecting TFD element 1 was welded at the welding portion 6 in FIG.

【0060】溶着後の接続用TFD素子1の電圧−電流
特性を図14のグラフに示す。このときの溶着部6の面
積は直径1μm以下であったがコンタクト抵抗は、図1
4から解るように印加電圧と電流が比例するオーミック
接続となり、抵抗値は2kΩ程度と充分低い値を得た。
The voltage-current characteristics of the connecting TFD element 1 after welding are shown in the graph of FIG. The area of the welded portion 6 at this time was 1 μm or less in diameter, but the contact resistance was as shown in FIG.
As can be seen from FIG. 4, the ohmic connection in which the applied voltage and the current are proportional to each other was obtained, and the resistance value was about 2 kΩ, which was a sufficiently low value.

【0061】したがって、本発明の溶着部6を設ける構
造はTa/ITOの直流低抵抗接続に対して有効である
ことがわかる。
Therefore, it can be seen that the structure of the present invention provided with the welded portion 6 is effective for the direct current low resistance connection of Ta / ITO.

【0062】ここで本発明の実施例の接続用TFD素子
1と同じ構造のTa/ITO接続部のITOの剥離荷重
を、スクラッチテスタSST−101(島津製作所製)
を用いたスクラッチ試験で求めた。
Here, the peeling load of the ITO at the Ta / ITO connecting portion having the same structure as the connecting TFD element 1 of the embodiment of the present invention was measured by the scratch tester SST-101 (manufactured by Shimadzu Corporation).
It was determined by a scratch test using the.

【0063】このスクラッチ試験においては、本発明の
実施例の電気的接続の評価に用いた接続用TFD素子1
のTa/ITO接続部面積が6μm角と小さく評価でき
なかったため、10×15mmの大きさのガラス基板上
にTa/Ta2 O5 /ITOの積層構造の膜を作製する
ことで評価した。試験は以下に記載の条件で行った。
In this scratch test, the connection TFD element 1 used for the evaluation of the electrical connection of the embodiment of the present invention.
Since the area of Ta / ITO connection part of 6 was as small as 6 μm square, it could not be evaluated, so that it was evaluated by forming a film having a laminated structure of Ta / Ta 2 O 5 / ITO on a glass substrate of 10 × 15 mm. The test was conducted under the conditions described below.

【0064】タンタル膜厚 :200nm Ta2 O5 膜厚 : 70nm ITO膜厚 :200nm 試験法 :定速負荷試験 カートリッジ先端径 : 15μm 負荷速度 : 1μm/s 振幅 : 50μm 送り速度 : 20μm/sTantalum film thickness: 200 nm Ta2 O5 film thickness: 70 nm ITO film thickness: 200 nm Test method: Constant speed load test Cartridge tip diameter: 15 μm Load speed: 1 μm / s Amplitude: 50 μm Feed speed: 20 μm / s

【0065】このスクラッチ測定の結果、陽極酸化法で
形成した絶縁体9のTa2 O5 を介して作製したTa/
ITO接続部の剥離荷重は40〔gf〕以上であり、タ
ンタル膜厚250nm、ITO膜厚200nmとしてT
a/ITOを直接積層したサンプルの、同一測定条件で
の剥離荷重0.5〔gf〕と比較して80倍以上の大幅
な密着力改善が見られた。
As a result of this scratch measurement, Ta / O formed through Ta2O5 of the insulator 9 formed by the anodic oxidation method was used.
The peeling load of the ITO connection part is 40 [gf] or more, and the tantalum film thickness is 250 nm and the ITO film thickness is 200 nm.
A significant improvement in the adhesive force of 80 times or more was observed in comparison with the peeling load of 0.5 [gf] under the same measurement conditions for the sample in which a / ITO was directly laminated.

【0066】本発明の実施例においては接続用TFD素
子1のTa/ITO接続部の6μm角に対し溶着部は1
μm2 以下で面積比が36:1以上のため機械的なタン
タルとITOの密着強度はほぼTa/Ta2 O5 /IT
O積層部で決まる。
In the embodiment of the present invention, the welded portion is 1 with respect to the 6 μm square of the Ta / ITO connecting portion of the connecting TFD element 1.
Since the area ratio is 36: 1 or more at μm 2 or less, the mechanical adhesion strength between tantalum and ITO is almost Ta / Ta 2 O 5 / IT.
Determined by the O stack part.

【0067】したがって本発明の構造は、Ta/ITO
接続部の密着力改善に対しても有効であることがわか
る。
Therefore, the structure of the present invention is based on Ta / ITO.
It can be seen that it is also effective for improving the adhesion of the connection part.

【0068】図11で電流溶着のとき、金属8と透明導
電体10の間に電流を印加する場合金属8のタンタル配
線上には絶縁体9が被覆されており、溶着用電流源と電
気的接続をする場合、金属8上の絶縁膜9を削る。金属
8の延長上に陽極酸化されない領域を作る準備が必要で
あると考えられるかもしれない。
When current is applied between the metal 8 and the transparent conductor 10 during current welding in FIG. 11, an insulator 9 is coated on the tantalum wiring of the metal 8 and is electrically connected to the welding current source. When connecting, the insulating film 9 on the metal 8 is shaved. It may be considered necessary to prepare to create a non-anodized region on the extension of metal 8.

【0069】しかしながら、信号線と配線と半導体装置
パッド部を溶着用アクティブ基板構成を示した図15
と、液晶パネル構成を示した図16のようにパターン化
することで容易に溶着が可能である。
However, FIG. 15 shows an active substrate structure in which signal lines, wirings, and semiconductor device pad portions are welded.
Then, by patterning the liquid crystal panel structure as shown in FIG. 16, welding can be easily performed.

【0070】図15に示した陽極酸化用共通電極18
は、金属8を陽極酸化するときに用いる。透明導電体1
0で形成した第1の半導体装置パッド15と第2の半導
体装置パッド16の間に定電流源を接続し、第1の接続
用TFD素子19と第2の接続用TFD素子20がバッ
クトゥバック接続されるようにする。
The common electrode 18 for anodization shown in FIG.
Is used when the metal 8 is anodized. Transparent conductor 1
A constant current source is connected between the first semiconductor device pad 15 and the second semiconductor device pad 16 formed of 0, and the first connecting TFD element 19 and the second connecting TFD element 20 are back-to-back connected. To be done.

【0071】ここでバックトゥバック接続とは2つの接
続用TFD素子を金属8どうし、あるいは透明導電体1
0同士を接続するように直列接続することをいう。
Here, the back-to-back connection means that two TFD elements for connection are connected to each other by metal 8 or transparent conductor 1.
It means to connect in series so as to connect 0s.

【0072】つぎに第1の半導体装置接続パッド15と
第2の半導体装置接続パッド16の間に溶着が起こるよ
り低い電流を定電流源によって供給する。
Next, a lower current that causes welding between the first semiconductor device connection pad 15 and the second semiconductor device connection pad 16 is supplied by the constant current source.

【0073】つぎに電流値を徐々に大きくして溶着をお
こなう。本発明の実施例においては6μm角素子を用い
たので溶着条件は次の通りである。
Next, welding is performed by gradually increasing the current value. In the examples of the present invention, since the 6 μm square element was used, the welding conditions are as follows.

【0074】溶着電流 :2x10-5A 溶着時最大端子電圧 :ITOを正極...22V ITOを負極...25V 処理温度 :室温Welding current: 2 × 10 -5 A Maximum terminal voltage during welding: ITO is the positive electrode. . . 22V ITO is the negative electrode. . . 25V Treatment temperature: Room temperature

【0075】図15の接続の場合バックトゥバック接続
した1組の接続用TFD素子では、一方がITO正極と
すると、他方は負極となり溶着直前の最大端子電圧が異
なるが、溶着時の絶縁破壊は絶縁体9のTa2 O5 層で
起こるため、溶着電流はほぼ等しくなる。そこで一度に
2ヶ所の接続用TFD素子の同時溶着が可能である。
In the case of the connection shown in FIG. 15, in one set of back-to-back connection TFD elements, if one is the ITO positive electrode and the other is the negative electrode, the maximum terminal voltage immediately before welding is different, but the insulation breakdown during welding is insulation. Since it occurs in the Ta2 O5 layer of body 9, the welding currents are almost equal. Therefore, it is possible to simultaneously weld two connecting TFD elements at one time.

【0076】これをn番目の半導体装置接続パッド17
まで繰り返すことで、すべての信号線3の接続用TFD
素子1による溶着接続を形成することができる。
This is the nth semiconductor device connection pad 17
By repeating until, TFD for connection of all signal lines 3
A welded connection with the element 1 can be formed.

【0077】つぎにアクティブ基板11は、図16で示
すように、アクティブ側ガラス基板24上に形成し対向
基板25と重ねパネル化する。
Next, as shown in FIG. 16, the active substrate 11 is formed on the active-side glass substrate 24 and laminated with the counter substrate 25 to form a panel.

【0078】つぎに図16で示したアクティブ側ガラス
基板24上を、第1のスクライブ線21と、第2のスク
ライブ線22と、第3のスクライブ線23にそってブレ
ーク処理を行い液晶パネルを完成する。
Next, on the active side glass substrate 24 shown in FIG. 16, a break process is performed along the first scribe line 21, the second scribe line 22 and the third scribe line 23 to form a liquid crystal panel. Complete.

【0079】ここで陽極酸化用共通電極18は図15で
示す第1のスクライブ線21で切り放され独立した信号
線3を得る。
Here, the anodizing common electrode 18 is cut off by the first scribe line 21 shown in FIG. 15 to obtain an independent signal line 3.

【0080】以上説明した実施例においては、溶着部6
の接続抵抗は2kΩであり信号線3と配線2を含めた配
線部の引き回し抵抗1ライン約20kΩの1/10の値
のため、表示品質に何等影響を与えずに充分に直流結合
が可能である。
In the embodiment described above, the welded portion 6
The connection resistance of is 2 kΩ and the wiring resistance of the wiring part including the signal line 3 and the wiring 2 is 1/10 of the value of about 20 kΩ, so it is possible to perform sufficient DC coupling without affecting the display quality. is there.

【0081】図3で示す駆動用半導体装置14の実装法
をCOG実装法とした場合、以上で図1に示した接続用
TFD素子1は完成する。
When the mounting method of the driving semiconductor device 14 shown in FIG. 3 is the COG mounting method, the connecting TFD element 1 shown in FIG. 1 is completed as described above.

【0082】つぎに本発明による液晶表示装置の他の実
施例として,配線2をテープオートメーティッドボンデ
ィング(以下TABと記す)により駆動用半導体装置1
4に接続する場合の接続用TFD素子1の構造を説明す
る。
Next, as another embodiment of the liquid crystal display device according to the present invention, the wiring 2 is formed by tape automated bonding (hereinafter referred to as TAB) to the driving semiconductor device 1.
The structure of the connecting TFD element 1 in the case of connecting to 4 will be described.

【0083】ここでTABとは駆動用半導体装置をポリ
イミドからなるフィルム状のテープにボンディングし、
そのフィルム状のテープをガラス基板に接続する実装方
法である。図19の平面図にTAB実装の構成を採用し
た液晶表示装置を示す。
Here, TAB means that a driving semiconductor device is bonded to a film tape made of polyimide,
This is a mounting method in which the film tape is connected to a glass substrate. The plan view of FIG. 19 shows a liquid crystal display device adopting the TAB mounting configuration.

【0084】図19に示すように、対向基板25と重ね
合わせたアクティブ基板11上に配線2を形成し、駆動
用半導体装置14をボンディングしたフィルム38を配
線2に接続することで液晶パネルを構成する。
As shown in FIG. 19, the wiring 2 is formed on the active substrate 11 superposed on the counter substrate 25, and the film 38 to which the driving semiconductor device 14 is bonded is connected to the wiring 2 to form a liquid crystal panel. To do.

【0085】つぎに図19に示す本発明の実施例の接続
用TFD素子1の製造方法を説明する。この実施例にお
いてはアクティブ側ガラス基板を図17と図18とに示
す構成とする。
Next, a method of manufacturing the connecting TFD element 1 of the embodiment of the present invention shown in FIG. 19 will be described. In this embodiment, the active side glass substrate has the structure shown in FIGS.

【0086】第1の実施例と同様な処理工程によって表
示用TFD素子4と、接続用TFD素子1とを形成す
る。
The display TFD element 4 and the connecting TFD element 1 are formed by the same process steps as those in the first embodiment.

【0087】つぎに図18に示すように、アクティブ基
板11を形成したアクティブ側ガラス基板24を対向基
板25と重ね合わせて液晶パネルを形成する。
Next, as shown in FIG. 18, the active side glass substrate 24 having the active substrate 11 formed thereon is superposed on the counter substrate 25 to form a liquid crystal panel.

【0088】つぎに図18で示す溶着素子形成用スクラ
イブ線28にそってスクライブ処理を行い、陽極酸化用
共通電極18を切り放す。ここで、陽極酸化用共通電極
18は図17で示す構造とするので、陽極酸化用共通電
極18を切り放したあとは隣り合った信号線3の2本1
組が短絡した構造となる。
Next, a scribe process is performed along the welding element forming scribe line 28 shown in FIG. 18 to cut off the anodizing common electrode 18. Here, since the common electrode 18 for anodic oxidation has the structure shown in FIG. 17, after the common electrode 18 for anodic oxidation is cut off, two adjacent signal lines 3
The set is short-circuited.

【0089】したがってアクティブ側ガラス基板24
は、図17に示す第1の電流端子34に、第1の接続用
TFD素子19と第2の接続用TFD素子20とがバッ
クトゥバック接続で直列に接続した構造をとる。
Therefore, the active side glass substrate 24
Has a structure in which the first connecting TFD element 19 and the second connecting TFD element 20 are connected in series by back-to-back connection to the first current terminal 34 shown in FIG.

【0090】第2の接続用TFD素子20は透明導電体
10で形成した溶着用共通電極33を介してつぎの接続
用TFD素子にさらにに接続する構造となる。このため
本発明の構造を繰り返すことで、第1の電流端子31と
第2の電流端子32の間にn番目の接続用TFD素子ま
でn個の接続用TFD素子がバックトゥバックで直列接
続することができる。
The second connecting TFD element 20 is further connected to the next connecting TFD element via the welding common electrode 33 formed of the transparent conductor 10. Therefore, by repeating the structure of the present invention, n connecting TFD elements are connected in series back to back up to the nth connecting TFD element between the first current terminal 31 and the second current terminal 32. You can

【0091】つぎに第1の電流端子31と第2の電流端
子32の間に電流源を接続することで1度にn箇所の溶
着を行う。ここで、n−1番目のTFD素子26とn番
目のTFD素子27という1組でバックトゥバック構成
となるため一度に接続する接続用TFD素子数は偶数本
が望ましい。
Next, a current source is connected between the first current terminal 31 and the second current terminal 32 to weld n points at once. Here, since a back-to-back configuration is formed by a set of the (n-1) th TFD element 26 and the nth TFD element 27, it is desirable that the number of connecting TFD elements connected at one time is an even number.

【0092】第2の実施例においては耐圧1kVの定電
流源を使用し接続用TFD素子の面積を6μmとしたた
め接続可能な素子数(ライン数)は 1000V/(22V+25V)=21.3 からわかるとおり21組つまり42本であった。ここで
溶着時の接続用TFD素子端子電圧は素子寸法によって
変わるが、一例としてITOを正極としたとき200μ
m角素子では15Vとなる。
In the second embodiment, since a constant current source having a withstand voltage of 1 kV is used and the area of the connecting TFD element is set to 6 μm, the number of connectable elements (the number of lines) is 1000 V / (22V + 25V) = 21.3. As it was, 21 sets, or 42 sets. Here, the terminal voltage of the TFD element for connection at the time of welding changes depending on the element size.
It is 15V for the m-square element.

【0093】したがって電流源の耐圧が同じ場合、配線
部の面積が大きく取れる場合は接続用TFD素子1の面
積を大きくしたほうが一度に接続可能なライン数を多く
取ることができる。
Therefore, if the withstand voltage of the current sources is the same and the area of the wiring portion can be made large, the number of lines that can be connected at one time can be made larger by increasing the area of the connecting TFD element 1.

【0094】ライン数が数100本以上ある場合でも、
図17に示すような第1の電流端子31と第2の電流端
子32の間の直列接続のグループをひとつの単位として
必要なグループ数だけ溶着処理を繰り返すことで対処可
能である。
Even if there are several hundred lines or more,
This can be dealt with by repeating the welding process for a necessary number of groups with a group of series connection between the first current terminal 31 and the second current terminal 32 as shown in FIG. 17 as one unit.

【0095】つぎに図18で示すTAB端子形成用スク
ライブ線29に沿ってスクライブ処理を行い、さらにブ
レーク処理をすることで図17に示した溶着用共通電極
33をアクティブ基板11から切り放し、点線で囲った
TAB接続端子アレイ30を形成する。
Next, a scribe process is performed along the TAB terminal forming scribe line 29 shown in FIG. 18, and a break process is further performed to cut off the welding common electrode 33 shown in FIG. The enclosed TAB connection terminal array 30 is formed.

【0096】つぎに第1のスクライブ線21にそってス
クライブをおこない独立した信号線3を形成し、接続用
TFD素子1は完成する。
Next, scribe is performed along the first scribe line 21 to form an independent signal line 3, and the connection TFD element 1 is completed.

【0097】つぎに第2のスクライブ線22および第3
のスクライブ線23にそってスクライブ処理と、ブレー
ク処理とを行い、図18で点線で示したTAB接続端子
アレイ30にTAB実装することで、第2の実施例のT
AB実装用液晶バネルは完成する。
Next, the second scribe line 22 and the third scribe line 22
The scribe process and the break process are performed along the scribe line 23 of FIG. 18 and TAB mounting is performed on the TAB connection terminal array 30 shown by the dotted line in FIG.
The liquid crystal panel for AB mounting is completed.

【0098】以上の実施例で述べた製造工程において、
金属はタンタル以外にも窒素添加タンタルや窒化タンタ
ルあるいはタンタルと他の金属の合金であってもよい。
さらに、タンタルの他に酸素親和力の大きな金属、たと
えばNbを用いた場合にも有効である。透明導電体とし
て、ITO以外にIn2 O3 、SnO2 、ZnOなどの
酸化物を用いる場合も、本発明の製造方法は有効であ
る。さらに、アクティブ基板上に所定の電流印加による
プログラム可能なアレイを形成することが可能となる。
In the manufacturing process described in the above embodiment,
In addition to tantalum, the metal may be nitrogen-added tantalum, tantalum nitride, or an alloy of tantalum and another metal.
Further, it is also effective when a metal having a large oxygen affinity, such as Nb, is used in addition to tantalum. The production method of the present invention is also effective when an oxide such as In2 O3, SnO2, ZnO, etc. is used as the transparent conductor in addition to ITO. Furthermore, it becomes possible to form a programmable array on the active substrate by applying a predetermined current.

【0099】[0099]

【発明の効果】以上の説明で明らかなように、本発明に
よれば、液晶表示装置の駆動素子や配線の形成におい
て、金属/絶縁体/透明導電体構造の接続部を形成し、
これに電流を印加し溶着を行い、製造工程を複雑にする
ことなく金属と透明導電体の接触抵抗を低減している。
さらに、溶着部以外の金属と透明導電体との接合面には
絶縁体が存在しているため、両者の密着力が大幅に改善
され、表示品質の優れたアクティブマトリクス方式の液
晶表示装置がえられる。
As is apparent from the above description, according to the present invention, in the formation of the driving element and the wiring of the liquid crystal display device, the connection portion of the metal / insulator / transparent conductor structure is formed,
An electric current is applied to this and welding is performed to reduce the contact resistance between the metal and the transparent conductor without complicating the manufacturing process.
Furthermore, since an insulator is present on the bonding surface between the metal and the transparent conductor other than the welded part, the adhesion between the two is greatly improved, and an active matrix liquid crystal display device with excellent display quality can be obtained. To be

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における液晶表示装置のガラス
基板上に形成した表示用TFD素子と接続用TFD素子
とを示す平面図である。
FIG. 1 is a plan view showing a display TFD element and a connection TFD element formed on a glass substrate of a liquid crystal display device according to an example of the present invention.

【図2】本発明の実施例における液晶表示装置の接続用
TFD素子の構造を示す断面図である。
FIG. 2 is a cross-sectional view showing a structure of a connecting TFD element of a liquid crystal display device in an example of the present invention.

【図3】本発明の実施例における液晶表示装置のアクテ
ィブ基板を用いる液晶表示装置を示す平面図である。
FIG. 3 is a plan view showing a liquid crystal display device using an active substrate of the liquid crystal display device according to the embodiment of the invention.

【図4】本発明の実施例における液晶表示装置の表示用
TFD素子の製造方法を示す断面図である。
FIG. 4 is a cross-sectional view showing a method of manufacturing a display TFD element of a liquid crystal display device according to an example of the present invention.

【図5】本発明の実施例における液晶表示装置の表示用
TFD素子の製造方法を示す断面図である。
FIG. 5 is a cross-sectional view showing the method of manufacturing the display TFD element of the liquid crystal display device according to the example of the present invention.

【図6】本発明の実施例における液晶表示装置の表示用
TFD素子の製造方法を示す断面図である。
FIG. 6 is a cross-sectional view showing the method of manufacturing the display TFD element of the liquid crystal display device according to the example of the present invention.

【図7】本発明の実施例における液晶表示装置の表示用
TFD素子の製造方法を示す断面図である。
FIG. 7 is a cross-sectional view showing a method of manufacturing a display TFD element of a liquid crystal display device according to an example of the present invention.

【図8】本発明の実施例における液晶表示装置の表示用
TFD素子の製造方法を示す断面図である。
FIG. 8 is a cross-sectional view showing the method of manufacturing the display TFD element of the liquid crystal display device according to the example of the present invention.

【図9】本発明の実施例における液晶表示装置の表示用
TFD素子の製造方法を示す断面図である。
FIG. 9 is a cross-sectional view showing the method of manufacturing the display TFD element of the liquid crystal display device according to the example of the present invention.

【図10】本発明の実施例における液晶表示装置の表示
用TFD素子の製造方法を示す断面図である。
FIG. 10 is a cross-sectional view showing the method of manufacturing the display TFD element of the liquid crystal display device in the example of the present invention.

【図11】本発明の実施例における液晶表示装置の表示
用TFD素子の製造方法を示す断面図である。
FIG. 11 is a cross-sectional view showing the method of manufacturing the display TFD element of the liquid crystal display device in the example of the present invention.

【図12】本発明の実施例における液晶表示装置の表示
用TFD素子の製造方法を示す断面図である。
FIG. 12 is a cross-sectional view showing the method of manufacturing the display TFD element of the liquid crystal display device in the example of the present invention.

【図13】本発明の実施例における液晶表示装置の製造
方法における溶着処理電流と接続用TFD素子の端子電
圧の関係を示すグラフである。
FIG. 13 is a graph showing the relationship between the welding process current and the terminal voltage of the connecting TFD element in the method of manufacturing a liquid crystal display device according to the example of the present invention.

【図14】本発明の実施例における液晶表示装置の製造
方法の溶着後の接続用TFD素子の電流と電圧の関係を
示すグラフである。
FIG. 14 is a graph showing the relationship between the current and voltage of the connecting TFD element after welding in the method for manufacturing a liquid crystal display device in the example of the present invention.

【図15】本発明の実施例における液晶表示装置のCO
G実装の接続用TFD素子の製造工程を示す平面図であ
る。
FIG. 15 is a view showing CO of a liquid crystal display device according to an embodiment of the present invention.
It is a top view which shows the manufacturing process of the TFD element for connection of G mounting.

【図16】本発明の実施例における液晶表示装置のCO
G実装用液晶パネルの製造工程を示す平面図である。
FIG. 16 shows CO of the liquid crystal display device in the example of the present invention.
It is a top view which shows the manufacturing process of the liquid crystal panel for G mounting.

【図17】本発明の実施例における液晶表示装置のTA
B接続用アクティブ基板の接続用TFD素子アレイ部の
製造工程を示す平面図である。
FIG. 17 is a TA of a liquid crystal display device according to an embodiment of the present invention.
It is a top view showing a manufacturing process of a connecting TFD element array part of an active substrate for B connection.

【図18】本発明の実施例における液晶表示装置のTA
B実装用液晶パネルの製造工程を示す平面図である。
FIG. 18: TA of a liquid crystal display device in an example of the present invention
It is a top view which shows the manufacturing process of the liquid crystal panel for B mounting.

【図19】本発明の実施例における液晶表示装置のTA
B実装用液晶パネルの構成を示す概略図である。
FIG. 19 is a TA of a liquid crystal display device in an example of the present invention.
It is a schematic diagram showing composition of a B mounting liquid crystal panel.

【符号の説明】[Explanation of symbols]

1 接続用TFD素子 2 配線 3 信号線 4 表示用TFD素子 5 画素電極 6 溶着部 7 ガラス基板 8 金属 9 絶縁体 10 透明導電体 11 アクティブ基板 12 表示領域 1 TFD Element for Connection 2 Wiring 3 Signal Line 4 TFD Element for Display 5 Pixel Electrode 6 Welding Part 7 Glass Substrate 8 Metal 9 Insulator 10 Transparent Conductor 11 Active Substrate 12 Display Area

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 金属と透明導電体の接続部をガラスから
なる基板上のタンタルからなる金属と、金属上の酸化タ
ンタルからなる絶縁体と、金属と絶縁体を被覆する透明
導電体とにより構成し、金属と透明導電体に所定の電流
を印加することで絶縁体の所定の位置を絶縁破壊し金属
と透明導電体を溶着した溶着部を介して金属と透明導電
体の電気的接続を得ることを特徴とする液晶表示素子。
1. A connection portion between a metal and a transparent conductor is constituted by a metal made of tantalum on a substrate made of glass, an insulator made of tantalum oxide on the metal, and a transparent conductor covering the metal and the insulator. Then, by applying a predetermined current to the metal and the transparent conductor, dielectric breakdown occurs at a predetermined position of the insulator, and an electrical connection between the metal and the transparent conductor is obtained through the welded portion where the metal and the transparent conductor are welded. A liquid crystal display device characterized by the above.
【請求項2】 ガラスからなる基板上にタンタルからな
る金属を形成する工程と、フォトエッチング処理により
金属をパターンニングする工程と、陽極酸化を行い素子
部に絶縁体を形成する工程と、透明導電体を形成する工
程と、フォトエッチング処理により透明導電体をパター
ンニングする工程と、金属と透明導電体に所定の電流を
印加することで絶縁体の所定の位置を絶縁破壊し金属と
透明導電体を溶着した溶着部を形成する工程を有するこ
とを特徴とする液晶表示素子の製造方法。
2. A step of forming a metal made of tantalum on a substrate made of glass, a step of patterning the metal by photoetching, a step of anodizing to form an insulator in the element portion, and a transparent conductive film. A step of forming a body, a step of patterning a transparent conductor by a photoetching process, and a predetermined current of the metal and the transparent conductor is applied to cause dielectric breakdown at a predetermined position of the insulator and the metal and the transparent conductor. A method for manufacturing a liquid crystal display element, comprising the step of forming a welded portion obtained by welding
JP12607495A 1995-05-25 1995-05-25 Liquid crystal display device and method of manufacturing the same Expired - Fee Related JP3559351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12607495A JP3559351B2 (en) 1995-05-25 1995-05-25 Liquid crystal display device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12607495A JP3559351B2 (en) 1995-05-25 1995-05-25 Liquid crystal display device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH08320494A true JPH08320494A (en) 1996-12-03
JP3559351B2 JP3559351B2 (en) 2004-09-02

Family

ID=14925976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12607495A Expired - Fee Related JP3559351B2 (en) 1995-05-25 1995-05-25 Liquid crystal display device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3559351B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017999A (en) * 2006-09-15 2007-01-25 Seiko Epson Corp Manufacturing method of digital-to-analog conversion circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017999A (en) * 2006-09-15 2007-01-25 Seiko Epson Corp Manufacturing method of digital-to-analog conversion circuit

Also Published As

Publication number Publication date
JP3559351B2 (en) 2004-09-02

Similar Documents

Publication Publication Date Title
EP0395161B1 (en) Mim devices, their method of fabrication and display devices incorporating such devices
JPH05190877A (en) Manufacture of diode element
JP3559351B2 (en) Liquid crystal display device and method of manufacturing the same
US5478971A (en) Metallic circuit board and thin film diode array and method of manufacturing the same
KR100196775B1 (en) Method for fabricating a switching device by anodization and interconnection thereof
JP3363973B2 (en) Liquid crystal display device and manufacturing method thereof
JP3175225B2 (en) Method for manufacturing thin film transistor
JP3021888B2 (en) Optical waveguide functional element and method of manufacturing the same
JP2946664B2 (en) Liquid crystal display
JPH07245404A (en) Thin-film transistor and its electrical connection structure and thin-film transistor-type liquid crystal display device
JPH06324355A (en) Liquid crystal display panel and its production
JPH0357199B2 (en)
JPS62297892A (en) Driving circuit board for display unit
JPH0720499A (en) Nonlinear element and its production and element substrate for electro-optical device having the nonlinear element as well as electro-optical device
JP3074866B2 (en) Nonlinear element, method of manufacturing the same, and electro-optical device using the nonlinear element
JPH01271728A (en) Liquid crystal display device
JPH0210924B2 (en)
JP3327146B2 (en) Liquid crystal panel, method of manufacturing the same, and electronic equipment using the same
JPS61121471A (en) Manufacture of thin film integrating device
JP3341346B2 (en) Manufacturing method of nonlinear element
JPS60161686A (en) Manufacture of thin film non-linear device
JPS63144501A (en) Thin film nonlinear resistance element
JPH0510652B2 (en)
JPH06324354A (en) Liquid crystal display device
JPH06301064A (en) Mim-type nonlinear element and its production

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040521

LAPS Cancellation because of no payment of annual fees