JPH0210924B2 - - Google Patents

Info

Publication number
JPH0210924B2
JPH0210924B2 JP56090599A JP9059981A JPH0210924B2 JP H0210924 B2 JPH0210924 B2 JP H0210924B2 JP 56090599 A JP56090599 A JP 56090599A JP 9059981 A JP9059981 A JP 9059981A JP H0210924 B2 JPH0210924 B2 JP H0210924B2
Authority
JP
Japan
Prior art keywords
liquid crystal
thin film
metal
metal electrode
mim
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56090599A
Other languages
Japanese (ja)
Other versions
JPS57205712A (en
Inventor
Sunao Oota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP56090599A priority Critical patent/JPS57205712A/en
Publication of JPS57205712A publication Critical patent/JPS57205712A/en
Publication of JPH0210924B2 publication Critical patent/JPH0210924B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1365Active matrix addressed cells in which the switching element is a two-electrode device

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

【発明の詳細な説明】 本発明は、液晶表示体の製造方法に関する。[Detailed description of the invention] The present invention relates to a method for manufacturing a liquid crystal display.

さらに詳しくは、各々の表示画素に非線型素子
を結合した液晶表示体の製法に関する。
More specifically, the present invention relates to a method for manufacturing a liquid crystal display in which a non-linear element is coupled to each display pixel.

近年、液晶表示体の応用が進み、腕時計,電卓
その他各種小型電子機器用の表示体として大量に
用いられている。この液晶表示体の応用分野をさ
らに拡げるためには、表示容量の増大が不可欠で
ある。しかしながら従来の液晶表示体では、電圧
―コントラスト特性の立ち上がりがあまり急峻で
ないため、マルチプレツクス駆動の桁数を上げて
いくと、選択点と非選択点あるいは半選択点に印
加される実効値差が少なくなり、クロストークを
生じるという欠点を有し、液晶組成物及び液晶表
示体の構造等に改良を加えても、数十桁のマルチ
プレツクス駆動が限界であつた。そこで液晶表示
体の表示容量を増すために、スイツチング素子を
液晶表示体に組合せたアクテイブストリクス型の
液晶表示体が考えられ、アモルフアスシリコンや
ポリシリコンによるTFTやダイオード、あるい
は酸化亜鉛等を用いたバリスタなど、種々のアプ
ローチがなされている。
In recent years, the application of liquid crystal displays has progressed, and they are now being used in large quantities as displays for wristwatches, calculators, and various other small electronic devices. In order to further expand the field of application of this liquid crystal display, it is essential to increase the display capacity. However, in conventional liquid crystal displays, the rise in voltage-contrast characteristics is not very steep, so as the number of digits in multiplex drive is increased, the difference in the effective value applied to the selected point and the non-selected or half-selected point increases. However, even if improvements were made to the liquid crystal composition and the structure of the liquid crystal display, multiplex driving of several tens of orders of magnitude was the limit. Therefore, in order to increase the display capacity of a liquid crystal display, an active strix type liquid crystal display in which a switching element is combined with a liquid crystal display has been considered. Various approaches have been taken, such as baristas.

このようなスイツチング素子として、金属―絶
縁体―金属(MIM)構造の非線型性を応用した
MIM素子を用いることは、素子構成が単純であ
るため素子設計が容易で、製造工程が他の素子に
くらべて簡単であるといつた利点を有している。
As such a switching element, we applied the nonlinearity of metal-insulator-metal (MIM) structure.
The use of MIM elements has the advantage that the element structure is simple, so element design is easy, and the manufacturing process is simpler than other elements.

このMIM素子は、金属―絶縁体界面における
トンネル効果,シヨツトキー効果あるいは絶縁体
中のバルク効果によつて電流が流れると考えら
れ、第1図に示すような非線型の電圧―電流特性
を示す。絶縁体としては、Al,Ta,Nb,Ti,
Si等の酸化物、あるいは窒素等の他元素をドーブ
した前記金属の酸化物、あるいはカルコゲナイド
ガラス等の無機材料、さらには有機物薄膜等も使
用することができる。
It is thought that current flows in this MIM element due to the tunnel effect at the metal-insulator interface, the Schottky effect, or the bulk effect in the insulator, and it exhibits nonlinear voltage-current characteristics as shown in Figure 1. Insulators include Al, Ta, Nb, Ti,
Oxides such as Si, oxides of the metals doped with other elements such as nitrogen, inorganic materials such as chalcogenide glass, and even organic thin films can also be used.

酸化膜を絶縁体として用いた場合、その膜厚で
伝導機構が異なり、50〜100Åではトンネル効果、
100〜1000Åではシヨツトキ効果及びプール・フ
レンケル効果が優位を占めると言われている。本
発明の目的である液晶表示体の組合わせでは、液
晶の駆動方法との兼ね合いからプール・フレンケ
ル効果を示す領域を用いるのが望ましいと思わ
れ、その領域では、前述の電圧―電流特性はプー
ル・フレンケル式 I=KVexp(β√ ……(1) 〔(1)式中、Iは電流,Vは印加電圧,K,β
は電流の流れ易さと非線型性を表わす比例定数で
ある。〕 で表わされる。このMIM素子を組込んだ液晶表
示体を、通常の液晶表示体のマトリクス駆動に用
いられる電圧平均化法によつて駆動すると、
MIM素子の非線型性により実際に液晶に印加さ
れるON/OFF実効値比が、電圧平均化法自体の
ON/OFF実効値比よりも大きくなり、より多桁
のマトリクス駆動が可能となる。
When an oxide film is used as an insulator, the conduction mechanism differs depending on the film thickness, and at 50 to 100 Å, there is a tunnel effect,
It is said that the Schottki effect and the Poole-Frenkel effect are dominant in the range of 100 to 1000 Å. In the combination of liquid crystal displays that is the object of the present invention, it is considered desirable to use a region exhibiting the Poole-Frenkel effect in view of the liquid crystal driving method, and in that region, the voltage-current characteristics described above are・Frenkel formula I=KV exp (β√ ...(1) [In formula (1), I is current, V is applied voltage, K, β
is a proportionality constant that represents the ease of current flow and nonlinearity. ] It is expressed as . When a liquid crystal display incorporating this MIM element is driven by the voltage averaging method used for matrix driving of ordinary liquid crystal displays,
Due to the nonlinearity of the MIM element, the ON/OFF effective value ratio actually applied to the liquid crystal may be affected by the voltage averaging method itself.
It is larger than the ON/OFF effective value ratio, making it possible to drive a matrix with more digits.

MIM素子を液晶表示体と組合せる場合、一画
素分の等価回路は、第2図に示すように、容量分
CMIMと非線型抵抗分RMIMとが並列になつたMIM
素子1と、容量分CLCと抵抗分RLCとが並列になつ
た液晶部分2が直列に接続されていると考えるこ
とができる。そしてこの両端に駆動電圧を印加す
るわけであるが、MIM素子1の容量分CMIMと液
晶2の容量分CLCとの比LLC/CMIMの値によつて、
実際に液晶2に印加される電圧波形が異なつてき
て、計算上も実際上も、容量比CLC/CMIMの値が
大きい方が液晶に印加されるON/OFF電圧比が
大きくなり、駆動可能桁数が大きくなる。
When a MIM element is combined with a liquid crystal display, the equivalent circuit for one pixel is as shown in Figure 2.
MIM in which C MIM and nonlinear resistance component R MIM are connected in parallel
It can be considered that the element 1 and the liquid crystal portion 2, in which the capacitance C LC and the resistance R LC are connected in parallel, are connected in series. Then, a driving voltage is applied across these ends, and depending on the value of the ratio L LC /C MIM of the capacitance C MIM of the MIM element 1 and the capacitance C LC of the liquid crystal 2,
The voltage waveform actually applied to the liquid crystal 2 becomes different, and both in calculation and in practice, the larger the value of the capacitance ratio C LC /C MIM , the larger the ON/OFF voltage ratio applied to the liquid crystal. The number of drivable digits increases.

従来のMIM素子の構成は、第3図に示すよう
にガラス基板3を酸化膜4で被覆し、金属薄膜5
を形成,パターニングした後、その表面に絶縁体
薄膜6を形成する。さらに金属薄膜7を形成して
パターニングし、MIM構造を作る。この場合、
MIM素子の面積は、金属電極5と金属電極7の
交差部分の面積となる。液晶を駆動するには第4
図に示すように、金属電極7と導通がとれるよう
に電極8を形成し、液晶を一定の間隙ではさみ込
んだ対向基板に設けた対向電極との間に電圧を印
加することにより、液晶分子の配列を制御する。
As shown in FIG. 3, the conventional MIM device has a structure in which a glass substrate 3 is covered with an oxide film 4 and a metal thin film 5 is coated on the glass substrate 3.
After forming and patterning, an insulating thin film 6 is formed on the surface. Furthermore, a metal thin film 7 is formed and patterned to create an MIM structure. in this case,
The area of the MIM element is the area of the intersection of metal electrode 5 and metal electrode 7. 4th to drive the liquid crystal
As shown in the figure, an electrode 8 is formed so as to be electrically conductive with the metal electrode 7, and a voltage is applied between the counter electrode provided on the counter substrate sandwiching the liquid crystal with a certain gap. control the array of

この従来の方法では、MIM素子を備えた基板
の製造に、(1)金属薄膜5のパターニング、(2)金属
薄膜7のパターニング及び(3)液晶駆動用の電極8
のパターニングと3回のフオト・リソグラフイー
工程を要し、その製造コストは多大なものであつ
た。
In this conventional method, manufacturing of a substrate equipped with an MIM element involves (1) patterning of the metal thin film 5, (2) patterning of the metal thin film 7, and (3) electrode 8 for driving the liquid crystal.
It required several patterning steps and three photolithography steps, and the manufacturing cost was high.

本発明は、MIM素子の一方の金属電極を形成
する際のフオトエツチング工程で液晶駆動用電極
のパターニングも同時に行なうことによつて、フ
オト・リソグラフイー工程を1工定減らし、コス
トの低下を図るものである。
The present invention reduces the photolithography process by one process and reduces costs by simultaneously patterning the liquid crystal drive electrode during the photoetching process when forming one metal electrode of the MIM element. It is something.

以下、実施例に従つて本発明を説明する。 The present invention will be described below with reference to Examples.

実施例 ソーダガラス基板9上に、スパツタリングによ
つて五酸化タンタル10,酸化インジウム11,
タンタル12の順に薄膜形成する〔第5図a〕。
次に、MIM素子の一方の金属電極及びリード部
となるタンタル部13、及び表示画素と同一形状
のタンタル部14が残るよう、前記タンタル薄膜
12をエツチングする〔第5図b〕。続いてタン
タル13,14をマスクとして用い、酸化インジ
ウム層11をエツチングし、液晶駆動用の透明電
極15をパターニングする〔第5図c〕。
Example Tantalum pentoxide 10, indium oxide 11,
Thin films are formed in the order of tantalum 12 [FIG. 5a].
Next, the tantalum thin film 12 is etched so that the tantalum part 13, which will become one of the metal electrodes and lead parts of the MIM element, and the tantalum part 14, which has the same shape as the display pixel, remain [FIG. 5b]. Subsequently, the indium oxide layer 11 is etched using the tantalum 13 and 14 as a mask, and the transparent electrode 15 for driving the liquid crystal is patterned (FIG. 5c).

次に、MIM素子の一方の金属電極及びリード
部となるタンタル13の表面のみを陽極酸化し
て、五酸化タンタル16を形成する〔第5図d〕。
この時、リード部のタンタル13のみに通電して
陽極酸化を行なえば、表示画素部のタンタル14
は酸化されないでタンタルのままである。
Next, only the surface of tantalum 13, which will become one metal electrode and lead portion of the MIM element, is anodized to form tantalum pentoxide 16 (FIG. 5d).
At this time, if only the tantalum 13 in the lead part is energized and anodized, the tantalum 13 in the display pixel part
is not oxidized and remains tantalum.

次に、全面にタンタル薄膜をスパツタリング
し、MIM素子のもう一方の金属電極17を形成
する〔第5図e〕。この時、五酸化タンタル16
と透明電極15が完全にエツチングされてしまわ
ないよう、タンタルと五酸化タンタル及び酸化イ
ンジウムとの選択エツチングが可能な方法でエツ
チングを行なう必要があり、例えば、フレオンガ
スによつてプラズマエツチングを行なうことによ
り目的を達成することが出来る。この時点で、
MIM素子が完成すると同時に液晶駆動用の透明
電極15が露出し、液晶表示体の一方の基板が完
成する。この基板に配向処理を施し、同じく配向
処理を施した液晶駆動用の対向電極を持つ対向基
板を組合わせ、液晶を封入することで液晶表示体
が完成する。
Next, a tantalum thin film is sputtered over the entire surface to form the other metal electrode 17 of the MIM element (FIG. 5e). At this time, tantalum pentoxide 16
In order to prevent the transparent electrode 15 from being completely etched, it is necessary to perform etching by a method that allows selective etching of tantalum, tantalum pentoxide, and indium oxide. For example, by performing plasma etching with Freon gas. You can achieve your purpose. at this point
At the same time as the MIM element is completed, the transparent electrode 15 for driving the liquid crystal is exposed, and one substrate of the liquid crystal display is completed. A liquid crystal display is completed by subjecting this substrate to an alignment treatment, combining it with a counter substrate having a counter electrode for driving a liquid crystal, which has also been subjected to an alignment treatment, and filling it with liquid crystal.

以上、実施例を挙げたが、本発明は上記実施例
に限定されるものではなく、例えばMIM素子の
一方の金属電極及び絶縁体材料としては、Ta―
Ta2O5系に限らず、前述のAl,Nb,Ti,Si等と
その酸化物系を用いることが可能であり、さらに
は、MIM素子の電気特性を制御する目的で前記
金属及びその酸化物中に窒素等の他元素をドープ
することも考えられる。例えば、Taに窒素をド
ープすることによつて、Ta膜の比抵抗は上がる
が、電気特性の温度変化を制御することが出来
る。この場合、MIM素子のリード部における金
属部(実施例中のタンタル13に相当)の抵抗値
が高くなるが、下層の透明電極があることにより
リード部全体の抵抗値が低くなり、好都合であ
る。
Although the embodiments have been described above, the present invention is not limited to the above embodiments. For example, as one metal electrode and insulator material of the MIM element, Ta-
It is possible to use not only the Ta 2 O 5 type but also the aforementioned metals and their oxides, such as Al, Nb, Ti, Si, etc., and furthermore, the above metals and their oxides can be used for the purpose of controlling the electrical characteristics of the MIM element. It is also possible to dope other elements such as nitrogen into the material. For example, by doping Ta with nitrogen, the specific resistance of the Ta film increases, but temperature changes in electrical characteristics can be controlled. In this case, the resistance value of the metal part (corresponding to tantalum 13 in the example) in the lead part of the MIM element becomes high, but the presence of the underlying transparent electrode lowers the resistance value of the entire lead part, which is advantageous. .

透明電極に関しても、酸化インジウムに限ら
ず、より比抵抗を下げた酸化スズドープの酸化イ
ンジウム,アンチモンドープの酸化スズ,
NiCr/Au薄膜等、各種の透明導電膜を用いるこ
とが可能である。又、MIM奏子のもう一方の金
属電極については、基本的には導体であつて、透
明導電膜及びMIM素子の絶縁体との選択エツチ
ングが可能な材質ならば何でも良く、前述の金属
をはじめ各種の金属を用いることが可能である。
この選択エツチング性については、金属と酸化物
との選択エツチングとなり、容易に行なうことが
出来る。
Regarding transparent electrodes, we are not limited to indium oxide, but also tin oxide-doped indium oxide, antimony-doped tin oxide, etc., which have lower specific resistance.
Various transparent conductive films such as NiCr/Au thin film can be used. The other metal electrode of the MIM element can be made of any material as long as it is basically a conductor and can be selectively etched with the transparent conductive film and the insulator of the MIM element. metals can be used.
This selective etching is a selective etching of metals and oxides, and can be easily performed.

以上の如く本発明は、透明基板上に透明導電
膜、第1の金属薄膜を沈着する工程、該透明導電
膜及び第1の金属薄膜を表示画素形状、リード部
形状及び第1の金属電極部形状に同時にパターン
化する工程、該パターン化されたリード部及び第
1の金属電極部を酸化し絶縁膜を形成する工程、
第2の金属薄膜を沈着し、該第2金属薄膜を第2
の金属電極部形状にパターン化する工程からなる
ようにしたから、従来3回のフオトリソグラフイ
工程を要したMIM素子を有する表示体の製造工
程が、2回のフオトリソグラフイ工程ですみ、工
程が簡略化され、コストダウンが図れ、かつ製造
欠陥が減少し歩留りが格段と向上することができ
る。
As described above, the present invention includes a step of depositing a transparent conductive film and a first metal thin film on a transparent substrate, and a step of depositing a transparent conductive film and a first metal thin film on a transparent substrate, and a step of depositing the transparent conductive film and the first metal thin film into display pixel shapes, lead part shapes, and first metal electrode parts. a step of simultaneously patterning the patterned lead portion and the first metal electrode portion to form an insulating film;
depositing a second thin metal film;
Since the process of patterning the metal electrode part in the shape of This simplifies the process, reduces costs, reduces manufacturing defects, and significantly improves yield.

更に、第1の金属薄膜からなるリード部には透
明導電膜が積層して形成されており、例えば第1
の金属薄膜に、Taを用いた場合、透明導電膜の
抵抗値をTaと同程度の抵抗値にすることができ
るので、リード部の電気抵抗がより小さくなり、
配線容量が格段と小さくなり、表示画素に効率的
に信号電圧が印加されるという効果を有する。
Further, a transparent conductive film is laminated and formed on the lead portion made of the first metal thin film, for example, the first metal thin film.
When Ta is used as the metal thin film, the resistance value of the transparent conductive film can be made to be about the same as Ta, so the electrical resistance of the lead part becomes smaller.
This has the effect that the wiring capacitance is significantly reduced and the signal voltage is efficiently applied to the display pixels.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、MIM素子の非線型特性を示す。第
2図は、MIM素子と液晶を組合せた場合の等価
回路を示す。第3図は、従来のMIM素子の断面
及び見取図、第4図は、同じく従来のMIM素子
と一画素の配置を示す平面図である。第5図は、
本発明におけるMIM素子及び透明電極の製造工
程を説明する図である。
FIG. 1 shows the nonlinear characteristics of the MIM element. FIG. 2 shows an equivalent circuit when an MIM element and a liquid crystal are combined. FIG. 3 is a cross-sectional view and sketch of a conventional MIM element, and FIG. 4 is a plan view showing the arrangement of a conventional MIM element and one pixel. Figure 5 shows
FIG. 3 is a diagram illustrating the manufacturing process of an MIM element and a transparent electrode in the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 透明基板上に透明導電膜、第1の金属薄膜を
沈着する工程、該透明導電膜及び第1の金属薄膜
を表示画素形状、リード部形状及び第1の金属電
極部形状に同時にパターン化する工程、該パター
ン化されたリード部及び第1の金属電極部を酸化
し絶縁膜を形成する工程、第2の金属薄膜を沈着
し、該第2の金属薄膜を第2の金属電極部形状に
パターン化する工程からなり、第1の金属電極―
絶縁膜―第2の金属電極によりMIM構造の非線
形素子が形成され、該第2の金属電極は該表示画
素と接続されてなることを特徴とする液晶表示体
の製造方法。
1 Step of depositing a transparent conductive film and a first metal thin film on a transparent substrate, and simultaneously patterning the transparent conductive film and the first metal thin film into a display pixel shape, a lead part shape, and a first metal electrode part shape. a step of oxidizing the patterned lead portion and the first metal electrode portion to form an insulating film; depositing a second metal thin film and forming the second metal thin film into a second metal electrode shape; The first metal electrode consists of a patterning process.
A method of manufacturing a liquid crystal display, characterized in that a nonlinear element with an MIM structure is formed by an insulating film-second metal electrode, and the second metal electrode is connected to the display pixel.
JP56090599A 1981-06-12 1981-06-12 Production of liquid crystal display body Granted JPS57205712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56090599A JPS57205712A (en) 1981-06-12 1981-06-12 Production of liquid crystal display body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56090599A JPS57205712A (en) 1981-06-12 1981-06-12 Production of liquid crystal display body

Publications (2)

Publication Number Publication Date
JPS57205712A JPS57205712A (en) 1982-12-16
JPH0210924B2 true JPH0210924B2 (en) 1990-03-12

Family

ID=14002929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56090599A Granted JPS57205712A (en) 1981-06-12 1981-06-12 Production of liquid crystal display body

Country Status (1)

Country Link
JP (1) JPS57205712A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4736229A (en) * 1983-05-11 1988-04-05 Alphasil Incorporated Method of manufacturing flat panel backplanes, display transistors and displays made thereby
TW201343B (en) * 1990-11-21 1993-03-01 Toshiba Co Ltd

Also Published As

Publication number Publication date
JPS57205712A (en) 1982-12-16

Similar Documents

Publication Publication Date Title
EP0460747B1 (en) Methods of fabricating MIM type device arrays and display devices incorporating such arrays
US4413883A (en) Displays controlled by MIM switches of small capacitance
CA1121489A (en) Lcds (liquid crystal displays) controlled by mims (metal-insulator-metal) devices
JP2605382B2 (en) Active matrix substrate manufacturing method
US5236573A (en) Mim devices, their method of fabrication and display devices incorporating such devices
JPH07134315A (en) Display device and its production
US5539549A (en) Active matrix substrate having island electrodes for making ohmic contacts with MIM electrodes and pixel electrodes
JPH0458008B2 (en)
JPH0210924B2 (en)
JP2778746B2 (en) Liquid crystal display device and method of manufacturing electrode substrate
JPS6126071B2 (en)
JPH0326367B2 (en)
JPH0335223A (en) Display device
JP2585465B2 (en) Matrix array substrate
JPH0430004B2 (en)
JP2934674B2 (en) Manufacturing method of electro-optical device
JP3341346B2 (en) Manufacturing method of nonlinear element
GB2244858A (en) MIM type devices for displays
JPH051443B2 (en)
JPS61112126A (en) Liquid crystal display body
JPS61295529A (en) Active matrix liquid crystal display device of thin film two-terminal element type
JPH0566424A (en) Liquid crystal display device
GB2244859A (en) MIM devices and active matrix displays incorporating such devices
JPS6027159A (en) Manufacture of thin film non-linear resistance element
JPS60192917A (en) Matrix type liquid crystal display device and its manufacture