JPS61112126A - Liquid crystal display body - Google Patents

Liquid crystal display body

Info

Publication number
JPS61112126A
JPS61112126A JP59233874A JP23387484A JPS61112126A JP S61112126 A JPS61112126 A JP S61112126A JP 59233874 A JP59233874 A JP 59233874A JP 23387484 A JP23387484 A JP 23387484A JP S61112126 A JPS61112126 A JP S61112126A
Authority
JP
Japan
Prior art keywords
liquid crystal
electrode
island
transparent conductive
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59233874A
Other languages
Japanese (ja)
Inventor
Taketomi Kamikawa
武富 上川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP59233874A priority Critical patent/JPS61112126A/en
Publication of JPS61112126A publication Critical patent/JPS61112126A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To simplify a process for production by forming first a metal on the surface of an insulating substrate which supports a liquid crystal layer, patterning the metal then forming a transparent conductive film thereon by using a chemical vapor deposition method and patterning the film to signal electrodes and picture element electrodes. CONSTITUTION:A tantalum film on the insulating substrate 4 is first formed to 2,000-3,000Angstrom film thickness by a sputtering method. The tantalum film is then patterned by a photolithography method, by which an island-shaped metallic electrode 1 is obtd. The transparent conductive film is formed in succession thereto by using the chemical vapor deposition method. The surface of the electrode 1 is thermally oxidized in this stage and therefore the insulating film of tantalum pentaoxide is formed between the transparent conductive film and the island-shaped metallic electrode of tantalum simultaneously with the formation of the transparent conductive film. The transparent conductive film is finally patterned by using the photolithographic method, by which the signal electrode 2 and picture element electrode 3 are obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、液晶層およびそれを支持する絶縁基板から構
成され複数の画素を有する液晶表示体に関するものであ
り、さらに詳しくは前記絶縁基板の液晶層と接する側の
表面に非線形抵抗素子を構成し、それを用いて液晶の駆
動を制御する機構を有する液晶表示体に関するものであ
る。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a liquid crystal display that is composed of a liquid crystal layer and an insulating substrate that supports it and has a plurality of pixels. The present invention relates to a liquid crystal display having a mechanism in which a nonlinear resistance element is formed on the surface in contact with a liquid crystal layer, and the drive of the liquid crystal is controlled using the nonlinear resistance element.

〔従来の技術〕[Conventional technology]

非線形抵抗素子を用いて液晶の駆動を制御する機構を有
する方式の液晶表示体として従来知られているものには
、M工Mを用いた液晶表示体(SXD  80  DI
GKS’j、P、200)、バリスタを用いた液晶表示
体(Sより8’OD工G1113T、’P、193)、
そして整流方向を逆にして直列あるいは並列に連結した
2個のアモルファスシリコンダイオードを用いた液晶表
示体(、TAPAN  DI3PLAY  ’8!S、
P、416゜SID  84  D工GIC3T、?、
324)などが知られている。
Conventionally known liquid crystal displays that have a mechanism for controlling the drive of liquid crystals using nonlinear resistance elements include a liquid crystal display using M technology (SXD 80 DI).
GKS'j, P, 200), liquid crystal display using varistor (8'OD engineering G1113T, 'P, 193),
A liquid crystal display using two amorphous silicon diodes connected in series or parallel with the rectifying direction reversed (TAPAN DI3PLAY '8!
P, 416°SID 84 D engineering GIC3T,? ,
324) etc. are known.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、以上に述べたような従来の非線形抵抗素子を用
いて液晶の駆動を制御する機構を有する方式の液晶表示
体には、非線形抵抗素子を形成する絶縁基板の基板製造
工程が複雑であるという欠点があった。さらに詳しく述
べると、前記の絶縁基板の基板製造工程では、前記のど
の形式の非線形抵抗素子を用いる場合でも、画素電極の
形成、パターニングを含めて少くとも5回以上のパター
ニング工程が必要である。また、前記の絶縁基板の基板
製造工程において、形成するために独立な工程を必要と
する薄膜の種類の数は、どの形式の非線形抵抗素子を用
いる場合でも、5種類以上である。このように従来例で
は、最低3回のパターニング工程と最低3回の薄膜形成
工程が必要であり、工程が長く複雑であるという問題点
はもちろんのこと製造歩留)が低く製造コストが高いと
いう問題点があった。
However, the above-mentioned conventional liquid crystal display system that uses a nonlinear resistance element to control the driving of the liquid crystal has a complicated substrate manufacturing process for the insulating substrate that forms the nonlinear resistance element. There were drawbacks. More specifically, in the substrate manufacturing process of the insulating substrate, no matter which type of nonlinear resistance element is used, at least five patterning steps are required, including the formation and patterning of the pixel electrode. Further, in the substrate manufacturing process of the insulating substrate described above, the number of types of thin films that require independent steps to form is five or more, regardless of which type of nonlinear resistance element is used. In this way, the conventional method requires at least three patterning processes and at least three thin film formation processes, which not only has the problem of long and complicated processes, but also low manufacturing yields and high manufacturing costs. There was a problem.

本発明は、従来のかかる問題点を解決するものであり、
その目的は、簡便な製造工程を用いて高歩留シかつ低コ
ストで製造できる非線形抵抗素子方式液晶表示体を提供
することである。
The present invention solves these conventional problems,
The purpose is to provide a nonlinear resistive element type liquid crystal display that can be manufactured at high yield and at low cost using a simple manufacturing process.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の液晶表示体は、液晶層およびそれを支持する絶
縁基板から構成され複数の画素を有する液晶表示体にお
いて、絶縁基板の液晶層と接する側の表面は、最初に形
成、パターニングされた金属と、つづいて化学気相成長
法を用いて形成、パターニングされた透明導電膜から構
成され、前記金属は島状の形を有する複数の島状金属電
極に分割され、前記透明導電膜は外部から入力される駆
動信号を伝達する信号1!極と画素電極に分割されてお
り、さらに前記島状金属N極のそれぞれについて、その
一部はひとつの信号電極の一部でおおわれ、また他の一
部はひとつの画素電極の一部でおおわれていることを特
徴とする。
The liquid crystal display of the present invention is composed of a liquid crystal layer and an insulating substrate supporting the liquid crystal layer and has a plurality of pixels. The metal is divided into a plurality of island-shaped metal electrodes, and the transparent conductive film is formed and patterned using a chemical vapor deposition method. Signal 1 that transmits the input drive signal! It is divided into a pole and a pixel electrode, and each of the island-shaped metal N poles is partially covered with a part of one signal electrode, and the other part is covered with a part of one pixel electrode. It is characterized by

〔作用〕[Effect]

本発明の作用を述べると次のとおりである。化学気相成
長法を用いて透明導電膜を形成する場合、透明導電膜が
形成される絶縁基板は必然的に高温と雰凹気ガスにさら
されるので、絶縁基板に既に形成、パターニングされて
いる島状金属電極の表面は熱酸化されることになる。し
たがって、透明導電膜の形成後においては、絶縁基板上
に島状金属電極、熱酸化金属絶縁体、透明導電膜の三層
構造が構成される。この三層構造は従来用いられている
非線形抵抗素子のひとつであるMIMm造と同様であり
、その抵抗特性もM工Mの抵抗特性と類似の非線形性を
もっている。ただし、この三層構造の抵抗特性は電圧印
加方向によって流れる電流量が異なるといういわゆる極
性差現象をもっていて、この点が従来のM工Mの抵抗特
性と異なりている。この現象は、従来のM工Mの一方の
金属が本発明では透明4を膜に置きかわっていることに
帰因している。しかし、外部から入力される駆動信号の
経路を追ってみると、駆動信号は、信号電極の透明導電
膜、島状金属電極、画素電極の透明導電膜をこの順番に
流れるので、前記の三層構造を逆方向に二個直列に連結
した回路を流れることになり、前記の極性現象は打ち消
される。したがって本発明の液晶表示体においては、外
部から入力される駆動信号はM工Mを用いた液晶表示体
の場合とまったく同様に処理されて液晶に印加されるこ
とになる。
The effects of the present invention are as follows. When forming a transparent conductive film using chemical vapor deposition, the insulating substrate on which the transparent conductive film is formed is inevitably exposed to high temperature and atmospheric gas, so it is necessary to use a method that has already been formed and patterned on the insulating substrate. The surface of the island metal electrode will be thermally oxidized. Therefore, after the transparent conductive film is formed, a three-layer structure of the island-shaped metal electrode, the thermally oxidized metal insulator, and the transparent conductive film is formed on the insulating substrate. This three-layer structure is similar to MIM structure, which is one of the conventionally used nonlinear resistance elements, and its resistance characteristics also have nonlinearity similar to those of M structure. However, the resistance characteristics of this three-layer structure have a so-called polarity difference phenomenon in which the amount of current flowing differs depending on the direction of voltage application, and this point differs from the resistance characteristics of conventional M process M. This phenomenon is attributable to the fact that in the present invention, one of the metals in the conventional M process M is replaced with the transparent film 4. However, if we follow the route of the drive signal input from the outside, we can see that the drive signal flows through the transparent conductive film of the signal electrode, the island-shaped metal electrode, and the transparent conductive film of the pixel electrode in this order. The polarity phenomenon described above is canceled out because the current flows through a circuit in which two of the currents are connected in series in opposite directions. Therefore, in the liquid crystal display of the present invention, a drive signal input from the outside is processed and applied to the liquid crystal in exactly the same way as in the case of a liquid crystal display using an M process.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を用いて説明していく。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は、本発明の第1の実施例のひとつの画素部分を
示す図であって、島状金属電極1.信号電極2および画
素電極3から構成されている。
FIG. 1 is a diagram showing one pixel portion of a first embodiment of the present invention, in which an island-like metal electrode 1. It is composed of a signal electrode 2 and a pixel electrode 3.

本実施例では、島状金属電極1と信号電極2が交差する
部分の面積、すなわち信号電極2の島状金属電極1をお
おう部分の面積と島状金属電極1と画素電極3が交差す
る部分の面積、すなわち画素電極3の島状金属電極1を
おおう部分の面積は互いに等しい。第2図は、第1図の
α−α′断面を示す図であり、その1〜5はtIX1図
のそれらとそれぞれ対応し、4は絶縁基板である。本実
施例の製造方法について述べると次のとおりである。最
初、絶縁基板4の上にタンタル膜をスパッタ法を用いて
形成する。タンタル膜の膜厚は2000〜3000Xで
ある。次に、フォトリングラフィ法を用いてタンタル膜
をパターニングして島状金属側1を得る。つづいて、透
明導電膜を化学気相成長法を用いて形成する。この工程
において、島状金属電極1の表面は熱酸化されるので、
透明導電膜の形成と同時に、五酸化タンタルの絶縁膜が
透明導電膜とタンタルの島状金属電極の間に形成される
ことになる。最後に、透明導電膜をフォトリングラフィ
法を用いてパターニングして信号電極2と画素電極5を
得る。以上の工程によりて第1図に示す構造が完成する
。第5図は、第1図あ       )・るいは第2図
に示される構造の電気的等価回路を示す図であり、端子
Aは信号電極、Bは島状金属電極、端子Cは画素にそれ
ぞれ対応する。第5図はA−0間の電気特性が、もしA
−B間の回路定数とB−0間の回路定数がすべて一致す
るならば、対称であることを示している。本実施例では
、島状金属電極と信号電極が交差する部分の面積と島状
金属電極と画素電極が交差する部分の面積が等しいから
、実際にA−B間の回路定数とB−0間の回路定数は一
致しており、したがってA−0間の電気特性は対称であ
って極性差はない。第4図は、本実施例の信号電極と画
素電極間の電圧−電流特性の実測値のグラフを示す図で
ありて、■を電圧、工を電流として横軸はJV 、また
縦軸はlog(工/V)であり、実測特性は、信号1!
極を正、画素電極を負として測定した特性を実線、また
それと極性を反転して測定した特性を点線で示しである
。第4図に示す実測特性は本実施例の信号電極と画素電
極間の電気特性は実際に対称であって極性差がないこと
を示している。一方、第5図は、本実施例の島状金属電
極の信号m極および画素電極と交差している部分以外の
部分の表面熱酸化膜の一部を除去して得られる部分、す
なわち島状金属電極の金属部分と信号電極あるいは画素
電極間の電圧−電流特性の実測値のグラフを示す図であ
りて、横軸はJTlまた縦軸はlog (工/V)であ
り、実測特性は、島状金属電極の金属部分を正、信号電
極あるいは画素電極を負とムて測定した特性を実線、ま
たそれと極性を反転して測定した特性を点線で示しであ
る。第5図に示す実測特性は本実施例の島状金属電極の
金属部分と信号電極あるいは画素電極間の電気特性は非
対称であって極性差が存在することを示している。この
ことから、対称で極性差のない電気特性を得るためには
、島状金属電極、熱酸化金属絶縁体、透明4に膜の三層
構造を逆方向に二個直列に連結した回路を構成すること
が絶対に必要であることが理解できる。ところで、信号
電極と画素電極の間の非線形抵抗特性は、定量的には透
明導電膜の形成に用いる化学気相成長法の条件と透明導
電膜の材料に強く依存する。化学気相成長法の条件につ
いては、大気圧空気雰凹気において、 (α)絶縁基板の予備加熱温度・・・・・・480’C
〜550℃ <b>絶縁基板の予備加熱時間・・・・・・5分〜15
分(C)化学気相成長反応時の温度・・・480℃〜5
50℃ の範囲内で従来のM工Mの非線形抵抗特性と同等あるい
はそれ以上の強い非線形抵抗素子が得られることが実験
的に確認された。また、透明導電膜ノ材料ニついては、
酸化スズおよびアンモンを微絃に添加した酸化スズを用
いて実験をおこなりたが、いずれも良好な非線形抵抗特
性をもつことが示された。
In this embodiment, the area where the island metal electrode 1 and the signal electrode 2 intersect, that is, the area where the signal electrode 2 covers the island metal electrode 1 and the area where the island metal electrode 1 and the pixel electrode 3 intersect. , that is, the area of the portion of the pixel electrode 3 that covers the island-shaped metal electrode 1 is equal to each other. FIG. 2 is a diagram showing the α-α' cross section of FIG. 1, in which 1 to 5 correspond to those in the tIX1 diagram, and 4 is an insulating substrate. The manufacturing method of this example will be described as follows. First, a tantalum film is formed on the insulating substrate 4 using a sputtering method. The thickness of the tantalum film is 2000 to 3000X. Next, the tantalum film is patterned using photolithography to obtain the island-shaped metal side 1. Subsequently, a transparent conductive film is formed using chemical vapor deposition. In this step, the surface of the island metal electrode 1 is thermally oxidized, so
Simultaneously with the formation of the transparent conductive film, an insulating film of tantalum pentoxide is formed between the transparent conductive film and the tantalum island metal electrode. Finally, the transparent conductive film is patterned using photolithography to obtain the signal electrode 2 and the pixel electrode 5. Through the above steps, the structure shown in FIG. 1 is completed. FIG. 5 is a diagram showing an electrical equivalent circuit of the structure shown in FIG. handle. Figure 5 shows that if the electrical characteristics between A and 0 are
If the circuit constants between -B and B-0 all match, it shows that they are symmetrical. In this example, since the area of the intersection between the island metal electrode and the signal electrode is equal to the area of the intersection between the island metal electrode and the pixel electrode, the circuit constant between A and B and the area between B and 0 are actually the same. The circuit constants of are the same, therefore the electrical characteristics between A and 0 are symmetrical and there is no polarity difference. FIG. 4 is a graph showing the measured values of the voltage-current characteristics between the signal electrode and the pixel electrode of this example, where ■ is the voltage and h is the current, the horizontal axis is JV, and the vertical axis is log (Engine/V), and the measured characteristics are signal 1!
The solid line shows the characteristics measured with the polarity being positive and the pixel electrode negative, and the dotted line shows the characteristics measured with the polarity reversed. The measured characteristics shown in FIG. 4 show that the electrical characteristics between the signal electrode and the pixel electrode in this example are actually symmetrical and there is no polarity difference. On the other hand, FIG. 5 shows the part obtained by removing a part of the surface thermal oxide film of the island-shaped metal electrode of this example other than the part where it intersects with the signal m pole and the pixel electrode, that is, the island-shaped metal electrode. It is a graph showing the measured values of the voltage-current characteristics between the metal part of the metal electrode and the signal electrode or the pixel electrode, where the horizontal axis is JTl and the vertical axis is log (k/V), and the measured characteristics are as follows: The solid line shows the characteristics measured with the metal part of the island-like metal electrode being positive and the signal electrode or pixel electrode being negative, and the dotted line shows the characteristics measured with the polarity reversed. The measured characteristics shown in FIG. 5 show that the electrical characteristics between the metal part of the island-shaped metal electrode and the signal electrode or the pixel electrode of this example are asymmetrical and there is a polarity difference. Therefore, in order to obtain electrical characteristics that are symmetrical and have no polarity difference, it is necessary to construct a circuit in which two three-layer structures of an island-like metal electrode, a thermally oxidized metal insulator, and a film on a transparent 4 are connected in series in opposite directions. I understand that it is absolutely necessary to do so. By the way, the nonlinear resistance characteristics between the signal electrode and the pixel electrode quantitatively strongly depend on the conditions of the chemical vapor deposition method used to form the transparent conductive film and the material of the transparent conductive film. The conditions for the chemical vapor deposition method are as follows: (α) Preheating temperature of the insulating substrate: 480'C in an atmospheric pressure air atmosphere
~550℃ <b> Preheating time of insulating substrate...5 minutes ~ 15 minutes
Minutes (C) Temperature during chemical vapor deposition reaction...480℃~5
It has been experimentally confirmed that within a temperature range of 50° C., a strong nonlinear resistance element that is equivalent to or even stronger than the nonlinear resistance characteristics of the conventional M process M can be obtained. Regarding materials for transparent conductive films,
Experiments were conducted using tin oxide and tin oxide with a small amount of ammonium added, and both were shown to have good nonlinear resistance characteristics.

次に、第6図は、本発明の第2の実施例のひとつの画素
部分を示す図でありて、その1〜5は第1図のそれらと
それぞれ対応し、また5は補助金属電極である。第7図
は、第6図の6−b′断面を示す図であり、その1〜3
および5は第4図のそれらとそれぞれ対応し、また4は
絶縁基板である。本実施例の製造工程、工程条件および
各薄膜の材料は第1の実施例のそれらとまったく同様で
あるので、詳しい説明は省略する。本実施例が、第1の
実施例と異なる点は、島状金属電極およびそれと関係す
る画素電極の部分の形状が異なることと信号電極2の下
に補助金属電極5が設けられていることの二点である。
Next, FIG. 6 is a diagram showing one pixel portion of the second embodiment of the present invention, in which 1 to 5 correspond to those in FIG. 1, and 5 is an auxiliary metal electrode. be. FIG. 7 is a cross-sectional view taken along line 6-b' in FIG.
and 5 correspond to those in FIG. 4, respectively, and 4 is an insulating substrate. The manufacturing process, process conditions, and materials for each thin film in this example are completely the same as those in the first example, so detailed explanations will be omitted. This embodiment differs from the first embodiment in that the shape of the island metal electrode and the pixel electrode related thereto is different, and that an auxiliary metal electrode 5 is provided below the signal electrode 2. Two points.

この二点のうち前者は、単なるパターン設計上の問題で
ありて電気的等価回路は第1の実施例のそれとまったく
同様であるから本質的ではない。本質的相異点は、後者
の補助金属電極5の存在である。補助金J4電極5の目
的は、信号電極2のインピーダンスによる外部から入力
される駆動信号の損失を低減させることにある。信号電
極2の材料である透明導電膜は、一般に金属よりもイン
ピーダンスが高いため、どうしても駆動信号の損失を避
けることができない。そこで、インピーダンスの低い補
助金属電極を信号電極と一体として用いることによって
駆動信号の損失の低減をはかるわけである。本実施例に
おける補助金属電極5は、島状金属電極1と同時に形成
、パターニングされて得られる。したがって補助金属電
極を設ける工程は特に付加されていないので、本実施例
の製造工程は第1の実施例のそれとまったく同じであっ
て、何ら複雑化されていない。なお、以上に述べた補助
金属電極の形成方法では、補助金属電極と信号電極の眉
間にも必然的に絶縁膜が形成されて非線形抵抗特性が発
生するが、補助金属電極と信号電極の接触面積は島状金
属電極と信号電極の交差する部分の面積あるいは島状金
属電極と画素電極の交差する部分の面積にくらべて非常
に大きいため、低抵抗領域における非線形抵抗特性であ
って、駆動の上で何ら問題にならない。
Of these two points, the former is simply a pattern design problem and is not essential since the electrical equivalent circuit is exactly the same as that of the first embodiment. The essential difference is the presence of the latter auxiliary metal electrode 5. The purpose of the auxiliary J4 electrode 5 is to reduce the loss of the drive signal input from the outside due to the impedance of the signal electrode 2. Since the transparent conductive film that is the material of the signal electrode 2 generally has higher impedance than metal, loss of the drive signal cannot be avoided. Therefore, the drive signal loss is reduced by using an auxiliary metal electrode with low impedance integrally with the signal electrode. The auxiliary metal electrode 5 in this example is obtained by being formed and patterned simultaneously with the island-shaped metal electrode 1. Therefore, the process of providing the auxiliary metal electrode is not particularly added, so the manufacturing process of this embodiment is exactly the same as that of the first embodiment, and is not complicated in any way. In addition, in the method for forming the auxiliary metal electrode described above, an insulating film is inevitably formed between the eyebrows of the auxiliary metal electrode and the signal electrode, resulting in nonlinear resistance characteristics, but the contact area between the auxiliary metal electrode and the signal electrode is very large compared to the area where the island metal electrode and the signal electrode intersect or the area where the island metal electrode and the pixel electrode intersect. There's no problem with that.

〔発明の効果〕〔Effect of the invention〕

以上、実施例において詳しく説明してきたように、本発
明によれば、液晶層を支持する絶縁基板の表面に最初に
金属を形成、パターニングし、つづいて化学気相成長法
を用いて透明導電膜を形成し、信号電極と画素電極にパ
ターニングするという工程を用いて、絶縁基板上に金属
、該金属の表面熱酸化絶縁膜、透明導電膜の三層構造か
らなる非線形抵抗素子の逆方向二個直列系を形成するこ
とにより、従来の非線形抵抗素子方式液晶表示体の表示
特性と同−Wあるいはそれ以上の表示特性をもち、しか
も薄膜の形成およびパターニング工程が、従来必要であ
りた最低三回よりも少い二回ですむという簡便な製造工
程で製造できる非線形抵抗素子方式の液晶表示体を提供
することができる。したがって、本発明を低コストでし
かも高い表示特性を要求される分野、たとえば画像表示
やキャラクタ−表示の分野に用いられる液晶表示体に応
用すれば、特にその効果は大きい。
As described above in detail in the Examples, according to the present invention, a metal is first formed and patterned on the surface of an insulating substrate that supports a liquid crystal layer, and then a transparent conductive film is formed using chemical vapor deposition. By using the process of forming and patterning into signal electrodes and pixel electrodes, two nonlinear resistance elements having a three-layer structure of a metal, a thermally oxidized insulating film on the surface of the metal, and a transparent conductive film are formed on an insulating substrate in opposite directions. By forming a series system, it has display characteristics that are the same as or better than those of conventional nonlinear resistance element type liquid crystal displays, and the thin film formation and patterning process can be performed at least three times, which was previously required. It is possible to provide a nonlinear resistive element type liquid crystal display that can be manufactured using a simple manufacturing process that requires fewer steps than the above. Therefore, if the present invention is applied to a liquid crystal display used in fields that require high display characteristics at low cost, such as image display and character display, the effect will be particularly great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の第1の実施例のひとつの画素部分を
示す図。 第2図は、第1図のα−α′断面を示す図。 第3図は、第1図あるいは第2図に示される構造の電気
的等価回路を示す図。 第4図は、信号電極と画素電極間の電圧−電流特性の実
測値のグラフを示す図。 第5図は、島状金属電極の金属部分と信号電極あるいは
画素電極間の電圧−電流特性の実測値のグラフを示す図
。 第6図は、本発明の第2の実施例のひとつの画素部分を
示す図。 第7図は、第6図のb−b’断面を示す図。 1・・・・・・島状金属電極 2・・・・・・信号電極 3・・・・・・画素電極 4・・・・・・絶fjk基板 5・・・・・・補助金属電極 以  上
FIG. 1 is a diagram showing one pixel portion of a first embodiment of the present invention. FIG. 2 is a diagram showing the α-α' cross section of FIG. 1. FIG. 3 is a diagram showing an electrical equivalent circuit of the structure shown in FIG. 1 or FIG. 2. FIG. 4 is a diagram showing a graph of actually measured values of voltage-current characteristics between a signal electrode and a pixel electrode. FIG. 5 is a graph showing actual measured values of voltage-current characteristics between the metal part of the island-like metal electrode and the signal electrode or pixel electrode. FIG. 6 is a diagram showing one pixel portion of the second embodiment of the present invention. FIG. 7 is a diagram showing the bb' cross section of FIG. 6. 1...Insular metal electrode 2...Signal electrode 3...Pixel electrode 4...Absolute fjk substrate 5...Auxiliary metal electrode Up

Claims (7)

【特許請求の範囲】[Claims] (1)液晶層およびそれを支持する絶縁基板から構成さ
れた複数の画素を有する液晶表示体において、絶縁基板
の液晶層と接する側の表面は、最初に形成、パターニン
グされた金属と、つづいて化学気相成長法を用いて形成
、パターニングされた透明導電膜から構成され、前記金
属は島状の形を有する複数の島状金属電極に分割され、
前記透明導電膜は外部から入力される駆動信号を伝達す
る信号電極と画素電極に分割されており、さらに前記島
状金属電極のそれぞれについて、その一部はひとつの信
号電極の一部でおおわれ、また他の一部はひとつの画素
電極の一部でおおわれていることを特徴とする液晶表示
体。
(1) In a liquid crystal display having a plurality of pixels composed of a liquid crystal layer and an insulating substrate that supports it, the surface of the insulating substrate in contact with the liquid crystal layer is first formed and patterned with metal, and then It is composed of a transparent conductive film formed and patterned using a chemical vapor deposition method, and the metal is divided into a plurality of island-like metal electrodes having an island-like shape,
The transparent conductive film is divided into a signal electrode that transmits a drive signal input from the outside and a pixel electrode, and each of the island-shaped metal electrodes is partially covered with a part of one signal electrode, A liquid crystal display characterized in that the other part is covered with a part of one pixel electrode.
(2)それぞれの島状金属電極について、信号電極の該
島状金属電極をおおう部分の面積と画素電極の該島状金
属電極をおおう部分の面積が等しいことを特徴とする特
許請求の範囲第1項記載の液晶表示体。
(2) For each island-shaped metal electrode, the area of the portion of the signal electrode that covers the island-shaped metal electrode is equal to the area of the portion of the pixel electrode that covers the island-shaped metal electrode. The liquid crystal display according to item 1.
(3)信号電極の下には島状金属電極と同時に形成、パ
ターニングされ、島状金属電極から分割された補助金属
電極が設けられていることを特徴とする特許請求の範囲
第1項あるいは第2項記載の液晶表示体。
(3) Below the signal electrode, there is provided an auxiliary metal electrode that is formed and patterned at the same time as the island-shaped metal electrode and is divided from the island-shaped metal electrode. The liquid crystal display according to item 2.
(4)絶縁基板の液晶層と接する側の表面上に最初に形
成、パターニングされる金属はタンタルであることを特
徴とする特許請求の範囲第1項、第2項あるいは第3項
記載の液晶表示体。
(4) The liquid crystal according to claim 1, 2 or 3, wherein the metal first formed and patterned on the surface of the insulating substrate in contact with the liquid crystal layer is tantalum. Display body.
(5)透明導電膜は酸化スズであることを特徴とする特
許請求の範囲第1項、第2項、第3項あるいは第4項記
載の液晶表示体。
(5) The liquid crystal display according to claim 1, 2, 3, or 4, wherein the transparent conductive film is made of tin oxide.
(6)透明導電膜は微量のアンチモンを添加した酸化ス
ズであることを特徴とする特許請求の範囲第1項、第2
項、第3項あるいは第4項記載の液晶表示体。
(6) Claims 1 and 2, characterized in that the transparent conductive film is tin oxide added with a trace amount of antimony.
3. The liquid crystal display according to item 3, item 4, or item 4.
(7)化学気相成長法による透明導電膜の形成条件とし
ては、大気圧空気雰囲気中で温度は450℃〜600℃
であり、形成直前の3〜20分間は金属が形成、パター
ニングされた絶縁基板を前記温度で予備加熱することを
特徴とする特許請求の範囲第1項、第2項、第3項、第
4項、第5項あるいは第6項記載の液晶表示体。
(7) The conditions for forming a transparent conductive film by chemical vapor deposition are as follows: temperature is 450°C to 600°C in an air atmosphere at atmospheric pressure.
Claims 1, 2, 3, and 4 are characterized in that the insulating substrate on which the metal is formed and patterned is preheated at the temperature for 3 to 20 minutes immediately before the formation. 5. The liquid crystal display according to item 5 or 6.
JP59233874A 1984-11-06 1984-11-06 Liquid crystal display body Pending JPS61112126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59233874A JPS61112126A (en) 1984-11-06 1984-11-06 Liquid crystal display body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59233874A JPS61112126A (en) 1984-11-06 1984-11-06 Liquid crystal display body

Publications (1)

Publication Number Publication Date
JPS61112126A true JPS61112126A (en) 1986-05-30

Family

ID=16961920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59233874A Pending JPS61112126A (en) 1984-11-06 1984-11-06 Liquid crystal display body

Country Status (1)

Country Link
JP (1) JPS61112126A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02171725A (en) * 1988-12-26 1990-07-03 Toshiba Corp Liquid crystal display device
US6512556B1 (en) * 1994-07-14 2003-01-28 Citizen Watch Co., Ltd. Liquid crystal display and method of manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55161273A (en) * 1979-05-30 1980-12-15 Northern Telecom Ltd Liquid crystal display unit and producing same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55161273A (en) * 1979-05-30 1980-12-15 Northern Telecom Ltd Liquid crystal display unit and producing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02171725A (en) * 1988-12-26 1990-07-03 Toshiba Corp Liquid crystal display device
US6512556B1 (en) * 1994-07-14 2003-01-28 Citizen Watch Co., Ltd. Liquid crystal display and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JPH02156226A (en) Liquid crystal display element
JPS61112126A (en) Liquid crystal display body
US5539549A (en) Active matrix substrate having island electrodes for making ohmic contacts with MIM electrodes and pixel electrodes
US4723837A (en) Metal-insulating film-metal diode
US5119217A (en) Active matrix substrate for liquid crystal device
JPH01270027A (en) Liquid crystal display device
US4701997A (en) Method of making photo-electric converting elements
JPS6269238A (en) Liquid crystal display device
JPH0345930A (en) Two-terminal type nonlinear element
JPH0210924B2 (en)
JPS6221126A (en) Liquid crystal display device
JP3341346B2 (en) Manufacturing method of nonlinear element
JPS5842027A (en) Production for liquid crystal display device
JPH01271728A (en) Liquid crystal display device
JP2795898B2 (en) Method for manufacturing MSI type nonlinear switching element
JPH0326367B2 (en)
JPH02168236A (en) Manufacture of active matrix substrate
JPH0430004B2 (en)
JPH0345932A (en) Production of active matrix liquid crystal display panel
JPH0349274A (en) Two-terminal type non-linear element
JPH0462050B2 (en)
JPH04195026A (en) Active matrix element
JPS63259619A (en) Production of liquid crystal display device
JPH04263223A (en) Production of liquid crystal display device
JPS60192917A (en) Matrix type liquid crystal display device and its manufacture