JPS5842027A - Production for liquid crystal display device - Google Patents
Production for liquid crystal display deviceInfo
- Publication number
- JPS5842027A JPS5842027A JP56139549A JP13954981A JPS5842027A JP S5842027 A JPS5842027 A JP S5842027A JP 56139549 A JP56139549 A JP 56139549A JP 13954981 A JP13954981 A JP 13954981A JP S5842027 A JPS5842027 A JP S5842027A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- crystal display
- layer
- display device
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004973 liquid crystal related substance Substances 0.000 title claims description 38
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 238000000034 method Methods 0.000 claims description 18
- 239000002184 metal Substances 0.000 claims description 13
- 229910052751 metal Inorganic materials 0.000 claims description 13
- 239000010408 film Substances 0.000 claims description 10
- 239000010409 thin film Substances 0.000 claims description 9
- 239000010931 gold Substances 0.000 claims description 5
- 239000012212 insulator Substances 0.000 claims description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims description 2
- 238000004140 cleaning Methods 0.000 claims 2
- 238000000059 patterning Methods 0.000 claims 2
- 241000270666 Testudines Species 0.000 claims 1
- 230000000694 effects Effects 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- 238000012935 Averaging Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 238000003487 electrochemical reaction Methods 0.000 description 2
- 238000000855 fermentation Methods 0.000 description 2
- 230000004151 fermentation Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000005297 pyrex Substances 0.000 description 2
- 239000005361 soda-lime glass Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 239000010407 anodic oxide Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000005387 chalcogenide glass Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 150000002344 gold compounds Chemical class 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 230000005529 poole-frenkel effect Effects 0.000 description 1
- 239000013014 purified material Substances 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
- G02F1/1365—Active matrix addressed cells in which the switching element is a two-electrode device
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
- G02F1/13624—Active matrix addressed cells having more than one switching element per pixel
Landscapes
- Physics & Mathematics (AREA)
- Liquid Crystal (AREA)
- Nonlinear Science (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本実#!AFi液晶を用い大表示装置の製造方法に関す
る。さらに詳しくFi液晶表示パネルに非耐型素子を組
合せ表示特性t−改良したマトリクス型液晶表示−置の
製造方法に関する。[Detailed description of the invention] Real #! The present invention relates to a method of manufacturing a large display device using AFi liquid crystal. More specifically, the present invention relates to a method for manufacturing a matrix type liquid crystal display device which combines an Fi liquid crystal display panel with non-resistant elements and has improved display characteristics.
近年、液晶表示装置の応用が進み腕時計、電卓その他の
小型電子機器用の表示装置として大量に用いられている
。In recent years, the application of liquid crystal display devices has progressed, and they are now being used in large quantities as display devices for wristwatches, calculators, and other small electronic devices.
この液晶表示装置の応用分野をさらに拡げるために表示
容量の増大が必要であるが従来の液晶表示装置では電圧
−コントラスト特性の立上りがあまり急峻でない穴めマ
ルチブレックス駆動の桁数を上げていくと1選択点と非
選択点あるい#′iヰ選択に印加される実効値にあまり
差が無くなりクロストークを生じるため数10桁の多桁
駆動が限界であるという欠点を有していた。そこで液晶
表示装置の表示容量を増すために非線型素子と液晶表示
装置を組合せたアクティブマトリクス型の装置が考えら
れ、アモルファスシリコンやポリシリコンによるTPT
やダイオード、るるいは酸化亜鉛等を用いたバリスタな
ど種々のアプローチがなされている。In order to further expand the field of application of this liquid crystal display device, it is necessary to increase the display capacity, but in conventional liquid crystal display devices, the rise of the voltage-contrast characteristic is not very steep. Since there is not much difference between the effective values applied to one selected point and the non-selected point or the #'i-selected point, resulting in crosstalk, there is a drawback that multi-digit driving of several tens of digits is the limit. Therefore, in order to increase the display capacity of a liquid crystal display device, an active matrix type device that combines a nonlinear element and a liquid crystal display device has been considered, and TPT using amorphous silicon or polysilicon is considered.
Various approaches have been taken, such as varistors using diodes, lubrication, zinc oxide, etc.
属(Metax−xr+5u1at*r−Meta1略
してMIM)構造を有する非線型素子(以下MIM素子
と呼ぶ)は素子構成が単純であるために製造工程が比較
的簡単なこと、素子設計が与易であるといった利点を有
している。このMIM素子はトンネル効果、ショットキ
効果あるいはプール・フレンケル効果によって電流が流
れ#i1〜に示すように非線型な電圧−電流特性を示す
、絶縁体とし−CはAX、Ta。Nonlinear elements (hereinafter referred to as MIM elements) having a (Metax-xr+5u1at*r-Meta1) structure (hereinafter referred to as MIM elements) have a simple element configuration, so the manufacturing process is relatively simple, and the element design is easy. It has certain advantages. This MIM element is an insulator in which a current flows due to the tunnel effect, Schottky effect, or Poole-Frenkel effect and exhibits nonlinear voltage-current characteristics as shown in #i1~, where C is AX and Ta.
Nb、 Ti、 81 等の浄化物ちるいは窒素tド
ープした前記金−の際化物あるいはカルコゲナイドガラ
ス等の無機材料、さらKFi有機物薄膜等も菅用するこ
とができる。Purified materials such as Nb, Ti, 81, etc., inorganic materials such as nitrogen-doped gold compounds or chalcogenide glass, and organic thin films such as KFi can also be used.
前配金@酸化物f:MxM素子の絶縁体として用いた場
合、その膜厚で伝導機構が異なり50〜100Aではト
ンネル効果、100〜1000 Aで嬬シ舊ットキ効果
及びフール・フレンケル効果が優位管占めると言われて
いる。本発明の目的でめる液晶表示装置とMIM素子の
組合せでは、液晶の駆動方法との兼ね合いからプール・
7レンケル効果を示す曽域を利用するのが望ましいと思
われ。Pre-deposited @Oxide f: When used as an insulator for MxM devices, the conduction mechanism varies depending on the film thickness, with tunneling effect being dominant at 50-100 A, and Tsumashitke effect and Fuhr-Frenkel effect being dominant at 100-1000 A. It is said to be occupied. In the combination of a liquid crystal display device and an MIM element for the purpose of the present invention, the pool and
7 It seems desirable to use the so-area that exhibits the Lenkel effect.
その領域では前述の電圧−電R%性はプール・フレンケ
ル式
%式%(11
このMIM素子を組込んだ液晶表示装置を、通常の液晶
表示装置のマトリクス駆動に用いられている電圧平均化
法で駆動すると、MzMz子の非線型性によって実際V
C@晶に印加されゐ0N101’ν実効値比が電圧平均
化法自体のOMlo P F 実効値比よりも大きく
なり、より多桁のマトリクス駆動が可能となる。しかし
ながら、M工MX子t−液晶表示装置と組合せた場合、
一画素分の等価回路はMl図に示すように容量分OMI
Mと非線型抵抗分RMIMとが並列になったMIM素子
1と、容量分CLOと抵抗分RLOとが並列になった液
晶部分2が直列に接続されていると考えることが出来る
。In that region, the voltage-electricity R% characteristic described above is expressed by the Poole-Frenkel formula (11). When driven by MzMz, the actual V
The effective value ratio of 10N101'ν applied to the C@crystal becomes larger than the effective value ratio of OMlo P F of the voltage averaging method itself, and more multi-digit matrix driving becomes possible. However, when combined with a liquid crystal display device,
The equivalent circuit for one pixel is OMI for the capacitance as shown in the Ml diagram.
It can be considered that an MIM element 1 in which M and a nonlinear resistance component RMIM are connected in parallel, and a liquid crystal part 2 in which a capacitance component CLO and a resistance component RLO are connected in parallel are connected in series.
しかしながら、このMl、M素子は印加される電圧の極
性によって電圧−1tfIL%性に差が生じ、その差t
−完全に無くすことけ非常に困難でろる。。However, in these Ml and M elements, a difference occurs in the voltage -1tfIL% property depending on the polarity of the applied voltage, and the difference t
-It would be extremely difficult to eliminate it completely. .
このように極性差を持つMlり素子を液晶表示装置に組
み合せる場合には゛、例えば第3図に示すような電圧−
電流特性を持つM工M累子t’s晶表示装置に組合せて
%バイアスの電圧平均化法で駆動L7’を時、 M I
Mt4子〕電圧−wLfIl、′#性のtyg差の為
に実際に液晶部分に印加これる電圧波形は極性差を持ち
(#I3図A部分と3部分)、液晶部分には対称な交番
波形ではなく、[fltでバイアスされ 5 −
た交番波形を印加し九場合と同様な波形を印加すると、
とになる。When combining Ml elements with polarity differences in a liquid crystal display device, for example, the voltage -
When driving L7' with a voltage averaging method of % bias in combination with an M-electronic crystal display device having current characteristics, M I
Mt4] Voltage - wLfIl, 'Due to the tyg difference in #, the voltage waveform actually applied to the liquid crystal part has a polarity difference (part A and part 3 in #I3 diagram), and the liquid crystal part has a symmetrical alternating waveform. Instead, if we apply an alternating waveform biased with [flt 5 - and apply the same waveform as in the 9 case,
It becomes.
液晶t−[ff駆動すると液晶自体の電気化学反応や液
晶中に含まれる不純物の電気化学反応が増長され、液晶
表示装置としての寿命を著しく短かくして好ましくない
。Driving the liquid crystal t-[ff increases the electrochemical reaction of the liquid crystal itself and the electrochemical reactions of impurities contained in the liquid crystal, which is undesirable because it significantly shortens the life of the liquid crystal display device.
本発明はこのような欠点を除去するために、輩!M 素
子2個を、電圧−W流特性の極性差を互いに打消す方向
に並列接続して液晶表示装置と組合せたもので6為。The present invention aims to eliminate these drawbacks. Two M elements are connected in parallel in a direction that cancels out the polarity difference in voltage-W current characteristics, and combined with a liquid crystal display device.
以下実施例に従って説明する。A description will be given below according to examples.
実施例1
パイレックスガラス基板40上tζ工TO(工n203
+8nO1) の透明導電膜を形成し、フォトエツチ
ングしてall電極41とす4(14IO(A))。Example 1 Pyrex glass substrate 40
A transparent conductive film of +8nO1) was formed and photoetched to form all electrodes 41 and 4 (14IO(A)).
次にその上KTaTa全膜管スパッタリング成し第4図
(B)斜線部に示す形状にパターニングした後、α口I
wtチ クエン際水溶液中で陽極醸化し表面に糸化膜を
形成する。Next, KTaTa full-film tube sputtering was performed on top of it and patterned into the shape shown in the shaded area in Fig. 4(B).
Anodic fermentation is performed in an aqueous solution of wt nitrogen to form a filamentous film on the surface.
次に、この陽極際化膜とTa薄膜の不用部を76−
オドエツチングしてM工MX子形成部42a、42b及
びリード部45とする。次に空気中250℃1嗜間の熱
処理を施す5名らにOr−ムU薄膜を蒸着したフォトエ
ツチングしてM工MX子44a。Next, the unnecessary portions of the anode exposed film and the Ta thin film are etched by 76° to form the M/MX element forming portions 42a, 42b and the lead portions 45. Next, 5 people carried out heat treatment in air at 250°C for 1 minute to photo-etch the Orum U thin film deposited on the MX element 44a.
44b及びリード部45′を形成する0M工M素子形成
部のMIM木子44a、44b、fi素電極41及びリ
ード部45.45’の位置関係を第5図に示す。FIG. 5 shows the positional relationship between the MIM elements 44a and 44b of the OM element forming part forming the OM element 44b and the lead part 45', the fi element electrode 41, and the lead parts 45 and 45'.
このようにして作ったMIM%子側基板40とスト2イ
ブ状透明−極を設けた対向基板に、ポリイミド樹脂を塗
布、焼成し綿布でラビングすることにより液晶の配向処
理を施す0両基板牧面で液晶分子が約90° ねじれる
様に組合わせ5〜20μmの間隙を保たせて接着し液晶
を封入する0両基板の外側に2枚の偏向板を、個元軸が
液晶分子の配向軸に合うように接着して液晶表示装置と
する。The MIM% slave side substrate 40 and the opposite substrate provided with the strip-shaped transparent poles thus made are coated with polyimide resin, fired, and rubbed with a cotton cloth to perform liquid crystal alignment treatment. Two deflection plates are placed on the outside of both substrates, and the individual axis is the orientation axis of the liquid crystal molecules. A liquid crystal display device is made by gluing it to fit the screen.
実施f12
実施例1と同様に透明基板6D上に画素電極61’ft
形成り、 T a薄膜スパッタリング後第6図(A)
K示すような形状にパターニングし陽極醸化を打なう、
。Implementation f12 Similar to Example 1, a pixel electrode 61'ft is placed on the transparent substrate 6D.
Figure 6 (A) after formation and Ta thin film sputtering.
Pattern it into the shape shown in K and perform anodic fermentation.
.
次にM工M素子形成11i62a、62bをフォトレジ
ストで保饅し、不用部をフォトエツチングしリード部6
5を形成する。〔第6図(B)→(C)コすると第6図
(C)で太実線で示す部分64は側面圧一層目Taが露
出する。この時、側面のエツチング形状にテーパーがつ
くようにエツチングするのが望ましい。Next, protect the M element forming parts 11i62a and 62b with photoresist, and photo-etch the unnecessary parts to form the lead part 6.
form 5. [FIG. 6(B)→(C)] The side pressure first layer Ta is exposed in a portion 64 indicated by a thick solid line in FIG. 6(C). At this time, it is desirable to perform etching so that the etched shape of the side surface is tapered.
次に二層目の金属である0r−Au薄膜を蒸着し、一層
目Taのリード部65の側面のTa露出s64を覆うよ
うに二層目金属の0r−Au薄膜t7オトエツチングし
てリード部65及びMIM素子66a、66bf形成す
る〔第6図(D) ) @第6図(D)の一点鎖線部の
断面を第7図に示す。Next, an Or-Au thin film that is the second layer metal is vapor-deposited, and the Or-Au thin film t7 that is the second layer metal is etched so as to cover the exposed Ta s64 on the side surface of the lead portion 65 of the first layer Ta. 65 and MIM elements 66a and 66bf are formed (FIG. 6(D)). FIG. 7 shows a cross section taken along the dashed-dotted line in FIG. 6(D).
仁のような構造にすることにより、一層目金属によるリ
ード部と二層目金属によるリード部の電気的接続がとれ
材質及び膜厚に起因するMIM素子66a、66bへの
リード部65.64の配線抵抗の違いを除去することが
出来、2個のM工M素子を逆方向に並列接続した時の電
圧−を流特性の極性差金最小限度に出来る。By making the structure similar to that of a wire, the electrical connection between the lead part made of the first layer metal and the lead part made of the second layer metal can be achieved. Differences in wiring resistance can be eliminated, and when two M elements are connected in parallel in opposite directions, the polarity difference in current characteristics can be minimized.
以上実施例について説明し良が本発明は上記実施例に限
定されるものではない。Although the embodiments have been described above, the present invention is not limited to the above embodiments.
例えば基板に関してはパイレックスガラスのみでなく、
平面度・コスト等管考慮°した場合ソーダライムガラス
が有利でるる、ソーダライムガラス基板を用いる場合に
はアルカリ成分の溶出を防ぐためのパンシベーション膜
が必費となる。For example, when it comes to substrates, we use not only Pyrex glass, but also
When considering flatness, cost, etc., soda lime glass is advantageous; however, when using a soda lime glass substrate, a pansivation film is required to prevent elution of alkaline components.
又1MXM素子の材質に関してもTaに限らずM。Also, the material of the 1MXM element is not limited to Ta but M.
Wb、Ti、Mo、Hf等各種の**16るいは前記金
属KN、C,H等の他元素をドープした金輌を一層目盆
属電極どして用い、それら−一目金鵬の陽極酸化膜を絶
縁膜として用いることが可能である。さらKMIM素子
の対向電極としては基本的に#i導体なら何でも良く、
例えば前記一層目金属と同材質のものを用いたり、Ni
、 Or、Cu。Gold doped with various **16 or other elements such as Wb, Ti, Mo, Hf, etc. or other elements such as the metals KN, C, H, etc. is used as the first layer electrode, and these - Ichimoku Kinho's anodic oxide film. can be used as an insulating film. Furthermore, as the counter electrode of the KMIM element, basically any #i conductor can be used.
For example, using the same material as the first layer metal, or using Ni
, Or, Cu.
Auあるいはそれらの合金を用いることも可能でるる。It is also possible to use Au or an alloy thereof.
液晶表示方式に関しても本発明はツイステイツ 9−
ドネ!チック方式で述べであるが他の方式、例えば液晶
(ホスト)中に二色性色素(ゲスト)t−混入し九ゲス
トホスト方式や液晶分子の動的散乱効果を用い九方式(
D8M)を用いることも可能であり、液晶の配向方法も
各方式で通常用いられている方法を用いることができる
。Regarding the liquid crystal display method, the present invention is also applicable to Twisted States 9-Done! Although the tick method is described above, there are other methods, such as the nine-guest-host method in which a dichroic dye (guest) is mixed into the liquid crystal (host), and the nine-guest method (using the dynamic scattering effect of liquid crystal molecules).
D8M) can also be used, and the liquid crystal alignment method can be any method commonly used in each method.
又、MIM累子や画素電極の形状は電気的な特性Kii
影響しないため例えば第81kK示すように画素電極8
1t−多角形KLM工M素子82t−隣り合う画素電極
のすき間に設けることにより前記実施IPI110るい
は2のような不自然な画素電極形状を避けることも可能
でらる。Also, the shape of the MIM resistor and pixel electrode depends on the electrical characteristics.
For example, as shown in No. 81kK, the pixel electrode 8
1t-Polygonal KLM M element 82t-By providing a gap between adjacent pixel electrodes, it is possible to avoid an unnatural pixel electrode shape as in the above embodiment IPI 110 or 2.
以上説明したような構成にすることにより2個のMIM
票子を逆方向に並列接続した液晶表示値at得ることが
出来る。この場合の液晶表示装置の等価回路は第9WJ
のようにみなすことが出来る。By configuring as explained above, two MIM
A liquid crystal display value at can be obtained by connecting the tags in parallel in opposite directions. The equivalent circuit of the liquid crystal display device in this case is the 9th WJ
It can be regarded as
M工M素子ft2個接続する方法に、ilt釜列の曲に
直列に′Wl続する方法がめる0M工M素子t−2個逆
方向Kw列接続することによっても電圧−[[特性の特
性差金打消すことが出来るが、その場合第一 10−
101に示すようにM工M素子1個の時の電圧−電fl
L特性(a、b)K対しCにプロットされるような電圧
−電流特性となる。一方、本発明による並列接続のMI
M素子1i: (14’Lプロツト嘔れる電圧−wL流
特性となり直列接続の場合にくらぺ傾き[(1)式中の
プール・フレンケル定数:βに相当する〕が大きい。M
工M素子と液晶表示装置を組合せfC*合にはM工y素
子の非縁型性を利用してスイッチング素子として用いて
いると考えることが出来、前記のβは大きい方がより効
果的で扁いチューティ比のマルチルックス駆動が可能と
なるため、M工゛M素子2個を並列接続する方が望まし
いと言える。In addition to the method of connecting two M elements ft, there is also a method of connecting two 0 M elements t in series with the curve of the ILT column. It can be canceled out, but in that case, as shown in Part 1 10-101, the voltage for one M element - voltage fl
L characteristics (a, b) The voltage-current characteristics are plotted as C versus K. On the other hand, MI of parallel connection according to the present invention
M element 1i: (14'L plot has a voltage-wL current characteristic, and when connected in series, the slope [corresponding to Poole-Frenkel constant: β in equation (1)] is large.
In the case of combining the M element and the liquid crystal display device, it can be considered that the non-edge type nature of the M element is used as a switching element, and the larger β is, the more effective it is. It can be said that it is more desirable to connect two M elements in parallel since it is possible to perform multi-lux driving with a narrow tutee ratio.
以上本発明によってV工M素子1個を液晶表示装置に組
合せる場合にくらべ長寿命の液晶表示装置11−W易に
−18にとが出来る。As described above, according to the present invention, it is possible to easily obtain a liquid crystal display device 11-W with a longer life than when one V-type M element is combined with a liquid crystal display device.
WA1図#iM X M素子の電圧−電流特性を示す。
第2図はM工M素子を液晶表示fl置に組合せた場合の
一画素分の等価回路である。
第一3図uMIM素子と液晶表示装置を組合せ電圧平均
化法で駆動した時の波形を示す。
第4図は本発明実施例1の2個逆並列接続のM工M素子
の製造工程を説明すゐ因である。
第5図は本発明実施例1の2個逆並列接続のM工M素子
部の見取図でるる。
NA6図、第7図は本発明実施例2における2個逆並列
のMXM素子及びリード部の製造工程を説明する図とそ
の断面図である。
第8図は画素電極の形状を変えた他の実施例である。
第9図は本発明による2個逆並列のMIM素手を液晶表
示装&に組合せた場合の等価回路で′める。
第10図けMIM素子1個、2個逆直列接続ならびに2
個逆並列接続した場合の電圧−電流特性を示す。
以 上
出願人 株式会社 第二精工台
代理人 弁理士 最 上 務
第1図
第2図
第3図 −
第8図
第9図
第10図Figure WA1 shows the voltage-current characteristics of #iM x M element. FIG. 2 shows an equivalent circuit for one pixel when M elements are combined in a liquid crystal display fl position. Figure 13 shows waveforms when a uMIM element and a liquid crystal display device are combined and driven by the voltage averaging method. FIG. 4 is for explaining the manufacturing process of two anti-parallel connected M elements according to the first embodiment of the present invention. FIG. 5 is a schematic diagram of the M element part of two antiparallel connected M elements according to Embodiment 1 of the present invention. FIG. NA6 and FIG. 7 are diagrams and cross-sectional views illustrating the manufacturing process of two antiparallel MXM elements and lead parts in Example 2 of the present invention. FIG. 8 shows another embodiment in which the shape of the pixel electrode is changed. FIG. 9 shows an equivalent circuit when two anti-parallel MIM elements according to the present invention are combined with a liquid crystal display device. Figure 10: 1 MIM element, 2 MIM elements connected in reverse series, and 2
This shows the voltage-current characteristics when connected in reverse parallel. Applicant Daini Seikodai Co., Ltd. Agent Patent Attorney Mogami Figure 1 Figure 2 Figure 3 - Figure 8 Figure 9 Figure 10
Claims (2)
嬌−絶縁体−金礪(M@4a1−4naulator−
Metal略してMIM)構造を有する非Iw型素子(
以下、MIM素子と呼ぶ)管結合した液晶表示装置の製
造方法において、画素亀・極の形成、一層目金属薄膜の
形成・パターニング及びその表面の陽極浄化、該一層目
金属薄膜及び陽極浄化膜の不用部の除去、熱処理、二層
目@偽薄膜の形成及びパターニングの各工程によって二
個のM工M素子がその電圧−電流特性の極性差を互いに
打消し合う方向に並列接続され、さらに一画素KI列接
続された構造にすることt−特徴とする液晶表示装置の
製造方法。(1) A plurality of display pixels t-south, each of which has an insulator (M@4a1-4naulator-
A non-Iw type element (Metal (abbreviated as MIM)) having a structure
In the manufacturing method of a tube-bonded liquid crystal display device (hereinafter referred to as an MIM device), the method includes forming a pixel turtle/pole, forming and patterning a first layer metal thin film, and anodic cleaning the surface of the first layer metal thin film and anode cleaning film. Through the steps of removing unnecessary parts, heat treatment, forming the second layer@pseudo-thin film, and patterning, the two M elements are connected in parallel in a direction that cancels out the polarity difference in their voltage-current characteristics. A method of manufacturing a liquid crystal display device characterized by having a structure in which pixels KI are connected.
が陽極酸化膜で側面に該一層目金鴫が露出する構造とし
二層目金楓が該−′鳩目金−の露出部′を覆うことKよ
り、一層目金属によるM工M素子へのリード部と二層目
金属によるM工M3子へのリード部が互いに電気的導通
を保つような構造にしたことを特徴とする特許請求の範
囲第1項記載の液晶表示装置の製造方法。(2) The lead part of the first layer of metal to the MIM element has a structure in which the upper surface is an anodized film and the first layer of gold is exposed on the side, and the second layer of metal is covered with the exposed part of the eyelet. From K, the patent claim is characterized in that the lead part of the first metal layer to the M element of the M process and the lead part of the second metal layer to the M part of the M process maintain electrical continuity with each other. A method for manufacturing a liquid crystal display device according to scope 1.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56139549A JPS5842027A (en) | 1981-09-04 | 1981-09-04 | Production for liquid crystal display device |
FR8200421A FR2505070B1 (en) | 1981-01-16 | 1982-01-13 | NON-LINEAR DEVICE FOR A LIQUID CRYSTAL DISPLAY PANEL AND METHOD FOR MANUFACTURING SUCH A DISPLAY PANEL |
GB8201180A GB2091468B (en) | 1981-01-16 | 1982-01-15 | Matrix liquid crystal display device and method of manufacturing the same |
US06/339,526 US4523811A (en) | 1981-01-16 | 1982-01-15 | Liquid crystal display matrix including a non-linear device |
DE19823201122 DE3201122A1 (en) | 1981-01-16 | 1982-01-15 | NON-LINEAR RESISTANCE AND METHOD FOR PRODUCING SUCH A MATRIX FK DISPLAY PANEL USING THIS |
FR8208447A FR2503904A1 (en) | 1981-01-16 | 1982-05-14 | METHOD FOR MANUFACTURING LIQUID CRYSTAL DISPLAY DEVICE |
FR8208446A FR2503903A1 (en) | 1981-01-16 | 1982-05-14 | METHOD FOR MANUFACTURING A MATRIX-TYPE LIQUID CRYSTAL DISPLAY PANEL WITH DEVICES HAVING A METAL-INSULATION-METAL STRUCTURE |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56139549A JPS5842027A (en) | 1981-09-04 | 1981-09-04 | Production for liquid crystal display device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5842027A true JPS5842027A (en) | 1983-03-11 |
Family
ID=15247843
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56139549A Pending JPS5842027A (en) | 1981-01-16 | 1981-09-04 | Production for liquid crystal display device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5842027A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62156943A (en) * | 1985-12-28 | 1987-07-11 | 東洋紡績株式会社 | Evaporated-layer built-in type double-layer gas-barriering film or sheet and manufacture thereof |
JPS63278834A (en) * | 1987-05-11 | 1988-11-16 | Oike Ind Co Ltd | Metal-deposited laminated film body for electronic range |
-
1981
- 1981-09-04 JP JP56139549A patent/JPS5842027A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62156943A (en) * | 1985-12-28 | 1987-07-11 | 東洋紡績株式会社 | Evaporated-layer built-in type double-layer gas-barriering film or sheet and manufacture thereof |
JPS63278834A (en) * | 1987-05-11 | 1988-11-16 | Oike Ind Co Ltd | Metal-deposited laminated film body for electronic range |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0588203A (en) | Method of assembling metal-insulator-metal type device array and display, into which such array is incorporated | |
JPH0135352B2 (en) | ||
JPH0677186B2 (en) | Thin film decoder multi-layer liquid crystal display device | |
JPS5842027A (en) | Production for liquid crystal display device | |
JPS599635A (en) | electro-optical device | |
JPS62138834A (en) | Active matrix type liquid crystal display device | |
JPS61193128A (en) | Matrix type display device | |
JPH01270027A (en) | liquid crystal display device | |
JPS6214118A (en) | Electrochromic element | |
JP3222649B2 (en) | Two-terminal nonlinear element | |
JPS59105615A (en) | Liquid crystal display device | |
JPH0326367B2 (en) | ||
JPS61186929A (en) | Liquid crystal display device | |
JPS5852680A (en) | Manufacture of liquid crystal panel substrate | |
JP2590670B2 (en) | Manufacturing method of electro-optical device | |
JPS6037523A (en) | liquid crystal display device | |
JPH02301727A (en) | Liquid crystal display device | |
JPH04114132A (en) | Manufacturing method of liquid crystal display device | |
JPH03237435A (en) | Bidirectional nonlinear resistance element, active matrix liquid crystal panel using bidirectional nonlinear resistance element, and manufacturing method thereof | |
JPH0210924B2 (en) | ||
JPH035072B2 (en) | ||
JPH06130420A (en) | Liquid crystal display device | |
JPS62183579A (en) | Mim switching element | |
JPH02168236A (en) | Manufacture of active matrix substrate | |
JPH07244299A (en) | Liquid crystal display and its production |