JPH0430004B2 - - Google Patents

Info

Publication number
JPH0430004B2
JPH0430004B2 JP56177484A JP17748481A JPH0430004B2 JP H0430004 B2 JPH0430004 B2 JP H0430004B2 JP 56177484 A JP56177484 A JP 56177484A JP 17748481 A JP17748481 A JP 17748481A JP H0430004 B2 JPH0430004 B2 JP H0430004B2
Authority
JP
Japan
Prior art keywords
electrode
liquid crystal
thin film
mim
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56177484A
Other languages
Japanese (ja)
Other versions
JPS5879281A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP56177484A priority Critical patent/JPS5879281A/en
Publication of JPS5879281A publication Critical patent/JPS5879281A/en
Publication of JPH0430004B2 publication Critical patent/JPH0430004B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 [技術分野] 本発明は非線型スイツチング素子を形成して表
示特性を改良したマトリクス型液晶表示装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a matrix type liquid crystal display device in which display characteristics are improved by forming nonlinear switching elements.

[従来技術] 従来、表示装置に用いられる非線型素子として
は、特開昭52−149090や特開昭55−161273におい
て述べられている金属−絶縁体−金属(M=etal−
I=nsulator−M=tal略してMIM)構造を有する非
線型素子以下MIMと呼ぶ)は素子構成が簡単で
あるため、他の非線型素にくらべ製造工程が短か
く素子設計も容易であるといつた利点を有してい
る。
[Prior Art] Conventionally, nonlinear elements used in display devices include metal-insulator-metal (M = etal-
Nonlinear elements with I = nsulator - M = tal (abbreviated as MIM) structure (hereinafter referred to as MIM) have a simple element configuration, so compared to other nonlinear elements, the manufacturing process is shorter and the element design is easier. It has many advantages.

このMIM素子はトンネル効果、シヨツトキ効
果あるいはプール・フレンケル効果などによつて
電流が流れると考えられ第1図に示すように非線
型な電圧−電流特性を示す。
It is thought that current flows through this MIM element due to tunnel effect, Schottky effect, Poole-Frenkel effect, etc., and it exhibits nonlinear voltage-current characteristics as shown in FIG.

絶縁体としてはAl,Ta,Nb,Ti,Si,Mo,
W,Hf等の酸化物、あるいは窒素をドープした
前記金属の酸化物、カルコゲナイドガラス等の無
機材料、さらにはポリイミド樹脂等の有機材料も
使用することができる。
Insulators include Al, Ta, Nb, Ti, Si, Mo,
Oxides such as W and Hf, oxides of the metals doped with nitrogen, inorganic materials such as chalcogenide glass, and even organic materials such as polyimide resin can be used.

前記絶縁膜を金属でサンドイツチすればMIM
構造になり、この金属として前記金属及びNi,
Cr,Auあるいはそれらの合金等を用いることが
できる。
If the insulating film is sandwiched with metal, it becomes MIM.
structure, and this metal includes the metal and Ni,
Cr, Au or an alloy thereof can be used.

MIM素子に電圧を印加した場合、絶縁膜の厚
さによつて伝導機構が異なり50〜100Åではトン
ネル効果、100〜1000Åではシヨツトキ効果及び
プール・フレンケル効果が優位を占めると言われ
ている。本発明の目的である液晶表示装置と
MIM素子の組合せでは液晶の駆動方法との兼ね
合いからプール・フレンケル効果を示す領域を利
用するのが望ましいと思われ、その領域では電圧
−電流特性はプール・フレンケル式 I=KV exp(β√) (1) 〔(1)式中Iは電流、Vは印加電流、k、βはそれ
ぞれ電流の流れ易さと非線型性を表わす比例定数
を示す。〕 で表わされる。
When a voltage is applied to a MIM element, the conduction mechanism differs depending on the thickness of the insulating film, and it is said that the tunnel effect is dominant at 50 to 100 Å, and the Schottki effect and Poole-Frenkel effect are dominant at 100 to 1000 Å. The liquid crystal display device which is the object of the present invention
When combining MIM elements, it is considered desirable to use a region that exhibits the Poole-Frenkel effect in view of the liquid crystal driving method, and in that region, the voltage-current characteristics are expressed by the Poole-Frenkel equation: I=KV exp (β√) (1) [In the formula (1), I is a current, V is an applied current, and k and β are proportionality constants representing ease of current flow and nonlinearity, respectively. ] It is expressed as .

このMIM素子を組込んだ液晶表示装置を、通
常のマトリクス型液晶表示装置の駆動に用いられ
ている電圧平均化法で駆動すると、MIM素子の
非線型性によつて実際に液晶に印加されるON/
OFF実効値比が、電圧平均化法自体のON/OFF
実効値比よりも大きくなり、より多析のマトリク
ス駆動が可能となる。MIM素子を液晶表示装置
と組合せた場合、一画素分の等価回路は第2図に
示すように容量分CMIMと非線型抵抗分RMIM
とが並列になつたMIM素子1と、容量CL0と抵
抗分RLCとが並列になつた液晶部分2が直列に
接続されていると考えることができる。
When a liquid crystal display device incorporating this MIM element is driven using the voltage averaging method used to drive a normal matrix type liquid crystal display device, the nonlinearity of the MIM element causes the voltage actually applied to the liquid crystal to decrease. ON/
The OFF effective value ratio is the ON/OFF of the voltage averaging method itself.
It becomes larger than the effective value ratio, and more efficient matrix driving becomes possible. When an MIM element is combined with a liquid crystal display device, the equivalent circuit for one pixel is as shown in Figure 2: CMIM for capacitance and RMIM for nonlinear resistance.
It can be considered that the MIM element 1 in which the capacitance CL0 and the resistance RLC are connected in parallel are connected in series.

そしてこの両端に電圧を印加するわけであるが
実際に液晶部分2に印加される実効電圧はMIM
素子1の時定数、液晶部分2の時定数及びMIM
素子1の容量分CMIMと液晶部分2の容量分
CLCとの比CLC/CMIMとの組合せで定まり、
液晶部分2の時定数及びCLC/CMIMの値が大
きく、MIM素子1の時定数が適当な値の時実効
電圧は最も大きくなる、もち論、MIM素子1の
非線型性が大きい程マトリクス駆動の桁数は多く
とれるようになる。
A voltage is applied to both ends of this, but the effective voltage actually applied to the liquid crystal part 2 is MIM
Time constant of element 1, time constant of liquid crystal part 2 and MIM
CMIM for the capacitance of element 1 and the capacitance of liquid crystal part 2
The ratio to CLC is determined by the combination of CLC/CMIM,
When the time constant of liquid crystal portion 2 and the value of CLC/CMIM are large, and the time constant of MIM element 1 is an appropriate value, the time effective voltage will be the largest.In theory, the greater the nonlinearity of MIM element 1, the higher the matrix drive. You will be able to get more digits.

ここで従来のMIM素子の構造を説明すると、
例えば第3図及び第4図に示すように、ガラス基
板3を酸化膜4で被覆しエツチストツプとした後
金属薄膜5を形成、所望の形状に金属薄膜5をパ
ターニングした後表面に絶縁体薄膜6を形成す
る。さらに金属薄膜をつけてパターニングし
MIM素子の対向電極7とする。この時MIM素子
の面積は金属電極5と対向電極7が互いに重なり
合う部分の面積となる。液晶表示装置とするには
次に透明導電膜により画素電極8を形成し、表面
に液晶配向層を形成して一定の間隔を保たせた対
向基板でセルとなし、その間隔に液晶を封入し偏
光板を貼り付けてTN液晶表示装置とする。
To explain the structure of a conventional MIM element here,
For example, as shown in FIGS. 3 and 4, a glass substrate 3 is coated with an oxide film 4 to serve as an etch stop, then a metal thin film 5 is formed, and after patterning the metal thin film 5 into a desired shape, an insulating thin film 6 is formed on the surface. form. Furthermore, a thin metal film is applied and patterned.
This is the counter electrode 7 of the MIM element. At this time, the area of the MIM element is the area of the portion where the metal electrode 5 and the counter electrode 7 overlap each other. To make a liquid crystal display device, next, a pixel electrode 8 is formed using a transparent conductive film, a liquid crystal alignment layer is formed on the surface, a counter substrate is formed with a constant distance maintained, and a cell is formed, and a liquid crystal is sealed in the space. Attach a polarizing plate to create a TN liquid crystal display device.

[従来技術における問題点] このような構造のMIM素子を用いてマトリク
ス型液晶表示装置の作ろうとすると、従来マトリ
クス型液晶表示装置では0.3〜0.5mmピツチの画素
寸法が多く使われており、このような寸法の画素
に合せたMIM素子の寸法は3〜6μm角といつた
寸法になる。現状のフオトリングラフ技術ではこ
の3〜6μm角という寸法領域はLSIとVLSIの境
界領域であり、さらにマトリクス型の表示装置と
いうことでその表示部寸法は5〜10cmという大き
さになりかなり面積部分にサブミクロン領域の寸
法を持つ素子を形成する必要が生じかなりの困難
を伴う。またさらに微小寸法の画素を持つマトリ
クス型液晶表示装置を作ろうとする場合には完全
にVLSI用技術を用いなけれざならずコスト上望
ましくない。
[Problems with conventional technology] When trying to make a matrix type liquid crystal display device using an MIM element with such a structure, the pixel size of 0.3 to 0.5 mm is often used in conventional matrix type liquid crystal display devices. The dimensions of an MIM element suitable for pixels of such dimensions are 3 to 6 μm square. In the current photolin graph technology, this 3 to 6 μm square area is the boundary area between LSI and VLSI, and since it is a matrix type display device, the display area is 5 to 10 cm in size, which takes up a considerable area. This necessitates the formation of devices with dimensions in the submicron region, which is accompanied by considerable difficulty. Furthermore, if a matrix type liquid crystal display device having pixels of even smaller dimensions is to be manufactured, VLSI technology must be used completely, which is not desirable in terms of cost.

一方、MIM素子製造時の寸法上の問題の他に
従来のMIM素子の製造方法では完全に対称な素
子を得ることが非常に困難で、絶縁体として用い
る酸化膜の不均一性や金属ー酸化膜界面の不揃い
のために、MIM素子に印加される電圧の極性が
変るとV−I特性が変化するという非対称性を有
しており、このような非対称な特性を持つMIM
素子を通して対称な交番波形で液晶を駆動すると
液晶に非対称な交番波形が印加されるようになり
直流分が残つて液晶表示装置の寿命を著しく損な
う。
On the other hand, in addition to dimensional problems when manufacturing MIM devices, it is extremely difficult to obtain completely symmetrical devices using conventional MIM device manufacturing methods, and there are problems such as non-uniformity of the oxide film used as an insulator, and metal-oxidation problems. Due to the unevenness of the membrane interface, the MIM element has an asymmetry in which the V-I characteristics change when the polarity of the voltage applied to it changes.
If a liquid crystal is driven with a symmetrical alternating waveform through an element, an asymmetrical alternating waveform will be applied to the liquid crystal, and a DC component will remain, significantly shortening the life of the liquid crystal display device.

本発明は上記問題点を克復したものであり、金
属電極の側部を用いて非線型素子を形成すること
によつて、画素に対する素子の容量比を最小とす
ることができかつ2つの非線型素子を直列接続す
ることにより対称な特性を有するスイツチング素
子を形成することができる。
The present invention overcomes the above problems, and by forming a nonlinear element using the side portion of a metal electrode, the capacitance ratio of the element to the pixel can be minimized, and two nonlinear elements can be formed. By connecting the elements in series, a switching element with symmetrical characteristics can be formed.

[実施例] 以下、実施例によつて本発明を説明する。[Example] The present invention will be explained below with reference to Examples.

実施例 1 パイレツクスガラス基板9上にIn2O3,SnO2
ITO(In2O3+SnO2)あるいはNiCr/Au薄膜等の
透明導電膜で画素電極10を形成する。→第5図
a 次に1000〜10000Å厚のタンタル薄膜を形成し
所定の形状にパターニングした後表面を酸化して
リード部及びMIM素子の一方の金属電極11と
絶縁膜12を形成する。→第5図b タンタルのパターニングの際CF4ガスO2ガスを
5〜50%混合してプラズマエツチすることにより
タンタルのテーパーエツチを行なう。
Example 1 In 2 O 3 , SnO 2 ,
The pixel electrode 10 is formed of a transparent conductive film such as ITO (In 2 O 3 +SnO 2 ) or NiCr/Au thin film. →FIG. 5a Next, a tantalum thin film with a thickness of 1000 to 10000 Å is formed and patterned into a predetermined shape, and then the surface is oxidized to form a lead portion and one metal electrode 11 of the MIM element and an insulating film 12. →Figure 5b When patterning tantalum, taper etching of tantalum is performed by plasma etching with a mixture of 5 to 50% CF 4 gas and O 2 gas.

次に全面に1500〜7000Åの酸化亜鉛薄膜層13
及び約1〜2μm厚のポジ型レジスト層14を形成
する。→第5図c この状態でパイレツクスガラス基板9の裏面、
即ちポジ型レジスト層14の反対側から露光を行
なうとリード部及びMIM素子の一方の金属電極
11のタンタル部がマスクの役割を果し、現像す
ると第5図dの様にレジスト14が残る。
Next, a zinc oxide thin film layer 13 with a thickness of 1500 to 7000 Å is applied to the entire surface.
Then, a positive resist layer 14 having a thickness of about 1 to 2 μm is formed. →Figure 5c In this state, the back side of the Pyrex glass substrate 9,
That is, when exposure is performed from the opposite side of the positive resist layer 14, the lead portion and the tantalum portion of the metal electrode 11 of one of the MIM elements serve as a mask, and when developed, the resist 14 remains as shown in FIG. 5d.

次に酸化亜鉛薄膜層13をエツチングし第5図
eの様にする。この時、酸化亜鉛薄膜層13のエ
ツチング条件をコントロールしてサイドエツチ量
を1000〜10000Åとする。
Next, the zinc oxide thin film layer 13 is etched as shown in FIG. 5e. At this time, the etching conditions for the zinc oxide thin film layer 13 are controlled so that the side etching amount is 1000 to 10000 Å.

次に1000〜10000Åの厚さNiCr/Au薄膜15
を形成する。第5図fこの時、リード部及び
MIM素子の一方の金属電極11と絶縁膜12の
テーパー部におけるステツプカバレツジが良くな
る方法(例えば自公転形基板取付治具を用いて蒸
着したり、スパツタリングを用いたりする)を用
いると良い。
Next, a thin NiCr/Au film 15 with a thickness of 1000 to 10000 Å
form. Figure 5 f At this time, the lead part and
It is preferable to use a method that improves the step coverage at the tapered portion of the metal electrode 11 and the insulating film 12 of the MIM element (for example, vapor deposition using a rotation-revolution type substrate mounting jig or sputtering).

次に酸化亜鉛薄報層13の残留部を除去するこ
とにより、その上層のレジスト14及びNiCr/
Au薄膜15も除去して第5図gの状態にする。
Next, by removing the remaining part of the zinc oxide thin layer 13, the upper resist 14 and NiCr/
The Au thin film 15 is also removed to form the state shown in FIG. 5g.

次に、NiCr/Au薄膜15の不要部分を除去し
てMIM素子を完成させると共に画電極10を露
出させる。→第5図h この時、完成したMIM素子及び画素電極10
の平面配置図の一例を示すと第6図の様になる。
Next, unnecessary portions of the NiCr/Au thin film 15 are removed to complete the MIM device and expose the picture electrode 10. →Figure 5h At this time, the completed MIM element and pixel electrode 10
An example of the planar layout of is shown in FIG. 6.

MIM素子の面積は絶縁膜12のテーパー部の
長さと対光電極のNiCr/Au薄膜15の幅で決定
される。
The area of the MIM element is determined by the length of the tapered portion of the insulating film 12 and the width of the NiCr/Au thin film 15 of the counter electrode.

即ち、第5図hに示す如く、非線型素子として
の第1のMIM素子は、金属配線電極11の側部
と絶縁膜12と接続電極である薄膜15の一方の
側部とで形成され、第2のMIM素子は、接続電
極15の他方の側部と絶縁膜12′と島状金属電
極12′とで形成される。
That is, as shown in FIG. 5h, the first MIM element as a non-linear element is formed by the side part of the metal wiring electrode 11, the insulating film 12, and one side part of the thin film 15 which is the connection electrode, The second MIM element is formed by the other side of the connection electrode 15, an insulating film 12', and an island-shaped metal electrode 12'.

第7図は、本実施例のMIM素子を有する液晶
表示装置の断面図を示す。
FIG. 7 shows a cross-sectional view of a liquid crystal display device having the MIM element of this example.

このMIM素子及び画素電極15を形成したパ
イレツクスガラス基板9表面にポリイミド樹脂を
塗布、焼成し綿布でラビングすることによつて液
晶配向処理を施す。別にストライブ状の透明電極
16を形成し、ポリイミド樹脂とラビングによつ
て液晶配向処理を施したパイレツクスガラス対向
基板17を用意し、5〜20μmの間隔を保つて接
着し液晶18を封入する。この時、液晶分子が上
下の基板9,17間で焼く90度ねじられる様ラビ
ングしておく。この液晶セルの外側に偏光軸を液
晶の配向状態に合わせて偏光板19,20を配置
しTN型液晶表示装置とする。
Polyimide resin is applied to the surface of the Pyrex glass substrate 9 on which the MIM element and the pixel electrode 15 are formed, and a liquid crystal alignment process is performed by baking and rubbing with cotton cloth. Separately, a Pyrex glass counter substrate 17 on which a striped transparent electrode 16 is formed and subjected to a liquid crystal alignment treatment by rubbing with a polyimide resin is prepared, and the liquid crystal 18 is sealed by adhering the substrate at a distance of 5 to 20 μm. . At this time, rubbing is performed so that the liquid crystal molecules are twisted 90 degrees between the upper and lower substrates 9 and 17. Polarizing plates 19 and 20 are arranged outside this liquid crystal cell so that the polarization axis matches the alignment state of the liquid crystal to form a TN type liquid crystal display device.

第8図は、非線型スイツチング素子を有するマ
トリクス型液晶表示装置の等価回路図である。即
ち、双方向性ダイオードとして働く2つのMIM
素子の組み合せ81と画素部分の液晶を誘導体と
したコンデンサ82がX方向配線83とY方向配
線84の間に直列接続されている。この1画素の
組合せがX方向及びY方向に所定数だけ繰返さ
れ、X−Yマトリクス状に配列されている。
FIG. 8 is an equivalent circuit diagram of a matrix type liquid crystal display device having non-linear switching elements. i.e. two MIMs acting as bidirectional diodes.
A capacitor 82 whose dielectric is a combination of elements 81 and the liquid crystal of the pixel portion is connected in series between an X-direction wiring 83 and a Y-direction wiring 84. This combination of one pixel is repeated a predetermined number of times in the X direction and the Y direction, and is arranged in an XY matrix.

実施例 2 実施例1とほぼ同様の製造工程であるが酸化膜
の形成工程において、第9図aに示す様にガラス
基板21上に画素電極22とリード部及びMIM
素子の一方の金属電極23を形成した後、全面に
Taをスパツタリングした後400〜500℃の酸素中
で熱酸化を行なつて全面に酸化膜24を形成す
る。さらに実施例1と同様の工程でMIM素子を
完成させ第9図bの様にする。
Example 2 The manufacturing process is almost the same as Example 1, but in the oxide film formation process, the pixel electrode 22, the lead part, and the MIM are placed on the glass substrate 21 as shown in FIG. 9a.
After forming the metal electrode 23 on one side of the element,
After sputtering Ta, thermal oxidation is performed in oxygen at 400 to 500° C. to form an oxide film 24 on the entire surface. Furthermore, the MIM device is completed by the same process as in Example 1, as shown in FIG. 9b.

以上実施例について説明を行なつたが本発明は
上記実施例に限定されるものではなく、例えば基
板に関してはパイレツクスガラスに限らずソーダ
ライムガラス等、通常の液晶表示装置に用いられ
る材料あら何でも用いることができる。
Although the embodiments have been described above, the present invention is not limited to the above embodiments. For example, the substrate may be made of any material used in ordinary liquid crystal display devices, such as not only Pyrex glass but also soda lime glass. Can be used.

又、絶縁膜の形成法についても金属薄膜を形成
させてから、陽極酸化、熱酸化、プラズマ酸化あ
るいは酸素イオンの打込み等各種の酸化法を用い
ることができる。又、酸化物や有機材料を直接ス
パツタリング、CVD、プラズマCVD、電子ビー
ム蒸着、誘導加熱蒸着、イオンビーム蒸着、塗布
法等各種の膜形成技術を用いることができる。
Further, regarding the method of forming the insulating film, after forming a metal thin film, various oxidation methods such as anodic oxidation, thermal oxidation, plasma oxidation, or implantation of oxygen ions can be used. Further, various film forming techniques such as direct sputtering, CVD, plasma CVD, electron beam evaporation, induction heating evaporation, ion beam evaporation, and coating methods can be used for oxides and organic materials.

さらに、実施中で述べた酸化亜鉛薄膜について
も、露光時に光線を透過し、フオトレジスト、絶
縁体膜及び基板材質と選択的にエツチングが可能
な材質ならば何を用いても良く、酸化マグネシウ
ム、酸化カルシウム、窒化ケイ素等の無機材料や
ポリイミド樹脂等の有機材料を用いることも可能
である。実施例1に従つて第5図におけるリード
部及びMIM素子の一方の電極11となるタルタ
ルを、3000Å、絶縁膜12として上記タルタルを
陽極酸化して300Åの酸化膜を形成した。酸化亜
鉛薄膜13のサイドエツチ量を3000Åとして2500
ÅのNiCr/Au薄膜をつけてMIM素子を形成し
た。NiCr/Au薄膜によるMIM素子の他の一方
の電極15の幅を30μmとし300μm角の画素電極
と組合せマトリクス型液晶表示装置を作り、Vth
=1.5Vrms,Vsat=2.0Vrmsの液晶を封入し、1/
5バイアス、512分の1デユーテイの電圧平均化法
で駆動を行なつたところ、12〜15VP−Pの電圧
範囲でON:90%以上、OFF:10%以下のコント
ラストが得られた。
Furthermore, regarding the zinc oxide thin film mentioned in the implementation, any material may be used as long as it transmits light during exposure and can be selectively etched with the photoresist, insulator film, and substrate material, such as magnesium oxide, It is also possible to use inorganic materials such as calcium oxide and silicon nitride, and organic materials such as polyimide resin. According to Example 1, the tartar that will become the lead portion and one electrode 11 of the MIM element in FIG. 2500 assuming that the side etching amount of the zinc oxide thin film 13 is 3000 Å.
A MIM device was formed by attaching a NiCr/Au thin film with a thickness of 1.5 μm. The width of the other electrode 15 of the MIM element made of NiCr/Au thin film is 30 μm, and in combination with a 300 μm square pixel electrode, a matrix type liquid crystal display device is fabricated.
= 1.5Vrms, Vsat = 2.0Vrms liquid crystal is enclosed, 1/
When driving was performed using a voltage averaging method of 5 bias and 1/512 duty, a contrast of ON: 90% or more and OFF: 10% or less was obtained in the voltage range of 12 to 15 VP-P.

[効果] 上述の如く本発明は、一対の基板内に液晶が封
入され、該基板上に配置された画素電極、該画素
電極に隣接して配置されてなる配線電極、該配線
電極と同一金属でなり該画素電極に電気的に接続
されてなる島状金属電極該配線電極及び該島状金
属電極を被覆してなる絶縁薄膜、該配線電極と該
島状金属電極とを絶縁薄膜を介して接続する接続
電極を有し、該配線電極側部と該絶縁薄膜と該接
続電極の一方の側部とにより第1非線型素子部が
形成され、該接続電極の他方の側部と該絶縁薄膜
と該島状金属電極の側部とにより第2非線型素子
部が形成され、該第1非線型素子部と該第2非線
型素子部とは直列に接続されてなるようにしたか
ら、非線型素子の形成面積を最小とすることがで
きるので、従来に比し画素電極に比べ極めて微小
な非線型スイツチ素子を2つ直列に形成できる。
従つて、画素数が増大し、画素面積が小さくなつ
ても、十分なON/OFF比のコントラストが得ら
れ交流信号に対して対称な応答を得ることができ
る効果を有する。
[Effects] As described above, the present invention includes a pair of substrates in which liquid crystal is sealed, a pixel electrode disposed on the substrates, a wiring electrode disposed adjacent to the pixel electrode, and a wiring electrode made of the same metal as the wiring electrode. an island-like metal electrode electrically connected to the pixel electrode, an insulating thin film covering the wiring electrode and the island-like metal electrode, and connecting the wiring electrode and the island-like metal electrode via the insulating thin film. A first non-linear element part is formed by a side part of the wiring electrode, the insulating thin film, and one side part of the connecting electrode, and the other side part of the connecting electrode and the insulating thin film are connected to each other. A second non-linear element part is formed by the side part of the island-shaped metal electrode, and the first non-linear element part and the second non-linear element part are connected in series. Since the formation area of the linear element can be minimized, two non-linear switch elements, which are much smaller than the pixel electrode, can be formed in series compared to the conventional art.
Therefore, even if the number of pixels increases and the pixel area decreases, it is possible to obtain sufficient ON/OFF ratio contrast and obtain a symmetrical response to AC signals.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はMIM素子の非線型特性を示す。第2
図はMIM素子と液晶を組合せた場合の等価回路
を示す。第3図は従来のMIM素子の断面及び見
取り図、第4図は同じく従来のMIM素子と一画
素の配置を示す平面図である。第5図は本発明に
おけるMIM素子の製造工程の説明図である。第
6図は本発明実施例1による液晶表示装置一画素
分の平面図であり第7図はその液晶表示装置の断
面図である。第8図は実施例1のマトリクス型液
晶表示装置の等価回路である。第9図は実施例2
における製造工程を説明する図である。
Figure 1 shows the nonlinear characteristics of the MIM element. Second
The figure shows an equivalent circuit when a MIM element and liquid crystal are combined. FIG. 3 is a cross-sectional view and a sketch of a conventional MIM element, and FIG. 4 is a plan view showing the arrangement of a conventional MIM element and one pixel. FIG. 5 is an explanatory diagram of the manufacturing process of the MIM element according to the present invention. FIG. 6 is a plan view of one pixel of a liquid crystal display device according to Example 1 of the present invention, and FIG. 7 is a sectional view of the liquid crystal display device. FIG. 8 is an equivalent circuit of the matrix type liquid crystal display device of Example 1. Figure 9 shows Example 2
It is a figure explaining the manufacturing process in.

Claims (1)

【特許請求の範囲】[Claims] 1 一対の基板内に液晶が封入され、該基板上に
配置された画素電極、該画素電極に隣接して配置
されてなる配線電極、該配線電極と同一金属でな
り該画素電極に電気的に接続されてなる島状金属
電極、該配線電極及び該島状電極を被覆してなる
絶縁薄膜、該配線電極と該島状金属電極とを絶縁
薄膜を介して接続する接続電極を有し、該配線電
極側部と該絶縁薄膜と該接続電極の一方の側部と
により第1非線型素子部が形成され、該接続電極
の他方の側部と該絶縁薄膜と該島状金属電極の側
部とにより第2非線型素子部が形成され、該第1
非線型素子部と該第2非線素子部とは直列に接続
されてなることを特徴とする液晶表示電極。
1 A liquid crystal is sealed in a pair of substrates, a pixel electrode placed on the substrate, a wiring electrode placed adjacent to the pixel electrode, and a wiring electrode made of the same metal as the wiring electrode and electrically connected to the pixel electrode. It has an island-shaped metal electrode connected to it, an insulating thin film covering the wiring electrode and the island-shaped metal electrode, a connection electrode connecting the wiring electrode and the island-shaped metal electrode via an insulating thin film, and A first non-linear element part is formed by the wiring electrode side part, the insulating thin film, and one side part of the connection electrode, and the other side part of the connection electrode, the insulating thin film, and the side part of the island metal electrode. A second nonlinear element portion is formed by the first
A liquid crystal display electrode characterized in that a non-linear element portion and the second non-linear element portion are connected in series.
JP56177484A 1981-11-05 1981-11-05 Matrix type liquid crystal display Granted JPS5879281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56177484A JPS5879281A (en) 1981-11-05 1981-11-05 Matrix type liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56177484A JPS5879281A (en) 1981-11-05 1981-11-05 Matrix type liquid crystal display

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP62088319A Division JPS63113425A (en) 1987-04-10 1987-04-10 Matrix type liquid crystal display device

Publications (2)

Publication Number Publication Date
JPS5879281A JPS5879281A (en) 1983-05-13
JPH0430004B2 true JPH0430004B2 (en) 1992-05-20

Family

ID=16031708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56177484A Granted JPS5879281A (en) 1981-11-05 1981-11-05 Matrix type liquid crystal display

Country Status (1)

Country Link
JP (1) JPS5879281A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55161273A (en) * 1979-05-30 1980-12-15 Northern Telecom Ltd Liquid crystal display unit and producing same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55161273A (en) * 1979-05-30 1980-12-15 Northern Telecom Ltd Liquid crystal display unit and producing same

Also Published As

Publication number Publication date
JPS5879281A (en) 1983-05-13

Similar Documents

Publication Publication Date Title
US4523811A (en) Liquid crystal display matrix including a non-linear device
US5234541A (en) Methods of fabricating mim type device arrays and display devices incorporating such arrays
JPH01217325A (en) Liquid crystal display device
EP0395161B1 (en) Mim devices, their method of fabrication and display devices incorporating such devices
US5539549A (en) Active matrix substrate having island electrodes for making ohmic contacts with MIM electrodes and pixel electrodes
JPH0458008B2 (en)
US5734452A (en) Two-terminal non-linear resistive device and a method for producing the same in which nickel or iron is an impurity in the zinc sulfide layer
US6271050B1 (en) Method of manufacturing thin film diode
JPH0430004B2 (en)
JPS6126071B2 (en)
KR100368849B1 (en) Display
US5856853A (en) Short circuit preventing film of liquid crystal electro-optical device and manufacturing method thereof
JPH0326367B2 (en)
JPH0210924B2 (en)
JPH0574828B2 (en)
JP3052361B2 (en) Active matrix liquid crystal display device and manufacturing method thereof
JPS6262333A (en) Production of thin film two-terminal element type active matrix liquid crystal display device
JP3592411B2 (en) Manufacturing method of thin film diode
JPS6037523A (en) Matrix liquid crystal display device
JPH0462050B2 (en)
JPS5840527A (en) Production of substrate for liquid crystal panel
JPS62253192A (en) Matrix type display unit
JPH035072B2 (en)
JPS62272228A (en) Liquid crystal cell
JPS62253194A (en) Matrix type display unit