JPS63144501A - Thin film nonlinear resistance element - Google Patents

Thin film nonlinear resistance element

Info

Publication number
JPS63144501A
JPS63144501A JP29303986A JP29303986A JPS63144501A JP S63144501 A JPS63144501 A JP S63144501A JP 29303986 A JP29303986 A JP 29303986A JP 29303986 A JP29303986 A JP 29303986A JP S63144501 A JPS63144501 A JP S63144501A
Authority
JP
Japan
Prior art keywords
metal electrode
metal
mim element
mim
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29303986A
Other languages
Japanese (ja)
Inventor
瀬良 司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP29303986A priority Critical patent/JPS63144501A/en
Publication of JPS63144501A publication Critical patent/JPS63144501A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Thermistors And Varistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 技能分立 本発明は、金属−絶縁体−金属構造を有するM I M
(Metal In5ulator Metal)素子
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an M I M having a metal-insulator-metal structure.
(Metal In5ulator Metal) element.

従来挟止 従来のMIM素子は、その非線形抵抗特性を利用して、
液晶表示装置の表示容量を大きくするためのスイッチン
グ素子として用いられている。このMIM素子の絶縁体
としては、大面積にわたって均一な特性を得やすいこと
から、一般に下部金属を陽極酸化することにより形成さ
れている。しかし陽極酸化の原理上、このMIM素子−
個では、電圧の極性が異なると電圧−電流特性が違うと
いう非対称性を有する。非対称性を有すると液晶部に直
流成分が残存することになり、液晶の表示品質を低下さ
せ、また、液晶寿命を短命化させることになるので好ま
しくない。
Conventional clamping Conventional MIM elements utilize their nonlinear resistance characteristics to
It is used as a switching element to increase the display capacity of liquid crystal display devices. The insulator of this MIM element is generally formed by anodic oxidation of the lower metal because it is easy to obtain uniform characteristics over a large area. However, due to the principle of anodic oxidation, this MIM element
Individuals have an asymmetry in that voltage-current characteristics differ when the polarity of the voltage differs. If there is asymmetry, a direct current component will remain in the liquid crystal portion, which will deteriorate the display quality of the liquid crystal and shorten the life of the liquid crystal, which is not preferable.

よって、従来は特開昭60−241022号公報に見ら
れるように1MIM素子を2個逆方向に直列に接続する
ことにより、その非対称性を相殺させていた(第3図)
、第3図で、31は基板、33は第1金肩電極、35は
絶縁体、37は第2金属電極、39はフォトレジストで
絶縁性、41は画素電極である6第3図でA4B方向に
電流を流せば、電流はM−)I→M→I −+ M (
M : Metal、 I : In5ul−ator
)の経路で流れることになり、確かにその非対称性は相
殺される。
Therefore, conventionally, the asymmetry was canceled out by connecting two 1MIM elements in series in opposite directions, as shown in Japanese Patent Application Laid-Open No. 60-241022 (Figure 3).
, In Fig. 3, 31 is a substrate, 33 is a first gold shoulder electrode, 35 is an insulator, 37 is a second metal electrode, 39 is a photoresist for insulation, and 41 is a pixel electrode.6 In Fig. 3, A4B If a current flows in the direction, the current will be M-)I→M→I-+ M (
M: Metal, I: In5ul-ator
), and the asymmetry is certainly offset.

しかし、第3図でも判るように第2金R電極37と絶縁
体35との接触は平面接触である。仮りに単位画素を正
方形とし画素サイズを0.3〜0.5IIIII口とす
ると、静電容量の関係からMIM素子の接触面積は50
μ112以下、好ましくは25μm2以下であることが
要求される。これは、第2金属電極37と絶縁体35と
の接触面を正方形とすると、第3図でC<7μmに相当
する。これは通常のフォトリソグラフィー法では達成困
難であり、また、LSIに用いる精密フォトリソグラフ
ィー技術を用いるとコストが高くなってしまうという問
題があった。
However, as can be seen in FIG. 3, the contact between the second gold R electrode 37 and the insulator 35 is a planar contact. Assuming that the unit pixel is a square and the pixel size is 0.3 to 0.5III, the contact area of the MIM element is 50 mm due to the capacitance.
It is required that the thickness be less than μ112, preferably less than 25 μm2. This corresponds to C<7 μm in FIG. 3, assuming that the contact surface between the second metal electrode 37 and the insulator 35 is square. This is difficult to achieve using normal photolithography, and there is also a problem in that the use of precision photolithography techniques used in LSIs increases costs.

一方、精密なフォトリソグラフィー技術を必要としない
で、MIM素子の金属電極と絶縁体との接触面積を小さ
くする方法として、第4図に示したラテラルMIM素子
が知られている(テレビジョン学会技術報告IPD83
−8.昭和58年12月15日発表)。第4図で、51
は基板、53は下部金属電極、55はMIM素子絶縁体
層、57はポリイミド等の絶縁体、59は下部金属電極
である。
On the other hand, the lateral MIM element shown in Figure 4 is known as a method of reducing the contact area between the metal electrode and the insulator of the MIM element without requiring precise photolithography technology (Television Society of Japan Technology Report IPD83
-8. (Announced on December 15, 1982). In Figure 4, 51
53 is a substrate, 53 is a lower metal electrode, 55 is an MIM element insulator layer, 57 is an insulator such as polyimide, and 59 is a lower metal electrode.

61は画素電極である。この方法は、薄膜の膜厚方向の
長さを調節することが容易なことを利用し、下部金属電
極53の側面をテーパ状にエツチングし、このテーパ状
部を陽極酸化してMIM素子用絶縁体層55とすること
により、この絶縁体層55と上部金屈電pi59との接
触面積を精密フォトリソグラフィー技術なしに小さくす
ることを可能にしている。
61 is a pixel electrode. This method takes advantage of the fact that the length of the thin film in the film thickness direction can be easily adjusted, and etches the side surface of the lower metal electrode 53 into a tapered shape, and then anodizes this tapered part to insulate the MIM element. By forming the body layer 55, it is possible to reduce the contact area between the insulator layer 55 and the upper gold-conductive dielectric layer 59 without using precision photolithography technology.

しかしこの方法は有用であるが、前述のように陽極酸化
で絶縁体層を形成するため、このままではV−1特性が
非対称であるという問題があった。
However, although this method is useful, since the insulating layer is formed by anodic oxidation as described above, there is a problem that the V-1 characteristics are asymmetrical.

2訓U口り枚 本発明は、上述のラテラル素子を2個逆方向に接続しv
−■特性が対称であり、がっ、その製造に精密フォトリ
ソグラフィー技術を必要としないMIM素子を提供する
ものである。
2 Precepts The present invention connects two of the above-mentioned lateral elements in opposite directions.
-■ The present invention provides an MIM element whose characteristics are symmetrical and whose manufacture does not require precision photolithography technology.

3週40」戊 本発明のMIM素子は、上面に第1金属電極の陽極酸化
面積制御用絶縁層が形成され、該絶縁層および第1金属
電極の両側部がテーパ状に斜面を形成し、該テーパ状部
が陽極酸化されてM I M素P用絶縁体層を形成した
第1金属電極層と、該両側部のテーパ状部に形成された
MIM素子用絶縁体層にそれぞれ+’*uする2つの第
2金属電極層とを有することを特徴とする。
3 weeks 40'' The MIM element of the present invention has an insulating layer for controlling the anodic oxidation area of the first metal electrode formed on the upper surface, and both sides of the insulating layer and the first metal electrode form tapered slopes, +'* is applied to the first metal electrode layer in which the tapered portion is anodized to form an insulator layer for MIM element P, and the insulator layer for MIM element formed in the tapered portions on both sides. It is characterized by having two second metal electrode layers.

以下、添付図面に沿って本発明をさらに詳細に説明する
Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.

第1図は本発明のMIM素子を液晶表示素子用基板に用
いた実施例を示す断面図である。基板11上には画素電
極15が形成され、MIM素子21を介して信号線電極
13に接続されている。MIM素子21は、第1金属電
極23の両側のテーパ部を酸化して形成されたMIM素
子用絶縁体層25127と、この絶縁体層25.27に
それぞれ導通する第2金か電極29.31からなってい
る。第1金属電極23の上側には、第1金属電極23の
陽極酸化面積を制御し、第2電極21と3】が導通しな
いようにするための絶縁[33が設けられている。
FIG. 1 is a sectional view showing an embodiment in which the MIM element of the present invention is used as a substrate for a liquid crystal display element. A pixel electrode 15 is formed on the substrate 11 and connected to the signal line electrode 13 via an MIM element 21 . The MIM element 21 includes an MIM element insulator layer 25127 formed by oxidizing the tapered portions on both sides of the first metal electrode 23, and a second gold electrode 29.31 electrically connected to the insulator layer 25.27, respectively. It consists of An insulator [33] is provided above the first metal electrode 23 to control the anodized area of the first metal electrode 23 and to prevent electrical conduction between the second electrodes 21 and 3.

信号線電極13に電圧を印加すると、電流は第2金属電
極29(M)→MIM素子絶縁体層25(1)→第1金
属電極23(M)→MIM素子絶縁体層27(1)→第
2金属電極31(M)→画素電極15と流れ、M−I−
M−I−Mとなって、MIM素子を2個逆方向に直列に
接続したことになる。
When a voltage is applied to the signal line electrode 13, the current flows as follows: second metal electrode 29 (M) → MIM element insulator layer 25 (1) → first metal electrode 23 (M) → MIM element insulator layer 27 (1) → Flow from the second metal electrode 31 (M) to the pixel electrode 15, M-I-
M-IM, which means that two MIM elements are connected in series in opposite directions.

第1図に示した構成では、第2金属電極29゜31とM
IM素子用絶縁体層25.27との接触部がテーパ部を
有するので、接触面積の微小化が容易である。仮りに第
1金属電極の膜厚を5000人にしても、MIM素子用
絶縁体層25.27のテーパ部の長さはせいぜい700
0〜8000人である。よって、接触面積を20μff
+2にしても、幅は25μm(20μm2÷0.8μf
f1)となり、これは現在のフォトリソグラフィー技術
で容易に達成できる。
In the configuration shown in FIG. 1, the second metal electrode 29°31 and M
Since the contact portion with the IM element insulator layer 25, 27 has a tapered portion, it is easy to miniaturize the contact area. Even if the thickness of the first metal electrode is 5000 mm, the length of the tapered portion of the MIM element insulator layer 25.27 is at most 700 mm.
0 to 8,000 people. Therefore, the contact area is 20μff
Even if it is +2, the width is 25 μm (20 μm2 ÷ 0.8 μf
f1), which can be easily achieved using current photolithography technology.

また、本発明ではMIM素子を2個逆方向に直列に接続
することになり、第4図の弓チラル素子で問題となった
V−1特性の非対称性に起因する液晶寿命の短命化とい
った問題が解消される。これはまた、第1金属電極のラ
イン1本に対してテーパ状部を2ケ所もつラテラル構造
を生かすことにもなる。後記の製造方法の説明でも明ら
かになるが、工程数は従来のラテラル素子と同じである
。よって、本発明のMIM素子は、精密フォトリソグラ
フィー技術なしに、工程数を増加することなく作成でき
るので1歩留り向上や特性向上を図る上で著しい効果を
有する。
In addition, in the present invention, two MIM elements are connected in series in opposite directions, which causes problems such as shortening of the life of the liquid crystal due to the asymmetry of the V-1 characteristic, which was a problem with the bow chiral element shown in Fig. 4. is resolved. This also makes use of the lateral structure having two tapered portions for one line of the first metal electrode. As will become clear from the description of the manufacturing method below, the number of steps is the same as that of the conventional lateral element. Therefore, the MIM element of the present invention can be manufactured without using precision photolithography technology and without increasing the number of steps, and has a significant effect in improving yield and characteristics.

本発明のMIM素子は1次の各工程を順次行なうことに
より作成できる。
The MIM device of the present invention can be manufactured by sequentially performing each of the first steps.

(1)基板上に第1金属電極用薄膜および絶縁層用薄膜
を順次形成する工程。
(1) Step of sequentially forming a first metal electrode thin film and an insulating layer thin film on a substrate.

(2) (1)工程で得た積層膜を、パターニングして
、両側がテーパ状となるようにエツチングし第1金属電
極とこの陽極酸化面積を制御するための絶縁層との積層
体を形成する工程。
(2) The laminated film obtained in step (1) is patterned and etched so that both sides are tapered to form a laminated body of the first metal electrode and an insulating layer for controlling the anodized area. The process of doing.

(3)第1金属電極の両側部のテーパ部を陽極酸化し、
MIM素子用絶縁体層を形成する工程。
(3) Anodizing the tapered parts on both sides of the first metal electrode,
Step of forming an insulator layer for MIM element.

(4)両側のテーパ部のMIM素子用絶縁体層にそれぞ
れ接続するように、2つの第2金属電極をパターニング
して形成する工程。
(4) A step of patterning and forming two second metal electrodes so as to be connected to the MIM element insulator layers of the tapered portions on both sides, respectively.

次に液晶表示素子用基板を例にとって、製造方法をより
具体的に説明する。
Next, the manufacturing method will be explained in more detail by taking a substrate for a liquid crystal display element as an example.

まず、基板ll上に第1金属電極用薄膜22および絶縁
層用薄膜32を順次形成する(第2A図)。
First, the first metal electrode thin film 22 and the insulating layer thin film 32 are sequentially formed on the substrate 11 (FIG. 2A).

この積層薄膜を1両側部がテーパ形状になる条件でドラ
イエツチングし、第1金属電極23とこの陽極酸化面積
制御用の絶縁層33との積層体を形成する(第2B図)
、。
This laminated thin film is dry-etched under the condition that one side has a tapered shape to form a laminated body of the first metal electrode 23 and the insulating layer 33 for controlling the anodic oxidation area (FIG. 2B).
,.

第1金属電極23を陽極酸化し、MIM素子用絶縁体層
25.27を形成する(第2C図)。このとき、絶縁層
33が保護膜として働き、テーパ部が選択的に陽極酸化
されるので、テーパ部の長さを規制することにより、第
2金属電極とMIM素子絶縁体層との接触面積を調整で
きる。
The first metal electrode 23 is anodized to form an insulator layer 25, 27 for the MIM element (FIG. 2C). At this time, the insulating layer 33 acts as a protective film and the tapered part is selectively anodized, so by regulating the length of the tapered part, the contact area between the second metal electrode and the MIM element insulating layer can be reduced. Can be adjusted.

IT○などの透明導電材料をスパッタあるいは蒸着など
で薄膜とし、フォトリソグラフィ一工程により透明画素
電極15および信号線電極13を形成する(第1D図)
A transparent conductive material such as IT○ is made into a thin film by sputtering or vapor deposition, and a transparent pixel electrode 15 and a signal line electrode 13 are formed by one step of photolithography (Fig. 1D).
.

第2金属電極用の薄膜を形成し、フォトリソグラフィ一
工程を用いて、透明画素電極15と、MIM素子用絶縁
体層27とが、また、信号線電極13とMIM素子絶縁
体層25とが導通するようにパターニングして、第2金
属電極29.31を形成する(第2E図)。
A thin film for the second metal electrode is formed, and a single photolithography process is used to form the transparent pixel electrode 15 and the MIM element insulator layer 27, as well as the signal line electrode 13 and the MIM element insulator layer 25. The second metal electrodes 29, 31 are formed by patterning to make them conductive (FIG. 2E).

第1金属電極としては、陽極酸化可能な金属、例えばA
Q、Ta、Cr等が用いられる。
As the first metal electrode, a metal that can be anodized, for example, A
Q, Ta, Cr, etc. are used.

第2金属電極としては、Cr、Ni、 NiCr、Au、Ag等が用いられる。As the second metal electrode, Cr, Ni, NiCr, Au, Ag, etc. are used.

絶縁層としては、ポリイミド、A2□0.。The insulating layer is made of polyimide, A2□0. .

Ta2O,、、Cr2O,、S i O,、Sin。Ta2O,, Cr2O,, SiO,, Sin.

TiO□等を用いればよく、膜厚としては1000〜t
oooo人程度が適当である。
TiO□ etc. may be used, and the film thickness is 1000~t.
Approximately oooo people.

叉更豊羞困 本発明のMIM素子は、従来のMIM素子を2個逆方向
に直列に接続したものと比較し、精密フォトリソグラフ
ィー技術を必要とすることなく製造できる。また、従来
のラテラルMIM素子に比較し、工程数を増やすことな
く、V−1特性の非対称性がないMfM素子が作成でき
るので、歩留りの向上や特性の向上を図る上で著しい効
果を有する。
The MIM device of the present invention can be manufactured without requiring precision photolithography technology, compared to a conventional MIM device in which two MIM devices are connected in series in opposite directions. Furthermore, compared to conventional lateral MIM devices, an MfM device with no asymmetry in V-1 characteristics can be produced without increasing the number of steps, which has a significant effect in improving yield and characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のMIM素子の実施例を示す断面図で
ある。 第2A〜第2E図は、本発明のMIM素子の製造方法を
示す説明図である。 第3図および第4図は。従来の構造を示す断面図である
。 11・・・基板    15・・・画素電極21・・・
MIM素子 23・・・第1金属電極25.27・・・
MIM素子用絶縁体層29.31・・・第2金属電極 33・・・絶縁層
FIG. 1 is a sectional view showing an embodiment of the MIM element of the present invention. 2A to 2E are explanatory diagrams showing the method for manufacturing the MIM element of the present invention. Figures 3 and 4 are. FIG. 2 is a sectional view showing a conventional structure. 11... Substrate 15... Pixel electrode 21...
MIM element 23...first metal electrode 25.27...
MIM element insulator layer 29, 31... second metal electrode 33... insulating layer

Claims (1)

【特許請求の範囲】[Claims] 1、金属−絶縁体−金属構造を有する非線形抵抗素子(
以下、MIM素子と呼ぶ)において、上面に第1金属電
極の陽極酸化面積制御用絶縁層が形成され、該絶縁層お
よび第1金属電極の両側部がテーパ状に斜面を形成し、
該テーパ状部が陽極酸化されてMIM素子用絶縁体層を
形成した第1金属電極と、該両側部のテーパ状部に形成
されたMIM素子用絶縁体層にそれぞれ接続する2つの
第2金属電極とを有することを特徴とする薄膜非線形抵
抗素子。
1. Nonlinear resistance element with metal-insulator-metal structure (
(hereinafter referred to as an MIM element), an insulating layer for controlling the anodic oxidation area of the first metal electrode is formed on the upper surface, and both sides of the insulating layer and the first metal electrode form tapered slopes,
A first metal electrode whose tapered portion is anodized to form an MIM element insulating layer, and two second metal electrodes each connected to the MIM element insulating layer formed on the tapered portions on both sides. A thin film nonlinear resistance element characterized by having an electrode.
JP29303986A 1986-12-09 1986-12-09 Thin film nonlinear resistance element Pending JPS63144501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29303986A JPS63144501A (en) 1986-12-09 1986-12-09 Thin film nonlinear resistance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29303986A JPS63144501A (en) 1986-12-09 1986-12-09 Thin film nonlinear resistance element

Publications (1)

Publication Number Publication Date
JPS63144501A true JPS63144501A (en) 1988-06-16

Family

ID=17789697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29303986A Pending JPS63144501A (en) 1986-12-09 1986-12-09 Thin film nonlinear resistance element

Country Status (1)

Country Link
JP (1) JPS63144501A (en)

Similar Documents

Publication Publication Date Title
US5485294A (en) Process for producing MIM elements by electrolytic polymerization
JPS63144501A (en) Thin film nonlinear resistance element
KR950002288B1 (en) Matrix array substrate
JP3076483B2 (en) Method for manufacturing metal wiring board and method for manufacturing thin film diode array
EP0398683B1 (en) Liquid crystal display unit
JPH01219721A (en) Metal insulator construction and liquid crystal display device
US6157422A (en) Two-terminal nonlinear element having insulating films of different thickness formed on the flat top surface of a lower electrode
JPS6230114B2 (en)
JPH0567786A (en) Manufacture of thin film transistor
JPH07244295A (en) Liquid crystal display device and its production
JPH07168208A (en) Active matrix system liquid crystal display
JPH0720501A (en) Nonlinear resistive element and its production
JPH01271728A (en) Liquid crystal display device
JP2777394B2 (en) Manufacturing method of nonlinear element
JPH0836194A (en) Nonlinear resistance element and its production
JPH0326367B2 (en)
JP3341346B2 (en) Manufacturing method of nonlinear element
JPH08320494A (en) Liquid crystal display device and its production
JPS5852680A (en) Manufacture of liquid crystal panel substrate
JPH077851B2 (en) MIM switching element
JP2590670B2 (en) Manufacturing method of electro-optical device
JPS63122103A (en) Thin film nonlinear resistance element
JPH06301064A (en) Mim-type nonlinear element and its production
JPH06102532A (en) Metallic wiring substrate
JPH0356456B2 (en)