JPH056793A - Manufacture of thin film el element - Google Patents

Manufacture of thin film el element

Info

Publication number
JPH056793A
JPH056793A JP3156576A JP15657691A JPH056793A JP H056793 A JPH056793 A JP H056793A JP 3156576 A JP3156576 A JP 3156576A JP 15657691 A JP15657691 A JP 15657691A JP H056793 A JPH056793 A JP H056793A
Authority
JP
Japan
Prior art keywords
thin film
aluminum
film
dielectric
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3156576A
Other languages
Japanese (ja)
Inventor
Tomizo Matsuoka
富造 松岡
Shozo Oshio
祥三 大塩
Koji Matsunaga
浩二 松永
Jun Kuwata
純 桑田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3156576A priority Critical patent/JPH056793A/en
Publication of JPH056793A publication Critical patent/JPH056793A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PURPOSE:To provide a manufacturing method capable of easily manufacturing a large-sized thin film EL element having a high dielectric voltage resistance which is excellent in driving reliability. CONSTITUTION:An aluminium thin film 6 is formed on a base 1, a resist 7 is applied thereto followed by patterning, aluminium anode oxidation of two stages is conducted to form a lower dielectric thin film 3 having a satisfactory step coverage to an aluminium electrode stripe. Then, a phosphor thin film 4, an upper dielectric thin film 5, and an ITO transparent electrode thin film 2 are successively laminated to complete a thin film EL element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はワープロやパソコン等の
OA機器や各種計測器等のFA機器に用いられる薄膜E
L素子の製造方法に関するものである。
FIELD OF THE INVENTION The present invention relates to a thin film E used in office automation equipment such as word processors and personal computers and FA equipment such as various measuring instruments.
The present invention relates to a method for manufacturing an L element.

【0002】[0002]

【従来の技術】従来、薄膜EL素子はガラス基板上に透
明電極薄膜をスパッター法で形成した後、フォトリソプ
ロセスでストライプ状の電極パターンに加工し、その上
にスパッター法、電子ビーム加熱蒸着法あるいはCVD
法により誘電体薄膜、蛍光体薄膜、誘電体薄膜を順次積
層し、最後にアルミニウム金属薄膜を形成して、その金
属薄膜を同じくフォトリソプロセスで上記ストライプ状
の透明電極薄膜に直交するストライプ状の電極に加工し
て作製していた。
2. Description of the Related Art Conventionally, in a thin film EL element, a transparent electrode thin film is formed on a glass substrate by a sputtering method, and then processed into a stripe-shaped electrode pattern by a photolithography process, and then a sputtering method, an electron beam heating evaporation method or CVD
Dielectric thin film, phosphor thin film, dielectric thin film are sequentially laminated by the method, and finally aluminum metal thin film is formed, and the metal thin film is also photolithographically processed and the striped electrodes orthogonal to the striped transparent electrode thin film are formed. It was processed and manufactured.

【0003】積層膜の最下層、すなわち上記透明電極薄
膜パターンは素子が大型になるほど低抵抗のストライプ
が望まれるが、そのために膜厚を厚くする必要があり、
パターンエッジに段差が顕著になる。従って、エッジ部
分の上に積層された誘電体薄膜の膜厚は他の部分に比較
して薄くなりがちであった。この様子を図2に示す。
The lowermost layer of the laminated film, that is, the transparent electrode thin film pattern, is desired to have a stripe with a lower resistance as the element becomes larger. Therefore, it is necessary to increase the film thickness for that purpose.
A step becomes prominent at the pattern edge. Therefore, the thickness of the dielectric thin film laminated on the edge portion tends to be smaller than that of other portions. This state is shown in FIG.

【0004】[0004]

【発明が解決しようとする課題】従来の技術で説明した
製造法で作製した薄膜EL素子は、下地電極、すなわち
通常インジウム・スズ酸化物からなる透明電極(以下I
TOと略記する)2は積層薄膜の最下層に位置し、スト
ライプ状に加工されているため、エッジに段差がある。
この部分に積層された誘電体薄膜3はステップカバレッ
ジが良好でないと、その電気的耐圧が不十分で、駆動時
にそこで絶縁破壊を起こしやすい課題があった。なお、
1はガラス基板、4は蛍光体薄膜、5は上部誘電体薄
膜、6はアルミニウム金属電極薄膜である。
A thin film EL element manufactured by the manufacturing method described in the prior art is a base electrode, that is, a transparent electrode usually made of indium tin oxide (hereinafter referred to as I
2 is abbreviated as TO), which is located in the lowermost layer of the laminated thin film and is processed into a stripe shape, so that there is a step at the edge.
Unless the step coverage of the dielectric thin film 3 laminated on this portion is good, the electrical breakdown voltage thereof is insufficient, and there is a problem that dielectric breakdown easily occurs at the time of driving. In addition,
1 is a glass substrate, 4 is a phosphor thin film, 5 is an upper dielectric thin film, and 6 is an aluminum metal electrode thin film.

【0005】また、素子を大型化しようとする時、長く
なったITOストライプの電気抵抗は高くなって入力電
気信号の遅延を生じ、駆動時にITO電極2に沿って輝
度むらが発生する。すなわち、給電端子側がより明る
く、端子から遠くなるほど暗くなる。これに対処するた
め、ITO2の膜厚を厚くすると従来の構造ではエッジ
の段差が更に大きくなり好ましくないという課題もあっ
た。
Further, when the size of the device is increased, the electric resistance of the lengthened ITO stripe becomes high and the input electric signal is delayed, resulting in uneven brightness along the ITO electrode 2 during driving. That is, the power supply terminal side is brighter, and becomes darker as the distance from the terminal increases. In order to deal with this, if the film thickness of ITO 2 is increased, there is a problem that the step difference of the edge is further increased in the conventional structure, which is not preferable.

【0006】本発明は上記従来の薄膜EL素子の課題、
即ち耐圧と大型化の課題を解決した薄膜EL素子の製造
方法を提供することを目的とする。
The present invention is to solve the above-mentioned problems of the conventional thin film EL device,
That is, it is an object of the present invention to provide a method for manufacturing a thin film EL element that solves the problems of breakdown voltage and size increase.

【0007】[0007]

【課題を解決するための手段】本発明は、絶縁性基板上
に電極用アルミニウム金属薄膜を形成する工程と、その
上の電極パターンを形成する部分にレジストを塗布し
て、それ以外の部分を完全に陽極酸化してアルミニウム
陽極酸化薄膜とする工程と、続いてレジストを剥離し、
電極パターン部分の表面から所定の深さまで部分的に陽
極酸化して同じくアルミニウム陽極酸化膜とする工程
と、そのアルミニウム陽極酸化膜の上面に蛍光体薄膜、
誘電体薄膜およびパターン化した透明電極薄膜を順次形
成する工程とを備えた薄膜EL素子の製造方法である。
According to the present invention, a step of forming an aluminum metal thin film for an electrode on an insulating substrate, a resist is applied to a portion on which an electrode pattern is to be formed, and a portion other than the above is applied. A step of completely anodizing to form an aluminum anodized thin film, and then peeling off the resist,
A step of partially anodizing from the surface of the electrode pattern portion to a predetermined depth to form an aluminum anodic oxide film, and a phosphor thin film on the upper surface of the aluminum anodic oxide film,
And a step of sequentially forming a dielectric thin film and a patterned transparent electrode thin film.

【0008】[0008]

【作用】本発明の製造法によれば、電極様アルミニウム
金属薄膜のパターンエッジの影響と、透明電極薄膜電極
の抵抗の影響を軽減できる。この効果により、絶縁耐圧
に優れた大型の薄膜EL素子を作製することができる。
According to the manufacturing method of the present invention, the influence of the pattern edge of the electrode-like aluminum metal thin film and the influence of the resistance of the transparent electrode thin film electrode can be reduced. Due to this effect, a large-sized thin film EL element having an excellent withstand voltage can be manufactured.

【0009】[0009]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0010】図1は、本発明の薄膜EL素子の製造方法
の一実施例を順次模式的に示したものである。図1
(a)はガラス基板1の上にアルミニウム金属薄膜6を
2500Åの厚さに形成し、更にその上にレジスト7を
スピン塗布してフォトリソプロセスでストライプ状にパ
タニングした後の断面図を示したものである。レジスト
7はストライプの長さ方向に対し直角方向の断面が描か
れている。この状態でアルミニウムを陽極にして240
Vまでの電圧を1mA/cm2の定電流制御しつつ徐々
に印加してアルミニウムの陽極酸化薄膜を形成した。化
成液は0.1モル濃度の酒石酸アンモニウム水溶液とエ
チレングリコールを1:9の容量比で混合し、それに少
量のアンモニア水溶液を添加してpHを7.0に調節し
た溶液を用いた。酸性の水溶液と異なり、かかる中性の
溶液をアルミニウムの化成液に用いると、いわゆる緻密
なバリヤー型の陽極酸化膜が得られる。酒石酸アンモニ
ウムの代わりに、アジピン酸塩、ほう酸塩、燐酸塩、フ
タル酸塩、マレイン酸塩、クエン酸塩を用いても同様な
薄膜を得ることができる。化成液の温度は40〜50℃
に保ち、高すぎてレジストが化成中に劣化しないように
した。印加電圧1V当り14Åの厚さの陽極酸化膜を形
成出来るので、上記240Vで完全に2500Åの厚さ
のアルミニウムを陽極酸化膜に変えることができる。す
なわち、通常アルミニウムを陽極酸化した場合その厚さ
の約1.3倍の陽極酸化膜3が得られるが、レジストで
覆われていない部分を完全に陽極酸化し、元のアルミニ
ウムの厚さ2500Åを3300Åの厚さのアルミニウ
ム陽極酸化膜3に変換した。その時の断面の様子を図1
(b)に示した。次に、レジスト7を剥離した後、再度
アルミニウムの陽極酸化を93Vの電圧を印加して行っ
た。その結果、1500Åのアルミニウム金属6を残し
て、その上に1300Åの厚さの陽極酸化膜3が形成さ
れ、図1(c)の断面構造を得た。印加電圧をコントロ
ールすることによってアルミニウム金属上のアルミニウ
ム陽極酸化膜の厚さを変えることが出来る。断面図から
明らかなように、アルミニウム金属ストライプ6がアル
ミニウム陽極酸化膜3で埋め込まれた構造になり、アル
ミニウムストライプのエッジの上においても陽極酸化膜
誘電体は相対的に薄くはならず、むしろエッジの近傍で
エッジからストライプの外側にむかって厚くなりつつあ
る。すなわち、アルミニウム陽極酸化膜3の誘電体薄膜
を上記の方法で形成することによって、アルミニウム電
極ストライプ6に対して、非常に良好なステップカバレ
ッジを実現することが出来る。この構造を、陽極酸化膜
3に含まれている水等の揮発性の成分を除去するため
に、空気雰囲気中で300℃で1時間の熱処理を行っ
た。その後、図1(d)に示したように、ZnS:Mn
蛍光体薄膜(0.8原子%のMn含量)4を5000
Å、同じくアルミニウム陽極酸化誘電体薄膜5を330
0Å、最後にアルミニウム電極ストライプ6に直交する
ITO透明電極ストライプ2を6000Å積層して薄膜
EL素子を完成した。誘電体薄膜5は上記アルミニウム
陽極酸化膜に特定されるものではなく、重要なのは下部
誘電体薄膜3のステップカバレッジであるので、他の方
法による他の種類の誘電体薄膜であってもかまわない。
しかし、下部誘電体薄膜3と同じアルミニウム陽極酸化
膜を用いた方が、製造設備コストや製造の容易さを考え
た場合有利である。同様に一般に陽極酸化膜として優れ
た特性を持つタンタルの陽極酸化膜を用いても製造の容
易さから有利である。また、ITO透明電極薄膜2は図
2の構造の場合と異なり、矢印で示したようにガラス基
板1と反対側から発光を取り出す必要があるので最上部
に配置しているが、薄膜EL素子の積層膜の段差形成に
何等関与しない最上部にあるので、ストライプの電気抵
抗の要求に応じていくらでも厚さを変えることが出来
る。一般に、10インチ対角の大型EL表示装置では3
000〜6000Åの厚さのITO透明電極が用いられ
る。高精細度の表示装置になる程、より厚いITO電極
薄膜が必要となる。
FIG. 1 is a schematic diagram sequentially showing one embodiment of a method of manufacturing a thin film EL element of the present invention. Figure 1
(A) shows a cross-sectional view after forming an aluminum metal thin film 6 on a glass substrate 1 to a thickness of 2500 Å, spin-coating a resist 7 on it, and patterning it in stripes by a photolithography process. Is. The resist 7 has a cross section perpendicular to the length direction of the stripe. In this state, use aluminum as the anode 240
A voltage up to V was gradually applied while controlling a constant current of 1 mA / cm 2 to form an anodized thin film of aluminum. The chemical conversion solution used was a solution in which a 0.1 molar ammonium tartrate aqueous solution and ethylene glycol were mixed at a volume ratio of 1: 9, and a small amount of an ammonia aqueous solution was added to adjust the pH to 7.0. Unlike the acidic aqueous solution, when such a neutral solution is used as the aluminum conversion solution, a so-called dense barrier type anodic oxide film is obtained. A similar thin film can be obtained by using adipate, borate, phosphate, phthalate, maleate or citrate instead of ammonium tartrate. The temperature of the chemical conversion liquid is 40-50 ° C.
To prevent the resist from deteriorating during formation because it was too high. Since an anodic oxide film having a thickness of 14 Å can be formed per 1 V of applied voltage, it is possible to completely change the aluminum having a thickness of 2500 Å to an anodic oxide film at 240 V. That is, normally, when anodizing aluminum, an anodized film 3 having a thickness about 1.3 times that of aluminum is obtained. However, the portion not covered with the resist is completely anodized to obtain the original aluminum thickness of 2500 Å. It was converted to an aluminum anodic oxide film 3 having a thickness of 3300Å. Figure 1 shows the cross section at that time.
It is shown in (b). Next, after the resist 7 was peeled off, anodic oxidation of aluminum was performed again by applying a voltage of 93V. As a result, the anodic oxide film 3 having a thickness of 1300 Å was formed on the aluminum metal 6 having a thickness of 1500 Å, and the cross-sectional structure shown in FIG. 1C was obtained. The thickness of the aluminum anodic oxide film on the aluminum metal can be changed by controlling the applied voltage. As is clear from the cross-sectional view, the aluminum metal stripe 6 has a structure in which the aluminum anodic oxide film 3 is embedded, and the anodic oxide film dielectric does not become relatively thin even on the edge of the aluminum stripe. It is becoming thicker from the edge to the outside of the stripe near the edge. That is, by forming the dielectric thin film of the aluminum anodic oxide film 3 by the above method, very good step coverage can be realized for the aluminum electrode stripe 6. This structure was heat-treated at 300 ° C. for 1 hour in an air atmosphere in order to remove volatile components such as water contained in the anodic oxide film 3. Then, as shown in FIG. 1D, ZnS: Mn
Phosphor thin film (0.8 atomic% Mn content) 4 5000
Å Similarly, 330 aluminum anodized dielectric thin film 5
Finally, the ITO transparent electrode stripe 2 orthogonal to the aluminum electrode stripe 6 was laminated at 6000 Å to complete a thin film EL device. The dielectric thin film 5 is not limited to the above-mentioned aluminum anodic oxide film, and since the step coverage of the lower dielectric thin film 3 is important, other types of dielectric thin films by other methods may be used.
However, it is advantageous to use the same aluminum anodic oxide film as the lower dielectric thin film 3 in consideration of manufacturing facility costs and ease of manufacturing. Similarly, use of a tantalum anodic oxide film having excellent characteristics as an anodic oxide film is also advantageous in terms of ease of production. Further, unlike the structure of FIG. 2, the ITO transparent electrode thin film 2 is arranged at the uppermost part because it is necessary to take out light emission from the side opposite to the glass substrate 1 as shown by the arrow, but the thin film EL element Since it is located at the uppermost portion of the laminated film that does not participate in the step formation, the thickness can be changed according to the requirements of the electrical resistance of the stripe. Generally, it is 3 for a large EL display device with a diagonal of 10 inches.
An ITO transparent electrode with a thickness of 000 to 6000Å is used. A higher definition display device requires a thicker ITO electrode thin film.

【0011】以上説明した方法と各膜厚で10cm角
(対角5.6インチ)でアルミニウム電極ストライプと
ITO透明電極ストライプが300×300ライン(ラ
インピッチ0.33mm、ライン幅0.23mm)の比
較的大型のEL表示素子を作製した。同時に、図1の薄
膜積層構造を上下反対にした図2のタイプの上記と同じ
サイズ、ライン数のEL表示素子を作製した。すなわ
ち、従来製法を用いてガラス基板/ITO透明電極(6
000Å)/酸化アルミニウム誘電体(3300Å)/
ZnS:Mn蛍光体(5000Å)/酸化アルミニウム
誘電体(1300Å)/アルミニウム金属電極(150
0Å)の構造を持った薄膜EL素子を、比較のため作製
した。酸化アルミニウム誘電体は酸化アルミニウムをタ
ーゲットとして、高周波マグネトロンスパッタリング法
で形成している。両者に500Hzの交流パルス(パル
ス幅30μsec)を印加して、両者とも全面発光で同
じ平均輝度500cd/m2で駆動し、5000時間後
の絶縁破壊のピンホール数を調べて互いに比較した。そ
の結果、通常の方法で作製した従来構造の薄膜EL素子
に於いては123個の絶縁破壊ピンホールが発生したの
に対して、本発明の方法で作製した薄膜EL素子は、わ
ずかに2個のピンホールしか観察されなかった。また、
その絶縁破壊のモードは伝搬型ではなく局所的な絶縁破
壊で留まっていた。 このように、下地電極をアルミニ
ウムで形成し、同時にその陽極酸化によりアルミニウム
陽極酸化誘電体薄膜を製造する方法を応用した。また、
薄膜EL素子を大型化してもITOストライプの抵抗を
下げるためいくらでも厚くできるように、本発明ではI
TO電極を積層膜の最上部に配置した。かかる構造では
一般に伝搬型の絶縁破壊をしやすくなるが、前記電極パ
ターンのエッジの影響が生じない構造を作製し、かつ一
般に均質で欠陥の少ない上記陽極酸化法による誘電体材
料を用いることによって絶縁破壊を防止した。
With the method described above and each film thickness, the aluminum electrode stripe and the ITO transparent electrode stripe are 300 × 300 lines (line pitch 0.33 mm, line width 0.23 mm) at 10 cm square (diagonal 5.6 inch). A relatively large EL display device was produced. At the same time, an EL display element of the same size and the same number of lines as that of the type of FIG. 2 in which the thin film laminated structure of FIG. That is, the glass substrate / ITO transparent electrode (6
000Å) / Aluminum oxide dielectric (3300Å) /
ZnS: Mn phosphor (5000Å) / aluminum oxide dielectric (1300Å) / aluminum metal electrode (150
A thin film EL device having a structure of 0Å) was prepared for comparison. The aluminum oxide dielectric is formed by high frequency magnetron sputtering with aluminum oxide as the target. An AC pulse (pulse width: 30 μsec) of 500 Hz was applied to both of them, and both were driven by full surface emission at the same average luminance of 500 cd / m 2 , and the number of pinholes of dielectric breakdown after 5000 hours was examined and compared with each other. As a result, 123 dielectric breakdown pinholes were generated in the conventional thin-film EL element manufactured by the ordinary method, whereas only 2 thin-film EL elements manufactured by the method of the present invention were manufactured. Only pinholes were observed. Also,
The mode of the dielectric breakdown was not the propagation type but the local dielectric breakdown. In this way, the method of forming the base electrode of aluminum and simultaneously producing the aluminum anodic oxide dielectric thin film by anodic oxidation was applied. Also,
In order to reduce the resistance of the ITO stripe even if the thin film EL element is enlarged, the thickness of the thin film EL element can be increased as much as possible.
The TO electrode was placed on top of the laminated film. Although such a structure generally facilitates propagation type dielectric breakdown, insulation is obtained by forming a structure in which the influence of the edge of the electrode pattern does not occur and using a dielectric material by the anodization method that is generally homogeneous and has few defects. Prevented destruction.

【0012】[0012]

【発明の効果】以上のように、本発明の製造法による薄
膜EL素子は絶縁破壊耐圧が従来法による薄膜EL素子
よりも格段に優れているので、安定で信頼性の高い駆動
が可能である。
As described above, since the thin film EL element manufactured by the manufacturing method of the present invention has a much higher dielectric breakdown voltage than the thin film EL element manufactured by the conventional method, stable and highly reliable driving is possible. .

【0013】また、ITOの電気抵抗に起因する大型化
の制約は、本発明の製造法で作製した薄膜EL素子の構
造によって回避できる。従って、大型化に要求されるI
TO電極ストライプの低抵抗化を図ってその膜厚を厚く
しても、上記耐圧に影響を与える事なく大型化が容易に
行える。
Further, the restriction of the increase in size due to the electric resistance of ITO can be avoided by the structure of the thin film EL element manufactured by the manufacturing method of the present invention. Therefore, I
Even if the resistance of the TO electrode stripe is reduced and the thickness thereof is increased, the size can be easily increased without affecting the withstand voltage.

【0014】また、本発明製造方法は技術的に成熟し、
かつ酸化物製膜装置として比較的コストが低い陽極酸化
技術を応用しているので、工業生産上有意な方法であ
る。
Further, the production method of the present invention is technically mature,
Moreover, since the anodic oxidation technology, which is relatively low in cost, is applied as an oxide film forming apparatus, it is a significant method in industrial production.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の薄膜EL素子の製造方法の一実施例を
順次説明した断面図である。
FIG. 1 is a cross-sectional view for sequentially explaining one embodiment of a method of manufacturing a thin film EL element of the present invention.

【図2】従来法により作製した薄膜EL素子の断面図で
ある。
FIG. 2 is a cross-sectional view of a thin film EL element manufactured by a conventional method.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 ITO透明電極薄膜 3 下部誘電体薄膜 4 蛍光体薄膜 5 上部誘電体薄膜 6 アルミニウム金属電極薄膜 7 レジスト 1 glass substrate 2 ITO transparent electrode thin film 3 Lower dielectric thin film 4 Phosphor thin film 5 Upper dielectric thin film 6 Aluminum metal electrode thin film 7 Resist

───────────────────────────────────────────────────── フロントページの続き (72)発明者 桑田 純 大阪府門真市大字門真1006番地 松下電器 産業株式会社内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Jun Kuwata             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 絶縁性基板上に電極用アルミニウム金属
薄膜を形成する工程と、その上の電極パターンを形成す
る部分にレジストを塗布して、それ以外の部分を完全に
陽極酸化してアルミニウム陽極酸化薄膜とする工程と、
続いて前記レジストを剥離し、前記電極パターン部分の
表面から所定の深さまで部分的に陽極酸化して同じくア
ルミニウム陽極酸化膜とする工程と、そのアルミニウム
陽極酸化膜の上面に蛍光体薄膜、誘電体薄膜およびパタ
ーン化した透明電極薄膜を順次形成する工程とを備えた
ことを特徴とする薄膜EL素子の製造方法。
1. An aluminum anode in which a step of forming an aluminum metal thin film for an electrode on an insulating substrate, a resist is applied to a portion on which an electrode pattern is to be formed, and the other portion is completely anodized. A step of forming an oxide thin film,
Subsequently, a step of peeling off the resist and partially anodizing from the surface of the electrode pattern portion to a predetermined depth to form an aluminum anodic oxide film, and a phosphor thin film and a dielectric on the upper surface of the aluminum anodic oxide film. A method of manufacturing a thin film EL element, comprising the steps of sequentially forming a thin film and a patterned transparent electrode thin film.
【請求項2】 蛍光体薄膜と透明電極薄膜で挟まれた誘
電体薄膜を陽極酸化法で作製することを特徴とする請求
項1記載の薄膜EL素子の製造方法。
2. The method for manufacturing a thin film EL element according to claim 1, wherein the dielectric thin film sandwiched between the phosphor thin film and the transparent electrode thin film is produced by an anodic oxidation method.
【請求項3】 誘電体薄膜がアルミニウムまたはタンタ
ルの陽極酸化膜であることを特徴とする請求項2記載の
薄膜EL素子の製造方法。
3. The method of manufacturing a thin film EL element according to claim 2, wherein the dielectric thin film is an anodized film of aluminum or tantalum.
JP3156576A 1991-06-27 1991-06-27 Manufacture of thin film el element Pending JPH056793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3156576A JPH056793A (en) 1991-06-27 1991-06-27 Manufacture of thin film el element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3156576A JPH056793A (en) 1991-06-27 1991-06-27 Manufacture of thin film el element

Publications (1)

Publication Number Publication Date
JPH056793A true JPH056793A (en) 1993-01-14

Family

ID=15630785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3156576A Pending JPH056793A (en) 1991-06-27 1991-06-27 Manufacture of thin film el element

Country Status (1)

Country Link
JP (1) JPH056793A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4954235A (en) * 1988-04-25 1990-09-04 Nisshin Steel Co., Ltd. Electroplating of fine particles with metal
WO2005004550A1 (en) * 2003-07-07 2005-01-13 Pioneer Corporation Organic electroluminescent display panel and method for manufacturing same
WO2007047930A2 (en) * 2005-10-21 2007-04-26 Hewlett-Packard Development Company, L.P. Electroluminescent panel
JP2011025548A (en) * 2009-07-27 2011-02-10 Kyocera Corp Wiring board, method for manufacturing the same, recording head and recorder

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4954235A (en) * 1988-04-25 1990-09-04 Nisshin Steel Co., Ltd. Electroplating of fine particles with metal
WO2005004550A1 (en) * 2003-07-07 2005-01-13 Pioneer Corporation Organic electroluminescent display panel and method for manufacturing same
JPWO2005004550A1 (en) * 2003-07-07 2006-08-24 パイオニア株式会社 Organic electroluminescence display panel and manufacturing method thereof
JP4584836B2 (en) * 2003-07-07 2010-11-24 パイオニア株式会社 Organic electroluminescence display panel and manufacturing method thereof
WO2007047930A2 (en) * 2005-10-21 2007-04-26 Hewlett-Packard Development Company, L.P. Electroluminescent panel
WO2007047930A3 (en) * 2005-10-21 2007-12-27 Hewlett Packard Development Co Electroluminescent panel
JP2011025548A (en) * 2009-07-27 2011-02-10 Kyocera Corp Wiring board, method for manufacturing the same, recording head and recorder

Similar Documents

Publication Publication Date Title
JPH056793A (en) Manufacture of thin film el element
US4369393A (en) Electroluminescent display including semiconductor convertible to insulator
JPH054797B2 (en)
JP2844964B2 (en) Manufacturing method of EL display device
JPS61151996A (en) Thin film electroluminescence element and manufacture thereof
JP3614182B2 (en) Method for manufacturing electroluminescence element
JPS60124393A (en) Method of producing polycolor light emitting thin film el panel
JPS6359519B2 (en)
JPH0690954B2 (en) Method for forming transparent electrode for electroluminescent display
EP0450077A1 (en) Thin-film electroluminescent element and method of manufacturing the same
JP2502560B2 (en) Method for forming dielectric film
JPH056141A (en) El display device
JPH0119840Y2 (en)
JPH0740515B2 (en) Thin film light emitting device
JPH0317192B2 (en)
JPS61121290A (en) Manufacture of thin film el element
JPS61188890A (en) Formation of dielectric film
JPH05205874A (en) Thin film el panel
JPH056319B2 (en)
JPH05326151A (en) Thin film el element and its manufacture
KR100511261B1 (en) Field emission device and manufacturing method thereof
JPS62150690A (en) Thin film el device
JPH01204394A (en) Thin film el element
JPH01315985A (en) Manufacture of el panel
JPS6344684A (en) Manufacture of electroluminescence light emitting element