JPH05326151A - Thin film el element and its manufacture - Google Patents

Thin film el element and its manufacture

Info

Publication number
JPH05326151A
JPH05326151A JP3095172A JP9517291A JPH05326151A JP H05326151 A JPH05326151 A JP H05326151A JP 3095172 A JP3095172 A JP 3095172A JP 9517291 A JP9517291 A JP 9517291A JP H05326151 A JPH05326151 A JP H05326151A
Authority
JP
Japan
Prior art keywords
film
electrode
insulating layer
light emitting
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3095172A
Other languages
Japanese (ja)
Inventor
Katsuji Okibayashi
勝司 沖林
Takuro Yamashita
卓郎 山下
Takashi Ogura
隆 小倉
Masaru Yoshida
勝 吉田
Shigeo Nakajima
重夫 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP3095172A priority Critical patent/JPH05326151A/en
Publication of JPH05326151A publication Critical patent/JPH05326151A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PURPOSE:To improve luminance and dielectric characteristic by containing an oxide tantalum film in at least one of first and second insulating layers nipping a light emitting layer. CONSTITUTION:On a base glass 1, a metal Ta film is sputtered and evaporated as the material of a first electrode 2, and worked into a determined stripe pattern by photolithography. Then, the surface of the electrode 2 is oxidized by anode oxidation to form a Ta2O5 film 3a forming a part of a first insulating layer 3. The thickness of the Ta2O5 film can be precisely controlled by the voltage to be applied to the anode. A SiO2 film 3b and a Si3N4 film 3a are successively accumulated by sputtering, and the formation of the insulating layer 3 is completed. A light emitting layer 4 is then formed by electron beam evaporation, and a Si3N4 film 5a and an Al2O3 film 5b are accumulated by spattering to form a second insulating layer 5. Finally, an ITO film is sputtered and evaporated, and a stripe second electrode 6 crossing at a right-angled to the electrode 2 is formed by photolithography.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は薄膜エレクトロルミネ
ッセンス(EL)素子およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film electroluminescence (EL) device and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来の薄膜EL素子としては図5に示す
ようなものがある。この薄膜EL素子は、基板ガラス1
1上に、金属Ta膜からなる第一の電極12と、第一の
絶縁層13と、発光層14と、第二の絶縁層15と、I
TO(錫添加酸化インジウム)膜からなる第二の電極16
とを順次積層して構成されており、発光層14を両側か
ら絶縁層13,15で挟んだ2重絶縁構造となってい
る。上記発光層14は母体材料ZnSに発光中心として
Mnをドープした厚さ1μm程度のZnS:Mn膜からなっ
ている。第一の絶縁層13は厚さ400Å〜500Åの
SiO2膜13aと厚さ2200Å〜2400ÅのSi34
膜13bとからなる一方、第二の絶縁層15は厚さ12
00Å〜1300ÅのSi34膜15aと厚さ300Å〜
600ÅのAl23膜15bとからなっている。動作時に
は、第一,第二の電極12,16に電圧が印加される。そ
して発光層14に印加される電界がしきい値を越えると
発光を開始し、発光輝度は第一,第二の絶縁層13,15
の蓄積電荷量Qに略比例する。
2. Description of the Related Art A conventional thin film EL element is shown in FIG. This thin film EL element is a substrate glass 1
1, a first electrode 12 made of a metal Ta film, a first insulating layer 13, a light emitting layer 14, a second insulating layer 15, and I
Second electrode 16 made of TO (tin-doped indium oxide) film
And the light emitting layer 14 are sandwiched between the insulating layers 13 and 15 from both sides to form a double insulating structure. The light emitting layer 14 is formed of a ZnS: Mn film having a thickness of about 1 μm in which the base material ZnS is doped with Mn as an emission center. The first insulating layer 13 is made of SiO 2 film 13a having a thickness of 400Å to 500Å and Si 3 N 4 having a thickness of 2200Å to 2400Å.
The second insulating layer 15 has a thickness of 12
00 Å ~ 1300 Å Si 3 N 4 film 15a and thickness 300 Å ~
It is composed of 600 Å Al 2 O 3 film 15b. During operation, a voltage is applied to the first and second electrodes 12 and 16. Then, when the electric field applied to the light emitting layer 14 exceeds a threshold value, light emission starts, and the light emission luminance is set to the first and second insulating layers 13 and 15.
Is approximately proportional to the accumulated charge amount Q of.

【0003】[0003]

【発明が解決しようとする課題】ところで、薄膜EL素
子の重要な性能として発光輝度の他に絶縁層13,15
の絶縁破壊特性がある。第一,第二の電極12,16間の
印加電圧を次第に大きくしてゆくと、図4に示すように
(Coで表わす)、低電界で見られるオーム則領域に引き
続いて電流急増域が現れ(変曲点D1)、さらに、絶縁層
13,15中を流れる電流で生じる熱などにより絶縁破
壊に至る(変曲点D2)。これが絶縁破壊のメカニズムで
ある。したがって、絶縁破壊特性を向上させるために
は、絶縁層13,15の絶縁性を向上させて電流の絶対
値を低く抑え、I−V特性における変曲点D1,D2を高
電界に持ってゆけば良い。
By the way, in addition to the emission brightness, the insulating layers 13 and 15 are important performances of the thin film EL element.
It has dielectric breakdown characteristics. When the applied voltage between the first and second electrodes 12 and 16 is gradually increased, as shown in FIG.
(Represented by Co), a current rapid increase region appears following the Ohm's law region seen in the low electric field (inflection point D 1 ), and further, the heat generated by the current flowing through the insulating layers 13 and 15 causes dielectric breakdown. (Inflection point D 2 ). This is the mechanism of dielectric breakdown. Therefore, in order to improve the dielectric breakdown characteristics, the insulating properties of the insulating layers 13 and 15 are improved to suppress the absolute value of the current to a low value, and the inflection points D 1 and D 2 in the IV characteristics are set to a high electric field. I should go.

【0004】ここで、絶縁性を向上させるために、単に
絶縁層13または15の厚さを増した場合、上記絶縁層
13,15の静電容量が低下して蓄積電荷量が少なくな
り、発光輝度が低下することになる。
Here, if the thickness of the insulating layer 13 or 15 is simply increased in order to improve the insulating property, the capacitance of the insulating layers 13 and 15 is reduced and the amount of accumulated charge is reduced to cause light emission. The brightness will decrease.

【0005】そこで、この発明の目的は、絶縁層の材料
に工夫を施すことにより、発光輝度および絶縁破壊特性
を改善できる薄膜EL素子およびその製造方法を提供す
ることにある。
Therefore, an object of the present invention is to provide a thin film EL element capable of improving the emission luminance and dielectric breakdown characteristics by devising the material of the insulating layer, and a manufacturing method thereof.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、この発明の薄膜EL素子は、発光層と、この発光層
を挟む第一,第二の絶縁層と、この両絶縁層の外側に設
けられた第一,第二の電極を備えた薄膜EL素子におい
て、上記絶縁層の少なくとも一方に、酸化タンタル膜を
含むことを特徴としている。
In order to achieve the above object, a thin film EL device of the present invention comprises a light emitting layer, first and second insulating layers sandwiching the light emitting layer, and outsides of both insulating layers. In the thin film EL element having the first and second electrodes provided in, the tantalum oxide film is included in at least one of the insulating layers.

【0007】また、この発明の薄膜EL素子の製造方法
は、基板上に、金属タンタル膜からなる第一の電極と、
酸化タンタル膜を含む第一の絶縁層と、発光層と、第二
の絶縁層と、第二の電極を順次積層する薄膜EL素子の
製造方法であって、上記酸化タンタル膜は、上記第一の
電極の表面を酸化して形成されることを特徴としてい
る。
The method of manufacturing a thin film EL element according to the present invention comprises: a first electrode made of a metal tantalum film on a substrate;
A method for manufacturing a thin-film EL element, in which a first insulating layer including a tantalum oxide film, a light emitting layer, a second insulating layer, and a second electrode are sequentially stacked, wherein the tantalum oxide film is the first It is characterized in that it is formed by oxidizing the surface of the electrode.

【0008】[0008]

【作用】薄膜EL素子の第一,第二の絶縁層に流れる電
流は、上記絶縁層を構成する材料のうち最も絶縁性の高
い材料の伝導特性により律速される。したがって、上記
絶縁層を構成する材料として従来の絶縁層材料SiO2,
Si34,Al23よりも絶縁性に優れた酸化タンタル(T
a25)膜を含むことにより、上記絶縁層全体の絶縁破壊
特性が改善される。また、上記Ta25の比誘電率εr
は、表1に示すように、εr=24であり、従来の絶縁
層材料に比して非常に大きい。したがって、絶縁層の静
電容量が増大して蓄積電荷量が多くなり、発光輝度が改
善される。
The current flowing through the first and second insulating layers of the thin film EL element is rate-controlled by the conduction characteristic of the material having the highest insulating property among the materials forming the insulating layer. Therefore, as a material forming the insulating layer, the conventional insulating layer material SiO 2 ,
Tantalum oxide (T which has better insulation than Si 3 N 4 and Al 2 O 3
By including the a 2 O 5 ) film, the dielectric breakdown characteristics of the entire insulating layer are improved. Also, the relative permittivity εr of Ta 2 O 5 above
As shown in Table 1, εr = 24, which is much larger than the conventional insulating layer material. Therefore, the capacitance of the insulating layer is increased, the amount of accumulated charge is increased, and the emission brightness is improved.

【表1】 [Table 1]

【0009】また、上記Ta25膜が金属タンタル(Ta)
からなる第一の電極を酸化して形成される場合、上記T
a25膜は例えば陽極酸化法により膜厚精度良く簡単に
作製される。したがって、この薄膜EL素子は、従来の
工程とほとんど変わることなく簡単に作製される。
The Ta 2 O 5 film is metal tantalum (Ta).
When the first electrode consisting of
The a 2 O 5 film is easily manufactured with high film thickness accuracy by, for example, the anodic oxidation method. Therefore, this thin film EL element can be easily manufactured with almost no difference from the conventional process.

【0010】[0010]

【実施例】以下、この発明の薄膜EL素子およびその製
造方法を実施例により詳細に説明する。
EXAMPLES Hereinafter, the thin film EL device of the present invention and the manufacturing method thereof will be described in detail with reference to examples.

【0011】図1は一実施例の薄膜EL素子の断面構造
を示している。この薄膜EL素子は、基板ガラス1上
に、発光層4と、この発光層4を挟む第一の絶縁層3お
よび第二の絶縁層5と、この両絶縁層3,5の外側に設
けられた第一の電極2および第二の電極6を備えてい
る。上記発光層4は母体材料ZnSに発光中心としてMn
をドープした厚さ1μm程度のZnS:Mn膜からなってい
る。第一の絶縁層3は、厚さ2000Å〜3000Åの
Ta25膜3aと、厚さ400Å〜500ÅのSiO2膜3
bと、厚さ2200Å〜2400ÅのSi34膜3cとか
らなっている。一方、第二の絶縁層5は、厚さ1200
Å〜1300ÅのSi34膜5aと、厚さ300Å〜60
0ÅのAl23膜5bとからなっている。また、第一,第
二の電極2,6はそれぞれ金属Ta膜,ITO(錫添加酸化
インジウム)膜からなる。
FIG. 1 shows a cross-sectional structure of a thin film EL element of one embodiment. This thin film EL element is provided on a substrate glass 1, a light emitting layer 4, a first insulating layer 3 and a second insulating layer 5 that sandwich the light emitting layer 4, and outside these both insulating layers 3, 5. It also comprises a first electrode 2 and a second electrode 6. The light emitting layer 4 has a matrix material ZnS with Mn as an emission center.
And a ZnS: Mn film having a thickness of about 1 μm. The first insulating layer 3 comprises a Ta 2 O 5 film 3a having a thickness of 2000Å to 3000Å and a SiO 2 film 3 having a thickness of 400Å to 500Å.
b and a Si 3 N 4 film 3c having a thickness of 2200Å to 2400Å. On the other hand, the second insulating layer 5 has a thickness of 1200.
Å ~ 1300 Å Si 3 N 4 film 5a and thickness 300 Å ~ 60
It consists of 0Å Al 2 O 3 film 5b. The first and second electrodes 2 and 6 are made of a metal Ta film and an ITO (tin-doped indium oxide) film, respectively.

【0012】上記薄膜EL素子は次のようにして作製す
る。まず、基板ガラス1上に第一の電極2の材料として
金属Ta膜をスパッタ蒸着して、フォトリソグラフィ法
により所定のストライプ状パターンに加工する。次に、
加工後の第一の電極2の表面を陽極酸化法により酸化し
て、第一の絶縁層3の一部を構成するTa25膜3aを形
成する。Ta25膜3aの膜厚は、陽極に印加する電圧に
よって正確に制御することができる。続いて、スパッタ
法またはCVD法により、SiO2膜3b,Si34膜3cを
堆積して第一の絶縁層3の形成を完了する。次に、電子
ビーム蒸着法またはスパッタ蒸着法により発光層4を形
成した後、スパッタ法またはCVD法によりSi34
5a,Al23膜5bを堆積して第二の絶縁層5を形成す
る。最後に、ITO膜をスパッタ蒸着して、フォトリソ
グラフィ法により、上記第一の電極2に対して垂直に交
差するストライプ状の第二の電極6を形成する。上記T
a25膜3aは簡単に形成できるので、この製造方法によ
れば、従来の工程とほとんど変わることなく簡単に薄膜
EL素子を作製できる。
The thin film EL device is manufactured as follows. First, a metal Ta film as a material of the first electrode 2 is sputter-deposited on the substrate glass 1 and processed into a predetermined stripe pattern by photolithography. next,
The surface of the processed first electrode 2 is oxidized by an anodic oxidation method to form a Ta 2 O 5 film 3a forming a part of the first insulating layer 3. The film thickness of the Ta 2 O 5 film 3a can be accurately controlled by the voltage applied to the anode. Then, the SiO 2 film 3b and the Si 3 N 4 film 3c are deposited by the sputtering method or the CVD method to complete the formation of the first insulating layer 3. Next, after forming the light emitting layer 4 by the electron beam evaporation method or the sputter evaporation method, the Si 3 N 4 film 5a and the Al 2 O 3 film 5b are deposited by the sputtering method or the CVD method to form the second insulating layer 5. Form. Finally, an ITO film is sputter-deposited and a stripe-shaped second electrode 6 which intersects the first electrode 2 perpendicularly is formed by photolithography. Above T
Since the a 2 O 5 film 3a can be easily formed, according to this manufacturing method, a thin film EL element can be easily manufactured with almost no difference from the conventional process.

【0013】上記Ta25膜3aを設けた効果を確認する
ため、本発明者らは、上記薄膜EL素子(本発明のもの)
と、図5に示した薄膜EL素子(従来例)について絶縁破
壊電圧と最大蓄積電荷量との測定を行った。表2に示す
ように、絶縁破壊電圧は、従来例が160.7Vである
のに対して本発明のものは250.7Vであり、約1.6
倍に改善することができた。また、最大蓄積電荷量(発
光輝度に略比例する)は従来例が3.36μC/cm2であ
るのに対して本発明のものは4.48μC/cm2であり、
約1.3倍に改善することができた。絶縁破壊特性を改
善できた理由は、図2に示す電流密度−電界特性によっ
て説明することができる。図2に示すように、本発明の
もの(C1)は同一電界の下では従来例(C2)よりも電流密
度が小さい。また、オーム則領域と電流急増域との変曲
点(図中矢印↓で示す)が従来例よりも高電界側にあり、
これにより絶縁破壊電圧を改善できたのである。したが
って、実際の動作時の電界(通常2.0〜2.5MV/cm)
と絶縁破壊電圧との差を大きくでき、素子の信頼性を改
善することができた。
In order to confirm the effect of providing the Ta 2 O 5 film 3a, the inventors of the present invention have described the thin film EL device (of the present invention).
Then, the dielectric breakdown voltage and the maximum accumulated charge amount of the thin film EL element (conventional example) shown in FIG. 5 were measured. As shown in Table 2, the breakdown voltage of the conventional example is 160.7 V, whereas that of the present invention is 250.7 V, which is about 1.6.
I was able to improve it twice. Further, the maximum accumulated charge amount (which is approximately proportional to the light emission luminance) is 3.36 μC / cm 2 in the conventional example, whereas it is 4.48 μC / cm 2 in the present invention,
It was possible to improve it about 1.3 times. The reason why the dielectric breakdown characteristics can be improved can be explained by the current density-electric field characteristics shown in FIG. As shown in FIG. 2, the current density of the present invention (C 1 ) is smaller than that of the conventional example (C 2 ) under the same electric field. Also, the inflection point (indicated by arrow ↓ in the figure) between the Ohm's law region and the current rapid increase region is on the higher electric field side than the conventional example,
As a result, the breakdown voltage could be improved. Therefore, the electric field during actual operation (usually 2.0 to 2.5 MV / cm)
And the breakdown voltage can be increased, and the reliability of the device can be improved.

【表2】 [Table 2]

【0014】なお、図3は、いろんな条件での絶縁層の
厚さ方向の抵抗値(電界2MV/cm印加時)と絶縁層3,
5の破壊電界との相関関係を表わしている。絶縁層3,
5の破壊電界は、動作時の電界に対して余裕をみて5M
V/cm以上必要であることから、Ta25膜の抵抗値は
1013Ω・cm以上でなければならないことがわかった。
FIG. 3 shows the resistance value in the thickness direction of the insulating layer (when an electric field of 2 MV / cm is applied) and the insulating layer 3 under various conditions.
5 shows the correlation with the breakdown electric field of No. 5. Insulation layer 3,
The breakdown electric field of 5 is 5M with a margin to the electric field during operation.
Since it is necessary to have V / cm or more, it has been found that the resistance value of the Ta 2 O 5 film must be 10 13 Ω · cm or more.

【0015】[0015]

【発明の効果】以上より明らかなように、この発明の薄
膜EL素子は、発光層を挟む第一,第二の絶縁層の少な
くとも一方に酸化タンタル膜を含んでいるので、発光特
性および絶縁破壊特性を改善することができる。したが
って、信頼性を向上させることができる。
As is apparent from the above, the thin-film EL device of the present invention includes the tantalum oxide film in at least one of the first and second insulating layers sandwiching the light emitting layer, and therefore, the light emitting property and the dielectric breakdown. The characteristics can be improved. Therefore, reliability can be improved.

【0016】また、この発明の薄膜EL素子の製造方法
は、上記酸化タンタル膜を金属タンタルからなる第一の
電極の表面を酸化して形成しているので、従来の工程の
ほとんど変わることなく簡単に薄膜EL素子を作製する
ことができる。
Further, according to the method of manufacturing a thin film EL element of the present invention, since the tantalum oxide film is formed by oxidizing the surface of the first electrode made of metal tantalum, the conventional process is almost unchanged and simple. A thin film EL device can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の一実施例の薄膜EL素子の断面構
造を示す図である。
FIG. 1 is a diagram showing a cross-sectional structure of a thin film EL element according to an embodiment of the present invention.

【図2】 上記薄膜EL素子の絶縁層の一部を構成する
酸化タンタル膜の電界−電流密度特性を示す図である。
FIG. 2 is a diagram showing electric field-current density characteristics of a tantalum oxide film forming a part of an insulating layer of the thin film EL element.

【図3】 上記絶縁層の厚さ方向の抵抗値と破壊電界と
の相関関係を示す図である。
FIG. 3 is a diagram showing a correlation between a resistance value in the thickness direction of the insulating layer and a breakdown electric field.

【図4】 従来の薄膜EL素子の絶縁層の電圧−電流特
性を示す図である。
FIG. 4 is a diagram showing voltage-current characteristics of an insulating layer of a conventional thin film EL element.

【図5】 従来の薄膜EL素子の断面構造を示す図であ
る。
FIG. 5 is a diagram showing a cross-sectional structure of a conventional thin film EL element.

【符号の説明】[Explanation of symbols]

1 基板ガラス 2 第一の電極(金属Ta膜) 3 第一の絶縁層 3a Ta25膜 3b SiO2膜 3c,5a Si34膜 4 発光層 5 第二の絶縁層 5b Al23膜 6 第二の電極(ITO膜)1 substrate glass 2 first electrode (metal Ta film) 3 first insulating layer 3a Ta 2 O 5 film 3b SiO 2 film 3c, 5a Si 3 N 4 film 4 light emitting layer 5 second insulating layer 5b Al 2 O 3 film 6 Second electrode (ITO film)

フロントページの続き (72)発明者 吉田 勝 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 中島 重夫 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内Continued front page (72) Inventor Masaru Yoshida 22-22 Nagaike-cho, Abeno-ku, Osaka, Osaka

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 発光層と、この発光層を挟む第一,第二
の絶縁層と、この両絶縁層の外側に設けられた第一,第
二の電極を備えた薄膜EL素子において、 上記絶縁層の少なくとも一方に、酸化タンタル膜を含む
ことを特徴とする薄膜EL素子。
1. A thin film EL device comprising a light emitting layer, first and second insulating layers sandwiching the light emitting layer, and first and second electrodes provided outside the both insulating layers, wherein A thin-film EL device comprising a tantalum oxide film on at least one of the insulating layers.
【請求項2】 基板上に、金属タンタル膜からなる第一
の電極と、酸化タンタル膜を含む第一の絶縁層と、発光
層と、第二の絶縁層と、第二の電極を順次積層する薄膜
EL素子の製造方法であって、 上記酸化タンタル膜は、上記第一の電極の表面を酸化し
て形成されることを特徴とする薄膜EL素子の製造方
法。
2. A first electrode made of a metal tantalum film, a first insulating layer containing a tantalum oxide film, a light emitting layer, a second insulating layer, and a second electrode are sequentially laminated on a substrate. A method of manufacturing a thin film EL element, wherein the tantalum oxide film is formed by oxidizing the surface of the first electrode.
JP3095172A 1991-04-25 1991-04-25 Thin film el element and its manufacture Pending JPH05326151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3095172A JPH05326151A (en) 1991-04-25 1991-04-25 Thin film el element and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3095172A JPH05326151A (en) 1991-04-25 1991-04-25 Thin film el element and its manufacture

Publications (1)

Publication Number Publication Date
JPH05326151A true JPH05326151A (en) 1993-12-10

Family

ID=14130339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3095172A Pending JPH05326151A (en) 1991-04-25 1991-04-25 Thin film el element and its manufacture

Country Status (1)

Country Link
JP (1) JPH05326151A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246180A (en) * 2001-02-14 2002-08-30 Tdk Corp El element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246180A (en) * 2001-02-14 2002-08-30 Tdk Corp El element

Similar Documents

Publication Publication Date Title
US4482841A (en) Composite dielectrics for low voltage electroluminescent displays
US5274485A (en) Liquid crystal display
US4748375A (en) Stable optically transmissive conductors, including electrodes for electroluminescent devices, and methods for making
JP2000173768A (en) Thin-film electroluminescent device and its manufacture
JPS61230296A (en) El element and manufacture thereof
US4880475A (en) Method for making stable optically transmissive conductors, including electrodes for electroluminescent devices
JPH01134895A (en) Thin film el panel
JPH05326151A (en) Thin film el element and its manufacture
JP2844964B2 (en) Manufacturing method of EL display device
JP2727193B2 (en) Method for manufacturing electron-emitting device
JPS61151996A (en) Thin film electroluminescence element and manufacture thereof
US4982135A (en) Electroluminescent device
JPH056793A (en) Manufacture of thin film el element
JP4201576B2 (en) Organic EL display device substrate and organic EL display device manufacturing method
JPS5829880A (en) Electric field luminescent element
EP0450077A1 (en) Thin-film electroluminescent element and method of manufacturing the same
JPH01255194A (en) Thin film el element
JPH03112089A (en) Thin film el element
JP2679322B2 (en) Method for manufacturing double insulating thin film electroluminescent device
JP2517629B2 (en) Thin film EL panel
JPS5947879B2 (en) Manufacturing method of EL element
JP2502560B2 (en) Method for forming dielectric film
JPH01213991A (en) Transparent electrode substrate and electroluminescence element utilizing same
JPH0353440Y2 (en)
JPH027390A (en) Thin film electro luminescence element