JPH056319B2 - - Google Patents

Info

Publication number
JPH056319B2
JPH056319B2 JP58175188A JP17518883A JPH056319B2 JP H056319 B2 JPH056319 B2 JP H056319B2 JP 58175188 A JP58175188 A JP 58175188A JP 17518883 A JP17518883 A JP 17518883A JP H056319 B2 JPH056319 B2 JP H056319B2
Authority
JP
Japan
Prior art keywords
film
insulating film
electrodes
transparent conductive
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58175188A
Other languages
Japanese (ja)
Other versions
JPS6068590A (en
Inventor
Masahiro Nishikawa
Jun Kuwata
Yosuke Fujita
Takao Toda
Tomizo Matsuoka
Atsushi Abe
Koji Nitsuta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58175188A priority Critical patent/JPS6068590A/en
Publication of JPS6068590A publication Critical patent/JPS6068590A/en
Publication of JPH056319B2 publication Critical patent/JPH056319B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、絶縁膜の形成方法に関し、特に透明
導電膜が形成された基板上に、透明導電膜を被う
ようにスパツタリングで絶縁膜を形成する方法に
関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for forming an insulating film, and in particular to a method for forming an insulating film on a substrate on which a transparent conductive film is formed, by sputtering to cover the transparent conductive film. It relates to a method of forming.

(従来例の構成とその問題点) 例えば薄膜EL表示素子は、ストライプ状の透
明電極群が形成されたガラス板上に第1の絶縁膜
を介してEL(Electro Luminescence)発光層を
形成し、さらにその上に第2の絶縁膜を形成し、
その上に上記透明電極群と直交するようにストラ
イプ状の背面電極群を設けた構成になつている。
すなわち透明電極群はすくなくとも端部の電極取
出し部を除いて絶縁膜で被われている。
(Structure of conventional example and its problems) For example, in a thin film EL display element, an EL (Electro Luminescence) light emitting layer is formed on a glass plate on which a group of striped transparent electrodes is formed, with a first insulating film interposed therebetween. Furthermore, a second insulating film is formed thereon,
A striped back electrode group is provided thereon so as to be perpendicular to the transparent electrode group.
That is, the transparent electrode group is covered with an insulating film except for at least the electrode lead-out portions at the ends.

上記絶縁膜は従来から高周波スパツタリング法
で作製される。第1図に示すようにベルジヤー1
内に対向させて設置されたカソード電極2及びア
ノード電極3を有するスパツタリング装置が用い
られる。絶縁膜が被着される基板4はアノード電
極3上に、被着面をカソード電極2に向けて搭載
され、両電極2,3間に所定の高周波電源を印加
しカソード電極2上に搭載された絶縁物からなる
ターゲツト5から、アルゴンイオン等によつて絶
縁物分子がたたき出され、基板4に付着して絶縁
膜が形成される。基板4を、第2図を用いてさら
に詳しく説明すると、たとえばガラス基板6上に
透明電極7が形成されており、電極取出しのため
に透明電極7の端部をメタルマスク8で被い、そ
の上にスパツタリングにより絶縁膜9が形成され
る。
The above-mentioned insulating film is conventionally manufactured by a high frequency sputtering method. Belgear 1 as shown in Figure 1
A sputtering device is used which has a cathode electrode 2 and an anode electrode 3 disposed facing each other. The substrate 4 on which the insulating film is deposited is mounted on the anode electrode 3 with the surface to be deposited facing the cathode electrode 2, and a predetermined high frequency power is applied between both electrodes 2 and 3, and the substrate 4 is mounted on the cathode electrode 2. Insulating molecules are knocked out from the target 5 made of the insulating material by argon ions and the like, and adhere to the substrate 4 to form an insulating film. To explain the substrate 4 in more detail using FIG. 2, for example, a transparent electrode 7 is formed on a glass substrate 6, and the end of the transparent electrode 7 is covered with a metal mask 8 to take out the electrode. An insulating film 9 is formed thereon by sputtering.

ところで第1図のような構造のスパツタリング
装置で、第2図のようにメタルマスクを用いて絶
縁物のスパツタリングを行ない、透明電極を被う
ように絶縁膜を形成すると、スパツタリング工程
中に透明電極の還元現象がしばしば発生する。た
とえば透明電極として酸化インジウムすず(以下
I.T.Oと略す)膜が厚さ1000Åで形成されている
ものに、ステンレスのメタルマスクを用いて次の
ような条件で二酸化ケイ素をスパツタリングする
とI.T.O膜が金属インジウムに還元され、このた
め本来透明であるはずのI.T.O膜が黒く着色した
ように見える。
By the way, when sputtering an insulating material using a metal mask as shown in FIG. 2 and forming an insulating film to cover a transparent electrode using a sputtering apparatus having a structure as shown in FIG. 1, the transparent electrode is removed during the sputtering process. reduction phenomena often occur. For example, indium tin oxide (hereinafter referred to as indium tin oxide) can be used as a transparent electrode.
When silicon dioxide is sputtered onto a film (abbreviated as ITO) with a thickness of 1000 Å using a stainless metal mask under the following conditions, the ITO film is reduced to metallic indium, which makes it originally transparent. The supposed ITO film appears to be colored black.

スパツタリング条件 アルゴン分圧 5×10-3Torr 投入パワー 4.5W/cm2 ターゲツト 二酸化ケイ素 スパツタモード RFマグネトロン方式 スパツタレート 800Å/min スパツタ時間 7min このようなI.T.O膜の還元反応が発生する原因
としては次のようなことが考えられている。すな
わち、スパツタリング工程中にアルゴン陽イオン
などの陽イオン種によりチヤージアツプされたガ
ラス基板の表面と通常アース電位のアノード電極
との間で放電が起り、瞬間的に電子流入が発生す
るからである。これによつて透明電極は部分的に
黒化して透明度を失い、表示素子の透明電極とし
ての機能を果たさなくなる。
Sputtering conditions Argon partial pressure 5×10 -3 Torr Input power 4.5W/cm 2 targets Silicon dioxide sputtering mode RF magnetron sputtering rate 800Å/min Sputtering time 7min The causes of such a reduction reaction in the ITO film are as follows. It is being considered. That is, during the sputtering process, a discharge occurs between the surface of the glass substrate, which is charged up by cation species such as argon cations, and the anode electrode, which is normally at ground potential, and an instantaneous inflow of electrons occurs. As a result, the transparent electrode partially turns black and loses its transparency, so that it no longer functions as a transparent electrode of a display element.

(発明の目的) 本発明は、上記従来のスパツタリングによる絶
縁膜の形成方法の欠点を除去し、透明導電膜の黒
化を防止した絶縁膜の形成法を提供するものであ
る。
(Objective of the Invention) The present invention provides a method for forming an insulating film that eliminates the drawbacks of the conventional method for forming an insulating film by sputtering and prevents blackening of a transparent conductive film.

(発明の構成) 本発明は、上記の目的を達成するために、以下
のような方法で絶縁膜を形成することを特徴とす
る。透明導電膜からなる複数の電極上に、それら
の電極どうしが電気的に短絡しないようにマスク
をしてスパツタリングにより絶縁膜を形成する。
(Structure of the Invention) In order to achieve the above object, the present invention is characterized in that an insulating film is formed by the following method. An insulating film is formed on a plurality of electrodes made of a transparent conductive film by sputtering using a mask so that the electrodes are not electrically short-circuited.

このような条件に適合するマスクキング法とし
ては種々考えられるが、最も容易で安価な方法は
マスク自身の材料として絶縁性材料を用い、絶縁
物のマスクを使用することが考えられる。あるい
は金属などの導電性材料のマスクを用いる場合は
基板とマスクとの間に絶縁物を介在させ、電気的
に絶縁するなどが考えられる。
Various masking methods can be considered that meet these conditions, but the easiest and cheapest method is to use an insulating mask by using an insulating material as the material of the mask itself. Alternatively, if a mask made of a conductive material such as metal is used, an insulator may be interposed between the substrate and the mask to provide electrical insulation.

本発明の主旨を損なわない範囲であればマスク
の形状や材料などは特に制限されるものではな
い。上記のような方法で透明導電膜上にスパツタ
リングによつて絶縁膜を形成すると、そのメカニ
ズムについてはよく分かつていないが、従来問題
があつたように透明導電膜の黒化は全く発生しな
い。
There are no particular restrictions on the shape or material of the mask as long as it does not impair the spirit of the invention. When an insulating film is formed by sputtering on a transparent conductive film using the method described above, although the mechanism is not well understood, the transparent conductive film does not darken at all, which has been a problem in the past.

以下図面を用いて本発明の実施例を詳細に説明
する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

(実施例の説明) 第3図は、本発明にかかる絶縁膜の形成法の一
実施例により製造された薄膜EL素子を示したも
のである。11は縦220mm、横220mm、厚さ1mmの
透明なガラス基板、12は絶縁層であり、膜厚
5000Åの二酸化ケイ素からなつている。13は
ITO膜よりなる幅0.15mm、長さ200mm、厚さ2500
Åの透明平行電極、14は膜厚5000Åのマンガン
付活硫化亜鉛からなるEL発光層、15は膜厚
5000Åの酸化イツトリウムからなる発光制御用の
絶縁層、16は幅0.15mm、長さ220mm、厚さ1000
Åのアルミよりなる背面平行電極であり、透明平
行電極13とは直交するような配置となつてい
る。透明平行電極13は電極取出しのため端部が
長さ5mmだけ露出されている。
(Description of Examples) FIG. 3 shows a thin film EL device manufactured by an example of the method for forming an insulating film according to the present invention. 11 is a transparent glass substrate with a length of 220 mm, a width of 220 mm, and a thickness of 1 mm; 12 is an insulating layer;
It is made of 5000 Å silicon dioxide. 13 is
Made of ITO film, width 0.15mm, length 200mm, thickness 250mm
14 is an EL light-emitting layer made of manganese-activated zinc sulfide with a film thickness of 5000 Å, 15 is a film thickness
Insulating layer for light emission control made of 5000 Å yttrium oxide, 16 is 0.15 mm wide, 220 mm long, and 1000 Å thick.
These are back parallel electrodes made of aluminum with a thickness of 1.5 Å, and are arranged so as to be orthogonal to the transparent parallel electrodes 13. The ends of the transparent parallel electrodes 13 are exposed for a length of 5 mm to take out the electrodes.

このような薄膜EL素子は以下の手順で製造さ
れる。まず透明なガラス基板11上にITO膜を電
子ビーム蒸着で被着し、写真蝕刻法を用いて透明
平行電極13を選択的に形成する。その上に幅10
mm、長さ200mm、厚さ1mmのガラス板を透明平行
電極13の端部が5mmだけ被われるように設置
し、その上に前述の条件にて高周波スパツタリン
グを用いてSiO2からなる絶縁層12を形成する。
しかる後に、マンガン付活硫化亜鉛からなるEL
発光層14、酸化イツトリウムからなる発光制御
用の絶縁層15を順次電子ビーム蒸着にて積層し
て形成し、その上に写真蝕刻法を用いてアルミニ
ウムからなる背面平行電極16を形成してなるも
のである。このときITO膜からなる透明平行電極
13は全く黒化が発生しておらず、表示素子の透
明電極として問題なく機能することが確認され
た。
Such a thin film EL element is manufactured by the following procedure. First, an ITO film is deposited on a transparent glass substrate 11 by electron beam evaporation, and transparent parallel electrodes 13 are selectively formed using photolithography. Width 10 on it
A glass plate with a length of 200 mm and a thickness of 1 mm was placed so that the ends of the transparent parallel electrodes 13 were covered by 5 mm, and an insulating layer 12 made of SiO 2 was placed on top of the glass plate using high-frequency sputtering under the above-mentioned conditions. form.
After that, EL made of manganese-activated zinc sulfide
A light emitting layer 14 and an insulating layer 15 for light emission control made of yttrium oxide are sequentially laminated by electron beam evaporation, and a back parallel electrode 16 made of aluminum is formed thereon by photolithography. It is. At this time, it was confirmed that the transparent parallel electrode 13 made of the ITO film did not blacken at all, and functioned as a transparent electrode of a display element without any problems.

(発明の効果) 以上のように本発明によれば、同一基板上に搭
載された透明導電膜からなる複数の電極を、電極
どうしが相互に電気的に短絡しないようにマスク
をしてその上にスパツタリングで絶縁膜を形成す
ることにより、簡単な方法で透明導電膜が全く黒
化することなく効果的に絶縁膜を形成することが
できる。
(Effects of the Invention) As described above, according to the present invention, a plurality of electrodes made of a transparent conductive film mounted on the same substrate are masked so that the electrodes do not electrically short-circuit each other. By forming the insulating film by sputtering on the transparent conductive film, the insulating film can be effectively formed by a simple method without any blackening of the transparent conductive film.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来のスパツタリング装置の概略
図、第2図aは、従来例の構成による絶縁膜の形
成方法を示す平面図、第2図bは、そのA−A断
面図、第3図aは、本発明にかかる絶縁膜の形成
方法の一実施例により製造された薄膜EL素子の
平面図、第3図bは、そのB−B断面図である。 11……ガラス基板、12……絶縁層、13…
…透明平行電極、14……EL発光層、15……
絶縁層、16……背面平行電極。
FIG. 1 is a schematic diagram of a conventional sputtering apparatus, FIG. 2a is a plan view showing a method of forming an insulating film according to the conventional configuration, FIG. 2b is a cross-sectional view taken along line A-A, and FIG. FIG. 3a is a plan view of a thin film EL device manufactured by an embodiment of the method for forming an insulating film according to the present invention, and FIG. 3b is a sectional view taken along line B-B. 11...Glass substrate, 12...Insulating layer, 13...
...Transparent parallel electrode, 14...EL light emitting layer, 15...
Insulating layer, 16... Back parallel electrode.

Claims (1)

【特許請求の範囲】 1 透明導電膜からなる複数の電極を形成した基
板上で、前記複数の電極の上に絶縁膜をスパツタ
リングによつて形成する方法において、前記絶縁
膜の形成領域を決めるマスクとして、絶縁性のマ
スクを使用するか、若しくは導電性のマスクを使
用する場合は前記複数の電極が相互に電気的に短
絡しないように電極とマスクとの間を絶縁して、
絶縁膜材料をスパツタリングすることを特徴とす
る透明導電膜上への絶縁膜の形成方法。 2 透明導電膜が、互いに直交する方向にそれぞ
れ複数本配列された2組の帯状電極群で構成され
るマトリツクス電極間に絶縁膜を介して層設され
たEL発光層を基板上に搭載して成る薄膜EL素子
の、前記2組のうちの一方の帯状電極群であるこ
とを特徴とする特許請求の範囲第1項記載の透明
導電膜上への絶縁膜の形成方法。 3 透明導電膜が、酸化インジウムすず膜からな
ることを特徴とする特許請求の範囲第1項記載の
透明導電膜上への絶縁膜の形成方法。
[Scope of Claims] 1. In a method of forming an insulating film on a plurality of electrodes by sputtering on a substrate on which a plurality of electrodes made of a transparent conductive film are formed, a mask for determining a formation area of the insulating film. As such, an insulating mask is used, or when a conductive mask is used, the electrodes and the mask are insulated so that the plurality of electrodes do not electrically short-circuit with each other,
A method for forming an insulating film on a transparent conductive film, the method comprising sputtering an insulating film material. 2. An EL light-emitting layer is mounted on a substrate, with an insulating film interposed between the matrix electrodes, each consisting of two sets of strip-shaped electrodes each having a plurality of transparent conductive films arranged in directions perpendicular to each other. 2. The method of forming an insulating film on a transparent conductive film according to claim 1, wherein the electrode group is one of the two sets of strip-shaped electrodes of a thin film EL device consisting of a thin film EL device. 3. The method of forming an insulating film on a transparent conductive film according to claim 1, wherein the transparent conductive film is made of an indium tin oxide film.
JP58175188A 1983-09-24 1983-09-24 Method of forming insulating film Granted JPS6068590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58175188A JPS6068590A (en) 1983-09-24 1983-09-24 Method of forming insulating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58175188A JPS6068590A (en) 1983-09-24 1983-09-24 Method of forming insulating film

Publications (2)

Publication Number Publication Date
JPS6068590A JPS6068590A (en) 1985-04-19
JPH056319B2 true JPH056319B2 (en) 1993-01-26

Family

ID=15991819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58175188A Granted JPS6068590A (en) 1983-09-24 1983-09-24 Method of forming insulating film

Country Status (1)

Country Link
JP (1) JPS6068590A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6320461A (en) * 1986-07-14 1988-01-28 Nippon Telegr & Teleph Corp <Ntt> Thin film forming device
JP2773773B2 (en) * 1989-02-23 1998-07-09 関西日本電気株式会社 Method for manufacturing thin-film EL panel
GB0409521D0 (en) * 2004-04-29 2004-06-02 Fosroc International Ltd Sacrificial anode assembly

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821795B2 (en) * 1978-05-23 1983-05-04 シャープ株式会社 Structure of thin film EL element

Also Published As

Publication number Publication date
JPS6068590A (en) 1985-04-19

Similar Documents

Publication Publication Date Title
US6222315B1 (en) Luminescent display panel with insulating films
EP0645073B1 (en) Low resistance, thermally stable electrode structure for electroluminescent displays
JPH11121168A (en) Organic electroluminescence element and its manufacture
JPH056319B2 (en)
JPH0527924B2 (en)
JPH11312583A (en) Manufacture of el element
JP2844964B2 (en) Manufacturing method of EL display device
JP2773773B2 (en) Method for manufacturing thin-film EL panel
EP0450077A1 (en) Thin-film electroluminescent element and method of manufacturing the same
JPH05217673A (en) Manufacture of thin film el element
JPH056318B2 (en)
JPS6256636B2 (en)
JP3561978B2 (en) Method for manufacturing electroluminescence device
KR970005102B1 (en) Thin film type electro luminescense display device
JPS61188892A (en) Formation of dielectric film
JPH02306580A (en) Manufacture of thin film electroluminescence element
JPS61188890A (en) Formation of dielectric film
JPH05205874A (en) Thin film el panel
JPH0424639Y2 (en)
JPH0834125B2 (en) Method for manufacturing multicolor thin film EL device
JPH01204394A (en) Thin film el element
JPH07118387B2 (en) Multicolor EL display device
JPS6318318B2 (en)
JPS63136491A (en) Manufacture of thin film el device
JPH01315985A (en) Manufacture of el panel