JPS60236245A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60236245A
JPS60236245A JP9331284A JP9331284A JPS60236245A JP S60236245 A JPS60236245 A JP S60236245A JP 9331284 A JP9331284 A JP 9331284A JP 9331284 A JP9331284 A JP 9331284A JP S60236245 A JPS60236245 A JP S60236245A
Authority
JP
Japan
Prior art keywords
film
silicon
oxide film
silicon nitride
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9331284A
Other languages
Japanese (ja)
Inventor
Takashi Yamamoto
隆 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP9331284A priority Critical patent/JPS60236245A/en
Publication of JPS60236245A publication Critical patent/JPS60236245A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76202Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO

Abstract

PURPOSE:To obtain an oxidation resistant film having excellent oxidation resistance and buffer effect in the step of forming a field oxide film by forming a silicon nitride oxide film in a specific triple structure as an oxidation film. CONSTITUTION:A silicon nitride oxide film of 3-layers having a relation of n1<n3<n2 of n1, n2, n3 of refractive indexes is coated in the order of n1, n2, n3 on a semiconductor substrate 1. For example, a silicon oxide-rich silicon nitride oxide film 7 of n1=1.6, a silicon nitrode-rich silicon nitride oxide film 8 of n2=1.9 and a silicon nitride oxide film 9 of n3=1.85 are, for example, coated under reduced CVD. The films 7, 8, 9 are patterned except an element forming region, thermally oxidized to obtain a field oxide film 4. The film 7 contributes to the buffer effect, the film 8 contributes to the oxidation resistance, and the warpage of the periphery can be suppressed by the thick film 9.

Description

【発明の詳細な説明】 (a)1発明の技術分野 本発明は酸化窒化珪素(S 1ON)膜を耐酸化マスク
として珪素基板上に二酸化珪素膜を選択的に設け、この
二酸化珪素膜をフィールド酸化膜として素子分離に用い
た半導体装置の製造方法に関する。
Detailed Description of the Invention (a) 1 Technical Field of the Invention The present invention involves selectively providing a silicon dioxide film on a silicon substrate using a silicon oxynitride (S1ON) film as an oxidation-resistant mask, and applying this silicon dioxide film to a field. The present invention relates to a method of manufacturing a semiconductor device using an oxide film for element isolation.

(h)、技術の背景 集積回路等の半導体装置内における構成素子間の分離の
ため、素子領域以外の部分に前記フィールド酸化膜を被
着する場合が多い。
(h) Background of the Technology In order to isolate constituent elements in a semiconductor device such as an integrated circuit, the field oxide film is often deposited on a portion other than the element region.

第1図はフィールド酸化膜形成後の珪素基板の断面図で
ある。
FIG. 1 is a cross-sectional view of a silicon substrate after a field oxide film is formed.

図において、1は珪素基板、2は緩衝膜、3は耐酸化膜
、4はフィールド酸化膜を示す。
In the figure, 1 is a silicon substrate, 2 is a buffer film, 3 is an oxidation-resistant film, and 4 is a field oxide film.

素子間の分離効果を大きくするためにはフィールド酸化
膜4の膜厚を8000Å以上に厚くする必要がある。こ
のような厚い酸化膜を形成する際の耐酸化膜3として従
来は気相成長(CVD)法により被着した窒化珪素膜を
1000〜2000人の厚さで素子領域に被着していた
。この場合 1、窒化珪素は極めて硬く、これに密着した珪素基板1
に熱膨張係数の差による歪により結晶転位を発生しやす
い。
In order to increase the isolation effect between elements, it is necessary to increase the thickness of field oxide film 4 to 8000 Å or more. Conventionally, as the oxidation-resistant film 3 when forming such a thick oxide film, a silicon nitride film deposited by a vapor phase growth (CVD) method has been deposited to a thickness of 1,000 to 2,000 layers over the device region. In this case 1, silicon nitride is extremely hard and the silicon substrate 1 is in close contact with it.
Crystal dislocations are likely to occur due to strain caused by the difference in thermal expansion coefficients.

ii 、またCVD窒化珪素膜3は直接珪素基板1に接
触すると、珪素基板】に界面準位ができたり、あるいは
後工程の熱処理で珪素基板1に不純物が入り込むおそれ
がある。
ii. Furthermore, if the CVD silicon nitride film 3 comes into direct contact with the silicon substrate 1, there is a risk that an interface level may be formed in the silicon substrate, or that impurities may enter the silicon substrate 1 during heat treatment in a subsequent step.

以上の2つの欠点を防止するため、緩衝(パッド)膜2
として極めて薄い500人程度の二酸化珪素膜を窒化珪
素膜3の下に敷いてこれらの影響を緩和するようにして
いる。
In order to prevent the above two drawbacks, the buffer (pad) film 2
An extremely thin silicon dioxide film having a thickness of about 500 mm is placed under the silicon nitride film 3 to alleviate these effects.

しかし二酸化珪素膜2を窒化珪素膜3の下に敷くことに
よりつぎのような欠点を生じる。
However, by placing the silicon dioxide film 2 under the silicon nitride film 3, the following drawbacks arise.

即ち前記フィールド酸化膜4形成の酸化工程において、
酸素が二酸化珪素膜2の側面より人込み、窒化珪素膜3
の周辺直下に図示されるように所謂バーズビークと呼ば
れる嘴のような断面形状をしたI−酸化珪素膜が形成さ
れ、フィールド酸化B1i、4の開口寸法へは所期値よ
り小さくなり、微細加工には不利となる。
That is, in the oxidation step of forming the field oxide film 4,
Oxygen crowds from the side of silicon dioxide film 2, and silicon nitride film 3
As shown in the figure, an I-silicon oxide film with a beak-like cross-sectional shape called a so-called bird's beak is formed, and the opening size of the field oxide B1i, 4 becomes smaller than the expected value, making it difficult for microfabrication. is disadvantageous.

(C)、従来技術と問題点 耐酸化膜として、窒化珪素膜を用いた場合の上記欠点を
除去するため、窒化珪素膜の代わりに酸化窒化珪素を用
いることが、本出願人により開示されている(特開昭5
6−93344)。以下図を用いて概略を説明する。
(C), Prior Art and Problems In order to eliminate the above drawbacks when using a silicon nitride film as an oxidation-resistant film, the applicant has disclosed the use of silicon oxynitride instead of a silicon nitride film. There is (Unexamined Japanese Patent Application Publication No. 5)
6-93344). The outline will be explained below using the figures.

第2図は耐酸化膜として酸化窒化珪素膜を用いた場合の
従来例によるフィールド酸化膜形成工程を示す珪素基板
の断面図である。以下の図において同一番号は同一対象
を示す。
FIG. 2 is a cross-sectional view of a silicon substrate showing a conventional field oxide film forming process when a silicon oxynitride film is used as the oxidation-resistant film. In the figures below, the same numbers indicate the same objects.

第2図talにおいて、珪素基板lの−Lに一定の組成
を有する酸化窒化珪素89.5を被着する。
In FIG. 2 tal, silicon oxynitride 89.5 having a certain composition is deposited on -L of the silicon substrate l.

被着方法はプラズマCVDによりシラン(Sitln)
とアンモニア(NH3)と酸化窒素(N20)を・定比
率で常圧容器に送り13.56MIIzでIOWのRF
電力を加えて、容器内におかれた珪素基板1のトにCV
D酸化窒化珪素膜5を被着する。
The deposition method is silane (Sitln) by plasma CVD.
, ammonia (NH3) and nitrogen oxide (N20) are sent to a normal pressure container at a constant ratio, and the IOW RF is applied at 13.56 MIIz.
By applying electric power, CV is applied to the silicon substrate 1 placed in the container.
A silicon oxynitride film 5 is deposited.

第2図(blにおいて、通常のりソゲラフイエ程を用い
て前記酸化窒化珪素膜5を素子−形成領域のめ残してバ
ターニングする。
In FIG. 2 (bl), the silicon oxynitride film 5 is patterned using a normal glue and polish process, leaving the silicon oxynitride film 5 in the element formation region.

第2図[C)において、1000’C以上で熱酸化して
フィールド酸化膜4と酸化窒化珪素膜5が変換された二
酸化珪素膜6が得られる。
In FIG. 2C, a silicon dioxide film 6 is obtained in which the field oxide film 4 and the silicon oxynitride film 5 are converted by thermal oxidation at 1000'C or more.

第2図[dlにおいて、酸化窒化珪素ll95と変換さ
れた二酸化珪素膜6を弗酸を用いて除去する。
In FIG. 2 [dl], the silicon dioxide film 6 converted into silicon oxynitride 1195 is removed using hydrofluoric acid.

しかしながら、耐酸化膜として酸化窒化珪素膜5を用い
る場合に、緩衝効果に重点をおいて酸化珪素リッチの酸
化窒化珪素膜にすると耐酸化性が犠牲になり、また反対
に耐酸化性に重点をおいて窒化珪素り、チの酸化窒化珪
素膜にすると緩衝効果が犠牲になるという欠点がある。
However, when using the silicon oxynitride film 5 as an oxidation-resistant film, if the silicon oxide-rich silicon oxide nitride film is made with emphasis on the buffering effect, the oxidation resistance will be sacrificed; However, if a silicon oxynitride film such as silicon nitride or silicon is used, the buffering effect is sacrificed.

またこの例のようにプラズマCV l)による酸化窒化
珪素膜5は水素を多(含みピンボールが多く一ζ膜質が
悪く、酸化窒化珪素膜5蚕除去したあとに形成するゲー
ト酸化膜に欠陥を生じ易い。
In addition, as in this example, the silicon oxynitride film 5 formed by plasma CVL contains a large amount of hydrogen (contains many pinballs) and has poor film quality, resulting in defects in the gate oxide film formed after the silicon oxynitride film 5 is removed. Easy to occur.

(d)1発明の目的 本発明の目的は従来技術の有する上記の欠点を除去し、
耐酸化性と緩衝効果の優れた耐酸化膜が得られる製造方
法を促供することにある。
(d)1 Objective of the invention The objective of the present invention is to eliminate the above-mentioned drawbacks of the prior art,
It is an object of the present invention to provide a manufacturing method that provides an oxidation-resistant film with excellent oxidation resistance and buffering effect.

(C)1発明の構成 上記の目的は、半導体基板上に屈折率がそれぞれnl+
 nt+ 13で、かつn、<13<nzの関係が成立
する3層の酸化窒化珪素膜をil 1 + n 2.n
3の順に破着し、該酸化窒化珪素膜をマスクとして該酸
化窒化珪素膜で覆われていない基板領域に酸化膜を形成
させる本発明による半導体装置の製造方法により達成さ
れる。
(C) 1 Structure of the Invention The above object is to provide a semiconductor substrate with a refractive index of nl+, respectively.
A three-layer silicon oxynitride film with nt+13 and the relationship n<13<nz is formed by il 1 + n 2. n
This is achieved by the method of manufacturing a semiconductor device according to the present invention, in which the silicon oxynitride film is used as a mask to form an oxide film on the substrate region not covered with the silicon oxynitride film.

本発明によれば、CVDにより酸化窒化珪素膜形成時に
供給ガスの混合比を変えることにより容易に種々の組成
のものをつくり分け、耐酸化性と緩衝効果の優れた耐酸
化膜が得られる。
According to the present invention, by changing the mixing ratio of the supplied gas when forming a silicon oxynitride film by CVD, it is possible to easily create various compositions and obtain an oxidation-resistant film with excellent oxidation resistance and buffering effect.

(r)1発明の実施例 第3図は耐酸化膜として酸化窒化珪素膜を用いた場合の
本発明によるフィールド酸化膜形成」稈を示ず珪素基板
の断面図である。
(r) 1 Embodiment of the Invention FIG. 3 is a cross-sectional view of a silicon substrate, not showing the culm, of field oxide film formation according to the present invention when a silicon oxynitride film is used as the oxidation-resistant film.

第3図ta+において、珪素基板1のにに厚さ100〜
300人の屈折率 n+−1,6の酸化珪素リッチの酸
化窒化珪素l!7、厚さ約200人の屈折率n2= 1
.9の窒化珪素リッチの酸化窒化珪素膜8、厚さ200
0〜3000人の屈折率n、□−1,85の酸化窒化1
1素膜9を被着する。
In FIG. 3 ta+, the thickness of the silicon substrate 1 is 100~
Silicon oxide-rich silicon oxide nitride with a refractive index of 300 people n+-1,6! 7, refractive index n2 = 1 with a thickness of about 200 people
.. 9, silicon nitride-rich silicon oxynitride film 8, thickness 200
Oxynitride 1 with refractive index n of 0-3000, □-1,85
1 elemental film 9 is deposited.

因に屈折率は、二酸化珪素は1.46、窒化工4素は2
.0である。
Incidentally, the refractive index is 1.46 for silicon dioxide and 2 for nitride.
.. It is 0.

被着方法は減圧CVDによりシラン(Silla)とア
ンモニア(Nlh)と酸化窒素(NO)の混合ガスを減
圧容器に送り容器内におかれた700℃の珪素2.〜板
1の上にCVD酸化窒化珪素膜7.8.9を被71する
The deposition method is to send a mixed gas of silane (Silla), ammonia (Nlh), and nitrogen oxide (NO) to a vacuum container by low-pressure CVD and deposit silicon at 700°C in the container. - Applying 71 a CVD silicon oxynitride film 7.8.9 on top of the plate 1.

第3図fblにおいて、通常のりソグラフィ1−程によ
り、リアクティブ・イオン エノナングを用いて前記酸
化窒化珪素膜7.8.9を素子形成領域のみ残してパタ
ーニングする。
In FIG. 3 fbl, the silicon oxynitride film 7.8.9 is patterned using reactive ion etching using normal lithography step 1, leaving only the element formation region.

第3図fc)において、900℃以上で熱酸化してフィ
ールド酸化膜4が得られる。
In FIG. 3 fc), a field oxide film 4 is obtained by thermal oxidation at 900° C. or higher.

第3図fd)において、酸化窒化珪素膜7,8は熱燐酸
、9は弗酸を用いて除去する。
In FIG. 3 fd), the silicon oxynitride films 7 and 8 are removed using hot phosphoric acid, and the silicon oxynitride films 9 are removed using hydrofluoric acid.

このような3重構造をとることにより、緩衝効果に対し
ては酸化珪素リッチの酸化窒化珪素膜7、また耐酸化性
に対しては窒化珪素リッチの酸化窒化珪素膜8が寄与し
、さらに耐酸化膜の周辺の反り上がりを防止するため厚
い酸化窒化珪素膜9でおさえ込むことができる。この酸
化窒化珪素膜9の厚さを1000人増す毎に、第1図に
示されるバーズビーク長Bは約1000人宛減少させる
ことができる。
By adopting such a triple structure, the silicon oxide-rich silicon oxynitride film 7 contributes to the buffering effect, and the silicon nitride-rich silicon oxynitride film 8 contributes to the oxidation resistance. In order to prevent the periphery of the silicon oxide film from warping, it can be suppressed with a thick silicon oxynitride film 9. Every time the thickness of the silicon oxynitride film 9 is increased by 1000, the bird's beak length B shown in FIG. 1 can be reduced by about 1000.

また実施例のように減圧CVDによる酸化窒化珪素膜7
,8.9は膜質が良く、酸化窒化珪素膜7.8.9を除
去したあとに形成するゲート酸化膜に悪影響を与えない
In addition, as in the embodiment, the silicon oxynitride film 7 is formed by low pressure CVD.
, 8.9 have good film quality and do not adversely affect the gate oxide film formed after removing the silicon oxynitride film 7.8.9.

(g)0発明の効果 以上詳細に説明したように本発明によれば、−4酸化性
と緩衝効果の優れた耐酸化膜が得られる製造方法を提供
することができる。
(g) Effects of the Invention As described above in detail, the present invention can provide a manufacturing method that provides an oxidation-resistant film with excellent -4 oxidation properties and buffering effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はフィールド酸化膜形成後の珪素基板の断面図、
第2図は耐酸化膜として酸化窒化珪素膜を用いた場合の
従来例によるフィールド酸化膜形成工程を示す珪素基板
の断面図、第3図は耐酸化膜として酸化窒化珪素膜を用
いた場合の本発明によるフィールド酸化膜形成工程を示
す珪素基板の断面図である。 図において、1は珪素基板、2は緩衝膜、3は耐酸化膜
、4はフィールド酸化膜、5は酸化窒化珪素膜、6は二
酸化珪素膜、7は屈折率n、・1゜6の酸化珪素リッチ
の酸化窒化珪素膜、8は屈+Ji率n2=1.9の窒化
珪素り、チの酸化窒化珪素膜、9は屈折率n3=1.8
5の酸化窒化珪素lI9を示す。
Figure 1 is a cross-sectional view of a silicon substrate after field oxide film formation;
FIG. 2 is a cross-sectional view of a silicon substrate showing a conventional field oxide film forming process when a silicon oxynitride film is used as the oxidation-resistant film, and FIG. 3 is a cross-sectional view of a silicon substrate when a silicon oxynitride film is used as the oxidation-resistant film. FIG. 2 is a cross-sectional view of a silicon substrate showing a field oxide film forming process according to the present invention. In the figure, 1 is a silicon substrate, 2 is a buffer film, 3 is an oxidation-resistant film, 4 is a field oxide film, 5 is a silicon oxynitride film, 6 is a silicon dioxide film, 7 is a refractive index n, and 1°6 oxidation film. A silicon-rich silicon oxynitride film, 8 is a silicon nitride film with a refractive index n2 = 1.9, and a silicon oxynitride film with a refractive index n3 = 1.8.
The silicon oxynitride lI9 of No. 5 is shown.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に屈折率がそれぞれnl+02+13で、
かつn、<n、<n、の関係が成立する3層の酸化窒化
珪素膜をnl+02+13の順に被着し、該酸化窒化珪
素膜をマスクとして該酸化窒化珪素膜で覆われていない
基板領域に酸化膜を形成させることを特徴とする半導体
装置の製造方法。
On the semiconductor substrate, the refractive index is nl + 02 + 13, respectively,
Three layers of silicon oxynitride films satisfying the relationships n, <n, and <n are deposited in the order of nl+02+13, and the silicon oxynitride film is used as a mask to cover the substrate area not covered with the silicon oxynitride film. A method for manufacturing a semiconductor device, comprising forming an oxide film.
JP9331284A 1984-05-10 1984-05-10 Manufacture of semiconductor device Pending JPS60236245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9331284A JPS60236245A (en) 1984-05-10 1984-05-10 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9331284A JPS60236245A (en) 1984-05-10 1984-05-10 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60236245A true JPS60236245A (en) 1985-11-25

Family

ID=14078797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9331284A Pending JPS60236245A (en) 1984-05-10 1984-05-10 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60236245A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06302685A (en) * 1993-03-31 1994-10-28 Hyundai Electron Ind Co Ltd Forming method for field oxide film in semiconductor element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06302685A (en) * 1993-03-31 1994-10-28 Hyundai Electron Ind Co Ltd Forming method for field oxide film in semiconductor element

Similar Documents

Publication Publication Date Title
US6461985B1 (en) Semiconductor wafer assemblies comprising silicon nitride, methods of forming silicon nitride, and methods of reducing stress on semiconductive wafers
JP2755348B2 (en) Passivated double dielectric system and method of making same
JPH03200329A (en) Method of silicating spin-on glass
JP2021526318A (en) Semiconductor device with anti-deflection layer
US6417559B1 (en) Semiconductor wafer assemblies comprising photoresist over silicon nitride materials
KR970007114B1 (en) Fabration method of semiconductor device
US6300671B1 (en) Semiconductor wafer assemblies comprising photoresist over silicon nitride materials
JPS60236245A (en) Manufacture of semiconductor device
JPS59135743A (en) Semiconductor device and manufacture thereof
JPS61502716A (en) Fabrication of devices with silicon oxide regions
JPH01291430A (en) Manufacture of semiconductor device
JPH0428231A (en) Manufacture of semiconductor device
JPH06291253A (en) Formation of dielectric film of electric charge storage section of semiconductor element
JP2975496B2 (en) Method of forming element isolation structure
JP2629587B2 (en) Method for manufacturing semiconductor device
JPS5990853A (en) Photomask blank
JPH02110930A (en) Semiconductor device
JPS5874043A (en) Semiconductor device
JPH01165142A (en) Formation of wiring of semiconductor device
Kroll et al. Formation of silica films on silicon using silane and carbon dioxide
JPH0324268A (en) Formation of thin film
JPS6028248A (en) Manufacture of semiconductor device
JPS5928358A (en) Manufacture of semiconductor device
JPH07176613A (en) Fabrication of semiconductor device
JPH03159124A (en) Manufacture of semiconductor device