JPH0324268A - Formation of thin film - Google Patents

Formation of thin film

Info

Publication number
JPH0324268A
JPH0324268A JP16009289A JP16009289A JPH0324268A JP H0324268 A JPH0324268 A JP H0324268A JP 16009289 A JP16009289 A JP 16009289A JP 16009289 A JP16009289 A JP 16009289A JP H0324268 A JPH0324268 A JP H0324268A
Authority
JP
Japan
Prior art keywords
film
gas
insulating film
gaseous
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16009289A
Other languages
Japanese (ja)
Other versions
JP2976442B2 (en
Inventor
Junichi Sato
淳一 佐藤
Masakazu Muroyama
雅和 室山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP1160092A priority Critical patent/JP2976442B2/en
Publication of JPH0324268A publication Critical patent/JPH0324268A/en
Application granted granted Critical
Publication of JP2976442B2 publication Critical patent/JP2976442B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To form the insulating film which is lowered in stress by successively executing CVD using a gaseous silane system and gaseous N2O and CVD using the gaseous silane system and gaseous O2 at the time of forming the insulating film by a bias ECR plasma CVD method on a substrate having steps. CONSTITUTION:Trenches 1a are formed as steps on the surface of a silicon substrate 1. The inside wall surfaces of the trenches 1a and the surface of the silicon substrate 1 are thermally oxidized to form an oxide film 2 having about 100 to 200Angstrom thickness. A primary SiO2 film 3 having about 500 to 3000Angstrom thickness is then formed as the insulating film by executing the bias ECR plasma CVD method using the gaseous SiH4 and the gaseous N2O as a reaction gas. Further, the trenches 1a are filled and flattened with the secondary SiO2 film 4 formed by the bias ECR plasma CVD method using the gaseous SiH4 and the gaseous O2 as the reaction gas. The SiO2 films 3, 4 in the trenches 1a are lowered in the stress as a whole in this way and, therefore, the generation of defects in the substrate 1 and the generation of cracks in the SiO2 films is obviated.

Description

【発明の詳細な説明】 [産業]二の利用分野] 本発明は、絶縁膜の形成方法に関し、更に詳しくは、バ
イアスECI1プラズマCVD法を用いて低ストレス化
された絶縁膜の形戊方法に係るものである。
[Detailed Description of the Invention] [Industry] Second Field of Application] The present invention relates to a method of forming an insulating film, and more specifically, to a method of forming an insulating film with low stress using bias ECI1 plasma CVD method. This is related.

[発明の概要] 第1の発明は、段差を有する基体上にバイアスECRプ
ラズマCVD法に上り絶縁膜を形成する方法において、
はじめに、シラン系ガスとN.0ガスを用いてCVDを
行ない、次いで、シラン系ガスとO,ガスを用いてCV
Dを行なうことにより、又、第2の発明は、反応ガスに
シラン系ガスを用い、該シラン系ガスの流量比を小さく
しながらCVDを行なうことにより、 共に、低ストレスな絶縁膜を段差部に埋め込めるように
したしのである。
[Summary of the Invention] The first invention is a method for forming an insulating film on a substrate having a step using a bias ECR plasma CVD method,
First, silane gas and N. CVD is performed using 0 gas, and then CVD is performed using silane gas and O gas.
By performing step D, and in the second invention, by using a silane gas as a reaction gas and performing CVD while reducing the flow rate ratio of the silane gas, both can form a low stress insulating film on the stepped portion. I made it possible to embed it in.

第3の発明は、段差を有する基体上にバイアスECRプ
ラズマCVD法により絶縁膜を形成する方法において、
はじめに、SiOz膜を形成し、次いで、SiNx膜を
形成することにより、段差部への密着性の高い絶縁膜を
形成することを可能にするようにしたしのであり、例え
ばトレンチアイソレーションにおけるトレンチ内壁への
密着性を改善し、リーク電流の低減を図ることが可能と
なる。
A third invention is a method for forming an insulating film on a substrate having a step by bias ECR plasma CVD,
By first forming a SiOz film and then forming a SiNx film, we have made it possible to form an insulating film with high adhesion to the stepped portion, for example on the inner wall of a trench in trench isolation. It is possible to improve adhesion to the surface and reduce leakage current.

[従来の技術] バイアスECRプラズマCVD法は、デバイスの高集積
化が今後、増々進む中で、層間膜の平坦化の要求に応え
得る重要な技術となりつつある。
[Prior Art] The bias ECR plasma CVD method is becoming an important technology that can meet the demand for planarization of interlayer films as devices become increasingly highly integrated.

即ち、バイアスECRプラズマCVD法は、低圧で高密
度プラズマを形戚できるため、アスベクト比の高い溝,
段差へも高速で膜成長可能なうえ、ウエハにRFバイア
スを印加することにより余分な膜をエッヂング除去する
ことが出来、同一装置内で平坦化絶縁膜を形成出来る利
点かある。しかも、このCVD法は、低温プラズマを用
いるため、低愚戊長が可能である。
In other words, the bias ECR plasma CVD method can form high-density plasma at low pressure, so it can form grooves with high aspect ratios.
This method has the advantage that it is possible to grow a film at high speed even on steps, and that excess film can be removed by etching by applying an RF bias to the wafer, and that a flattened insulating film can be formed in the same device. Furthermore, since this CVD method uses low-temperature plasma, it is possible to achieve a low length.

この種のバイアスECRプラズマCVD法としては、特
開昭63−80538号公報記載のものが知られている
。この技術は、シラン(SiH.)ガスと酸素(0,)
ガスを反応ガスとして用い、SiOz膜をエッチングし
て平坦化しながら堆積さU・るようにし、また、基板に
バイアス電圧を印加し、アルゴン(Ar)よりも質量の
重い不活性ガスを用いることにより、横方向のエソチン
グ速度を大きくし、平坦化処理時間を短縮ずろようにし
たちのである。
As this type of bias ECR plasma CVD method, the one described in Japanese Patent Application Laid-open No. 80538/1983 is known. This technology uses silane (SiH.) gas and oxygen (0,)
By using gas as a reactive gas, the SiOz film is etched and deposited while planarizing it, and by applying a bias voltage to the substrate and using an inert gas with a mass heavier than argon (Ar). The aim was to increase the etching speed in the lateral direction and shorten the planarization process time.

斯るバイアスECRプラズマCVDiの特徴を生かして
、例えば素子間分離領域にトレインチを形成し、そのト
レインチ内にバイアスECULプラズマCVD法でSi
nsなどの絶縁膜を埋め込もうという研究開発が近年行
なわれている。
Taking advantage of the characteristics of bias ECR plasma CVDi, for example, a train trench is formed in the isolation region between elements, and Si is deposited in the train trench by bias ECUL plasma CVD.
In recent years, research and development has been carried out to embed an insulating film such as NS.

[発明が解決しようとする課題] しかしながら、このような従来の絶縁膜の形成方法にあ
っては、バイアスECRプラズマCVDの反応ガスとし
てSit{.と0,を用いるが、堆積した絶縁膜のスト
レスが比較的大きいため、トレインチ浬込み後に、デバ
イス形f戊過程で加わる熱処理等により、基体結晶に欠
陥を誘起したり、塊込み膜にクラックが生じ易いという
問題点があった。
[Problems to be Solved by the Invention] However, in such a conventional method for forming an insulating film, Sit{. and 0, are used, but since the stress of the deposited insulating film is relatively large, the heat treatment applied during the device forming process after the train trench is drilled may induce defects in the base crystal or cracks in the agglomerated film. There was a problem that it was easy to occur.

本発明は、このよう紅従来の問題点に着目して創案され
たものであって、段差に埋め込む絶縁膜の低ストレス化
を期し得るようにしたちのである。
The present invention has been devised by focusing on the problems of the conventional method, and is intended to reduce the stress of the insulating film buried in the step.

F課゛題を解決するための手段] そこで、第1の発明は、段差を有する基体上にバイアス
ECRプラズマCVD法により絶縁模を形成する方法に
おいて、はじめに、シラン系ガスとN t Oガスを用
いてCVDを行ない、次いで、シラン系ガスとO!ガス
を用いてCVDを行なうことを、その・解決手段として
いる。
Means for Solving Problem F] Therefore, the first invention is a method for forming an insulating pattern on a substrate having a step by bias ECR plasma CVD, in which silane-based gas and N t O gas are first mixed. CVD is then carried out using silane gas and O! The solution is to perform CVD using gas.

第2の発明は、段差を有する基体上にバイアスE C 
RプラズマCVD法により絶縁膜を形成ずろ方法におい
て、反応ガスにプラン系ガスを用い、該シラン系ガスの
流量比を小さくしながらCVDを行なうことを、その解
決手段としていろ。
The second invention is a bias E C on a substrate having a step.
A solution to this problem is to use a plan-based gas as a reaction gas and perform CVD while reducing the flow rate ratio of the silane-based gas in a method for forming an insulating film by R plasma CVD.

第3の発明は、段差を有する基体上にバイアスEC R
プラズマCVD法により絶縁膜を形成する方法において
、はじめに、Sin2膜を形成し、次いで、SiNx膜
を形成することを、その解決手段としている。
The third invention is a bias ECR on a substrate having a step.
In a method of forming an insulating film by plasma CVD, the solution is to first form a Sin2 film and then to form a SiNx film.

[作用] 第1の発明においては、はじめに、基体上にSt1−1
 .ガスとN t Oガスを用いてSin2膜を形成す
ることにより、段差表面をおよそIXI09dyn e
 / c m″以下の低ストレスな膜で保護するため、
後工程でS i 1−■.ガスと0,ガスを用いた通常
のバイアスECRプラズマCVDを行なってもSIOt
膜全体としては基体側へ応力を与えることが抑制される
[Operation] In the first invention, first, St1-1 is applied on the substrate.
.. By forming a Sin2 film using gas and N t O gas, the step surface is approximately IXI09dyn e
/cm″ or less for protection with a low-stress film,
In the post-process, S i 1-■. Even if normal bias ECR plasma CVD using gas and 0 gas is performed, SIOt
As a whole, stress is suppressed from being applied to the substrate side.

第2の発明においては、シラン系ガスの流量比を小さく
しながらCVDを行なうため、段差に付着するSift
膜は、低ストレスなしのが頭初形成される。このため、
SiOz膜が基体側へ応力を与えるのを防止できる。
In the second invention, since CVD is performed while reducing the flow rate ratio of the silane gas, Sift adhering to the step
The membrane is initially formed under low stress. For this reason,
It is possible to prevent the SiOz film from applying stress to the substrate side.

第3の発明においては、SiOy膜を形成した後、ノリ
コン窒化膜(SiNス)を形成することにより、Sin
s膜の圧縮応力を、SiNx膜の引張り応力で緩和し、
基体側へ応力を及ぼずのを防止する。このため、例えば
トレンチ部でのリーク電流を低減し、高アスペクト比の
トレンチ埋達みを可能にする。
In the third invention, after forming the SiOy film, a silicon nitride film (SiN film) is formed to
The compressive stress of the S film is relaxed by the tensile stress of the SiNx film,
Prevents stress from being applied to the base body side. Therefore, for example, leakage current in the trench portion can be reduced, making it possible to fill a trench with a high aspect ratio.

[実施例] 以下、本発明に係る絶縁膜の形成方法の詳細を図面に示
す実施例に基づいて説明する。
[Example] Hereinafter, details of the method for forming an insulating film according to the present invention will be described based on an example shown in the drawings.

(第1実施例) 第l図A〜第l図Cは、本発明の第1実施例の工程を示
す断面図である。
(First Embodiment) FIGS. 1A to 1C are sectional views showing the steps of the first embodiment of the present invention.

先ず、第1図Aに示すように、基体としてのンリコン基
板lの表面に、リソグラフィー技術及びドライエッチン
グ技術を用いて、段差としてのトレンチlaを形成した
後、該トレンチla内壁面及びシリコン基板1表面に熱
酸化を行ない、酸化膜2を100〜200人程度の厚さ
に形成する。
First, as shown in FIG. 1A, a trench la is formed as a step on the surface of a silicon substrate l as a base using lithography and dry etching techniques, and then the inner wall surface of the trench la and the silicon substrate 1 are formed. The surface is thermally oxidized to form an oxide film 2 to a thickness of about 100 to 200 layers.

次に、第1図Bに示すように、シラン( S iH 4
)ガスと酸化二窒素(N10)ガスを反応ガスとして用
いて、バイアスECRプラズマCVD法を行ない絶縁膜
としての第l次Sin,膜3を約500〜3000人の
膜厚に形成する。このバイアスECRプラズマCVD法
の条件としては、SiH+ガスの流量を20SCCM.
NtOガスの流量408CCM,圧力を5X I O−
’To r r,マイクロ波電力を800W,RFバイ
アスを300Wに設定した。
Next, as shown in FIG. 1B, silane (S iH 4
) gas and dinitrogen oxide (N10) gas as reaction gases, a bias ECR plasma CVD method is performed to form the first-order Sin film 3 as an insulating film to a thickness of approximately 500 to 3000 nm. The conditions for this bias ECR plasma CVD method include a flow rate of SiH+ gas of 20 SCCM.
NtO gas flow rate 408CCM, pressure 5X IO-
'Torr, microwave power was set to 800W, and RF bias was set to 300W.

次いで、第I図Cに示すように、反応ガスをSiH4ガ
スと酸素(O,)ガスとアルゴン(Ar)ガスに代えて
バイアスECr{プラズマCVDを行ない、第2次Si
Ott[i4を埋め込み平坦化を行なう。なお、このバ
イアスECRプラズマCVDの条件は、SiH4ガスの
流量を20SCCM.0,ガスの流量を40SCCM,
アルゴンガスの流量をIOsccMとし、圧力を5X1
0−3Torr、マイクロ波電力を800W,RFバイ
アスを300に設定した。
Next, as shown in FIG.
Embed Ott[i4 and perform planarization. Note that the conditions for this bias ECR plasma CVD are that the flow rate of SiH4 gas is 20SCCM. 0, gas flow rate 40SCCM,
The flow rate of argon gas is IOsccM, and the pressure is 5X1.
The settings were 0-3 Torr, microwave power 800 W, and RF bias 300.

上記L タ第1 次S i O t 膜3 ハ、約IX
lO’dy n e / c m ’以下の低ストレス
化を期し得るものであり、第2次Sin,膜4の応力が
約2×10”d y n e/cm’と比較的高ストレ
スであっても第l次SiOz膜3からシリコン基板i側
へ応力を及ぼずことを防止出来る。
The above L ta primary S i O t film 3 c, about IX
It is possible to expect a low stress of less than lO'dyne/cm', and the stress of the secondary Sin film 4 is relatively high at about 2×10"dyne/cm'. However, stress can be prevented from being applied from the lth-order SiOz film 3 to the silicon substrate i side.

このようにして形威されたトレンチIのSins膜(第
1次Sint膜3及び第2次Sin,膜4)は全体とし
て低ストレス化が図れるため、デバイス形成過程で行な
われる熱処理を経ても、シリコン基板lの結晶に欠陥を
生じたり、940,膜にクラックが生じたりすることが
ない。
Since the Sins film (first Sint film 3 and second Sin film 4) in the trench I formed in this way can have low stress as a whole, even after the heat treatment performed in the device formation process, Defects do not occur in the crystals of the silicon substrate 1, and cracks do not occur in the film.

(第2実施例) 第2図A〜第2図Cは、本発明に係る絶縁膜の形成方法
の第2実施例の工程を示す断面図である。
(Second Example) FIGS. 2A to 2C are cross-sectional views showing steps of a second example of the method for forming an insulating film according to the present invention.

先ず、第2図Aに示すように、シリコン基板lの表面に
、リソグラフィー技術及びドライエッチング技術を用い
て、トレンチlaを形戊した後、熱酸化を行なって該ト
レンチ1a内壁面及びシリコン基板1表面に酸化膜2を
100〜200人程度の厚さに形成する。
First, as shown in FIG. 2A, a trench la is formed on the surface of a silicon substrate l using lithography and dry etching techniques, and then thermal oxidation is performed to form the inner wall surface of the trench la and the silicon substrate 1. An oxide film 2 is formed on the surface to a thickness of about 100 to 200 layers.

次に、第2図Bに示すように、反応ガスとしてシラン(
SiH*)ガスと酸素(01)ガスを用いて、バイアス
ECRプラズマCVDを行ないトレンチla内及びンリ
コン基板l上にSin2膜5を形成する。このCVDの
条件としては、SiH4ガスの流攪を20SCCM,O
,ガスを208CCM,圧力を5x 1 0−3To 
r rs ?イク口波電力を800W%RFバイアスを
300Wに設定した。この条件でSift膜5を500
〜3000人程度の厚さに形成した後、圧力,マイクロ
波電力及びRFバイアスを同一条件に保ったまま、Si
H4の流量比を小さくして、さらに、SiOy膜5の堆
積、平坦化をバイアスECRプラズマC■Dによって行
う(第2図C)。この場合、S t H4ガスを20S
CCM.otガスの流量を403CCM.アルゴンガス
をIOsccMのd量とした。
Next, as shown in Figure 2B, silane (
Bias ECR plasma CVD is performed using SiH*) gas and oxygen (01) gas to form a Sin2 film 5 in the trench la and on the silicon substrate l. The conditions for this CVD include flow stirring of SiH4 gas at 20 SCCM, O
, gas 208CCM, pressure 5x 1 0-3To
rrs? The output wave power was set to 800W%, and the RF bias was set to 300W. Under these conditions, the Sift film 5 was
After forming the film to a thickness of about 3,000 yen, the Si
The flow ratio of H4 is reduced, and the SiOy film 5 is further deposited and planarized using bias ECR plasma C-D (FIG. 2C). In this case, S t H4 gas was
CCM. The flow rate of ot gas was set to 403CCM. The amount of argon gas was d of IOsccM.

上記したように、S IH 4ガスの流量比を段階的に
小さくしたが、連続的にSi84ガスの流量比を小さく
するようにしてもよい。即ち、トレンチIa内壁を覆う
Sin,膜形成時のSiH+の流量比が大きければ(S
IH4ガスとO,ガスとの流量比がl:1程度)、充分
に低ストレス化を図ることが可能である。
As described above, the flow rate ratio of the S IH 4 gas is decreased in stages, but the flow rate ratio of the Si 84 gas may be decreased continuously. That is, if the flow rate ratio of Sin covering the inner wall of trench Ia and SiH+ during film formation is large, (S
If the flow rate ratio of IH4 gas and O gas is about 1:1), it is possible to achieve sufficiently low stress.

なお、本実施例においては、アルゴンガスを加えたが、
他の不活性ガスを加えてもよい。
Although argon gas was added in this example,
Other inert gases may also be added.

(第3実施例) 第3図A〜第3図Cは、本発明の第3実施例の工程を示
す断面図である。
(Third Embodiment) FIGS. 3A to 3C are cross-sectional views showing the steps of a third embodiment of the present invention.

先ず、第3図Aに示すように、シリコン基板1のトレン
ヂ1aの内壁及びシリコン基板1表面を熱酸化により酸
化膜2を形成する。
First, as shown in FIG. 3A, an oxide film 2 is formed on the inner wall of the trench 1a of the silicon substrate 1 and the surface of the silicon substrate 1 by thermal oxidation.

次いで、第3図Bに示すように、反応ガスとしてSil
4+ガスと,Oガスを用いてバイアスECRプラズマC
VDを行ないsio,@sを500〜3000人程度の
膜厚で形成する。このSift膜5は、圧縮応力を有す
る。このCVDの条件は、ガス流量をS i H 4/
 O t= 2 0 / 4 0 3 C C M圧力
を5XIO−3Torr1マイクロ波電力を800WS
rlFバイアスを300Wに設定した。
Next, as shown in FIG. 3B, Sil is used as the reaction gas.
Bias ECR plasma C using 4+ gas and O gas
VD is performed to form sio and @s to a film thickness of about 500 to 3000 layers. This Sift film 5 has compressive stress. The conditions for this CVD are that the gas flow rate is S i H 4/
O t = 2 0 / 4 0 3 C CM pressure 5XIO-3Torr1 microwave power 800WS
The rlF bias was set to 300W.

次に、第3図Cに示すように、バイアスECRプラズマ
CVDIにより、窒化ンリコン(SiNx)膜6を平坦
化、形成する。むお、このCVDの条件は、反応ガスの
流潰をS iH −/ N t = 2 0 / 60
9CCM,圧力を5XIO−’Torr, マイクロ波
電力を800W,RFバイアスを300Wに設定した。
Next, as shown in FIG. 3C, a silicon nitride (SiNx) film 6 is planarized and formed by bias ECR plasma CVDI. Well, this CVD condition is such that the reaction gas collapses as SiH −/N t = 2 0 / 60
The pressure was set to 9CCM, the pressure was set to 5XIO-'Torr, the microwave power was set to 800W, and the RF bias was set to 300W.

なお、この窒化シリコン膜6は、引張り応力を有し、上
記Side膜の圧縮応力を緩和する。
Note that this silicon nitride film 6 has tensile stress and relieves the compressive stress of the Side film.

本実施例では、SiO!膜5とS i N xllli
 6の2層としたが、トレンチIaの内壁に密着する層
かSjO.膜であれば、窒化シリコン膜との多層構造と
してもよい。また、Stow膜5とSiNX膜6の成膜
工程を、反応ガスを除々に代えることにより連続的に形
成してもよい。この場合、例えば、SLHaガスの流量
を208CCMに保ち、Odfスを40SCCMからQ
SCCMに変化させ、同時にN,ガスをOから60SC
CMに変化させることにより、連続的なバイアスECR
プラズマCVDが可能となる。このように連続的に絶縁
膜を形成した場合、2層のものに比べてSiOz膜とS
iNx膜の密着性が改善される。
In this example, SiO! Membrane 5 and S i N xlli
6, but the layer that is in close contact with the inner wall of the trench Ia or the SjO. If it is a film, it may have a multilayer structure with a silicon nitride film. Furthermore, the Stow film 5 and the SiNX film 6 may be formed continuously by gradually changing the reaction gas. In this case, for example, the flow rate of SLHa gas is kept at 208CCM, and the Odf gas is changed from 40SCCM to Q
Change to SCCM and at the same time change N and gas from O to 60SC
Continuous bias ECR by changing to CM
Plasma CVD becomes possible. When an insulating film is formed continuously in this way, the SiOz film and S
The adhesion of the iNx film is improved.

また、シリコン基仮lの温度等を制御することにより、
さらに、膜質を向七することが可能である。
In addition, by controlling the temperature etc. of the silicon base material,
Furthermore, it is possible to change the film quality.

本実施例によれば、SiOy膜のみでトレンヂ埋込みを
行なうよりら、リーク電流等を低減化し、トレンヂ分離
能の良好なアイソレーションを高アスペクト比のトレン
ヂにおいてら実現することが可能となる。
According to this embodiment, it is possible to reduce leakage current and the like and realize isolation with good trend separation ability even in a trend with a high aspect ratio, compared to trench burying using only the SiOy film.

理を施しても基体結晶に欠陥が生じることがなく、例え
ばリーク電流等を低減した良好な特性を有する効果があ
る。
Even when subjected to treatment, defects do not occur in the base crystal, and for example, it has the effect of having good characteristics such as reduced leakage current.

【図面の簡単な説明】[Brief explanation of drawings]

第l図A〜第1図Cは本発明に係る絶縁膜の形成方法の
第1実施例の工程を示す断面図、第2図A〜第2図Cは
同第2実施例の工程を示す断面図、第3図A〜第3図C
は同第3実施例の工程を示す断面図である。 ■・・・ンリコン基板、la・・・トレンチ、2・・酸
化膜、3・・第1次Sin,膜、4・・第2次Stow
膜、5・・・S i O v膜、6・・SiNx膜。 [発明の効果] 以上の説明から明らかなように、本発明に係る絶縁膜の
形戚方法によれば、段差部、特にトレンチに埋め込まれ
た絶縁膜の一低ストレス化を図ることか可能となり、デ
バイス形威過程において熱処/kl.i”, 第1 図G 青52突 ス1と イダリ σ9 工 11【 左 示
 す 断dh 巨虱第2図A 第2図B 第2図C
1A to 1C are cross-sectional views showing the steps of the first embodiment of the insulating film forming method according to the present invention, and FIGS. 2A to 2C are sectional views showing the steps of the second embodiment. Cross-sectional views, Figures 3A to 3C
FIG. 3 is a cross-sectional view showing the steps of the third embodiment. ■... Silicon substrate, la... trench, 2... oxide film, 3... primary Sin, film, 4... secondary Stow
film, 5...SiOv film, 6...SiNx film. [Effects of the Invention] As is clear from the above explanation, according to the insulating film forming method according to the present invention, it is possible to reduce the stress of the insulating film embedded in the stepped portion, particularly in the trench. , heat treatment/kl. in the device shaping process. i”, Fig. 1 G Blue 52 Tsutsu 1 and Idari σ9 Eng 11

Claims (3)

【特許請求の範囲】[Claims] (1) 段差を有する基体上にバイアスECRプラズマ
CVD法により絶縁膜を形成する方法において、 はじめに、シラン系ガスとN_2Oガスを用いてCVD
を行ない、次いで、シラン系ガスとO_2ガスを用いて
CVDを行なうことを特徴とする絶縁膜の形成方法。
(1) In the method of forming an insulating film on a substrate with steps by bias ECR plasma CVD method, first, CVD is performed using silane gas and N_2O gas.
1. A method for forming an insulating film, which comprises performing CVD using a silane-based gas and an O_2 gas.
(2) 段差を有する基体上にバイアスECRプラズマ
CVD法により絶縁膜を形成する方法において、 反応ガスにシラン系ガスを用い、該シラン系ガスの流量
比を小さくしながらCVDを行なうことを特徴とする絶
縁膜の形成方法。
(2) A method for forming an insulating film on a substrate having steps by bias ECR plasma CVD, characterized in that a silane-based gas is used as a reaction gas, and CVD is performed while reducing the flow rate ratio of the silane-based gas. A method for forming an insulating film.
(3) 段差を有する基体上にバイアスECRプラズマ
CVD法により絶縁膜を形成する方法において、 はじめに、SiO_2膜を形成し、次いで、SiNx膜
を形成することを特徴とする絶縁膜の形成方法。
(3) A method for forming an insulating film on a substrate having steps by bias ECR plasma CVD, the method comprising: first forming an SiO_2 film, and then forming an SiNx film.
JP1160092A 1989-06-22 1989-06-22 Method of forming insulating film Expired - Fee Related JP2976442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1160092A JP2976442B2 (en) 1989-06-22 1989-06-22 Method of forming insulating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1160092A JP2976442B2 (en) 1989-06-22 1989-06-22 Method of forming insulating film

Publications (2)

Publication Number Publication Date
JPH0324268A true JPH0324268A (en) 1991-02-01
JP2976442B2 JP2976442B2 (en) 1999-11-10

Family

ID=15707688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1160092A Expired - Fee Related JP2976442B2 (en) 1989-06-22 1989-06-22 Method of forming insulating film

Country Status (1)

Country Link
JP (1) JP2976442B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0539804A2 (en) * 1991-10-15 1993-05-05 Canon Kabushiki Kaisha A substrate for a liquid jet recording head, a manufacturing method for such a substrate, a liquid jet recording head, and a liquid jet recording apparatus
JP2013514661A (en) * 2009-12-16 2013-04-25 ナショナル セミコンダクター コーポレーション Stress compensation for large area gallium nitride or other nitride-based structures on semiconductor substrates
JP2020035931A (en) * 2018-08-30 2020-03-05 富士電機株式会社 Gallium nitride based semiconductor device and method of manufacturing gallium nitride based semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0539804A2 (en) * 1991-10-15 1993-05-05 Canon Kabushiki Kaisha A substrate for a liquid jet recording head, a manufacturing method for such a substrate, a liquid jet recording head, and a liquid jet recording apparatus
US6149986A (en) * 1991-10-15 2000-11-21 Canon Kabushiki Kaisha Methods for manufacturing a substrate for a liquid jet recording head, liquid jet recording head, and liquid jet recording apparatus
JP2013514661A (en) * 2009-12-16 2013-04-25 ナショナル セミコンダクター コーポレーション Stress compensation for large area gallium nitride or other nitride-based structures on semiconductor substrates
JP2020035931A (en) * 2018-08-30 2020-03-05 富士電機株式会社 Gallium nitride based semiconductor device and method of manufacturing gallium nitride based semiconductor device

Also Published As

Publication number Publication date
JP2976442B2 (en) 1999-11-10

Similar Documents

Publication Publication Date Title
US7402498B2 (en) Methods of forming trench isolation regions
US5726090A (en) Gap-filling of O3 -TEOS for shallow trench isolation
JP3228183B2 (en) Insulating film, semiconductor device having the insulating film, and method of manufacturing the same
US7514366B2 (en) Methods for forming shallow trench isolation
US6642141B2 (en) In-situ silicon nitride and silicon based oxide deposition with graded interface for damascene application
US20050035426A1 (en) Isolation structure with nitrogen-containing liner and methods of manufacture
US6689646B1 (en) Plasma method for fabricating oxide thin films
US6902960B2 (en) Oxide interface and a method for fabricating oxide thin films
JPH11251271A (en) Silicon carbide for stopper layer in chemical-mechanical polishing for planarizing insulating dielectric
JPH08203884A (en) Oxynitride, deposition thereof, and deposition of isolation oxide of oxynitride
KR100557943B1 (en) Method of improving sti process characteristics by plasma process
KR20060048666A (en) Gap-filling for isolation
US20040175900A1 (en) Manufacturing method of shallow trench isolation
JPH0324268A (en) Formation of thin film
US5920791A (en) Method of manufacturing intermetal dielectrics for sub-half-micron semiconductor devices
JPH07307382A (en) Trench element isolation structure and formation thereof
JP2000058641A (en) Semiconductor device, manufacture thereof, and method for forming interlayer insulating film
KR20020049807A (en) Isolation method for a semiconductor device
JP2000012674A (en) Manufacture of semiconductor device and method for separating element
JPH0376577B2 (en)
JP3315907B2 (en) Method for manufacturing semiconductor device
CN118099079A (en) Semiconductor device and method of manufacturing the same
JPH03159124A (en) Manufacture of semiconductor device
JPH10335447A (en) Manufacture of dielectric isolation substrate
JPH0215650A (en) Semiconductor device and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees